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Abstract
Barycenters (aka Fréchet means) were introduced in statistics in the 1940’s and popularized in the
fields of shape statistics and, later, in optimal transport and matrix analysis. They provide the most
natural extension of linear averaging to non-Euclidean geometries, which is perhaps the most basic
and widely used tool in data science. In various setups, their asymptotic properties, such as laws of
large numbers and central limit theorems, have been established, but their non-asymptotic behaviour
is still not well understood. In this work, we prove finite sample concentration inequalities (namely,
generalizations of Hoeffding’s and Bernstein’s inequalities) for barycenters of i.i.d. random variables
in metric spaces with non-positive curvature in Alexandrov’s sense. As a byproduct, we also obtain
PAC guarantees for a stochastic online algorithm that computes the barycenter of a finite collection
of points in a non-positively curved space. We also discuss extensions of our results to spaces with
possibly positive curvature.
Keywords: Barycenters, Concentration, Curvature, Metric spaces

1. Introduction

Statistics and machine learning are more and more confronted with data that lie in non-linear spaces.
For instance, in spatial statistics (e.g., directional data), computational tomography (e.g., data in
quotient spaces such as in shape statistics, collected up to rigid transformations), economics (e.g.,
optimal transport, where data are discrete measures), etc. Moreover, data that are encoded as very
high dimensional vectors may have a much smaller intrinsic dimension, for instance, if they are lying
on small dimensional submanifolds of the Euclidean space: In that case, leveraging the possibly non-
linear geometry of the data can be a powerful tool in order to significantly reduce the dimensionality
of the problem at hand. Even though more and more algorithms are developed to work with such
data Lim and Pálfia (2014); Ohta and Pálfia (2015); Zhang and Sra (2016, 2018), there are still very
little theory for uncertainty quantification, especially in non-asymptotic regimes, which are pervasive
in machine learning. In this work, we prove statistical results for barycenters of data points, which
are the most natural extension of linear averaging to non-linear geometries. Namely, working with
an extension of the notion of sub-Gaussian random variables in the context of metric spaces, and
assuming a non-positive curvature condition, we prove analogs of both Hoeffding and Bernstein
concentration inequalities. Finally, we discuss extensions of our results to the case of metric spaces
with possibly positive curvature.

In this paper, we consider a complete metric space (M,d). It is called non-positively curved
(NPC for short) if for all pairs (x, y) ∈M , there exists m ∈M satisfying

d(z,m)2 ≤ 1

2
(d(z, x)2 + d(z, y)2 − 1

2
d(x, y)2), ∀z ∈M. (1)
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NPC spaces are known to enjoy a lot of regularity: For instance, any two points x, y ∈ M are
connected by a unique (constant speed) geodesic γx,y, i.e., a continuous mapping γ = γx,y : [0, 1]→
M satisfying d(γ(s), γ(t)) = |s− t|d(x, y), for all s, t ∈ [0, 1]. Geodesics generalize line segments
from Euclidean spaces, as shortest paths from one point x to another point y. Moreover, the pointm in
(1) is unique, given by the midpoint of x and y, i.e., z = γx,y(1/2). Finally, the distance function d is
geodesically convex jointly in both variables and for all x0 ∈M , the function 1

2d(x0, ·)2 is 1-strongly
geodesically convex. A function f is called geodesically convex (resp. α-strongly geodesically
convex, for α > 0) if it is convex (resp. α-strongly convex) along any geodesic γx,y, x, y ∈M , i.e.,
f(γx,y(t)) ≤ (1 − t)f(x) + tf(y) (resp. f(γx,y(t)) ≤ (1 − t)f(x) + tf(y) − α

2 t(1 − t)d(x, y)2),
for all x, y ∈M and t ∈ [0, 1]. In fact, a NPC space can also be defined as a geodesic metric space
(i.e., a metric space where any two points are connected by at least one geodesic) that is complete
and where triangles are thinner than Euclidean triangles with same side lengths. We refer the reader
to Sturm (2003); Bridson and Haefliger (2013) for a thourough exposition on NPC spaces and to
Bacák (2014) for a detailed account on convexity in metric spaces. Here is a short list of examples of
NPC spaces:

• Euclidean and Hilbert spaces;

• Hyperbolic spaces and, more generally, Cartan-Hadamard manifolds, i.e. simply connected,
complete, Riemannian manifolds with everywhere non-positive sectional curvature (Sturm,
2003, Proposition 3.1);

• Metric trees: These are combinatorial trees embedded in the Euclidean plane, in which the
distance between any two points is the Euclidean length of the (unique) shortest path between
them;

• The space Sp of symmetric positive definite matrices of size p (for any fixed integer p ≥ 1)
equipped with the following distance: For anyA,B ∈ Sp, d(A,B) = ‖ log(A−1/2BA−1/2)‖F,
where ‖ · ‖F is the Fröbenius norm. This construction is important in the study of matrix
geometric means, see Section 3.3 below. For a detailed account on this space and matrix
geometric means, we also refer the reader to Bhatia and Holbrook (2006) and the references
therein.

Recently, NPC spaces have attracted much attention in the machine learning community: Hyper-
bolic spaces have been proved handy to embed certain types of data, such as hierarchical data Cho
et al. (2022); Montanaro et al. (2022); Yang et al. (2023); Mishne et al. (2023); Desai et al. (2023),
non-positive curvature naturally occurs in matrix learning Hosseini and Sra (2015) and optimization
techniques taylored to NPC spaces are developing fast Hosseini and Sra (2015); Zhang et al. (2016);
Criscitiello and Boumal (2022); Martínez-Rubio and Pokutta (2023); Criscitiello and Boumal (2023).

More generally, one can define spaces with curvature bounded from above by any real number
κ: such spaces are called CAT(κ) spaces, coined after Cartan, Alexandrov and Toponogov. NPC
spaces are simply CAT(0) spaces. Even though we will mostly work in NPC spaces here, Section 4
will be dedicated to extending our results to CAT(κ) spaces, for κ > 0. We refer to Section B in the
appendix and to Bridson and Haefliger (2013) for a more detailed account on CAT spaces

A natural way to extend the notion of averaging from linear to metric spaces is through the notion
of barycenters. Given x1, . . . , xn ∈M (n ≥ 1), a barycenter of x1, . . . , xn is any minimizer b ∈M
of n−1

∑n
i=1 d(xi, b)

2. More generally, given a probability distribution µ on M , a barycenter of µ is
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any minimizer b ∈ M of
∫
M d(x, b)2 dµ(x) (provided µ has two moments, i.e., the latter integral

is defined for at least one, and hence all, values of b 1). Existence and uniqueness of barycenters
are, in general, hard problems Afsari (2011); Yokota (2016, 2017). In NPC spaces, though, they
are solutions to strongly convex optimization problems and hence, they always exist and are unique
(Sturm, 2003, Proposition 4.3).

Barycenters were initially introduced in statistics by Fréchet (1948) in the 1940’s, and later
by Karcher (1977), where they were better known as Fréchet means, or Karcher means. They
were popularized in the fields of shape statistics Kendall et al. (2009) and optimal transport Agueh
and Carlier (2011); Cuturi and Doucet (2014); Le Gouic and Loubes (2017); Claici et al. (2018);
Kroshnin et al. (2019); Altschuler and Boix-Adsera (2021, 2022). More broadly, barycenters in
metric spaces have attracted attention in machine learning applications such as computational biology
for phylogenetic trees Billera et al. (2001), shape analysis and computer vision Kendall et al. (2009);
Marrinan et al. (2014), directional data analysis Edelman et al. (1998); Absil et al. (2004), modeling
networks Lunagómez et al. (2021), matrix estimation Schwartzman (2016); Lodhia et al. (2022) and
matrix analysis Bhatia and Holbrook (2006); Bhatia et al. (2019), etc.

