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Abstract
In this work we formulate the problem of group distributionally robust optimization (DRO) in a
semi-supervised setting. Motivated by applications in robustness and fairness, the goal in group
DRO is to learn a hypothesis that minimizes the worst case performance over a pre-specified set
of groups defined over the data distribution. In contrast to existing work that assumes access to
labeled data from each of the groups, we consider the practical setting where many groups may
have little to no amount of labeled data.

We design near optimal learning algorithms in this setting by leveraging the unlabeled data
from different groups. The performance of our algorithms can be characterized in terms of a natural
quantity that captures the similarity among the various groups and the maximum best-in-class error
among the groups. Furthermore, for the special case of squared loss and a convex function class
we show that the dependence on the best-in-class error can be avoided. We also derive sample
complexity bounds for our proposed semi-supervised algorithm.
Keywords: semi-supervised, group DRO, min-max fairness, data sparsity

1. Introduction

Machine learning algorithms are being increasingly deployed in various critical applications e.g.,
criminal justice, healthcare and finance (Angwin et al., 2019). In such scenarios it is important to
ensure that the model is not only accurate overall, but also satisfies additional properties such as
robustness and fairness (Szegedy et al., 2014; Buolamwini and Gebru, 2018).

The notion of min-max optimization is an elegant mathematical framework for designing al-
gorithms for the above mentioned criteria. Here one aims to find a classifier that minimizes the
maximum of a number of losses. For example, in distributionally robust optimization (DRO) (Sinha
et al., 2018; Namkoong and Duchi, 2016; Kuhn et al., 2019), the maximum is taken over expected
losses of the classifier over distributions in a certain ball around a given target distribution. Recent
works have also formulated the group DRO setting that considers min-max optimization over a finite
set of distributions (Sagawa et al., 2019). This setting has many practical applications. For instance,
in existing literature on fair machine learning a standard fairness measure known as min-max fair-
ness or Rawlsian fairness (Martinez et al., 2020; Diana et al., 2021) is an instance of group DRO
where the maximum is taken over the expected losses of the classifier over certain distributions
which are associated with groups of users. Apart from the application to min-max fairness Sagawa
et al. (2019) apply group DRO to train neural networks that can avoid learning spurious correlations.
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Similarly, the work on collaborative PAC learning considers a setting where a finite set of groups are
coordinating to learn a hypothesis that is good for all of them (Blum et al., 2017). Motivated by the
above applications, in this paper we focus on the setting of group DRO, i.e., min-max optimization
over a finite set of distributions.

Much of the prior research on group DRO and min-max optimization in general has been in the
data-rich regime, i.e., settings where each group has a sufficient number of labeled samples. How-
ever, these methods are increasingly being applied to situations where many groups have limited or
no labeled data at all. We call such groups sparse, and data-rich groups dense. As an example con-
sider a large scale recommendation system that consists of content creators and end users. To keep
such systems safe for the end users it is critical to have in place classifiers that can automatically
filter out harmful content. Typically, a limited number of human raters are used to analyze a small
amount of content each day and label it as harmful or not (Deodhar et al., 2022). This labeled data
is then used to train the classifier.

Furthermore, such classifiers should not only be good on average but should also have high
performance across different slices of the user population that can be defined by attributes such
race, sex, gender, location, etc., or any combination of them. This can easily result in a min-max
optimization problem over hundreds of groups where most of the groups will have a very limited
amount of labeled data, if at all. As algorithm designers strive to ensure a certain performance level
for an increasing number of groups, this issue of label sparsity is likely to become more prevalent.

In this work, we address the above scenario and initiate a study of group DRO under the semi-
supervised setting where one has access to unlabeled data from the groups and a limited amount
labeled data from a subset of them. Our contributions are as follows:

1. We formalize the group DRO problem in the semi-supervised setting. As a measure of perfor-
mance we consider the standard min-max loss (say the 0/1 classification loss), and the recently
proposed min-max regret (Agarwal and Zhang, 2022). We show that some natural approaches
for min-max optimization fail in the setting of this paper and that without structural assumptions,
the problem becomes impossible due to lack of sufficient data in some groups.

2. We introduce a very mild structural assumption under which we propose a natural two-step
procedure that first performs a careful pseudo-labeling of the unlabeled data points followed by
invoking an existing algorithm for standard min-max optimization.

3. We show that the proposed algorithm incurs an additive error over the optimal classifier for the
min-max problem that can be decomposed into two terms: a) the maximum, over all the groups,
of the minimal loss of a classifier from the family of classifiers of interest, and b) a notion
of closeness among the groups induced by the structural assumption. We give lower bounds
showing that a dependence on both the terms is necessary in the worst case. We also develop
sample complexity bounds for our proposed algorithm.

4. We propose and analyze an extension of our main algorithm that algorithmically infers the trade-
off among the labeled and the unlabeled data for each group in a data dependent manner.

While the primary contributions are theoretical in nature, Section E also provides some proof-
of-concept experimental results for the proposed algorithm.

1.1. Related Work

The notion of min-max optimization has been studied in several contexts. In the design of fair ma-
chine learning models, min-max fairness has been proposed as a natural notion of group fairness
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(Cotter et al., 2019; Diana et al., 2021; Abernethy et al., 2022; Martinez et al., 2020). The works
of Agarwal et al. (2018); Cotter et al. (2019) proposed general algorithms for min-max optimiza-
tion via connections to no-regret learning in two player games. In addition, the works of Kearns
et al. (2018, 2019) consider min-max optimization under exponentially many groups and provide
algorithms under the assumptions that groups belong to a hypothesis class of finite VC dimension.
The work of Martinez et al. (2020) presents structural results regarding the Pareto optimal min-max
classifiers and the recent work of Diana et al. (2021) presents practical algorithms for min-max
fairness based on the multiplicative weights update method. There has also been recent work on
adaptive sampling methods for min-max optimization (Abernethy et al., 2022; Shekhar et al., 2021;
Haghtalab et al., 2022). In particular, the work of Haghtalab et al. (2022) provides near optimal
sample complexity bounds for the case of hypothesis sets with a finite Littlestone dimension.

Min-max optimization is also widely studied in the design of robust classifiers. Building upon
the framework of robust optimization (Ben-Tal et al., 2009), the work of Duchi et al. (2021) pro-
posed an approach to handling distribution shift where the goal is to design a classifier that optimizes
the worst case loss over distribution that are close to a given reference distribution. This setting cor-
responds to min-max optimization over an infinite set of losses. Later works of Namkoong and
Duchi (2016); Levy et al. (2020) presented large scale methods for min-max optimization when the
closeness between distributions is measured with certain f -divergence measures.

The works of Gao et al. (2022); Kuhn et al. (2019); Blanchet et al. (2021) study min-max opti-
mization under Wasserstein distances. The work of Chen et al. (2017) presents a general approach
for robust optimization over a finite set of non-convex loss functions. Also, the works of Mohri et al.
(2019); Cortes et al. (2020) present algorithms to perform min-max optimization over multiple mix-
tures of a given set of base objectives. Closely related is the line of work on adversarial robustness
where the goal is to design classifiers that are robust to test-time adversarial perturbations (Madry
et al., 2018; Salman et al., 2019; Feige et al., 2015; Attias et al., 2022; Montasser et al., 2019).

In the setting of semi-supervised group DRO that we consider our proposed algorithms will
learn to leverage data from certain dense groups to alleviate the sparsity on the remaining groups.
This is broadly related to works on multitask learning and transfer learning where data from one of
more tasks is used to learn a good classifier for a new task with small number of labeled samples
(Baxter, 2000; Cavallanti et al., 2010; Lounici et al., 2011; Maurer et al., 2016). However a cru-
cial difference is that instead of designing task (or group) specific classifiers, we are interested in a
single classifier that does well across all the groups.

1.2. Notation

We consider a supervised learning problem, where features belong to X and labels belong to Y . We
have a collection of “groups” indexed by a set G. Each g ∈ G is associated with a distribution Pg
over X ×Y . Let F be a family of predictive functions mapping X to Y and let ` : Y ×Y → R+ be
a loss function (viz., `(ŷ, y) is the loss of prediction ŷ for true label y). For a function f : X → Y
and a distribution P on X × Y , we denote the average loss of f on P by

Loss(f, P ) := E
(x,y)∼P

[`(f(x), y)] . (1)

For a set S ⊆ X×Y , we define the notation Loss(f, S) to be the average loss on S, i.e., Loss(f, S) :=
1
|S|
∑

(x,y)∈S Loss(f(x), y). In the learning problem of interest, for each g ∈ G, we are provided a
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sample set of (independent) labeled examples Sg ⊆ X × Y drawn from Pg, and a set of (indepen-
dent) unlabeled examples Ug ⊆ X drawn from the marginal of Pg over X .

1.3. Metrics of Interest

The optimal min-max loss classifier in F is the one that minimizes the maximum loss over all the
groups (Martinez et al., 2020). The loss of this classifier is then:

OPTL = min
f∈F

max
g∈G

Loss(f, Pg).

In the setting of interest in this paper, different groups may have varying amounts of inherent noise
in their labels—in fact, sparse groups are more likely to have more inherent label noise.1 The min-
max criterion defined above is highly sensitive to the level of label noise across the groups, since
the minimal loss of any classifier (not just the min-max optimal one) on a given group is at least
the inherent label noise in that group. Hence, in the presence of widely different amounts of label
noise across the groups, the min-max criterion might potentially yield a bad classifier. To handle
this situation, inspired by the work of Agarwal and Zhang (2022), we also consider a different
performance measure that removes the inherent label noise in the groups: viz., regret. The regret of
a classifier f on a distribution P is:

Regret(f, P ) := Loss(f, P )− inf
f ′∈F

Loss(f ′, P ).

Since the inherent label noise affects all classifiers equally, the regret notion defined above effec-
tively removes label noise from consideration. In addition, the regret captures more accurately the
degradation in performance from not choosing the optimal classifier in F for the distribution P . We
refer the reader to Agarwal and Zhang (2022) for an in-depth discussion of the regret as a perfor-
mance measure of classifiers. Thus, we also consider the optimal min-max regret classifier: this is
the classifier in F that minimizes the maximum regret over all groups, and its regret is then:

OPTR = min
f∈F

max
g∈G

Regret(f, Pg).

We provide performance guarantees for our algorithms in terms of both OPTL and OPTR.

1.4. Failure of Standard Approaches with Limited Data

Existing research has studied min-max fairness in the data-rich regime, where each group has a
number of labeled samples that is comparable to the complexity of the hypothesis class, e.g., VC
dimension or Rademacher complexity (Diana et al., 2021; Sagawa et al., 2019). In such cases, the
empirical loss (and regret) uniformly approximates the population-level loss (and regret) for every
group. As a result, if one chooses the function that minimizes the maximum empirical loss over
all groups, then the returned function f̂ satisfies that maxg Loss(f̂ , Pg) is comparable to OPTL; a
similar conclusion holds for regret as well.

