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Abstract
We consider the reinforcement learning problem of controlling an unknown dynamical sys-
tem to maximise the long-term average reward along a single trajectory. Most of the lit-
erature considers system interactions that occur in discrete time and discrete state-action
spaces. Although this standpoint is suitable for games, it is often inadequate for systems
in which interactions occur at a high frequency, if not in continuous time, or those whose
state spaces are large if not inherently continuous. Perhaps the only exception is the linear
quadratic framework for which results exist both in discrete and continuous time. However,
its ability to handle continuous states comes with the drawback of a rigid dynamic and re-
ward structure. This work aims to overcome these shortcomings by modelling interaction
times with a Poisson clock of frequency ε−1 which captures arbitrary time scales from dis-
crete (ε = 1) to continuous time (ε ↓ 0). In addition, we consider a generic reward function
and model the state dynamics according to a jump process with an arbitrary transition
kernel on Rd. We show that the celebrated optimism protocol applies when the sub-tasks
(learning and planning) can be performed effectively. We tackle learning by extending the
eluder dimension framework and propose an approximate planning method based on a dif-
fusive limit (ε ↓ 0) approximation of the jump process. Overall, our algorithm enjoys a
regret of order Õ(

√
T ) or Õ(ε1/2T +

√
T ) with the approximate planning. As the frequency

of interactions blows up, the approximation error ε1/2T vanishes, showing that Õ(
√
T ) is

attainable in near-continuous time.
Keywords: Online Reinforcement Learning, Stochastic Control, Continuous State-Space,
Diffusion Approximation, Optimism in the Face of Uncertainty, Eluder Dimension

1. Introduction

Controlling a dynamical system to drive it to optimal long-term average behaviour is a
key challenge in many applications, ranging from mechanical engineering to econometrics.
Reinforcement Learning (RL) aims to do so when the system is a priori unknown by tackling
jointly both the control and the statistical inference of the system. This joint objective is
even more important in the online version of the problem, in which one interacts with the
system along a single trajectory (no resets or episodes). In the last decades, the insights of
Bandit Theory (see e.g. Lattimore and Szepesvári (2020)) have been leveraged to tackle the
RL problem, while addressing the inherent exploration-exploitation dilemma that naturally
arises in sequential decision-making (see e.g. Szepesvári (2010, § 4.2)).
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Continuous time. While the RL literature has so far focused on discrete-time set-
tings, many real-world systems involve interactions which occur at discrete times with a
continuous-time state process, often with a very high frequency of interactions. This could
be due, e.g., to the limitations of a sensor or actuator in a continuous environment or be-
cause event times rely on an exogenous noise process. A natural approach to planning in
such systems is to directly model the problem in continuous time, as is common in finance
(Chen and Yao, 2001; Cont and Tankov, 2004; Obizhaeva and Wang, 2013). While the re-
sulting continuous-time stochastic control problems are well studied, they appear to conflict
with the sample-based nature of statistical learning theory that fundamentally takes place
in discrete time.

Near-continuous time. In order to subsume both perspectives on the problem, we
consider interactions governed by a Poisson clock, setting the expected inter-arrival time of
the clock to a parameter ε ∈ (0, 1). This gives us control over a continuum of situations
from discrete time (ε = 1) to continuous time (ε ↓ 0). We call this embedding of discrete
time into R+ near-continuous time because it allows us to consider the regime in which
ε � 1 (which is of interest for modelling high-frequency systems). Nonetheless, even for
ε� 0, it enriches the usual discrete-time analysis with new perspectives and mathematical
tools.

Modelling dynamics. An essential prerequisite for modelling real-world systems is the
ability to capture complex (non-linear) dynamics and rich reward signals defined over con-
tinuous state and action spaces. With this in mind, we focus on the model-based approach
where the transition and the reward function belong to a parameterised class of functions.
Achieving this level of generality poses challenges regarding all three key sub-tasks of RL,
which are: planning, learning, and the exploration-exploitation trade-off.