An alternative construction of barycenters is given iteratively as follows. Given x1, . . . , xn ∈M ,
the inductive barycenter is defined as the point b̃n, where b̃1 = x1, b̃2 = γb̃1,x2

(1/2) and for
k = 3, . . . , n, b̃k = γb̃k−1,xk

(1/k) (here, we implicitly assume that any pair of points is connected
by a unique geodesic, which is the case when M is NPC). In Euclidean spaces, inductive barycenters
coincide with barycenters, which are simply given by linear averages. However, they do not coincide
in general, because of the lack of associativity of barycenters in non-linear spaces. Compared to
barycenters, inductive barycenters have the advantage that they can be easily updated when the points
x1, . . . , xn come sequentially, in an online fashion. Moreover, their computation is not bound to an
optimization problem and only requires to compute geodesics between pairs in M .

Let µ be a probability measure in (M,d) with two (or, again, one would suffice) moments. Let
X1, . . . , Xn ∼ µ be i.i.d., where n ≥ 1 is the sample size and is fixed. We are interested in the
estimation of the barycenter b∗ of µ (referred to as population barycenter) based on X1, . . . , Xn, and
we let b̂n and b̃n be their barycenter, referred to as empirical barycenter and their inductive barycenter,
respectively.

Asymptotic theory is well understood for empirical barycenters in various setups, particularly
laws of large numbers Ziezold (1977) and central limit theorems in Riemannian manifolds (a smooth
structure on M is a natural assumption in order to derive central limit theorems) Bhattacharya and
Patrangenaru (2003, 2005); Bhattacharya and Lin (2017); Eltzner and Huckemann (2019); Eltzner
et al. (2019). Only very few non-asymptotic results have been proven so far, most of which hold
under fairly technical conditions. First, (Sturm, 2003, Theorem 4.7) bounded the expected value of
d(b̃n, b

∗)2 in NPC spaces. Namely, E[d(b̃n, b
∗)2] ≤ σ2

n where σ2 = E[d(X1, b
∗)2] can be interpreted

as the variance of X1. (Le Gouic et al., 2022, Corollary 11) provide the same inequality for b̂n, under
the extra constraint that (M,d) has curvature bounded from below. At a high level, this means that
the space (M,d) is not branching (i.e., geodesics cannot split, unlike, for instance, in metric trees)
and this ensures some regularity of the tangent cones of M , which is used in their analysis. They
also extend their result to spaces (M,d) that are not necessarily NPC, but that satisfy a so-called
hugging condition. However, except for NPC spaces, there is no explicit metric space that satisfy

1. It is actually sufficient for µ to only have one moment, and barycenters are defined as minimizers b ∈ M of∫
M
(d(x, b)2 − d(x, b0)2) dµ(x), which do not depend on the choice of a fixed base point b0 ∈M
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such a condition. Recently, Escande (2023) showed that the above bound in expectation still holds
even if the assumption of curvature bounded from below is dropped. Several non-asymptotic, high
probability bounds are also known for empirical and inductive barycenters. Le Gouic et al. (2022)
propose a definition of sub-Gaussian random variables (eq. (3.10)), closely related to the one we give
below, and prove (Theorem 12), under the hugging condition mentioned above, a nearly sub-Gaussian
tail bound (with a residual term that decays exponentially fast with n) for b̂n when the data are
sub-Gaussian. Ahidar-Coutrix et al. (2020) obtain concentration inequalities with non-parametric
rates for b̂n when the data are bounded, under some metric entropy conditions on (M,d). Finally,
most closely related to our work, Funano (2010) proves a Hoeffding-type inequality for the inductive
barycenter b̃n of i.i.d., bounded random variables in NPC spaces, with particular focus on metric trees
and finite dimensional Hadamard manifolds. Namely, If M is a p-dimensional Hadamard manifold
(i.e., a Riemannian manifold that is complete, has non-positive curvature, and has dimension p ≥ 1)
and the data are almost surely contained in some ball of fixed radius C > 0, then, for all δ ∈ (0, 1),
it holds with probability at least 1− δ that

d(b̃n, b
∗) ≤ A1C

√
p log(A2/δ)

n
,

where A1, A2 are positive universal constants (4 ≤ A1 ≤ 6 and A2 is of order 50, 000).
In Corollary 11 below, we greatly improve this bound in several ways. First, we significantly

improve the constants. Second, our bound does not require M to have finite dimension. Moreover,
we do not even require M to be a smooth manifold. Third, our upper bound contains two terms,
which decouple the probability level δ from the variance σ2. If M is a Hilbert space, σ2 is the trace
of the covariance operator (see below), and it is well known that unlike the bound proved in Funano
(2010), our bound is optimal in that case.

The paper is organized as follows. In Section 2, we introduce tools from the concentration of
measure theory in metric spaces, which we use in Section 3 to derive Hoeffding and Bernstein type
concentration inequalities for empirical and inductive barycenters in NPC spaces. Extensions of
our results from this section to the case of non i.i.d. data are given in Section A in the appendix.
Finally, in Section 4, we treat the case of possibly positively curved spaces, and derive an optimal
rate concentration bound depending on the radius of the space.

In what follows, for any positive integer n and any metric space (M,d), we denote by d1

(without mention of the dependence on n, for simplicity) the L1 product metric on Mn, defined as
d1((x1, . . . , xn), (y1, . . . , yn)) = d(x1, y1) + . . .+ d(xn, yn).

2. The Laplace transform and Sub-Gaussian random variables in metric spaces

2.1. Laplace transform

In this section, we gather information on the Laplace transform of probability measures on metric
spaces. It will allow us to study precisely the concentration phenomenon of barycenters in NPC
spaces and in particular to deal with sub-Gaussian random variables in such spaces. Let (M,d) be
a metric space (not necessarily NPC). Denote by F the class of all functions f : M → R that are
1-Lipschitz, i.e., such that |f(x)− f(y)| ≤ d(x, y) for all x, y ∈M . Let X be a random variable in
M . For all k ≥ 1, we say that X has k moments if E[d(X,x0)k] is finite, where x0 is any arbitrary
point in M (note that this definition does not depend on the choice of x0). The Laplace transform of
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a random variable X that has at least one moment is defined as (see (Ledoux, 2001, Section 1.6))

ΛX(λ) := sup
f∈F

E[eλ(f(X)−E[f(X)])], λ ≥ 0. (2)

Note that if X has one moment, then so does f(X), for all f ∈ F . Let us underline the following
property of the Laplace transform, whose proof can be found in (Ledoux, 2001, Proposition 1.15).

Lemma 1 (Ledoux, 2001, Proposition 1.15) If X1, . . . , Xn are independent random variables on
(M,d) with at least one moment, then the Laplace transform of the random vector (X1, . . . , Xn) in
(Mn, d1) satisfies

Λ(X1,...,Xn) ≤ ΛX1 · · ·ΛXn ,

where we recall that d1 is the L1 product metric on Mn.

Finally, we state the following property of the Laplace transform, when a Lipschitz function is
applied to a random variable.

Lemma 2 Let (M (1), d(1)) and (M (2), d(2)) be metric spaces and Φ : M (1) → M (2) be an L-
Lipschitz function, where L > 0. Then, for all random variables X in M (1) with at least one
moment,

ΛΦ(X)(λ) ≤ ΛX(λL), ∀λ ≥ 0.

Proof Let f : M (2) → R be a 1-Lipschitz function. Then, for all λ ≥ 0,

E[eλ(f(Φ(X))−E[f(Φ(X))])] = E[eλL
(f(Φ(X))−E[f(Φ(X))])

L ] = E[eλL(g(X)−E[g(X)])]

where g = (1/L)f ◦ Φ is a 1-Lipschitz function. Hence, E[eλ(f(Φ(X))−E[f(Φ(X))])] ≤ ΛX(λL) and
one concludes by taking the supremum over all 1-Lipschitz functions f : M (2) → R.

2.2. Sub-Gaussian random variables

Here, we adapt the standard definition of sub-Gaussian random variables to the setup of random
variables in abstract metric spaces. We refer the reader to (Vershynin, 2018, Section 2.5)

Definition 3 A random variable X in (M,d) is called K2-sub-Gaussian (K ≥ 0) if and only if
ΛX(λ) ≤ eλ2K2/2, for all λ ∈ R.