1. For a group g, let L∗g := minf∈F Loss(f, Pg). The inherent noise in labels in a group g corresponds to L∗g , which
inherently depends on the quality of the training data as follows: If there is no consensus among the human/machine
annotators for certain inputs (which typically happens more frequently on sparse groups — the groups with limited
samples), the labels have more noise, increasing L∗g .
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If some groups are sparse, then the above approach fails terribly. In particularly, the returned
hypothesis may overfit to the limited number of labeled samples in the sparse group. Concretely, we
show a simple example below that highlights (i) standard approaches fail if some groups are sparse
and (ii) it is still possible to learn a near optimal min-max classifier if the groups are related.

Example 1 Let G = {1, 2, 3}. Let u be an unknown unit vector in Rd and let z be an unknown
sign in {+1,−1}. The distribution of each group is given below:

• For Group 1, (x, y) is distributed as x ∼ N (0, I) and y = u>x,
• For Group 2, (x, y) is distributed as x ∼ N (0, I) and y = −u>x,
• For Group 3, (x, y) is distributed as x ∼ N (0, σ2I) and y = zu>x for some σ2 � 1.

We are interested in finding a min-max optimal linear predictor β ∈ Rd, the function class F is
affine, and the loss function is the square loss. Let ε ∈ (0, 1) be small enough. We assume that
for groups 1 and 2 are dense and have (1 − ε)/2 fraction of all training examples each, with the
remaining ε fraction in group 3, which is a sparse group. By simple calculations, we have that
OPTL = 4σ2

(σ+1)2
≤ 4.

Note that even though the fraction of training examples in the third group is small, a lot of
information of the third group is captured by the first two groups (up to the unknown sign z). In
particular, the above example satisfies the structural assumption that we propose in this work for the
design of efficient algorithms (see Section 2). Still, as discussed below, the standard approaches fail
to adapt to this underlying structure and perform poorly in the data-scarce regime:
• Maximum Empirical Loss Minimizer Here we find the candidate β that minimizes the maxi-

mum of empirical group-wise loss. However, since the third group does not have enough data,
there are many spurious vectors β′ that have zero empirical loss on the third group but large
max loss. In fact, unless the number of samples in the third group is Ω(d), there will exist a
hypothesis β whose empirical loss is zero on the third group, but with max loss over the distri-
bution scaling with σ2. This can be seen from Figure 1 where the performance of the empirical
minmax optimizer approaches the upper bound on OPTL as the number of labeled samples from
the sparse group approaches the data dimensionality (d is 20 in this case).

• Ignoring Sparse Groups in Training Data Another natural approach is to simply ignore groups
that are sparse and perform min-max optimization over the dense groups. This is especially ap-
pealing if the dense groups capture a lot of information about the sparse ones as is the case in
Example 1. However, if we ignore the third (sparse) group while training, by symmetry, any rea-
sonable algorithm will output origin (or an unbiased estimate of it) as β̂. However, the max loss
incurred by origin is σ2, which could be much larger than OPTL as can be seen from Figure 1.

Figure 1 shows that our proposed algorithm achieves near optimal error even when the number of
labeled samples is one! In the sequel, we will prove that our proposed algorithm achievesO(OPTL)
error as long as we observe a constant number of samples from the sparse group (as opposed to
linearly many) and O(d) samples overall. See Section A for more details.

2. Structural Assumptions

If there is no relationship between the distributions Pg for different groups, then it is impossible to
learn a good classifier on a sparse group — let alone a min-max optimal one — simply because
there might not be enough labeled examples in sparse groups and there is no way to infer additional
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Figure 1: A plot showing that the standard approaches fail in the data scarce regime (number of
labeled samples is less than the dimension, 20) even when the group distributions are
related. The x-axis shows the number of labeled examples from the sparse group. The
y-axis (in log-scale) shows the test max loss of the baselines and our proposed algorithm.
See Example 1 for more details.

information via other groups. Thus, to have any hope of learning a min-max optimal classifier we
need to assume certain “closeness” relationships between any given sparse group and a dense group
allowing us to infer useful information on the sparse group despite the paucity of labeled examples.

One natural closeness assumption is that for every sparse group g ∈ G, there is a dense group
g′ such that the distributions Pg and Pg′ are close in total variation or Wasserstein distance. This
is a very strong notion of similarity and is often unrealistic in practice. One way to relax this as-
sumption is to notice that since we are interested only in the performance of classifiers in F on
the groups, it is enough that for every sparse group g ∈ G, there is a dense group g′ such that
maxf∈F |Loss(f, Pg)− Loss(f, Pg′)| ≤ ∆, for some closeness parameter ∆ ≥ 0. This assumption
is reminiscent of the notions of discrepancy that are widely studied in literature on domain adapta-
tion (Ben-David et al., 2010; Cortes et al., 2015; Zhang et al., 2020). Although this assumption is
considerably weaker than the first one, the fact that the condition needs to hold for every f ∈ F still
imposes strong conditions on the relationship among the two groups. For example, when using the
squared loss with a linear function class, the assumption implies that the two groups g and g′ have
similar covariance matrices of features and similar optimal regressors.

Thus, both of the candidate assumptions discussed above are rather strong notions of similari-
ties and may be unrealistic in practice. In fact, under those assumptions, simply ignoring the sparse
group from our optimization problem results in a classifier without a significant drop in the perfor-
mance from the optimal one. Therefore, we propose a significantly weaker notion of similarity that
we will work with:
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Algorithm 1 Algorithm for Group DRO: Idealized Setting
Require: Groups G, function class F , loss function `, labeled data S, unlabeled data U , a partition

of G into dense and sparse groups. Moreover, for each sparse group g, the identity of the dense
group that attains the minimum ming′:dense Loss(f

∗
g′ , Pg) is known.

1: for each dense group g ∈ G do
2: Let f̃g ← argminf∈F Loss(f, Sg).
3: Define empirical regret: for all f ∈ F , Regretemp(f, g) := Loss(f, Sg)− Loss(f̃g, Sg).
4: end for
5: for each sparse group g ∈ G do
6: Set ĝ ← the dense group that attains the minimum ming′:dense Loss(f

∗
g′ , Pg).

7: Create proxy data from unlabeled data Sproxy := {(x, f̃ĝ(x), g) : (x, g) ∈ U}.
8: Define proxy regret using above: ∀f ∈ F , Regretproxy(f, g) := Loss(f, Sproxy

g ).
9: end for

10: Solve the following min-max problem:
f̂ = argminf∈F max

(
maxg:dense Regretemp(f, g) ,maxg:sparse Regretproxy(f, g)

)
.

11: return f̂

Assumption 1 (Notion of Similarity: good performance of the optimizer) For every sparse group
g ∈ G, there is a dense group g′ ∈ G such that Loss(f∗g′ , Pg)− Loss(f∗g , Pg) ≤ ∆, where f∗g′ and f∗g
are the optimal predictor of groups g′ and g, respectively. 2

This notion of similarity captures the idea that the marginal distributions of these two groups can
be far apart but the conditional distribution of responses is similar. When compared to the notions
of discrepancy used in domain adaptation, we only require the optimal predictor for a dense group
to perform well on the sparse group. That is, the function f∗g′ — the optimal predictor for group g′

— continues to perform well on the group g and thus approximates the conditional distribution of
responses on g.

Assumption 1 is inspired by the observation that it is often cheap to collect unlabeled data, and
use it to approximate the marginal distribution of sparse groups. Thus, the notion of similarity in
this sense should focus only on approximating the conditional distribution of the responses.

3. Algorithm in the Idealized Setting

In this section we outline our main algorithm (Algorithm 1) for the problem of min-max optimiza-
tion in the semi-supervised setting. For simplicity of exposition we will assume the idealized setting,
i.e., we have access to an infinite amount of labeled examples from the dense groups and an infinite
amount of unlabeled examples from the sparse groups and that the sparse groups have no labeled ex-
amples. Note that this implies that we know the identity of the dense and the sparse groups. Further-
more, we will also assume that we know apriori the closest dense group for each sparse group. Here
closeness refers to the notion defined in Assumption 1. This idealized setting is stated below. In later
sections we will generalize our algorithm to settings where such information is not known apriori.

2. That is, f∗g′ = argminf∈F Loss(f, Pg′) and f∗g = argminf∈F Loss(f, Pg).
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Setting 1 (Idealized Setting) The dense groups have infinite labeled examples. In contrast, the
sparse groups have no labeled examples but they have infinite unlabeled examples. Furthermore,
each group has a unique minimizer of the loss function, and for each sparse group g, we know the
identity of the dense group g′ that attains minimum ming′:dense Loss(f

∗
g′ , Pg).

Under the above idealized setting our proposed algorithm (Algorithm 1) follows a simple and
natural approach that surprisingly leads to near optimal error guarantees. Our algorithm consists
of three key steps. In the first step, we compute, for each dense group g, the optimal classifier f̃g
obtained via empirical risk minimization over the labeled samples Sg from the group. The second
and the third steps involve key technical contributions that enable us to deal with sparse groups. In
the second step the algorithm performs a pseudo-labeling of the sparse groups. In particular, for
each sparse group g the unlabeled data is labeled using the classifier f̃g′ where g′ is the dense group
closest to g (as defined in Setting 1). Let this pseudo-labeled dataset be Sproxy

g as constructed in step
7 of Algorithm 1.

In the third step, we define the regret for the sparse group using the proxy dataset. In other
words, let Regretproxy(f, g) := Loss(f, Sproxy

g )−minf∈F Loss(f, Sproxy
g ). Note that since the proxy

dataset is labeled via a function in the class F , the second term equates to zero. Furthermore, we
will show that if the sparse group is close to the dense group that is being used for constructing
the proxy dataset, then using proxy regret only incurs a small additive error that depends on the
closeness parameter ∆. This motivates the use of the proxy regret in step 8 of Algorithm 1.

We then output f̂ that optimizes the min-max regret where the standard notion of regret is used
for the dense groups and the proxy measure is used for the sparse groups. Note that Algorithm 1
is computationally-efficient as it can be implemented provided one has access to an oracle for per-
forming weighted empirical risk minimization. See Section D for more details. Next we present a
generalization analysis of our proposed algorithm in the idealized setting and show that it achieves
near optimal guarantees.

4. Generalization Analysis

In this section we will analyze Algorithm 1 in the idealized scenario as described in Setting 1. We
will show in later sections that much of the analysis carries over in the more realistic finite sample
setting where each dense group has a large number of labeled examples and each sparse group
has a large number of unlabeled examples. Our main theorem is stated below for symmetric loss
functions, i.e., `(y1, y2) = `(y2, y1), that satisfy triangle inequality, i.e., `(y1, y2) ≤ `(y1, y3) +
`(y3, y2) for all y1, y2, y3 ∈ Y . The following result is proved in Section B.1.

Theorem 2 (Idealized Setting and General Function Class) Suppose Assumption 1 holds with
the parameter ∆. For a group g, let L∗g := minf∈F Loss(f, Pg). If the loss function ` satisfies
symmetry and triangle inequality, then the output of Algorithm 1 in the idealized setting (Setting 1)
satisfies:

max
g∈G

Loss(f̂ , Pg) ≤ OPTL + 2∆ + 2 max
g
L∗g ≤ 3OPTL + 2∆ , (2)

max
g∈G

Regret(f̂ , Pg) ≤ OPTR + 2∆ + 2 max
g
L∗g. (3)

Remark 3 We note that our analysis carries over even if the triangle inequality is satisfied up to
constants, for example, for squared loss. We refer the reader to Section B.1 for more details.
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4.1. Lower Bounds

Note that the guarantee in Theorem 2 incurs an additive error both in terms of the closeness pa-
rameter ∆, and the largest in-group optimal error of any group, i.e., maxg L

∗
g. We show that a

dependence on both these terms is unavoidable; thus the guarantee of Theorem 2 is essentially the
best possible even down to constants. We first present a lower bound below, proved in Section B.2,
that shows that the dependence on the maximum L∗g error is unavoidable, even when ∆ is zero.