Planning in continuous systems. For (discrete-time) dynamics on finite state-action
spaces, the planning problem falls under the umbrella of Markov Decision Processes (MDPs)
which have been extensively reviewed in Puterman (2005). The finite nature of MDPs is at
the heart of their theoretical and computational success. Their extension to countable or
even continuous state spaces is, however, non-trivial; see e.g. Bertsekas (2011, § 4.6, p.245)
for a review of the challenges. Perhaps the only exception which retains those nice theo-
retical and computational properties is the celebrated Linear Quadratic (LQ) framework
(Kalman, 1960). However, both frameworks are limited in their expressive power. In con-
trast, continuous-time stochastic control theory has demonstrated how to effectively solve
the control problem for arbitrary regular dynamics on continuous state spaces. It enjoys a
rich and mature literature (Arisawa and Lions, 1998; Arapostathis et al., 2012; Lions, 1983),
both on the theoretical aspects as well as numerical solvers based on Partial Differential
Equations (PDEs), another storied field (Kushner and Dupuis, 2001; Barles and Souganidis,
1991; Bonnans and Zidani, 2003). The near-continuous time framework lies between the
two theories, and recent results of Abeille et al. (2022) show how to navigate between them
and approximately solve the planning problem in the high-frequency interactions regime by
solving its diffusive counterpart.

Learning non-linear systems. Similar to the planning problem, the natural way to
move beyond finite Markov chain models and towards continuous state dynamics is through
linear models. The least-squares estimator enjoys strong theoretical guarantees including
adaptive confidence sets that can be efficiently maintained online (see e.g. Abbasi-yadkori
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et al. (2011)). Extensions (Russo and Van Roy, 2013; Osband and Van Roy, 2014) showed
how to extend this approach to richer model classes through the use of Non-Linear Least
Squares (NLLS). This framework subsumes standard least squares and has been successful
in many dynamics by retaining its key properties regarding confidence sets. While providing
a protocol for learning with NLLS, Russo and Van Roy (2013) characterised the trade-off
between the richness of the model and the hardness of its learning through two quantities
of the model class: the log-covering number, and the eluder dimension which summarises
the difficulty of turning the information from data into predictive power.

Optimistic exploration. Optimism in the Face of Uncertainty (OFU) has proven
highly successful in sequential decision-making from bandits to RL. The works of Jaksch
et al. (2010); Auer and Ortner (2006); Bartlett and Tewari (2009) showed how to extend the
celebrated UCB (Auer et al., 2002) algorithm from bandits to finite MDPs; later, extensions
were made to continuous states in the LQ setting, see e.g. Abbasi-Yadkori and Szepesvári
(2011); Abeille and Lazaric (2020); Cohen et al. (2019) and references therein. Extension
from bandit to MDP and then to LQ raised new challenges that persist in our setting. First,
the agent should not revise its behaviour too often to prevent dithering, which requires the
design of a lazy update scheme. Second, generic continuous states-spaces models come with
inherent unboundedness, and one must carefully address stability issues.

In this work, we consider the near-continuous time system interaction model and propose
an optimistic algorithm for online reinforcement learning in the average reward setting1. Our
approach builds on the work of Abeille et al. (2022) to introduce continuous-time tools for
studying the planning problem and on extending the work of Russo and Van Roy (2013)
to our near-continuous time and unbounded state setting to perform the learning with
NLLS Underlying the extension of both these two approaches is a careful treatment of the
state boundedness which we perform with Lyapunov stability arguments. Our algorithm
enjoys the Õ(

√
T ) complexity of the discrete-state case, including technical generalisations

of standard learning complexity metrics. Further, leveraging another result by Abeille et al.
(2022), we demonstrate an efficient approximate planning method in the regime ε ↓ 0 which
yields a regret scaling with Õ(ε1/2T +

√
T ). In the asymptotic (ε ↓ 0), the approximation

error vanishes showing that Õ(
√
T ) is attainable even in high-frequency settings.