Sub-Gaussian random variables are well understood and play a very important role in the
Euclidean setup. In particular, they are known to enjoy good concentration properties (Vershynin,
2018, Section 2.5). The following lemma extends this fact to sub-Gaussian random variables in
metric spaces.

Lemma 4 Let X be a random variable in (M,d) and let K > 0. The following statements are
equivalent:

(i) X is K2-sub-Gaussian
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(ii) f(X) is K2-sub-Gaussian, for all f ∈ F

(iii) supf∈F P (|f(X)− E[f(X)]| ≥ t) ≤ 2e−t
2/(2K2), for all t ≥ 0.

Moreover, if supf∈F E
[
e

(f(X)−E[f(X)])2

2K2

]
≤ 2, then X is K2-sub-Gaussian.

Proof This proposition directly follows from (Vershynin, 2018, Proposition 2.5.2). Indeed, it is
clear that X is K2-sub-Gaussian in the sense of Defintiion 3 if and only if for all f∈ F , f(X) is
K2-sub-Gaussian in the usual sense (Vershynin, 2018, Section 2.5).

Definition 3 is stronger than the standard definition of sub-Gaussian random variables in Eu-
clidean spaces. Indeed, if X is a random variable in Rp (p ≥ 1), X is usually said to be K2-sub-
Gaussian if and only if for all unit vectors u ∈ Rd and all λ ∈ R, it holds that

E[eλu
>X ] ≤ e

λ2K2

2

(in other words, u>X must be K2-sub-Gaussian in the usual sense of (Vershynin, 2018, Definition
2.5.6)). For instance, let Y have the standard Gaussian distribution in Rp (p ≥ 1) and let Z be
a Bernoulli random variable independent of Y such that P (Z = 0) = P (Z = 1) = 1/2. Let
X = Y Z. It is easy to check that for all unit vectors u ∈ Rp, u>X is 1-sub-Gaussian. However,
there are 1-Lipschitz functions f : Rp → R for which f(X) is not 1-sub-Gaussian. For instance,
simply take f = ‖ · ‖ (Euclidean norm in Rp). If f(X) was K2-sub-Gaussian for some K > 0, then
it would necessarily hold that

P (f(X) < E[f(X)]−√p/2) ≤ e−p/(8K2).

However, since E[f(X)] is approximately
√
p/2, when p is large, it holds that the latter probability

is at least 1/2, which yields a contradiction, unless K grows as
√
p.

However, in the context of metric spaces, this definition seems most appropriate because of the
lack of linear functions and, as will be seen in Lemma 7 below, allows us to treat bounded random
variables. Moreover, as opposed to the definition suggested in (Le Gouic et al., 2022, Section 3.3), it
does not depend on any reference point in M .

Finally, let us mention a similar definition for sub-Gaussian random variables that is given in
Kontorovich (2014). There, a random variable X is declared K2-sub-Gaussian (K ≥ 0) if and only
if E[eλεd(X,Y )](= E[cosh(λd(X,Y ))]) ≤ eλ

2K2/2 for all λ ∈ R, where Y is an independent copy
of X and ε is a Rademacher random variable independent of (X,Y ). Their definition is stronger
than ours, by the symmetrization and contraction principle. Indeed, if that condition is satisfied, then
for all λ ∈ R and all f ∈ F ,

E[eλ(f(X)−E[f(X)])] ≤ E[eλ(f(X)−f(Y ))] = E[eλε|f(X)−f(Y )|] ≤ E[eλεd(X,Y )] ≤ eλ2K2/2,

where the first inequality is Jensen’s inequality, the following equality is symmetrization and the next
inequality is contraction. Moreover, our definition is more flexible: For instance, as will be clear
in the next section, it will allow us to derive a Bernstein-type inequality for barycenters in metric
spaces.

The next two propositions show that the sub-Gaussian property is preserved by tensorization and
by Lipschitz transformations.
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Proposition 5 (Tensorization) Let X1, . . . , Xn be independent random variables in M such that
each Xi is K2

i -sub-Gaussian for some Ki > 0. Then, the n-uple (X1, . . . , Xn) is (K2
1 + . . .+K2

n)-
sub-Gaussian on the product metric space (Mn, d1).

Proof Let Xi be Ki-sub-Gaussian, for each i = 1, . . . , n. Then, ΛXi(λ) ≤ eλ
2K2

i /2, for all
i = 1, . . . , n and λ ≥ 0. Therefore, by Lemma 1,

Λ(X1,...,Xn)(λ) ≤ ΛX1(λ) . . .ΛXn(λ) ≤
n∏
i=1

eλ
2K2

i /2 = eλ
2(K2

1+...+K2
n)/2,

for all λ ≥ 0, which yields the result.

Proposition 6 Let (M (1), d(1)) and (M (2), d(2)) be metric spaces and let X be a random variable
in M1. Let K,L > 0. If X is K2-sub-Gaussian and Φ : M (1) →M (2) is L-Lipschitz, then Φ(X) is
(L2K2)-sub-Gaussian.

Proof Let g : M (2) → R be a 1-Lipschitz function and let g̃ := L−1g ◦ Φ. Then, g̃ : M (1) → R is
1-Lipschitz so we have

E
[
eλg(Φ(X))−E[g(Φ(X))]

]
= E

[
eλL(g̃(X)−E[g̃(X)])

]
≤ Λµ(λL) ≤ eλ2L2K2/2.

We conclude by taking the supremum over all such functions g.

Let us conclude this section with two lemmas, which provide important examples of sub-Gaussian
random variables. The first one is from Ledoux (2001); Similarly to Hoeffding’s lemma for real-
valued random variables, it indicates that bounded random variables are always sub-Gaussian.

Lemma 7 (Ledoux, 2001, Proposition 1.16) Let X be a bounded random variable in the metric
space (M,d), i.e. d(x0, X) ≤ C a.s. for some x0 ∈M and C > 0. Then, X is C2-sub-Gaussian.

Note that (Ledoux, 2001, Proposition 1.16) actually indicates that X is 4C2-sub-Gaussian,
because the proof uses a simple, yet slightly loose, symmetrization argument. In fact, if X is almost
surely bounded in a domain of diameter at most 2C, then for all 1-Lipschitz functions f : M → R,
f(X) is almost surely bounded in an interval of length at most 2C, hence, f(X) is C2-sub-Gaussian
by standard arguments, see, e.g., (Vershynin, 2018, Example 2.5.8 (c)).

The second lemma holds under some extra assumptions on the metric space (M,d). Here, we
assume that (M,d) is a Riemannian manifold, i.e., that M is a differentiable manifold and that d is
inherited from a Riemannian metric onM . Moreover, we assume thatM has Ricci curvature bounded
from below and that X has a density with respect to the Riemannian volume. Since Riemannian
geometry is not at the heart of this work, we refer to Lee (2012) and Lee (2018) for details on smooth
manifolds, Riemannian metrics, different notions of curvature (including Ricci) and Riemannian
volume. For the intuition, it is enough to assume that the sectional curvature (which is the most
intuitive notion of curvature, and which agrees with the definition of curvature bounds in CAT spaces,
see Section B) is bounded from below by a constant, in order to ensure that the Ricci curvature is
bounded by the same constant.
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Lemma 8 Let M be a Riemannian manifold with Ricci curvature bounded from below by κ ∈ R.
Assume that X has a density φ with respect to the Riemannian volume, and that

φ(x) ≤ Ce−βd(x,x0)2
,∀x ∈M,

where C, β > 0 and x0 ∈M are given. Then, X is K2-sub-Gaussian, for some K > 0 that depends
on C, β and κ.

A closed form for K can be deduced from the proof, but we do not make it explicit here, for the
sake of the simplicity of our presentation. The proof of this lemma can be found in the Appendix,
Section D.1.

3. Concentration of empirical barycenters in NPC spaces

In this section, we assume that (M,d) is an NPC space.