Theorem 4 Let f̂ be the output of any algorithm for the idealized setting and the zero-one loss.
Further, suppose that ∆ = 0 and let OPTR = ε for any ε ∈ (0, 0.25). There is a choice of
distributions such that maxg L

∗
g = 0.25, OPTL = 0.25 but, with probability at least 0.5, the

following two hold: (i) maxg Regret(f̂ , g) ≥ 0.5 and (ii) maxg Loss(f̂ , g) ≥ 0.75. In particular,
the term 2 maxg L

∗
g can not be avoided in Theorem 2 when maxg L

∗
g = 0.25 even when ∆ = 0.

Note that the above lower bound constructs instances where ∆ is zero. We prove in Section B.3,
that in general, the dependence on ∆ is also unavoidable.

Theorem 5 For any value of ∆ and any algorithm outputting f̂ , there is a learning setup in the
idealized setting, where Assumption 1 holds and maxg∈G Loss(f̂ , Pg) = Ω(∆).

4.2. Square Loss and Convex Function Class

In the previous section, we showed that for general function classes the dependence on the maximum
prediction error, i.e., maxg L

∗
g, is inevitable even if OPTR = 0 and ∆ → 0. Here we consider a

practically relevant case when the loss function is the squared loss and the function class F is
convex. We show an improved upper bound in this case below (proof given in Section B.4).

Assumption 2 Let `(y, y′) := (y − y′)2 and F : X → Y is convex in the function space.

Theorem 6 Suppose Assumption 1 holds with the parameter ∆. For a group g, let L∗g :=
minf∈F Loss(f, Pg). Suppose the loss function is the squared loss and F is convex, i.e., Assump-
tion 2 holds. Then, the output of Algorithm 1 in the idealized setting (Setting 1) satisfies

max
g∈G

Regret(f̂ , Pg) = O
(
OPTR + ∆ + max

g

√
L∗g(OPTR + ∆)

)
. (4)

Furthermore, the upper bound can be tightened to O(OPTR + ∆) if, for all sparse groups g, f∗g lies
in the relative interior of F .

If the loss function happens to be bounded, for example, say due to bounded predictors and
bounded labels, then the upper bound in Theorem 6 becomes O

(√
OPTR + ∆

)
, which is com-

pletely independent of maxg L
∗
g altogether.
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5. Finite Sample Analysis and Data-Dependent Choices

In this section, we extend our algorithm and analysis to the more realistic setting, where one only
has access to finitely many labeled and unlabeled examples from each group. In particular, the al-
gorithm does not know which dense group is closest to a particular sparse group, and the algorithm
needs to make data-dependent choices. Thus, for each group, the algorithm must decide in a data
dependent manner whether to perform pseudo-labeling for that particular group or not; if yes, then
the algorithm also needs to choose the corresponding most informative dense group. Consequently,
the algorithm needs to trade-off the effect of data-sparsity with the approximation error incurred by
pseudo-labeling. Moreover, there is no clean distinction between what constitutes a sparse group
versus a dense group; any hard threshold (for example, a decision based on the comparison between
the number of labeled samples and the VC dimension) may be pessimistic. Thus, we would like
a data-dependent way of making this decision. In order to analyze this setting we first begin by
introducing additional useful notation.

5.1. Notations and Setup

We capture the dependence on the number of labeled and unlabeled samples using the parameters
γg and τg below that can be bounded by standard complexity measures.

Assumption 3 (Uniform Convergence) For every δ > 0, there are parameters γg, τg ∈ [0, 1] such
that with probability 1− δ, for all f, f ′ ∈ F and g ∈ G, we have that∣∣ E

(x,y)∼Sg

[`(f(x), y)]− E
(x,y)∼Pg

[`(f(x), y)]
∣∣ ≤ γg (5)∣∣∣ E

x∼Ug

[
`(f(x), f ′(x))

]
− E
x∼Pg

[
`(f(x), f ′(x))

]∣∣∣ ≤ τg. (6)

Observe that the first condition is equal to |Loss(f, Sg)− Loss(f, Pg)| ≤ γg. IfF has VC dimension
d and the loss function is zero-one loss, then Assumption 3 holds with parameter values γg =

O
(√d log(|G|/δ)

ng,s

)
and τg = O

(√d log(|G|/δ)
ng,u

)
, where ng,s and ng,u are the number of labeled and

unlabeled samples in group g, respectively (Mohri et al., 2018).
Next we strengthen Assumption 1. Since we have access to finitely many samples from a dense

group g, we can hope to only approximate the optimal classifier f∗g . Hence, we need to impose that
all near-optimal estimators of a dense group perform well on the sparse group that it is close to. We
formally define the set of nearly optimal estimators below, followed by the stronger assumption:

Definition 7 (Set of nearly optimal estimators) Let H(ε, g) be the set of functions whose regret
on the group g is small, i.e.,H(ε, g) = {f ∈ F : Regret(f, g) ≤ ε}.

Assumption 4 (Pairwise Similarity between Groups) We say a (dense) group g′ is informative
for a (sparse) group g with parameter ∆g(g

′, ε) if ∀f ∈ H(ε, g′), we have Regret(f, g) ≤ ∆g(g
′, ε).

If a group is sparse, we will assume that there exists a dense group g′ with small ∆g(g
′, ε). Note

that under Assumption 3, the ERM on group g returns a f̃g ∈ H (2γg, g) by Equation (5).

Remark 8 (Weakening Assumption 4) A milder assumption would be that there exists an f in
H(ε, g′) that performs well for g. However, one would ultimately need to identify this f among
H(ε, g′) using (limited) labeled data for the sparse group g, which requires the number of samples
in g to scale with the statistical complexity of the function classH(ε, g′).

10
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While our analysis can be easily modified to work with the weaker assumption above, for im-
proved readability we present the main results of this section under Assumption 4.

Finally, we remind the reader that our goal is to extend Theorem 2 in the finite-sample regime
when sparse groups have only log(|G|) samples (as opposed to the statistical complexity of F).

5.2. Adapting to ∆

Recall that there are two challenges we need to address: First, for any group g, we do not know what
the approximation error ∆ will be if we perform pseudo-labeling with a different group. Second,
we do not know which dense group to choose for a particular sparse group. Suppose for now that
we know the closest group for each group (which we will outline shortly), which handles the second
challenge. Then to tackle the first challenge, we set each group’s objective to be a convex combi-
nation of the empirical regret Regretemp(f, g) and the proxy regret Regretproxy(f, g) with weights
αg and (1 − αg), respectively for some (data-dependent) αg ∈ [0, 1]. Setting αg to be 1 for dense
groups and 0 for sparse groups recovers the original objective from Algorithm 1. This leads to the
following algorithm (Algorithm 2):

Algorithm 2 Algorithmic Framework for Group DRO: Realistic Setting
Require: Groups G, function class F , loss function `, labeled data S, unlabeled data U , parameters

γg and τg from Assumption 3, a routine to choose f̂g and αg in Lines 6 and 7 below, respectively.
1: for each group g ∈ G do
2: Let f̃g ← argminf∈F Loss(f, Sg).
3: Define empirical regret: for all f ∈ F , Regretemp(f, g) := Loss(f, Sg)− Loss(f̃g, Sg).
4: end for
5: for each group g ∈ G do
6: Choose the pseudo-labeling function f̂g using the labeled data Sg and {f̃g′ : g′ 6= g}.

. E.g., using Algorithm 3
7: Choose αg ∈ [0, 1] using the labeled data Sg. . E.g., using Algorithm 3
8: Create proxy data from unlabeled data Sproxy := {(x, f̂g(x), g) : (x, g) ∈ U}.
9: Define proxy regret using unlabeled data: ∀f ∈ F , Regretproxy(f, g) := Loss(f, Sproxy

g ).
10: end for
11: Solve the following min-max problem:

f̂ = argminf∈F maxg∈G
(
αgRegretemp(f, g) + (1− αg)Regretproxy(f, g)

)
.

12: return f̂

Note, we have presented the algorithm in a general manner without specific data dependent
choices of αg and the choice of the closest dense groups. Of course, these choices are critical for
the theoretical performance of the the algorithm above. The following technical lemma guides our
choices in the final algorithm thereby leading to formal guarantees on the algorithm’s performance
(Algorithm 3).

Lemma 9 (Generalization Guarantee of Algorithm 2) Make Assumption 3 and assume that the
loss function satisfies symmetry and triangle inequality. In Algorithm 2, for each group g, let f̃g
be the ERM (defined in Line 2). Let f̂ be the resulting output in Algorithm 2 for arbitrary (data-
dependent) choices of f̂g and αg. Define β := maxg

(
αg
(
2γg+L∗g

)
+(1−αg)

(
Loss

(
f̂g, Pg

)
+τg

))
11
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and β′ := maxg
(
αg · 2γg + (1− αg)

(
Regret

(
f̂g, Pg

)
+ τg

))
, which is smaller than β. Then with

probability 1− δ,

max
g∈G

Loss
(
f̂ , Pg

)
≤ OPTL + 2β and max

g∈G
Regret

(
f̂ , Pg

)
≤ OPTR + β + β′ . (7)

Observe that the both sides of the inequalities above are random variables (since f̃g and αg
are data-dependent). The above lemma suggests that to get small error, we should choose (i) the
pseudo-labeling function f̂g whose loss is small and (ii) the convex weights αg such that αg = 1

if 2γg + L∗g < Loss
(
f̂g, Pg

)
+ τg and 0 otherwise. However, these values are unknown to the

algorithm and must be estimated from the data. In order to tackle (i), we make use of Assump-
tion 4, which imposes that either γg is small (i.e., the group is dense) or there exists a g′ ∈ G \ {g}
whose ERM predictor f̃g′ performs well on g. Thus, we choose f̂g to be f̃g′ that attains the smallest
empirical loss on group g. Although this choice is data-dependent, we know that f̃g′ was trained
on separate data. Thus, a Chernoff-style argument (stated below) implies that the probability of
failure is small if each group g has more than log(|G|) many samples, which is independent of the
complexity of the hypothesis class F .

Lemma 10 Assume that uniform convergence holds (Assumption 3) and the loss function is bounded
in [0, 1]. There exists a constant c > 0 such that if each group has more than c · log(|G|/δ)/ε2 many
labeled samples for some ε, δ ∈ (0, 1). Then with probability 1− 2δ, for all groups g, the choice of
f̂g in Line 2 of Algorithm 3 satisfies that Loss

(
f̂g, Pg

)
≤ L∗g + 2ε + ming′ 6=g

(
∆g(g

′, 2γg′)
)

and∣∣Loss(f̂g, Pg)− Loss
(
f̂g, Sg

) ∣∣ ≤ ε.
Algorithm 3 Algorithm to choose f̂g and αg

Require: Group g, ERM predictors for all groups {f̃g′ : g′ ∈ G}, labeled data Sg, the parameters
γg and τg from Assumption 3, the parameter ε from Lemma 10.

1: Set ĝ ← argming′:g′ 6=g Loss(f̃g, Sg).
2: Let f̂g ← f̃ĝ and let L̂g be the corresponding minimum loss, L̂g ← Loss(f̂g, Sg).
3: Set αg ← 1 if 3γg + Loss(f̃g) < L̂g + ε+ τg else 0.

Next we address the data-dependent choice of αg (the point (ii) in the paragraph preceding
Lemma 10). Here, we need upper-bounds on (i) L∗g, which can be obtained using the empiri-
cal loss of f̃g (up to γg factor), and (ii) Loss(f̂g, Pg), which was calculated in the lemma above.
Combining everything together, the parameter β in Lemma 9 can be upper bounded by L∗g +
O
(
maxg min

(
γg, τg + ε+ ming′ 6=g ∆g(g

′, 2γg′)
))

, obtaining the following:

Theorem 11 Assume Assumption 3 and the loss function is symmetric, satisfies triangle inequality,
and is bounded in [0, 1]. Suppose each group has Ω(log(|G|/δ)/ε2) many labeled samples for some
ε, δ ∈ (0, 1). Then with probability 1 − 2δ, the output of Algorithm 2 satisfies (recall ∆g(·, ·) is
defined in Assumption 4):

max
g∈G

Loss
(
f̂ , Pg

)
≤ OPTL + 2 max

g
L∗g + max

g∈G
min

(
4γg,min

g′ 6=g

(
∆g(g

′, 2γg′) + τg + 4ε
))

max
g∈G

Regret
(
f̂ , Pg

)
≤ OPTR + max

g
L∗g + max

g∈G
min

(
4γg,min

g′ 6=g

(
∆g(g

′, 2γg′) + τg + 4ε
))

.

12
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Here, for each group g, the dominant factors in the excess error (modulo L∗g, which is unavoidable)
are: (i) γg, a parameter that depends on the number of labeled samples in a group and the complexity
of F and (ii) ∆, the distance from the nearest dense group as mentioned in Assumption 4. In partic-
ular, the last term in Theorem 11, is a maximum over g ∈ G of min

(
4γg,ming′ 6=g

(
∆g(g

′, 2γg′) +
τg + 4ε

))
. For every g, this expression is small if either g is dense (since γg is small) or if it is close

to a dense group g′ and g has many unlabeled samples. Thus, Theorem 11 extends Theorem 2 to
the finite sample setting assuming only log(|G|/δ)/ε2 samples per sparse group.

We now discuss the benefits and tightness of Theorem 11: First, a sparse group must have
poly (log(|G), 1/ε) many samples to get comparable error in general, matching the sample com-
plexity of Theorem 11 (cf. Section C.4). Second, akin to Theorem 4, an additive dependence on
Ω(maxg L

∗
g) can not be avoided with finitely many samples in sparse groups even when dense

groups have infinitely many samples (cf. Theorem 18). Third, we note that the proposed algo-
rithm automatically adapts to the unknown values of ∆g(·, ·). Finally, the proposed algorithm is
computationally-efficient because it can be implemented using weighted-ERM oracle, a standard
assumption in this field (cf. Section D).
Implications for group fairness. Note that Theorem 2 and Theorem 11 directly provide concrete
guarantees for the min-max (Rawlsian) notion of fairness (Abernethy et al., 2022). As different
fairness objectives are often incompatible, these results have no implications on other notions of
fairness such as equalized odds or demographic parity (Hardt et al., 2016).

6. Conclusion and Future Work

In this work, we initiate a systematic study of the semi-supervised group DRO in the data-scarce
regime. We proposed computationally-efficient and (labeled) sample-efficient algorithms to prov-
ably tackle data scarcity under very mild assumptions on the relationships between groups. Starting
from an idealized setting, we derive a near-optimal computationally-efficient algorithm, which we
then generalize to a more realistic finite-sample setting. An important direction for future work is to
perform extensive experiments on real-world data and use the derived insights to modify the notion
of similarity and the algorithms. Another important venue is to tackle the losses that do not satisfy
(approximate) triangle inequality and symmetry.
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Appendix A. Failure of Standard Approaches

In this section, we provide additional details regarding Example 1.

Example 1 Let G = {1, 2, 3}. Let u be an unknown unit vector in Rd and let z be an unknown sign
in {+1,−1}. The distribution of each group is given below:

• For Group 1, (x, y) is distributed as x ∼ N (0, I) and y = u>x,
• For Group 2, (x, y) is distributed as x ∼ N (0, I) and y = −u>x,
• For Group 3, (x, y) is distributed as x ∼ N (0, σ2I) and y = zu>x for some σ2 � 1.

We are interested in finding a min-max optimal linear predictor β ∈ Rd, the function class F is
affine, and the loss function is the square loss. Let ε ∈ (0, 1) be small enough. We assume that
for groups 1 and 2 are dense and have (1 − ε)/2 fraction of all training examples each, with the
remaining ε fraction in group 3, which is a sparse group. By simple calculations, we have that
OPTL = 4σ2

(σ+1)2
≤ 4.

Calculating the OPT Let β be a candidate vector in Rd. For a group g ∈ {1, 2, 3}, recall that
Loss(β, g) is equal to E[(x>β−y)2], where (x, y) are distributed as per the group distribution. Thus,
Loss(β, 1) = ‖β − u‖22, Loss(β, 2) = ‖β + u‖22, and Loss(β, 3) = σ2‖β − zu‖22. In particular,
it can be seen that OPTL ≤ 4 as follows: the loss of β̂ = zu satisfies that maxg Loss(β̂, g) =
maxg

(
(z − 1)2, (z + 1)2, 0

)
≤ 4 since z ∈ {−1, 1}, implying that OPTL ≤ 4. In fact, the exact

optimum can be calculated as follows: let z = 1 for simplicity; the case of z = −1 is analogous.
The maximum loss can then be written as max(σ2‖β − u‖22, ‖β − u‖22, ‖β + u‖22). To calculate
the minimum over β, we equate the two expressions (and checking that it is indeed the minimum
value), we obtain that the OPTL = 4σ2

(σ+1)2
, which increases from 1 to 4 as σ goes from 1 to∞.

Average Empirical Risk Minimizer Let us first consider the average empirical risk minimizer.
Let P be the mixture distribution of these three groups with the given weights. As the loss function
is square loss, as n → ∞, the solution converges to βOLS =

(
EP [xx>]

)−1 (
E(x,y)∼P [xy]

)
. It is

easy to see that EP [xx>] = 0.5 (1− ε) I + 0.5 (1− ε) I + εσ2I = (1 + ε
(
σ2 − 1

)
)I . Turning to

E(x,y)∼P [xy], we have that it is equal to

E
(x,y)∼P

[xy] = 0.5 (1− ε) E
x∼N (0,I)

[(u>x)x]− 0.5 (1− ε) E
x∼N (0,I)

[(u>x)x] + ε E
x∼N (0,σ2I)

[(zu>x)x]

= ε E
x∼N (0,σ2I)

[(zu>x)x] = εσ2zu .

Thus, βOLS converges to
(

εσ2z
1+εσ2−ε

)
u. The loss of βOLS on the third group is equal to

E
x∼N (0,σ2I)

[(x>βOLS − zu>x)2] = σ2‖zu− βOLS‖22 = σ2
(

1− εσ2

1 + εσ2 − ε

)2

=
σ2(1− ε)2

(1 + εσ2 − ε)2
, .

If σ2 1−εε , then the expression above can be larger than σ2/4, which could be much larger than OPTL

if σ is large (and ε is small).

17



AWASTHI KALE PENSIA

Maximum Empirical Loss Minimizer Let Σ1,Σ2,Σ3 be the empirical second moment matrices
of the three groups, respectively. Then the solution corresponds to β̂ that minimizes

β̂ = arg min
β

max
(

(β − u)>Σ1 (β − u) , (β + u)>Σ2 (β + u) , (β − zu)>Σ3 (β − zu)
)
. (8)

Let us consider the idealistic setting where the first two groups have infinite samples since the main
technical roadblock is handling the limited data in the third group. In this idealized setting, we have
Σ1 = I and Σ2 = I , and the output is thus distributed as follows:

β̂ = arg min
β

max
(
‖β − u‖22, ‖β + u‖22, (β − zu)>Σ3 (β − zu)

)
. (9)

If the third group has r ≤ d samples, which is the regime of interest, then with probability 1, Σ3

will have rank r. Let Ud−r be the null space of Σ3. By rotational invariance of N (0, σ2I), Ud−r is
distributed uniformly among subspaces of rank d − r. We let PUn−r with be projection matrix on
the subspace Un−r.

We will now show that for any r = o(d) and ε > 0, with high probability (1−O(exp(−Ω(dε2)))),
there is a candidate vector β̂ whose empirical (maximum) loss is less than 1 + O(ε + r/d) but its
population-level loss is Ω(σ2) (recall that OPTL → 4 as σ → ∞). In particular, the empirical loss
of β̂ will be zero on the sparse group but the population loss of β̂ on the sparse group will scale
linearly with σ2.

Let z = 1 for simplicity; the case of z = −1 is analogous. Let v be the projection of u
on Un−r. With high probability, we have that |u>v| = ‖v‖22 is of the order (1 ± ε)d−rd = 1 ±
(ε + r/d) (Vershynin, 2018, Chapter 5). Consider β̂ = u − v. Using Equation (9), the maximum
empirical loss of β̂ is max(‖v‖22, ‖2u − v‖22, v>Σ3v) = max(1, ‖2u + v‖22), where we use that v
belongs to the null space of Σ3. The second term in the expression is further equal to ‖2u+ v‖22 =
4‖u‖22 + ‖v‖22− 4(u>v) = 4− 3‖v‖22. We can upper bound it as follows: 4− 3(1− ε)(1− r/d) ≤
1 +O(r/d) + ε. This establishes the claim regarding the maximum empirical loss of this candidate
vector. However, the maximum population-level loss of this estimate over the three groups is at
least σ2‖v‖22 (achieved by the third group), which is indeed Ω(σ2) with high probability.

Appendix B. Proofs from Section 4

B.1. Proof of Theorem 2 under Approximate Triangle Inequality

We begin by defining the approximate triangle inequality:

Definition 12 (Approximate Triangle inequality) We say a loss function `(·, ·) : Y × Y → R+

satisfies c-approximate triangle inequality for c ≥ 1 if for all y1, y2, y3:

`(y1, y2) ≤ c ·
(
`(y1, y3) + max (`(y3, y2), `(y2, y3))

)
.

The zero-one loss satisfies this condition with c = 1, while the square loss satisfies this with c = 2.
The following theorem is thus a more general version of Theorem 2.