3.1. Lipschitz property of barycenters

The last ingredient in order to prove concentration of empirical barycenters and inductive barycenters
in NPC spaces is their Lipschitz property, which we state in the next proposition. Denote by
B̂n : Mn →M the function that maps any n-uple to its (uniquely defined) barycenter and by B̃n the
function that maps any n-uple to its inductive barycenter. Recall that given x1, . . . , xn ∈M , their
empirical barycenter B̂n(x1, . . . , xn) is the unique minimizer of n−1

∑n
i=1 d(b, xi)

2, b ∈ M and
their inductive barycenter is defined inductively by setting B̃1(x1) = x1 and, for all k = 2, . . . , n,
B̃k(x1, . . . , xk) = γB̃k−1(x1,...,xk−1),xk

(1/k).

Proposition 9 (Funano, 2010, Lemma 3.1),(Lim and Pálfia, 2014, Theorem 3.4),(Sturm, 2003,
Theorem 6.3) Both functions B̂n and B̃n are (1/n)-Lipschitz, Mn being equipped with the L1

product metric d1.

Proposition 9 is well known in the literature, but we give three proofs that we believe are
instructive, in Section D.2 in the appendix.

3.2. A concentration inequality for barycenters of sub-Gaussian random variables

We are now in position to state our first main result, which implies concentration of the empirical
barycenter and the inductive barycenter of i.i.d. sub-Gaussian random variables in an NPC metric
space.

Theorem 10 Let X1, ..., Xn be independent random variables in (M,d) such that for all i =
1, . . . , n, Xi is K2

i -sub-Gaussian, for some Ki > 0. Then both the empirical and inductive barycen-

ters of X1, ..., Xn are K2
1+...+K2

n

n2 -sub-Gaussian.

Proof Let Bn be either the inductive or the empirical barycenter of X1, . . . , Xn. Then, Bn can be
written as Φ(X1, . . . , Xn), where Φ is either B̂n or B̃n, which, by Proposition 9 are both (1/n)-
Lipschitz functions on Mn, equipped with the L1 product metric d1. By Proposition 5, the n-uple
(X1, . . . , Xn) is (K2

1 + . . .+K2
n)-sub-Gaussian and by Proposition 6, Φ(X1, . . . , Xn) is therefore

n−2(K2
1 + . . .+K2

n)-sub-Gaussian.
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As a consequence, thanks to Lemma 4, for all 1-Lipschitz functions f : M → R and for all

δ ∈ (0, 1), it holds with probability at least 1− δ that f(Bn) ≤ E[f(Bn)] + K̄n

√
log(1/δ)

n
where

Bn is either the empirical or the inductive barycenter of X1, . . . , Xn and K̄n =
√
K2

1 + . . .+K2
n.

Assume that X1, . . . , Xn are i.i.d. and let b∗ be their (population) barycenter. Denote by
b̂n = B̂n(X1, . . . , Xn) their empirical barycenter and by b̃n = B̃n(X1, . . . , Xn) their inductive
barycenter. Then, of particular interest is taking f = d(·, b∗). Let σ2 = E[d(X1, b

∗)2] be the variance
of X1. When Bn is the inductive barycenter of X1, . . . , Xn, it follows from Sturm’s law of large
numbers (Sturm, 2003, Theorem 4.7) that E[d(Bn, b

∗)] ≤ σ√
n

. When Bn is the empirical barycenter
of X1, . . . , Xn, the same inequality holds thanks to (Le Gouic et al., 2022, Corollary 11) under the
extra assumption that the space (M,d) has its curvature bounded from below (see Le Gouic et al.
(2022) for more details). Recently, Escande (2023) proved that the same inequality actually holds
without any lower bound assumption on the curvature of the space. Therefore, we get the following
corollary.

Corollary 11 Let X1, . . . , Xn be i.i.d. K2-sub-Gaussian, for some K > 0. Let Bn be either b̂n or
b̃n. Then, for all δ ∈ (0, 1), it holds with probability at least 1− δ that

d(Bn, b
∗) ≤ σ√

n
+K

√
log(1/δ)

n

We can now state Hoeffding’s inequality in NPC spaces.

Corollary 12 (Hoeffding’s inequality in NPC spaces) Let X1, ..., Xn be i.i.d random variables
in M . Assume that d(X1, x0) ≤ C almost surely, for some x0 ∈M and C > 0. Let Bn be either b̂n
or b̃n. Then, for all δ ∈ (0, 1), it holds with probability at least 1− δ that

d(Bn, b
∗) ≤ σ√

n
+ C

√
log(1/δ)

n
.

Proof In Corollary 11, K can be replaced with 2C thanks to Lemma 7, yielding the result.

The right hand side of this last concentration inequality contains two terms: A bias term, which
simply controls the expected distance from Bn to b∗, and a stochastic term, which depends on the
probability level δ. If (M,d) is a Hilbert space (which is a special instance of NPC spaces), this
inequality actually reads as

‖X̄n − E[X1]‖ ≤
√

trΣ

n
+ C

√
log(1/δ)

n
,

where ‖ · ‖ is the Euclidean or Hilbert norm, X̄n is the empirical mean of X1, . . . , Xn and Σ is the
covariance operator of X1. For instance, if M = Rp equipped with the Euclidean structure and Σ
is the identity matrix, then trΣ = p and the dimension of M only appears in the bias term, not the
stochastic one. This is mainly why Corollary 11 is a significant improvement over Funano’s result
Funano (2010). Also note that in the Euclidean or Hilbert case, our inequality is optimal in terms
of n and δ, in general. Only when the variance parameter σ2 is very small, the dependence of this

9
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bound in σ and C can be improved, just as in Bernstein’s inequality: This is what we show in Section
3.4 below.

Note that Corollary 12 was obtained independently in Escande (2023), using a completely
different technique than ours (namely, a quadruple inequality, which holds in NPC spaces), which
only applies to the bounded case.

3.3. Application: fast stochastic approximation of barycenters

Corollary 11 yields an algorithmic PAC guarantee for the stochastic approximation of barycenters
of finitely many points in NPC spaces. Let x1, . . . , xn be given (deterministic) points in M . Here,
the goal is to approximate their barycenter bn = B̂n(x1, . . . , xn). Recall that bn is the solution of an
optimization problem, which may be hard to solve numerically. Fix some positive integer m and
follow the following steps:

• Sample m integers I1, . . . , Im independently, uniformly at random between 1 and n;

• Set X1 = xI1 , . . . , Xm = xIm ;

• Compute b̃m = B̃m(X1, . . . , Xm), the inductive barycenter of X1, . . . , Xm.

The random variables X1, . . . , Xm obtained in the second step are i.i.d. with distribution
µ = n−1

∑n
i=1 δxi . In other words, they are obtained by a bootstrap procedure based on the

collection {x1, . . . , xn}. In particular, their population barycenter is given by bn.
In general, if m is not too large, computing b̃m is simpler than computing bn directly, as long as

one has access to an oracle that gives geodesics between any two points of M . The following result
provides a PAC guarantee for b̃m, as a stochastic approximation of bn.

Corollary 13 Let ε > 0 and δ ∈ (0, 1). Let D be the diameter of the set {x1, . . . , xn}. Then, if
m ≥ 4D2

ε2
max(1, log(1/δ)), it holds that d(b̃m, bn) ≤ ε with probability at least 1− δ.

Proof Let σ2 be the variance of X1, i.e., σ2 = E[d(X1, bn)2]. Since for all x ∈ M , d(x, ·)2

is convex, Jensen’s inequality (see, e.g., (Sturm, 2003, Theorem 6.2)) yields that d(X1, bn)2 ≤
1
n

∑m
j=1 d(X1, xj)

2 almost surely, and each term in the sum is bounded by D2. Hence, σ2 ≤ D2.
Therefore, Corollary 12 yields that with probability at least 1− δ, d(b̃m, bn) ≤ D√

n
(1 +

√
log(1/δ)),

which implies the desired result.

Perhaps surprisingly, the algorithm complexity given by Corollary 13 is dimension free. Moreover,
the dependence in n of the algorithm complexity only comes from the uniform sampling of integers
between 1 and n.

Note that in some cases, σ2 might be much smaller than D, and the bound given in Corollary 13
can actually be further improved, using Theorem 14 below, see Section 3.4.