Theorem 13 (Idealized Setting and General Function Class for Approximate Triangle Inequality)
Suppose Assumption 1 holds with the parameter ∆. For a group g, let L∗g := minf∈F Loss(f, Pg).
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Suppose the loss function ` is symmetric and satisfies c-approximate triangle inequality (Defini-
tion 12), then the output of Algorithm 1 in the idealized setting (Theorem 1) satisfies:

max
g∈G

Loss(f̂ , Pg) ≤ c2 · OPTL + c(c+ 1)∆ + c(c+ 1) max
g
L∗g

≤ c(2c+ 1)OPTL + c(c+ 1)∆ , and

max
g∈G

Regret(f̂ , Pg) ≤ c2OPTR + c(c+ 1)∆ + (2c2 + c− 1) max
g
L∗g.

Proof We define L̃oss(f, Pg) to be Ex∼Pg [`(f(x), f∗ĝ (x))]. By using the approximate triangle in-

equality, we obtain the following relation between Loss and L̃oss for sparse groups: for all f ∈ F ,
we have that

Loss(f, Pg)− c · L̃oss(f, Pg) = E
(x,y)∼Pg

[`(f(x), y)]− c E
(x,y)∼Pg

[`(f(x), f∗ĝ (x))]

≤ c E
(x,y)∼Pg

[`(f∗ĝ (x), y)] = c · Loss(f∗ĝ , Pg) ≤ c∆ + cL∗g, (10)

where the last inequality uses Assumption 1. Similarly,

L̃oss(f, Pg)− c · Loss(f, Pg) = E
(x,y)∼Pg

[`(f(x), f∗ĝ (x))]− c E
(x,y)∼Pg

[`(f(x), y)]

≤ c E
(x,y)∼Pg

[`(y, f∗ĝ (x))]

= c E
(x,y)∼Pg

[`(f∗ĝ (x), y)] ≤ c∆ + cL∗g, (11)

where the last equality uses the symmetry of the loss function.
Observe that the output of the algorithm, f̂ , in the idealized setting can equivalently be defined

as follows:

f̂ = argmin
f∈F

max
(

max
g:dense

Regret(f, Pg), max
g:sparse

L̃oss(f, Pg)
)
. (12)

We now proceed as follows to upper bound the maximum loss achieved by the output f̂ of the
algorithm: let f∗ be the function achieving the OPTL, then

max
g∈G

Loss(f̂ , Pg) = max

(
max
g:dense

Loss(f̂ , Pg), max
g:sparse

Loss(f̂ , Pg)

)
≤ max

(
max
g:dense

Regret(f̂ , Pg) + L∗g, max
g:sparse

c · L̃oss(f̂ , Pg) + c∆ + cL∗g

)
(using (10))

≤ cmax

(
max
g:dense

Regret(f̂ , Pg), max
g:sparse

L̃oss(f̂ , Pg)

)
+ c∆ + cmax

g
L∗g

≤ cmax

(
max
g:dense

Regret(f∗, Pg), max
g:sparse

L̃oss(f∗, Pg)

)
+ c∆ + cmax

g
L∗g (using (12))

≤ c2 max

(
max
g:dense

Loss(f∗, Pg), max
g:sparse

Loss(f∗, Pg) + ∆ + L∗g

)
+ c∆ + cmax

g
L∗g (using (11))

19



AWASTHI KALE PENSIA

≤ c2 max
g∈G

Loss(f∗, g) + c(c+ 1)∆ + c(c+ 1) max
g
L∗g

= c2OPTL + c(c+ 1)∆ + c(c+ 1) max
g
L∗g.

The final result follows by the fact that OPTL ≥ maxg L
∗
g.

Finally, we consider the maximum regret of f̂ on G. Here, let f∗ be the function achieving
OPTR.

max
g∈G

Regret(f̂ , Pg) = max

(
max
g:dense

Regret(f̂ , Pg), max
g:sparse

Loss(f̂ , Pg)− L∗g
)

≤ max

(
max
g:dense

Regret(f̂ , Pg), max
g:sparse

c · L̃oss(f̂ , Pg) + c ·∆ + (c− 1)L∗g

)
(using (10))

≤ c ·max

(
max
g:dense

Regret(f̂ , Pg), max
g:sparse

L̃oss(f̂ , Pg)

)
+ c ·∆ + max

g
(c− 1)L∗g

≤ c ·max

(
max
g:dense

Regret(f∗, Pg), max
g:sparse

L̃oss(f∗, Pg)

)
+ c ·∆ + max

g
(c− 1)L∗g (using (12))

≤ c2 ·max

(
max
g:dense

Regret(f∗, Pg), max
g:sparse

Loss(f∗, Pg) + ∆ + L∗g

)
+ c ·∆ + (c− 1) max

g
L∗g (using (11))

≤ c2 max

(
max
g:dense

Regret(f∗, Pg), max
g:sparse

Regret(f∗, Pg) + ∆ + 2L∗g

)
+ c ·∆ + (c− 1) max

g
L∗g

≤ c2 ·max
g∈G

Regret(f∗, g) + c(c+ 1)∆ + (2c2 + c− 1) ·max
g
L∗g

= c2 · OPTR + c(c+ 1)∆ + (2c2 + c− 1) max
g
L∗g.

B.2. Proof of Theorem 4

Theorem 4 Let f̂ be the output of any algorithm for the idealized setting and the zero-one loss.
Further, suppose that ∆ = 0 and let OPTR = ε for any ε ∈ (0, 0.25). There is a choice of
distributions such that maxg L

∗
g = 0.25, OPTL = 0.25 but, with probability at least 0.5, the

following two hold: (i) maxg Regret(f̂ , g) ≥ 0.5 and (ii) maxg Loss(f̂ , g) ≥ 0.75. In particular,
the term 2 maxg L

∗
g can not be avoided in Theorem 2 when maxg L

∗
g = 0.25 even when ∆ = 0.

Proof Suppose there are 3 groups, G = {g1, g2, g3}, where the group g3 is sparse, and the function
class F = {f1, f2, f3, f4}. Then, we will show that there exist two joint distributions P andQ (over
the three groups) such that P andQ have the same distribution over (i) labeled samples on the dense
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groups and (ii) unlabeled samples on the sparse group. Moreover, both of the dense groups, g1 and
g2, are valid neighbors of the sparse group, g3, with ∆ = 0 in the sense of Assumption 1 for both
choices of the joint distributions P and Q. Thus, no algorithm can differentiate between these cases
in the idealized setting, i.e., without using labeled samples from the sparse group.

Furthermore, for the joint distribution P (respectively, Q), there is a single function f ∈ F , f3
(respectively, f4), that has max regret equal to OPTR, while all other functions inF have max regret
at least 0.5; in fact, f1 and f2 have regret 0.75 on either P or Q. Thus, any algorithm when applied
to P and Q must choose between f3 and f4. However, the performance of f3 and f4 is identical on
the dense groups under both P and Q, and their behavior differ only on the sparse group. Since we
do not observe labeled samples from the sparse group and the marginal distribution of features is
identical on P andQ, we obtain that no algorithm can distinguish between P andQwith probability
more than 0.5.

In particular, we will show that the functions in F have the following performance on P and Q:

Table 1: Functions and their expected loss values on different groups under two choices of condi-
tional distributions on group g3. The first column lists the functions in the function classF .
The second and third column list the (average) loss values of the functions on the groups
g1 and g2 under both P and Q (since these groups are distributed identically under P and
Q); Here ε is an arbitrarily small positive value in (0, 0.25). Finally, the last two columns
give the average loss values of the functions on the group g3 under P and Q, respectively.
Under both P and Q, it can be seen that OPTL = 0.25 and OPTR = ε, while ∆ = 0:
Under P (similarly, Q), the neighbor of g3 is g1 (g2) because g1’s (g2’s) optimal classifier,
f1 (f2), achieves zero regret on g3.

Groups

g1 (Dense) g2 (dense) g3 (sparse)

Functions P Q

f1 0 1 0.25 0.25
f2 1 0 0.25 0.25
f3 ε ε 0.25 0.75
f4 ε ε 0.75 0.25

Thus, the desired result follows if we exhibit a functional class and joint distributions P and Q
that exhibit the properties in Table 1. Our function class and labels will be binary Y = {0, 1} and
F ⊂ X → {0, 1}. We assume that the support of g1 and g2 is disjoint from the group g3 and thus
the conditional distributions on these groups give no information about the group g3, and it is easy
to construct cases where these functions satisfy the values given in Table 1.

For the group g3, we assume that the features are uniform on {x1, x2} in both P andQ for some
distinct x1, x2 ∈ X . The only thing that differs between P and Q is the conditional distribution on
the (binary) labels. Since the labels are binary, it suffices to define the probability of y = 1 for each
x under these two distributions on the group g3. The choice of parameters achieving the desired
values is shown in Table 2:

21



AWASTHI KALE PENSIA

Table 2: The distributions of g3 under the distributions P and Q. Here, the distribution on {x1, x2}
is uniform under both P and Q. The conditional distribution of y given x is characterized
by E[y|x]. The left table also defines the function class F on {x1, x2} (this definition is
then repeated in the right table). The last columns on both of these tables confirm that
these values match the ones given in Table 1.

g3 under P

Support

Functions x1 x2 Loss

E[y|x] 0.5 0

f1 0 0 0.25
f2 1 1 0.25
f3 0 1 0.75
f4 1 0 0.25

g3 under Q

Support

Functions x1 x2 Loss

E[y|x] 0 0.5

f1 0 0 0.25
f2 1 1 0.25
f3 0 1 0.25
f4 1 0 0.75

B.3. Proof of Theorem 5

Theorem 5 For any value of ∆ and any algorithm outputting f̂ , there is a learning setup in the
idealized setting, where Assumption 1 holds and maxg∈G Loss(f̂ , Pg) = Ω(∆).

Proof Suppose there are two groups, i.e., G = {g1, g2}, and the sparse group is g2. Furthermore,
consider the simple setting of univariate linear regression with square loss, i.e., F = {β : β ∈ R}
and `(y, y′) = (y − y′)2. Let the distribution of the group g1 be point mass on x = 1 and y = 1.
Then, we can see that f∗g1 = 1. Let 0 ≤ α ≤ 1 be arbitrary. The marginal distribution of the group
g2 is the point mass on σ for some σ > 1. Consider two choices of conditional distribution of y for
the group g2. Under the choice 1, y = x(1 +α) almost surely and under the choice 2, y = x(1−α)
almost surely. Under both the cases, the performance of the optimal predictor of the group g1, f∗g1 ,
is equal to (x− y)2 = (σ − σ(1± α))2 = σ2α2. That is, ∆ = α2σ2.

Now, let f̂ be any estimator in the function class F . Observe that f̂ can not depend on the
conditional distribution of the sparse group. In particular, the estimator is independent of whether
y = x(1 − α) or y = x(1 + α). Since f̂ is a linear predictor in one dimension, either f̂ ≤ 1 or
f̂ ≥ 1. Suppose f̂ ≥ 1, then its loss on the second choice of the conditional distribution (where
y = x(1−α)) is at least σ2α2 = ∆. A similar conclusion holds when f̂ ≤ 1. Thus, every algorithm
must incur loss of Ω(∆), either with probability 1/2 or in expectation (if the underlying conditional
distribution on the sparse groups is uniform between the two choices given here), on the sparse
group.

B.4. Proof of Theorem 6

We first state the relations between the true regret and the proxy that we will choose that is adaptive
to the structure of the function class.
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B.4.1. RELATIONS BETWEEN TRUE REGRET AND A PROXY REGRET FOR SQUARE LOSS

In this section, our focus is on the squared loss. Thus, the regret of a function f on the group g is
defined as follows:

Regret(f, g) = E
(x,y)∼Pg

[(y − f(x))2]− E
(x,y)∼Pg

[(y − f∗g (x))2],

where f∗g is the best in-class predictor for group g, i.e., f∗g := argminf∈F E(x,y)∼Pg
[(y − f(x))2].

Since the loss function is the squared loss, we know the optimal Bayes predictor for the group g is
given by hBayes,g(x) = E(x,y)∼Pg

[y|x]. Since hBayes,g might not belong to the function class F , we
let Eg denote the approximation error, Eg = Ex∼Pg(hBayes,g(x)− f∗g (x))2.

Since evaluating the regret requires labeled samples (x, y), we study an alternative notion of
regret that does not require labeled samples:

RegretI(f, g) := E[(f(x)− f∗g (x))2]. (13)

The following result captures the approximation between Regret and RegretI:

Proposition 14 (Relations between Regret and RegretI) We have the following relations if the
loss function is square loss:

1. (No structure on function class F)

|Regret(f, g)− RegretI(f, g)| ≤ 2
√
Eg · RegretI(f, g).

Thus the both of these measures are equal if the problem is well-specified, i.e., Eg = 0 or,
equivalently, hBayes,g ∈ F .

2. (Convexity) If the function class F is convex, then we can obtain a tighter lower bound on
Regret(f).

0 ≤ Regret(f, g)− RegretI(f, g) ≤ 2
√
Eg · RegretI(f, g).

3. (Linearity or well-specified) If either (i) the function class F is a linear subspace, or more
generally, f∗g lies in relative interior of F , or (ii) hBayes,g ∈ F , then

Regret(f, g) = RegretI(f, g).

Moreover, these guarantees are essentially tight.

Proof We begin by defining important objects. Define εBayes := E[(y − hBayes(x))2]. We start with
a simple standard proposition showing that we can ignore the labels y if we know hBayes,g.

Proposition 15 (Folklore) For any function f , we have that

E[(y − f(x))2] = εBayes + E
[
(hBayes,g(x)− f(x))2

]
.
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The result above implies that

Loss(f, g) = εBayes + E
[
(hBayes,g(x)− f(x))2

]
and (14)

Regret(f, g) = E
[
(hBayes,g(x)− f(x))2

]
−E

[
(hBayes,g(x)− f∗(x))2

]
(15)

In particular, f∗g = argminf∈F E[(hBayes,g(x)− f(x))2].
For any two functions f and g, we define the inner product 〈f, g〉 := E[f(X)g(X)] and use

‖f‖2L2
:= 〈f, f〉. Then, it can be seen that f∗g = argminf∈F ‖f − hBayes,g‖2L2

.

1. We start as follows:

Regret(f, g) = ‖f − hBayes,g‖2L2
− ‖f∗g − hBayes,g‖2L2

= 〈f − f∗g , f + f∗g − 2hBayes,g〉
= ‖f − f∗g ‖2L2

+ 2〈f − f∗g , f∗g − hBayes,g〉
= RegretI(f) + 2〈f − f∗g , f∗g − hBayes,g〉. (16)

By Cauchy-Scwarz inequality, we have that 〈f − f∗g , f∗g − hBayes,g〉 ≤
√
Eg · RegretI(f).

2. Observe that f∗g is the Hilbert projection of hBayes,g on the set F . Thus for each f ∈ F , we
have that 〈hBayes,g − f∗g , f∗g − f〉 ≥ 0, leading to the desired result by Equation (16).

3. The case when hBayes,g ∈ F follows from the first part, and the case when f∗g lies in relative
interior of F , then we have that 〈hBayes,g − f∗g , f∗g − f〉 = 0.

Tightness For example, consider F = [0, 1] and let hBayes,g = −1. Then f∗g = 0, and Eg = 1,
and Regret(f) = (f+1)2−1, whereas RegretI(f) = f2. For f1 = 1, we have that Regret(f1) = 3,
whereas RegretI(f1) = 1. Thus we have that 1 = RegretI(f1) ≤ Regret(f1) = 3 = 1 + 2

√
1 · 1 =

˜Regret(f1) + 2
√
Eg · RegretI(f1).

B.4.2. PROOF OF THEOREM 6

We are now ready to provide the proof using Proposition 14.

Theorem 6 Suppose Assumption 1 holds with the parameter ∆. For a group g, letL∗g := minf∈F Loss(f, Pg).
Suppose the loss function is the squared loss and F is convex, i.e., Assumption 2 holds. Then, the
output of Algorithm 1 in the idealized setting (Setting 1) satisfies

max
g∈G

Regret(f̂ , Pg) = O
(
OPTR + ∆ + max

g

√
L∗g(OPTR + ∆)

)
. (4)

Furthermore, the upper bound can be tightened to O(OPTR + ∆) if, for all sparse groups g, f∗g lies
in the relative interior of F .

Proof [Proof of Theorem 6] Recall thatL∗g := minf∈F Loss(f, Pg) and the notation of L̃oss(f, Pg) :=

Ex∼Pg [`(f(x), f∗ĝ (x))] from the proof of Theorem 2. Observe that f̂ in Algorithm 1 is defined as
follows:

f̂ = argmin
f∈F

max

(
max
g:dense

Regret(f, Pg), max
g:sparse

L̃oss(f, Pg)

)
. (17)

24



SEMI-SUPERVISED GROUP DRO

Furthermore, define RegretI(f, Pg) := E
[(
f(x)− f∗g (x)

)2] that was also used in Proposi-
tion 14.

We can now control the deviation between RegretI and L̃oss using ∆:

RegretI(f, Pg) = E
[(
f(x)− f∗g (x)

)2]
≤ 2E

[(
f(x)− f∗ĝ (x)

)2]
+ 2E

[(
f∗ĝ (x)− f∗g (x)

)2]
(using (a+ b)2 ≤ 2a2 + 2b2)

= 2L̃oss(f, Pg) + 2RegretI(f̂ , Pg)

≤ 2L̃oss(f, Pg) + 2Regret(f∗ĝ , Pg) (using Proposition 14 (ii))

≤ 2L̃oss(f, Pg) + 2∆, (18)

where the last inequality is by assumption. Similarly, we obtain L̃oss(f, Pg) ≤ 2RegretI(f, Pg) +
2∆.

We now proceed as follows: let f∗ be the function achieving the OPTR, then the output f̂ of
the algorithm satisfies the following (below, we use two different metrics for the dense and sparse
groups: Regret for the dense groups and 0.5RegretI for the sparse groups):

max

(
max
g:dense

Regret(f̂ , Pg), max
g:sparse

0.5RegretI(f̂ , Pg)

)
≤ max

(
max
g:dense

Regret(f̂ , Pg), max
g:sparse

L̃oss(f̂ , Pg) + ∆

)
(using (18))

≤ max

(
max
g:dense

Regret(f∗, Pg), max
g:sparse

L̃oss(f∗, Pg)

)
+ ∆ (using (17))

≤ max

(
max
g:dense

Regret(f∗, Pg), max
g:sparse

2RegretI(f
∗, Pg) + 2∆

)
+ ∆

≤ 2OPTR + 3∆. (19)

The above result implies the bound on the maximum regret over dense groups, i.e., for any dense
group g, Regret(f̂ , g) = O (OPTR + ∆). For the sparse groups, we need one more step. The
convexity of F implies the following using Proposition 14:

0 ≤ Regret(f, g)− RegretI(f, Pg) ≤ 2
√
L∗g · RegretI(f, Pg). (20)

If f∗g lies in the relative interior of F), then we have a stronger guarantee from Proposition 14 that
Regret(f, g) is exactly equal to RegretI(f, Pg) .

For any sparse group g, combining Equations (20) and (19), we have that

Regret(f̂ , Pg) ≤ RegretI(f̂ , Pg) + 2

√
L∗gRegretI(f̂ , Pg) .

Furthermore, if the function class is linear or the f∗ lies in the relative interior of F for sparse
groups, then Regret(f̂ , Pg) = O(OPTR + ∆).
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Appendix C. Finite Sample Guarantees: Proofs from Section 5

C.1. Proof of Lemma 9

Proof For each group g, let f̂g be arbitrary and potentially depending on the training data, and define
∆′g := Regret(f̂g, Pg). For any two functions f and f ′, define L̃oss(f, f̂g, Pg) := Ex∼Pg [`(f(x), f̂g(x))].
For convenience, we define Lossproxy(f, Pg) := L̃oss(f, f̂g, Pg).

By using the triangle inequality and the symmetry of the loss function, we obtain the following
relation between Loss and Lossproxy: we have that

|Loss(f, Pg)− Lossproxy(f, Pg)| =

∣∣∣∣ E
(x,y)∼Pg

[`(f(x), y)]− E
x∼Pg

[`(f(x), f̂g(x))]

∣∣∣∣
≤ E

(x,y)∼Pg

[`(f̂g(x), y)]

= Loss(f̂g, Pg) = ∆′g + L∗g. (21)

For the rest of the proof, we assume that the event from Assumption 3 holds, which happens with
probability 1− δ. Thus, we have that for all f ∈ F and g ∈ G:

|Regretemp(f, g)− Regret(f, Pg)| ≤ 2γg, (22)∣∣Regretproxy(f, g)− Lossproxy(f, Pg)
∣∣ ≤ τg. (23)

Combining the last inequality with Equation (21), we obtain∣∣Regretproxy(f, g)− Loss(f, Pg)
∣∣ ≤ τg + ∆′g + L∗g . (24)

Let αg ∈ [0, 1] be any choice of parameters in the algorithm that potentially depends on the ob-
served samples. We defineαg := 1−αg. Define β = maxg

(
αg
(
2γg + L∗g

)
+ αg

(
∆′g + L∗g + τg

))
,

which matches the definition from the lemma statement.
Recall that f̂ in Algorithm 2 is defined as follows:

f̂ = argmin
f∈F

max
(
αgRegretemp(f, Pg) + (1− αg)Regretproxy(f, Pg)

)
. (25)

We now proceed as follows: let f∗ be the function achieving the OPTL. Then,

max
g∈G

Loss(f̂ , Pg) = max
g∈G

(
αg

(
Regret(f̂ , Pg) + L∗g

)
+ αgLoss(f, Pg)

)
≤ max

g

(
αg

(
Regretemp(f̂ , Pg) + 2γg + L∗g

)
+ αg

(
Regretproxy(f̂ , Pg) + ∆′g + L∗g + τg

))
(using Equations (22) and (24))

≤ max
g

(
αgRegretemp(f̂ , Pg) + αgRegretproxy(f̂ , Pg)

)
+ β

(using definition of β)

≤ max
g

(
αgRegretemp(f∗, Pg) + αgRegretproxy(f

∗, Pg)
)

+ β

(since f̂ minimizes the objective)
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≤ max
g

(
αg (Regret(f∗, Pg) + γg) + αg

(
Loss(f∗, Pg) + ∆′g + L∗g + τg

))
+ β

(using Equations (22) and (24))

≤ max
g

(αg (Loss(f∗, Pg)) + αg (Loss(f∗, Pg))) + 2β

(using definition of β and Regret(f, g) ≤ Loss(f, g))

= OPTL + 2β.