In comparison with this guarantee, (Lim and Pálfia, 2014, Theorem 3.4) gives a deterministic
guarantee for finding an ε-approximation of the barycenter of x1, . . . , xn, after n(D2+σ2)

ε2
steps: The

complexity of their algorithm is n times worse than ours, where n is the number of input points.
An important example where this guarantee is useful is that of metric trees, where the computation

of inductive barycenters simply requires to identify the shortest paths between any two points, which
can be done efficiently. Another important example, in matrix analysis, is that of computing matrix

10
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geometric means. Recall that the geometric mean of positive definite matrices A1, . . . , An ∈ Sp
(n, p ≥ 1) is their barycenter, associated with the metric d(A,B) = ‖ log(A−1/2BA−1/2)‖F, which
makes Sp an NPC space (Bhatia and Holbrook, 2006, Proposition 5). The geometric mean of
two matrices A,B ∈ Sp is the matrix A#B = A1/2(A−1/2BA−1/2)1/2A1/2 and more generally,
the geodesic segment between A and B is given by γA,B(s) = A1/2(A−1/2BA−1/2)sA1/2, also
denoted by A#sB, for all s ∈ [0, 1]. Hence, computing the sequence of inductive barycenters of
positive definite matrices boils down to computing expressions such as A1/2(A−1/2BA−1/2)sA1/2

for s = 1/2, 1/3, . . . which can be done exactly with matrix products and eigendecompositions,
whose complexities depend on the size p of the matrices. In fact, there are faster ways to compute
good approximations of A#sB, for A,B ∈ Sp and s ∈ [0, 1], e.g., by using integral representations
and Gaussian quadrature: We refer, for instance, to Bhatia (2009); Simon (2019) for more details.

3.4. Bernstein inequality: A refinement in the case of small variance

In this section, we derive a Bernstein inequality refining Hoeffding’s lemma in the case where the
Xi’s have a small variance, i.e., much smaller than the diameter of their support.

Theorem 14 (Bernstein’s inequality in NPC spaces) Recall the notation and assumption of Corol-
lary 12. Then, with probability at least 1− δ, it holds that

d(Bn, b
∗) ≤ σ√

n
+ max

(
2σ

√
log(1/δ)

n
,
8C log(1/δ)

3n

)
.

When σ is much smaller than the size of the support of the X1, this inequality greatly improves
Corollary 11. Indeed, it is clear that σ2 ≤ C2, since σ2 = minx∈M E[d2(X1, x)] ≤ E[d2(X1, x0)] ≤
C2. However, note that in general, if X1 is K2-sub-Gaussian, we do not know whether it holds, like
in the Euclidean case, that σ2 ≤ K2.
Proof

Let λ ≥ 0 and f ∈ F and denote by ψ(λ, f) = logE[eλ(f(X1)−E[f(X1)])]. Using the inequality
log(u) ≤ 1− u, for all u > 0, it holds that

ψ(λ, f) ≤ E
[
eλ(f(X1)−E[f(X1)]) − 1

]
= E

[
eλ(f(X1)−E[f(X1)]) − 1− λ(f(X1)− Ef(X1))

]
.

Since d(X1, x0) ≤ C almost surely, we have that f(X1)− Ef(X1) ≤ 2C almost surely. Therefore,
since the map u 7→ eu−1−u

u2 is increasing, we obtain that

ψ(λ, f) ≤ E
[
e2λC − 1− 2λC

4C2
(f(X1)− Ef(X1))2

]
=
e2λC − 1− 2λC

4C2
Var(f(X1)).

Moreover, Var(f(X1)) ≤ σ2. Indeed,

Var(f(X1)) = E
[
(f(X1)− E[f(X1)])2

]
≤ E

[
(f(X1)− f(b∗))2

]
≤ E

[
d(X1, b

∗)2
]

= σ2,

where the first inequality follows from the fact that E
[
(f(X1)− E[f(X1)])2

]
≤ E

[
(f(X1)− a)2

]
for all a ∈ R, and in particular for a = f(b∗).

Finally, by Lemma 1, we obtain that ΛX1,...,Xn(λ) ≤ e
nσ2

4C2 (e2λC−1−2λC), for all λ ≥ 0. Now, let
Bn be either the empirical or the inductive barycenter of X1, . . . , Xn. It follows from Proposition 9

and Lemma 2 that ΛBn(λ) ≤ e
nσ2

4C2 (e2λC/n−1−2λC/n), for all λ ≥ 0.

11



BRUNEL SERRES

By Chernoff’s bound, we obtain, for all f ∈ F and all t ≥ 0,

P (f(Bn)− Ef(Bn) ≥ t) ≤ e−λtEeλ(f(Bn)−Ef(Bn)) ≤ e−λt+log ΛBn (λ)

≤ exp

[
−λt+

(
e

2λC
n − 1− 2λC

n

)
nσ2

4C2

]
.

By optimizing in λ ≥ 0, we find the best one to be λ = n
2C log

(
1 + 2Ct

σ2

)
and therefore,

P (f(Bn)− Ef(Bn) ≥ t) ≤ exp

(
−nσ

2

4C2
h

(
2Ct

σ2

))

where h(u) = (1 + u) log(1 + u)− u, for all u ≥ 0. Since h(u) ≥ u2

2(1+u
3

) for all u ≥ 0, we obtain

P (f(Bn)− Ef(Bn) ≥ t) ≤ exp

(
− nt2

2(σ2 + 2Ct
3 )

)
,

which yields the desired result by taking f = d(·, b∗) ∈ F and setting t so the right hand side is
bounded by δ.

Theorem 14 yields the following algorithmic corollary, which is a refinement of Corollary 13.

Corollary 15 Recall the notation of Corollary 13. Let D be the diameter of the set {x1, . . . , xn}
and σ2 = 1

n

∑n
i=1 d(xi, bn)2. Then, if

m ≥ 16

3
max

(
σ2

ε2
,
D

ε

)
max(1, log(1/δ)), (3)

it holds that d(b̃m, bn) ≤ ε with probability at least 1− δ.

In practice, of course, computing σ2 can be costly. However, one can replace it in (3) by any
upper bound, such as 1

n

∑n
i−1 d(xi, b)

2 for any fixed b ∈M , or 1
n2

∑
1≤i,j≤n d(xi, xj)

2. Computing
1
n

∑n
i=1 d(xi, b)

2 only requires n computations, but the choice of b can be suboptimal. On the other
hand, computing 1

n2

∑
1≤i,j≤n d(xi, xj)

2 requires a quadratic (in n) number of computations, but
yields a tight bound on σ2, up to a factor 2. Indeed, one has the following lemma, whose proof is
deferred to Section D.3 in the appendix.

Lemma 16 Let X be a random variable in M with two moments and let Y be an independent copy
of M . Let σ2 = minb∈M E[d(X, b)2]. Then, σ2 ≤ E[d(X,Y )2] ≤ 2σ2.

Remark 17 The concentration inequalities given in Theorems 11 and 14 can be extended to the
case when the Xi’s are independent but not identically distributed: In order to keep our presentation
as simple as possible, we state and prove these more general results in Section A in the appendix.
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4. Beyond NPC spaces

In this section, we tackle the question of concentration of barycenters in metric spaces that are not
NPC, but that still have a curvature upper bound: CAT(κ) spaces, for κ > 0. Recall that, intuitively,
a metric space is said to be CAT(κ), κ ∈ R, when its triangles are thinner than they would be in the
model space of curvature κ (hyperbolic plane if κ < 0, Euclidean plane if κ = 0 and 2-dimensional
sphere of radius 1/

√
κ if κ > 0): See Bridson and Haefliger (2013); Burago et al. (2022) for an

introduction to CAT spaces (see also Sections B and C in the appendix). In this terminology, NPC
spaces are CAT(0) spaces. An important example of a CAT(κ) space, which is closely related to
optimal transport theory, for κ > 0, is the class of all p-variate (p ≥ 1) Gaussian distributions whose
covariance matrices have eigenvalues that are at least

√
3/(2κ) (Massart et al., 2019, Proposition 2),

equipped with the 2-Wasserstein distance. An open question, which seems important to us, is which
more general families of distributions, equipped with the 2-Wasserstein distance, are CAT(κ) for
some fixed κ > 0.

4.1. Barycenters in CAT spaces

It is well known that barycenters may no longer be unique in CAT(κ) spaces when κ > 0. For
instance, on a sphere, any point on the equator is a barycenter of the North and South poles. However,
it is known that if a probability measure on a CAT(κ) space, with κ > 0, is supported within a small
enough ball, then it does have a unique barycenter (Yokota, 2016, Theorem B). We provide more
useful facts on barycenters in CAT(κ) spaces, for κ > 0, in Section C in the appendix.

In order to derive a non asymptotic bounds on the convergence of the empirical barycenter in
CAT(κ) spaces for κ > 0, we require the following assumption, which controls the complexity of
the metric space (M,d).

Assumption 1 The metric space (M,d) is CAT(κ) for some κ > 0 and there are positive constants
A, p > 0 such that for all x ∈M and for all α, r > 0 with α ≤ r, N(B(x, r), α) ≤

(
Ar
α

)p
, where

N(B(x, r), α) denotes the smallest integer N ≥ 1 such that the metric ball B(x, r) can be covered
by N balls of radius α.

This assumption is satisfied, for instance, if M is a Riemannian manifold of dimension p (Chavel,
2006, Section III). More generally, in some way, the parameter p in this assumption plays the role of
a dimension of the metric space M .

We can now state the following concentration inequality in the framework of CAT(κ) spaces
(κ > 0).

Theorem 18 Let Assumption 1 hold. Let x0 ∈M and ε ∈ (0, π
2
√
κ

]. Let X1, ..., Xn be i.i.d random

variables such that d(X1, x0) ≤ 1
2

(
π

2
√
κ
− ε
)

almost surely. Denote by b∗ the population barycenter

of X1 and let b̂n be the empirical barycenter of X1, . . . , Xn. Then, for all δ ∈ (0, 1), it holds with
probability at least 1− δ that

d(b̂n, b
∗) ≤ c

εκ

(
A

√
p

n
+

√
log(2/δ)

εn

)
,

where c > 0 is a universal constant and A is the constant appearing in Assumption 1.
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The proof of this theorem is deferred to Section D.4 in the appendix. Note that unlike the case of
NPC spaces, this bound depends on the parameter p, which plays the role of a dimension. We do not
know whether a dimension free bound can be achieved in CAT(κ) spaces for κ > 0. However, note
that as desired, see discussion above, the dimension parameter p is decoupled from the confidence
level δ. A similar bound for the inductive barycenter b̃n is unknown, but would be interesting in
practice, since b̃n is generally easier to compute. We leave this question for future work.

5. Conclusion

To summarize, non-positive curvature of the space has allowed to derive a sensitivity analysis of
barycenter functionals in order to obtain sharp versions of Hoeffding’s and Bernstein’s inequalities,
without requiring the space to have finite dimension in any sense. Unlike previous existing finite
sample bounds for empirical and inductive barycenters, out setup makes use of the right definition
of Laplace transform in metric spaces, due to Ledoux, in order to obtain, using simple arguments,
sharp concentration bounds. When the curvature is bounded from above, but can be positive, similar
bounds can be obtained, by means of empirical process theory, imposing a finite Hausdorff dimension
of the ambient space. However, we expect that in a CAT(κ)-space, for κ > 0, a careful sensitivity
analysis can be made possible for barycenter functionals, allowing to relax the finite dimension
assumption. This question is left for future work.
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Appendix A. Concentration inequalities for non-identically distributed random
variables

In this section, we extend Corollary 11 and Theorem 14 to the case where X1, . . . , Xn are indepen-
dent, but not identically distributed, and share the same barycenter b∗. For instance, if (M,d) is a
hyperbolic space and eachXi has a distribution with density (with respect to the Riemannian volume)
proportional to g(βid(·, b∗)), where g : [0,∞)→ [0,∞) is a fixed function and β1, . . . , βn > 0 are
scale parameters, then all Xi’s have the same barycenter, namely, b∗.

Theorem 19 Let (M,d) be an NPC space, and let X1, ..., Xn be independent random variables
with same barycenter b∗ ∈ M . Further assume that for all i = 1, . . . , n, d(Xi, xi) ≤ Ci almost
surely, for some xi ∈ M and Ci > 0. Let Bn be either the empirical or the inductive barycenter
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of X1, . . . , Xn. If Bn = b̂n, further assume that M has a curvature lower bound. Then, for all
δ ∈ (0, 1), it holds with probability at least 1− δ that

d(Bn, b
∗) ≤ σn√

n
+ Cn

√
log(1/δ)

n
,

where σn =

√
σ2

1+...+σ2
n

n and Cn =

√
C2

1+...+C2
n

n .

Proof The proof is similar to that of Proposition 11, and the main difference is in bounding the bias
term E[d(Bn, b

∗)]. When Bn is the empirical barycenter, a close inspection of the proof of (Le Gouic
et al., 2022, Corollary 11) indicates that the Xi’s need not be identically distributed and one readily
obtains E[d(b̂n, b

∗)] ≤ σn√
n

. When Bn is the inductive barycenter, we adapt the proof of (Sturm,
2003, Theorem 4.7) and obtain the following lemma.

Lemma 20 Let X1, . . . , Xn be independent random points with two moments in an NPC space
(M,d) and with same barycenter b∗. Then,

E[d(Sn, b
∗)2] ≤ σ2

1 + . . .+ σ2
n

n2
,

where σ2 = E[d(Xi, b
∗)2] is the variance of Xi, for i = 1, . . . , n.

Proof The proof of this lemma follows the same lines as the proof of (Sturm, 2003, Theorem 4.7)
and proceeds by induction on n. Denote by Vn = E[d(Sn, b

∗)2] and by Fn(x) = E[d(Xn, x)2], for
all x ∈M . Then, by the 2-geodesic strong convexity of the squared distance to any given point, one
obtains

Vn ≤ E
[(

1− 1

n

)
d(Sn−1, b

∗)2 +
1

n
d(Xn, b

∗)2 − n− 1

n2
d(Sn−1, Xn)2

]
=
n− 1

n
Vn−1 +

σ2
n

n
− n− 1

n2
E[Fn(Sn−1)],

where we use the fact that Xn and Sn−1 are independent, by construction of Sn−1 (which only
depends on X1, . . . , Xn−1). Now, again by the 2-geodesic strong convexity of the squared distance
to any given point, we obtain that Fn is also 2-geodescailly strongly convex, yielding F (Sn) ≥
F (b∗) + d(Sn, b

∗)2 almost surely, since b∗ is the minimizer of Fn by assumption. Therefore, it
follows that

Vn ≤
n− 1

n
Vn−1 +

σ2
n

n
− n− 1

n2
σ2
n −

n− 1

n2
Vn−1

=
(n− 1)2

n2
Vn−1 +

σ2
n

n2
.

In other words, n2Vn ≤ (n− 1)2Vn−1 + σ2
n. Since, by definition of S1, V1 = σ2

1 , the result follows
by induction.

Finally, we also have the following generalization of Theorem 14 when theXi’s are not identically
distributed.
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Theorem 21 Let (M,d) be an NPC space and X1, . . . , Xn be independent random variables in
(M,d). Assume that d(Xi, x0) ≤ C almost surely, for all i = 1, . . . , n, for some fixed x0 ∈M and
C > 0. let Bn be either the empirical or the inductive barycenter of X1, . . . , Xn. Then, for all
δ ∈ (0, 1), it holds with probability at least 1− δ that

d(Bn, b
∗) ≤ σn√

n
+ min

(
2σn

√
log(1/δ)

n
,
8C log(1/δ)

3n

)
,

where σn is as in Theorem 19.

In Theorem 19, when X1, . . . , Xn do not even share the same barycenter, we still have the
following fact, for any fixed b ∈M . For any δ ∈ (0, 1), it holds with probability at least 1− δ that

d(Bn, b) ≤ E[d(Bn, b)] + Cn

√
log(1/δ)

n
.