Finally, we consider the maximum regret of f̂ on G. Here, let f∗ be the function achieving OPTR

and define β′ = maxg
(
αg (2γg) + αg

(
∆′g + τg

))
= β.

max
g∈G

Regret(f̂ , Pg) = max
g∈G

(
αg

(
Regret(f̂ , Pg)

)
+ αg

(
Loss(f̂ , Pg)− L∗g

))
≤ max

g

(
αg

(
Regretemp(f̂ , Pg) + γg

)
+ αg

(
Regretproxy(f̂ , Pg) + ∆′g + τg

))
(using Equations (22) and (24))

≤ max
g

(
αgRegretemp(f̂ , Pg) + αgRegretproxy(f̂ , Pg)

)
+ β′

(using definition of β′)

≤ max
g

(
αgRegretemp(f∗, Pg) + αgRegretproxy(f

∗, Pg)
)

+ β′

(since f̂ minimizes the objective)

≤ max
g

(
αg (Regret(f∗, Pg) + γg) + αg

(
Loss(f∗, Pg) + ∆′g + L∗g + τg

))
+ β′

(using Equations (22) and (24))

≤ max
g

(αg (Loss(f∗, Pg)) + αg (Loss(f∗, Pg))) + β′ + β

= OPTR + β + β′.

C.2. Proof of Lemma 10

Proof Fix a group g. Observe that f̃g′ for g′ 6= g are independent of Sg, the training data of the
group g. By applying Hoeffding’s inequality (which is applicable due to the loss function being
bounded) and a union bound, we obtain that if n ≥ c log(|G|/δ)/ε2, then with probability 1− δ, for
each g ∈ G and g′ ∈ G \ {g}, it holds that |Loss(f̃g′ , Sg)− Loss(f̃g′ , Pg)| ≤ ε.

This directly applies the second claim that |Loss(f̂g, Pg) − Loss(f̂g, Sg)| ≤ ε since f̂g belongs
to one of {f̃g′ : g′ 6= g}. For the first claim, we note that on the same event as before, starting with
the conclusion of the second claim above, we obtain the following series of inequalities:

Loss(f̂g, Pg) ≤ Loss(f̂g, Sg) + ε

= min
g′ 6=g

Loss(f̃g′ , Sg) + ε

≤ min
g′ 6=g

Loss(f̃g′ , Pg) + 2ε

≤ min
g′ 6=g

L∗g + ∆g(g
′, 2γg′) + 2ε,
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where the last step follows from the definition of ∆g in Assumption 4. This completes the proof.

C.3. Proof of Theorem 11

Proof We will now combine the guarantees of Lemmas 9 and 10 and assume that the events in
Lemmas 9 and 10 and Assumption 3 hold simultaneously, which happens with probability at least
1− 2δ. By Lemma 9, it suffices to upper bound the parameter β with high probability.

First, for all groups g, by the event in Assumption 3, |L∗g − Loss(f̃g, Sg)| ≤ γg since f̃g min-
imizes the empirical error. Similarly, by Lemma 10, we have that for all groups g, Loss(f̂ , Pg) ≤
Loss(f̂ , Sg) + ε. Thus, we obtain the following bound on β:

β = max
g

(
αg
(
2γg + L∗g

)
+ (1− αg)

(
Loss

(
f̂g, Pg

)
+ τg

))
≤ max

g

(
αg

(
2γg + γg + Loss(f̃g, Sg)

)
+ (1− αg)

(
Loss(f̂ , Sg) + ε+ τg

))
≤ max

g

(
αg

(
3γg + Loss(f̃g, Sg)

)
+ (1− αg)

(
Loss(f̂ , Sg) + ε+ τg

))
.

Algorithm 3 now chooses αg to minimize the expression for each g. Let β̃ be the resulting expres-
sion, which can be further upper bounded as follows using the same inequalities as above:

β̃ = max
g

min
(

3γg + Loss(f̃g, Sg), Loss(f̂ , Sg) + ε+ τg

)
(26)

≤ max
g

min
(

4γg + L∗g, Loss(f̂ , Pg) + 2ε+ τg

)
(27)

≤ max
g

min

(
4γg + L∗g, L

∗
g + min

g′ 6=g
∆g(g

′, 2γg′) + 4ε+ τg

)
. (28)

This completes the proof.

C.4. Lower Bound on Sample Complexity

In this section, we will show a lower bound on the sample complexity for sparse groups, which holds
even in a special simple case. Consider the case where there are |G| groups, where only the group
g0 ∈ G is sparse. Define G′ = G \ {g0} to be the set of dense groups. For simplicity, assume that
all of the dense groups have infinite labeled samples and the sparse group g′ has infinite unlabeled
samples. Thus, γg = 0, τg = 0 for all g ∈ G′; additionally, τg0 = 0. We further assume the sparse
group is perfectly approximated by an (unknown) dense group g′ ∈ G′, i.e., there exists a group
g′ ∈ G′ such that ∆g0(g′, 0)) = 0.

Moreover, we assume that for each group g ∈ G, L∗g = 0, i.e., there is a perfect classifier for each
group. Consequently, the guarantee of Theorem 11 says that if the sparse group has Ω(log(|G|)/ε2)
samples, then the output of Algorithm 3, f̂ , achieves

max
g∈G

Loss(f̂ , g) ≤ OPTL +O(ε).

The following simple claim shows that a polynomial dependence on both log |G| and ε is necessary
to achieve this guarantee for the zero-one loss.
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Theorem 16 Let ` be the zero-one loss and c ∈ (0, 1) be a small enough constant. Let ε ∈ (0, c)
and let f̂ be the output of any fixed algorithm (that may depend on ε) belonging to F . Then for
any τ ∈ (0, ε/2), there exists a learning setup satisfying the constraints defined above such that
OPTL = τ , and if the number of labeled samples from the sparse group is less than c(log |G|)/ε,
then with probability at least 0.15, maxg∈G Loss(f̂ , g) ≥ ε ≥ OPTL + ε/2.

Proof We prove this lower bound in three steps:

Distribution over the sparse group. Consider the following hard instance: suppose that the class
F shatters a set S ⊂ X ′ of cardinality d := d| logF|e; Such a set exists Mohri et al. (2018). We
will assume that the sparse group is supported on S.

We will now apply the following lower bound on the sample complexity of PAC Learning:

Lemma 17 (PAC Sample Complexity Lower Bound) (Mohri et al., 2018; Shalev-Shwartz and
Ben-David, 2014) Let H be any function class that shatters a set S of size d. Let ε ∈ 0, 1/2)
be small enough. Let P be a fixed arbitrary marginal distribution over S. Let f̂ be any algorithm
that has access to the marginal distribution P and outputs a classifier in H. Then, given less than
d−1
64ε many labeled samples from a labeled distribution whose marginal distribution is P and there

exists a unique function in H with zero error, the output f̂ satisfies that with probability at least
1/15, Loss(f̂ , P ) ≥ ε.

Thus, applying this lower bound, we know that unless one takes Ω((log |H|)/ε) many samples,
the error is at least Ω(ε) even though there exists a function inH with zero error.

We will now embed this hard instance of PAC learning in our setting by defining the distributions
of the dense groups and how the function class F is defined on these groups. In particular, |F| will
be equal to |G| − 1 for us, implying a lower bound of Ω((log |G|)/ε) on the sample complexity.

Distribution of the dense groups. For the dense groups, given infinite labeled samples, we can
simply assume access to the joint distribution of the labels and responses. Furthermore, these groups
are supported on disjoint domains. The dense groups will be supported on the setX\S of cardinality
at least 2(|G| − 1), where each dense group is supported on the set of two points.

We define the function class F to be of cardinality of cardinality |G| − 1 defined shortly. Since
the groups are supported on disjoint domains, we are free to define the function classF on the dense
groups (without any constraint that arises from assuming that the function class shatters a large set
in the sparse group). We will now extend this function class to the support of the dense groups as
follows:

The group distribution of a dense group g ∈ G′ is as follows:

• The distribution Pg is supported on two points: (xg, yg) and (x′g, y
′
g). The probability of

(xg, yg) is 1− τ and probability of (x′g, y
′
g) is τ .

• For all functions f in F , yg = f(xg). Moreover, there is a single function fg ∈ F such that
y′g = fg(x

′
g).

Consequently, each group has a unique optimal classifier fg with perfect prediction; moreover,
all other classifiers have average error equal to τ . Since each dense group is identified by its optimal
classifier, we obtain that each function has zero error on one dense group and error τ on every other
dense group.
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Verifying that it is a valid instance. We now verify that this instance satisfies all the conditions
described before the lemma statement. First of all, the algorithm has access to the marginal distri-
bution over the sparse group and the complete distribution over the dense groups.

Additionally, each group has a unique function in F that has zero error. There exists a function
f∗ in F that has zero error over the sparse group and the loss of f∗ on every other group is bounded
by τ . Coupling with the observation that each function f ∈ F has error τ on some dense group, we
obtain that OPTL = τ .

C.5. Dependence on maxg L
∗
g in Finite-Sample Regime

In this section, we extend the lower bound of Theorem 4, which holds when there are no labeled
samples from the sparse group, to the finite sample regime, where a sparse group has finitely many
samples. In particular, We will show that given any amount of finite labeled data from sparse groups,
we must incur an additive dependence on cmaxg L

∗
g in our setting for an absolute constant c.

Theorem 18 (Dependence on maxg L
∗
g in Finite-Sample Regime) There exists a constant c > 0

(c = 1/2 works) such that the following holds: Let G = {g1, g2, g3} and suppose that the group
g3 has k labeled samples for an arbitrary k ∈ N and infinite unlabeled samples, while groups
g1 and g2 have infinite labeled samples.3 Let the loss be zero-one loss. For every ε ∈ (0, 1/4)
and k ∈ N, there is a function class F such that for every proper learning algorithm f̂ there is
a choice of distributions such that the following holds: ∆ = 0 (in fact, both dense groups are
close to g3 as per Assumption 1), maxg L

∗
g = 0.25, OPTL = 0.25, and OPTR = ε, but, with

probability at least Ω(1), the following two hold: (i) maxg Regret(f̂ , g) ≥ cmaxg L
∗
g and (ii)

maxg Loss(f̂ , g) ≥ OPTL + cmaxg L
∗
g.

In particular, with any finite amount of unlabeled data, the term Ω(maxg L
∗
g) is inherent in

Theorem 11 even when ∆ = 0.4

Proof Following the proof structure of Theorem 4, we consider a setting of three groups {g1, g2, g3},
where g1 and g2 are dense groups, with their unique optimizers f1 and f2. Instead of simply having
f3 and f4 to confuse the learner, we will (shortly) define multiple functions. The sparse group g3
will now be supported on k points H = {x1, . . . , xk} uniformly, for some large even k. Observe
that the proof in Theorem 4 considered only k = 2.

To show a lower bound, we can assume that we have complete knowledge of the joint distribu-
tion of features and labels on the dense groups. We now consider different choices of conditional
distribution of y on the sparse group generated as follows (as opposed to only two, P and Q, in
Theorem 4): Let H be the set of subsets of H that have cardinality equal to k/2. For each C ∈ H,
define the candidate joint distribution PC to have conditional expectation E[y|x] = 0 if x ∈ C,
otherwise 0.5; Additionally, define fC(x) = 1 if x ∈ C and 0 otherwise.