However, it is not clear what b to choose in order to make the first term as small as possible.
If b1, . . . , bn are the respective population barycenters of X1, . . . , Xn (i.e., each bi minimizes
E[d(Xi, b)

2] over b ∈M ), a natural candidate for b would be the barycenter of b1, . . . , bn.

Open question Let X1, . . . , Xn be independent random variables in M , with two moments. For
each i = 1, . . . , n, let bi be the barycenter of Xi and σ2

i = E[d(Xi, bi)
2] its variance. Is it true that

E[d(b̂n, b
∗
n)2] ≤ σ2

n

n
,

where b∗n is the barycenter of b1, . . . , bn and σ2
n =

σ2
1+...+σ2

n

n , as in Theorem 19?

Appendix B. Background on CAT spaces

In this section, we give the precise definition of CAT spaces. We refer the reader to the book
Alexander et al. (2019) for a complete view on the topic. First, we introduce a family of model
spaces that will allow us to define local and global curvature bounds in the sequel. Let κ ∈ R.

κ = 0: Euclidean plane Set M0 = R2, equipped with its Euclidean metric. This model space
corresponds to zero curvature, is a geodesic space where geodesics are unique and given by line
segments.

κ > 0: Sphere Set Mκ = 1√
κ
S2: This is the 2-dimensional Euclidean sphere, embedded in R3,

with center 0 and radius 1/
√
κ, equipped with the arc length metric: dκ(x, y) = 1√

κ
arccos(κx>y),

for all x, y ∈ Mκ. This is a geodesic space where the geodesics are unique except for antipodal
points, and given by arcs of great circles. Here, a great circle is the intersection of the sphere with
any plane going through the origin.
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κ < 0: Hyperbolic space Set Mκ = 1√
κ
H2, where H2 = {(x1, x2, x3) ∈ R3 : x3 > 0, x2

1 +

x2
2 − x2

3 = −1}. The metric is given by dκ = 1√
−κarccosh(−κ〈x, y〉), for all x, y ∈ Mκ, where

〈x, y〉 = x1y1 + x2y2 − x3y3. This is a geodesic space where geodesics are always unique and are
given by arcs of the intersections of Mκ with planes going through the origin.

For κ ∈ R, let Dκ be the diameter of the model space Mκ, i.e., Dκ =

{
∞ if κ ≤ 0
π√
κ

if κ > 0
.

Let (M,d) be a geodesic space, i.e., a metric space where any two points have at least one
geodesic between them. The notion of curvature (lower or upper) bounds for (M,d) is defined by
comparing the triangles in M with triangles with the same side lengths in model spaces.

Definition 22 A (geodesic) triangle in M is a set of three points in M (the vertices) together with
three geodesic segments connecting them (the sides).

Given three points x, y, z ∈ S, we abusively denote by ∆(x, y, z) a triangle with vertices x, y, z,
with no mention to which geodesic segments are chosen for the sides (geodesics between points are
not necessarily unique, as seen for example on a sphere, between any two antipodal points). The
perimeter of a triangle ∆ = ∆(x, y, z) is defined as per(∆) = d(x, y) + d(y, z) + d(x, z). It does
not depend on the choice of the sides.

Definition 23 Let κ ∈ R and ∆ be a triangle in M with per(∆) < 2Dκ. A comparison triangle for
∆ in the model space Mκ is a triangle ∆̄ ⊆Mκ with same side lengths as ∆, i.e., if ∆ = ∆(x, y, z),
then ∆̄ = ∆(x̄, ȳ, z̄) where x̄, ȳ, z̄ are any points in Mκ satisfying

d(x, y) = dκ(x̄, ȳ)

d(y, z) = dκ(ȳ, z̄)

d(x, z) = dκ(x̄, z̄).

Note that a comparison triangle in Mκ is always unique up to rigid motions. We are now ready
to define curvature bounds. Intuitively, we say that (M,d) has global curvature bounded from above
(resp. below) by κ if all its triangles (with perimeter smaller than 2Dκ) are thinner (resp. fatter) than
their comparison triangles in the model space Mκ.

Definition 24 Let κ ∈ R. We say that (M,d) has global curvature bounded from above (resp.
below) by κ if and only if for all triangles ∆ ⊆ M with per(∆) < 2Dκ and for all x, y ∈ ∆,
d(x, y) ≤ dκ(x̄, ȳ) (resp. d(x, y) ≥ dκ(x̄, ȳ)), where x̄ and ȳ are the points on a comparison
triangle ∆̄ in Mκ that correspond to x and y. We then call (M,d) a CAT(κ) (resp. CAT+(κ)) space.

Appendix C. Strong convexity and barycenters in CAT spaces

The following strong convexity property of the squared distance to any fixed point can be found in
(Ohta, 2007, Proposition 3.1).

Lemma 25 Let (M,d) be a CAT(κ) space, with κ > 0 and let x0 ∈M . Then, for all ε ∈ (0, π
2
√
κ

],
1
2d(x0, ·)2 is kε-geodesically strongly convex on the ball B

(
x0,

1
2

(
π

2
√
κ
− ε
))

, with kε = (π −
2
√
κε) tan(ε

√
κ).
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This strong convexity property implies a variance inequality in CAT(κ) spaces of small diameter
for κ > 0 .

Lemma 26 Let (M,d) be a CAT(κ) space with κ > 0, let x0 ∈M and let ε ∈ (0, π
2
√
κ

]. Let X be

a random variable in M with values in the ball B
(
x0,

1
2

(
π

2
√
κ
− ε
))

almost surely. Then it satisfies
the following variance inequality

d2(z, b∗) ≤ 2

kε
E
[
d2(z,X)− d2(b∗, X)

]
, ∀z ∈M, (4)

where kε = (π − 2
√
κε) tan(ε

√
κ), and b∗ denotes the population barycenter of X .

Proof
By (Ohta, 2007, Proposition 3.1), we know that for all p ∈M , the functions z 7→ d2(z, p) are

kε-convex on the ball B
(
x0,

π
2
√
κ
− ε
)

. Moreover, b∗ is in the ball by (Yokota, 2016, Theorem B).

It follows that the function z 7→ E
[
d2(z,X)− d2(b∗, X)

]
is also kε-convex on the ball. Therefore,

by taking zt the joining geodesic between b∗ and z (it exists and is unique because the ball is small
enough), and for p = b∗, by definition of the barycenter, we get that for t ∈ [0, 1],

0 ≤ E
[
d2(zt, X)− d2(b∗, X)

]
≤ tE

[
d2(z,X)− d2(b∗, X)

]
− kε

2
t(1− t)d2(z, b∗)

Therefore,

tE
[
d2(z,X)− d2(b∗, X)

]
≥ kε

2
t(1− t)d2(z, b∗),

yielding the result by dividing by t and letting t goes to zero.

Note that kε ∈ (0, 2), for all ε ∈ (0, π
2
√
κ

). Moreover kε tends to zero when ε tends to zero, and
it tends to 2 when ε tends to π

2
√
κ

. So when the diameter tends to zero, the convexity tends to be
the same as in the Euclidean case, whereas when the diameter tends to be maximal (i.e. π

2
√
κ

), the
geodesic strong convexity may no longer hold.

Appendix D. Proofs

D.1. Proof of Lemma 8

In order to prove this lemma, we need the following result. The key argument in its proof is that
the lower bound on the Ricci curvature allows to control the volume of arbitrary large balls, by
comparison theorems.