We now consider the function class F = {f1, f2}
⋃
{fC : C ∈ H}, where f1 and f2 are defined

to be uniformly zero. On the dense groups g1 and g2, the functions {fC : C ∈ H} are defined

3. Thus, this learning setup is even easier that the finite sample regime in Theorem 11, and thus the lower bound is more
powerful.

4. Observe that given infinite labeled data from the groups g1 and g2, Assumption 4 reduces to Assumption 1.
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arbitrarily so that their average values are ε for an arbitrarily small ε.5 Thus f1 and f2, which are
the (unique) optimal classifiers of the dense groups, achieve the minimum loss, 1/4, on the sparse
group g3 for all the candidate distributions {PC : C ∈ H}; Recall that f1 (similarly, the function
f2) achieves unit loss on the group g2 (group g1, respectively). For two subsets C,C ′ inH, the loss
of the function fC on the joint distribution PC′ is equal to

0.5(|(C ′){|) + 1(|C ′ ∩ C|)
k

+
|C ′ ∩ C{|)

k
=

1

4
+
|C ′ ∩ C|

k
. (29)

Thus for each candidate distribution PC , there are three functions, f1, f2, f3 ∈ F , that have the
minimum loss 1/4, and all other functions have loss values bigger than 1/4. Thus, OPTL = 1/4,
OPTR = ε, maxg L

∗
g = 0.25, and ∆ = 0, and a learner algorithm must output a function whf

from {fC : c ∈ H} to get maxg Loss(f̂ , g) < 1. We will now show that any learner must, with
large constant probability, incur loss at least OPTL + cmaxg L

∗
g on the sparse group (and hence

max regret at least cmaxg L
∗
g) when given o(k) many labeled samples from the sparse group. Since

k is arbitrary (independent of the group size), we get that the additive dependence on cmaxg L
∗
g is

inherent.
Let f̂ be the output of the algorithm, belonging in {fC : C ∈ H}; Alternatively, we may think

of the output of the algorithm as f̂ = f
Ĉ

for some Ĉ ∈ H. If the algorithm achieves Loss(f
Ĉ
, g3) ≤

0.25 + cmaxg L
∗
g = 0.25 + 0.25c , then the output Ĉ satisfies |Ĉ ∩ C∗| ≤ ck/4, where C∗

corresponds to the (unknown) conditional distribution on the sparse group PC∗ .
Now, consider the setting where C∗ is unknown to the learner and chosen uniformly from H.

Then, standard information-theoretic arguments using Fano’s inequality implies that to get |Ĉ ∩
C∗| ≤ k/8 requires Ω(k) samples (Mohri et al., 2018). Intuitively, this is because each sample
(xi, yi) from the sparse group (at best) can tell us whether a particular xi is in C∗ or not (based
on the value of yi). Thus, we obtain that an additive dependence on 0.5 maxg L

∗
g is needed for all

proper learning algorithms.

Appendix D. Algorithms for Min-max Optimization using Weighted-ERM Oracle

For completeness, we mention how to perform minmax regret optimization given a weighted ERM
oracle. That is, how to compute f̂ , defined as

min
f∈F

max
g∈G

Regret(f, Sg).

Recall that this is exactly what is needed in Algorithms 1 and 2, where for sparse groups, one uses
the proxy data to define the regret.

Let us define the weighted-ERM oracle:

Definition 19 (Weighted ERM Oracle for a Function Class F) LetW = {(xi, yi, zi) : i ∈ [n]}
be a weighted dataset, where xi are the features, yi are the labels, and zi ∈ R+ are the weights.
We say O is a weighted ERM oracle for function class F and the loss function `(·, ·) if given any
weighted datasetW , the oracle returns a function f̂ that optimizes minf∈F

∑
i∈n zi`(f(xi, yi).

We now present the following algorithm for minmax regret optimization from Agarwal and Zhang
(2022); see also Agarwal et al. (2018); Diana et al. (2021):

5. This can be achieved by increasing the domain of groups g1 and g2, if needed.
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Algorithm 4 Min-max optimization using Weighted-ERM Oracle
Require: Function class F , set of groups G, loss function `(·, ·), learning rate ηt, iteration count T ,

a weighted ERM oracle OF ,` for F and `(·, ·) (see Definition 19), labeled data points for each
group: {Sg : g ∈ G}.

1: for each g ∈ G do
2: Set L̂g ← minf∈F Loss(f, Sg).
3: end for
4: Initialize λ0 ∈ R|G|+ as λ0(g) = 1

|G| .
5: for t = 1, 2, . . . , T do
6: Calculate the weighted dataset Wt (cf. Definition 19), where the weight of a point (x, y)

belonging to the group g is equal to λt(g).
7: Set ft to be the output of O on the weighted dataWt, i.e., ft ← OF ,`(Wt)
8: for each g ∈ G do . Update λt
9: λt+1(g) := λt(g) · exp

(
ηt ·
(
Loss(ft, Sg)− L̂g

))
.

10: end for
11: end for
12: return the average f̂(·) := (1/T )

∑T
t=1 ft(·).

Lemma 20 (Agarwal and Zhang (2022)) For any T and η =
√

(log |G|)/T , the returned output
f̂ = 1

T

∑T
t=1 ft from Algorithm 4 satisfies:

T∑
t=1

1

T
sup
g∈G

Regret(ft, g) ≤ min
f∈F

max
g∈G

Regret(f, g) +O

(√
log |G|
T

)
. (30)

Remark 21 We note that it is easy to modify the algorithm and analysis here to adapt to various
settings such as:

• Optimizing maxg∈G Loss(f, g) instead of maxg∈G Regret(f, g).

• Optimizing the maximum loss subject to the constraint that the average loss over groups is
bounded. in particular, for a tunable parameter γ ≥ 0, we want to solve

min
f∈F

∑
g∈G

wgLoss(f, g)

subject to max
g∈G

Loss(f, g) ≤ γ.

We refer the reader to Diana et al. (2021); Abernethy et al. (2022) for further details.

Appendix E. Experimental Results

In this section we evaluate the empirical performance of our algorithm on synthetic and real world
datasets. For comparison we include two natural baselines, the empirical risk minimizer (ERM),
i.e., the minimizer of the average empirical loss, and the empirical min-max optimizer, i.e., the
algorithm that simply invokes an existing method for min-max optimization. We first describe our
results on the synthetic dataset.
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Synthetic dataset We consider a linear regression problem in 100 dimensions. The data is parti-
tioned into 15 groups, where 5 groups are dense and 10 groups are sparse. Letting the number of
labeled examples to be n, each dense group has (0.99/5) · n number of samples, while each sparse
group has only 0.001 ·n many samples. For each group, the true distribution follows a linear model
with Gaussian covariates and Gaussian responses. The data is generated as follows. We first sample
a random “central” vector w∗ of unit norm. For each dense group i, we generate y = w∗i · x + εi,
where εi is a mean zero random Gaussian noise variable and x is drawn fromN(0, I). Furthermore,
w∗i is a random norm 1 vector that is δ = 0.01 close to w∗. For a sparse group i, we select one of
the dense groups at random and set w∗i to be a random vector that is 0.0001 close to the optimal
regressor of the dense group. Furthermore, we set Σ = 4I and perform a rank one update to remove
0.01 fraction of the variance from the direction of w∗ − w∗i . This rank-one update ensures that the
error of w∗ on the sparse group will be much smaller than it would have been otherwise.

We first consider the setting with n = 5000. Thus each dense group has roughly 1000 samples
while each sparse group has only 5 samples. As shown in Figure 2, natural baselines such as ERM
or the algorithm that minimizes max-loss on training data, do not generalize well in the data scarce
regime. However, our proposed algorithm achieves near-optimal error even when the number of
labeled samples per sparse group is only 5 although the inherent dimensionality is 100!

We next investigate the effect of labeled examples on our proposed algorithm. We vary n from
1000 to 5000 and the plot the performance of the proposed algorithm when the number of unsuper-
vised data is fixed (8000). Note that even when n = 1000 and thus each dense group has roughly
200 samples, there are enough samples in each dense group to fit the model on itself in isolation
since the dimensionality is 100. Thus the large error for small n is only due to lack of samples in
sparse groups. As we can see from Figure 3, as soon as we have 3 labeled samples per sparse group,
our algorithm beats the baselines achieves close to asymptotic optimal performance.
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Figure 2: In this figure, we compare the performance of different algorithms on a synthetic training
data. The value of ∆, the regret of the optimal model of the closest dense group of each
sparse group, is approximately 0.2. The y-axis plots the max-loss on test data, i.e., gen-
eralization to unseen data. Even though the optimal asymptotic error is approximately 2,
natural baseslines do not generalize to unseen samples. However, Algorithm 1 performs
close to optimal as the number of unsupervised examples increase. With roughly, 100
unlabeled samples per group (which corresponds to a total of 1000 unlabeled samples),
which is equal to the dimensionality, the algorithm achieves near-optimal error. Recall
that the number of labeled samples per sparse group is only 5!

Real Dataset
Here we consider a dataset from the DomainBed benchmark 6 that contains popular datasets for

evaluating the performance of various algorithms for robustness and domain adaptation tasks. In
particular we evaluate our proposed algorithm on the Colored MNIST dataset. The dataset consists
of three domains each containing a disjoint set of digits that are labeled either red or blue. The
domains differ by how much the color is correlated with the true label. We consider each domain
d ∈ {0, 1, 2} as a group in our setup and we pick group 0 to be the sparse one. We create several
versions of the Colored MNIST dataset where an α fraction of the data from group 0 is considered
to be unlabeled, and 1% of the data from the remaining groups is considered unlabeled. For each
value of α we compare our proposed algorithm for semi supervised DRO with the empirical risk
minimization (ERM) and the Group DRO baselines, where the baselines are run on only the pro-
vided labeled data. The results are shown in Figure 4. As can be seen for smaller values of the

6. https://github.com/facebookresearch/DomainBed
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Figure 3: We plot the performance of our algorithm as the amount of labeled samples increase. We
vary the amount of labeled data, n, and fix the amount of unsupervised data of sparse
groups. For each value of n — the amount of total labeled data — each of the 5 dense
groups has 0.99n/5 samples and each of the 10 dense groups has 0.001n samples. In
all of these plots, the y-axis corresponds to the max-loss on the test data. The left plot
shows the total amount of labeled data, the center plot shows the amount of labeled data
per sparse group, and the right plot shows the amount of labeled data per dense group.
Note that even when n = 1000 and thus each dense group has roughly 200 samples, there
are enough samples to fit the model on each dense in isolation — the dimensionality is
100. Thus the large error for small n comes only due to lack of samples in sparse groups.
As we can see, as soon as we have 3 labeled samples per sparse group, our algorithm
achieves close to asymptotic optimal performance.
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sparsity parameter our algorithm matches the performance of Group DRO and as the sparsity pa-
rameter increases our semi supervised approach outperforms Group DRO by effectively leveraging
the unlabeled data.

Figure 4: Performance of our proposed algorithm as compared to the baselines as a function of the
amount of sparsity in group 0 for the Colored MNIST dataset.
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