Lemma 27 Let M be a p-dimensional Riemannian manifold with Ricci curvature bounded from
below by (p− 1)κ ∈ R, where κ ≤ 0. Then, for all x0 ∈M and for all α > 0,

∫
M
e−αd(x,x0)2

dVol(x) ≤


cp−1

(p−1)α(p−1)/2Jp if κ = 0

5cp−1e
(p−1)

√
−κ/α−κ(p−1)2

α

(p−1)(−κ)p/2
otherwise

where cp−1 = 2πp/2

Γ(p/2) and Jp =
∑∞

r=0(r + 1)pe−r
2
.
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Here, Vol stands for the Riemannian volume.
Proof By Bishop-Gromov volume comparison theorem (Lee, 2018, Theorem 11.19), it holds that
for all r ≥ 0,

Vol(B(x0, r)) ≤ Vp,κ(r),

where Vp,κ(r) is the volume of any ball of radius r in the p-dimensional hyperbolic space of constant
curvature κ (which we identify with Rp is κ = 0). It is known (Chavel, 2006, Section III) that

Vp,κ(r) = cp−1

∫ r

0

(
sinh(

√
−κt)√
−κ

)p−1

dt

where cp−1 = 2πp/2

Γ(p/2) and where the integral should be understood as rp/p if κ = 0. If κ < 0, we
readily obtain the inequality

Vp,κ(r) =
cp−1e

(p−1)
√
−κr

(p− 1)(−κ)p/2
.

Now, we write that, for any choice of c > 0,

I(α) :=

∫
M
e−αd(x,x0)2

dVol(x) =

∞∑
r=0

∫
B(x0,c(r+1))\B(x0,cr)

e−αd(x,x0)2
dVol(x)

≤
∞∑
r=0

e−αc
2r2
Vp,κ(c(r + 1)) (5)

For simplicity, let us distinguish the two cases when κ = 0 or κ < 0. First, assume κ = 0. Then,
(5) with c = 1/

√
α yields

I(α) ≤ cp−1

(p− 1)α(p−1)/2

∞∑
r=0

e−r
2
(r + 1)p.

Now, let us assume that κ < 0. Then, (5) with c = 1/
√
α again yields

I(α) ≤ cp−1

(p− 1)(−κ)p/2

∞∑
r=0

e−r
2
e(p−1)

√
−κ(r+1)/

√
α

=
cp−1e

(p−1)
√
−κ+

√
α

(p− 1)(−κ)p/2

∞∑
r=0

e−r
2
e(p−1)

√
−κr/

√
α

=
cp−1e

(p−1)
√
−κ/α−κ(p−1)2

α

(p− 1)(−κ)p/2

∞∑
r=0

e
−
(
r− (p−1)

√
−κ

2
√
α

)2

.

Now, using the inequality
∞∑
r=0

e−(r−m)2 ≤ 5, for any m > 0, we obtain that

I(α) ≤ 5cp−1e
(p−1)
√
−κ/α−κ(p−1)2

α

(p− 1)(−κ)p/2
.
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Proof of Lemma 8 If κ > 0, then by (Lee, 2018, Corollary 11.18), M has finite diameter, bounded
from above by D = π/

√
κ. Hence, X is bounded and, by Lemma 7, it is K2-sub-Gaussian, with

K2 = 4π2/κ.

Now, assume that κ ≤ 0 and let f ∈ F . By Jensen’s inequality, for allK > 0, E[e
(f(X)−E[f(X)])2

2K2 ] ≤

E[e
(f(X)−f(Y ))2

2K2 ], where Y is independent of X and has the same distribution. Therefore,

E[e
(f(X)−E[f(X)])2

2K2 ] ≤ E[e
d(X,Y )2

2K2 ] ≤ E
[
e
d(X,x0)2+d(Y,x0)2

K2

]
= E

[
e
d(X,x0)2

K2

]2

≤
(
C

∫
M
e
−
(
β− 1

K2

)
d(x,x0)2

dVol(x)

)2

.

Lemma 27 then yields the result, by taking K large enough. �

D.2. Proof of Proposition 9

The proof for the inductive barycenter function B̃n follows from a simple induction and it can be
found in (Funano, 2010, Lemma 3.1).

The 1-Lipschitz property of B̂n follows from two different arguments, which we both give here,
because they are both instructive. Let P1(M) be the set of all probability measures on (M,d) with
finite first moment. For µ ∈ P1(M), let B(µ) be its barycenter, i.e., the (unique) minimizer b ∈M
of E[d(X, b)2 − d(X, b0)2], where X ∼ µ and b0 ∈M is arbitrarily fixed.

The first argument follows from (Lim and Pálfia, 2014, Theorem 3.4), which provides a determin-
istic connection between barycenters and their inductive versions. Let (x1, . . . , xn) and (y1, . . . , yn)
be two n-uples in M . We extend these n-uples into periodic infinite sequences by setting, for
all positive integers k, xk = xrk and yk = yrk , where rk is the unique integer between 1 and
n such that k − rk is a multiple of n. Then, (Lim and Pálfia, 2014, Theorem 3.4) indicates that
B̃k(x1, . . . , xk) and B̃k(y1, . . . , yk) converge to B̂n(x1, . . . , xn) and B̂n(y1, . . . , yn) respectively,
as k →∞. Moreover, thanks to the (1/(qn))-Lipschitz feature of B̃qn proved above, one has, for all
positive integers q,

d(B̃qn(x1, . . . , xqn), B̃qn(y1, . . . , yqn))

≤ 1

qn

qn∑
k=1

d(xk, yk) =
1

n

n∑
k=1

d(xk, yk).

Taking the limit as q →∞ yields the (1/n)-Lipschitz property of B̂n.
The second argument uses Jensen’s inequality, which implies that the barycenter functional B is

contractive over P1(M), equipped with the Wasserstein distance W1 (Sturm, 2003, Theorem 6.3).
More precisely, for all probability measures µ, ν ∈ P1(M), it holds that d(B(µ), B(ν)) ≤W1(µ, ν),
where W1(µ, ν) = infX∼µ,Y∼ν E[d(X,Y )]. Now, fix two n-uples (x1, . . . , xn) and (y1, . . . , yn) in
Mn and set µ = n−1

∑n
i=1 δxi and ν = n−1

∑n
i=1 δyi . It is clear that B(µ) = B̂n(x1, . . . , xn) and

B(ν) = B̂n(y1, . . . , yn). Moreover, W1(µ, ν) ≤ 1
n(d(x1, y1) + . . .+ d(xn, yn)), which can be seen

by taking the coupling (X,Y ) of µ and ν such that P (X = ai, Y = bi) = 1
n , i = 1, . . . , n.
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D.3. Proof of Lemma 16

The right hand side is obvious thanks to the triangle inequality (and it does not require independence
of X and Y ). For the left hand side, denote by F (b) = E[d(X, b)2], for all b ∈ M . Then,
σ2 = minb∈M F (b) and independence of X and Y yields that σ2 ≤ F (Y ) = E[d(X,Y )2|Y ] almost
surely. The result follows by taking the expectation on both sides.

D.4. Proof of Theorem 18

The proof is based on an application of (Ahidar-Coutrix et al., 2020, Theorem 2.1). It is possible
to use this theorem thanks to Assumption 1 and Lemma 26. By a careful analysis of its proof with
the constants D = p, C = A, K1 =

√
π

2
√
κ
− ε, K2 = 2

(
π

2
√
κ
− ε
)

, K3 = 2
(π−2

√
κε) tan(ε

√
κ)

, and

α = β = 1, we obtain that for all δ ∈ (0, 1), with probability at least 1− δ,√
kε
2
d(b̂n, b

∗) ≤ 3c1

√
p

n
+ 3c2

√
log(2/δ)

n
,

where
kε = (π − 2

√
κε) tan(ε

√
κ),

c1 =
96
√

2A
(

π
2
√
κ
− ε
)

√
(π − 2

√
κε) tan(ε

√
κ)

=
96
√
A
√

π
2
√
κ
− ε√

2κ tan(ε
√
κ)

and

c2 =
4
(

π
2
√
κ
− ε
)

√
(π − 2

√
κε) tan(ε

√
κ)

+
16

3

√(
π

2
√
κ
− ε
)

=

√
π − 2ε

√
κ

κ

(
2√

tan(ε
√
κ)

+
16

3
√

2

)
.

Hence, with probability at least 1− δ, one has

d(b̂n, b
∗) ≤ 288

√
A√

κ tan(ε
√
κ)

√
p

n
+

1√
κ tan(ε

√
κ)

(
6
√

2√
tan(ε

√
κ)

+ 16

)√
log(2/δ)

n
,

which proves the result by noting that tanx ≥ x for all x ∈ [0, π/2).
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