2. Setting

We consider an agent interacting with its environment to maximise a long-term average
reward. At each interaction, it observes the current state of the system x ∈ Rd, takes action
a ∈ A ⊂ RdA , and receives reward r(x, a), for r : Rd × A→ R. The system then transitions
to a state denoted by, say, x′ according to

x′ = x+ µθ∗(x, a) + Σξ with ξ ∼ N (0, Id),

Σ ∈ Rd×d, and in which µθ∗ : Rd × A → Rd is the deterministic motion of the system2.
Contrasting with the standard setting, we consider here the interactions to occur in a

1. Also known as, average cost per stage, long-run average, or ergodic setting.
2. While the additive noise structure is a design choice that simplifies the analysis, the choice of parame-

terising the drift as x+ µθ∗(x, a) instead of µθ∗(x, a) does not affect its generality and is made only for
convenience. See Assumption 1 below.

3



Croissant Abeille Bouchard

random fashion, which we model by an independent Poisson process of intensity ε−1. As
such, ε parameterises the mean wait time between events and gives us direct control over
the frequency of interactions.

State dynamics. Let Ω := D be the space of càdlàg functions from [0,+∞) to Rd,
and let P be a probability measure on Ω. We formalise the interaction time and the noise
process as a marked P-compound Poisson process (Nt)t∈R+ of intensity ε−1 ≥ 1. We denote
by (τn)n∈N its arrival (interaction) times, with τ0 := 0, and by (ξn)n∈N its marks, which are
independent of everything else and drawn i.i.d. according to the centred standard Gaussian
measure ν on Rd. We encode the information available at time t ∈ R+ in the σ-algebra
Ft := σ((τn, ξn)τn≤t) and with the filtration F defined as the completion of (Ft)t∈R+ . Let
A be the set of F-adapted A-valued processes, referred to as controls. For any initial state
x0 ∈ Rd and α ∈ A, we let Xα,θ∗ denote the pathwise-unique solution of{

Xα,θ∗
τn = Xα,θ∗

τn−1 + µθ∗(X
α,θ∗
τn−1 , ατn−1) + Σξn

Xα,θ∗
τ0 = x0

. (1)

In (1), we model the dynamic according to a jump process and Xα,θ∗ is then defined at
any time t ∈ R+ by considering that it is piece-wise constant on each interval [τn−1, τn),
n ∈ N∗. Although involved, this definition allows us to define the state process at any time
and feature the interplay of the Poisson (Nt ∈ N) and wall-time (t ∈ R+) clocks.

Reinforcement learning problem. In our model-based paradigm, ignorance about
the system is condensed to a single parameter set Θ ⊂ RdΘ containing the unknown nominal
parameter θ∗. To single out the RL challenges, we further assume that θ∗ only affects the
drift assuming other quantities (i.e. Σ, ε, and r) are known to the agent. For any x0 ∈ Rd,
we evaluate the performance of any strategy α ∈ A with the long-term average reward
criterion3 defined by

ραθ∗(x0) := lim inf
T→∞

1

T
E

[
NT∑
n=1

r(Xα,θ∗
τn , ατn)

]
. (2)

The goal of the agent is to accumulate as much reward as possible, i.e. to compete with the
best an omniscient agent can achieve: ρ∗θ∗(x0) := supα∈A ρ

α
θ∗(x0). We evaluate the quality

of a learning algorithm generating α according to its regret.

Definition 1 For any T ∈ R+, x0 ∈ Rd, and α ∈ A, the regret of α is

RT (α) := Tρ∗θ∗(x0)−
NT∑
n=1

r(Xα,θ∗
τn , ατn) . (3)

Noticing that NT is the number of events up to time T , the definitions of the optimal
performance (2) and the regret (3) again feature the interplay between the wall-clock (T )
and Poisson clock (NT ): the agent’s realised trajectory uses the Poisson clock, which governs
interactions, while the ideal performance is understood per unit of wall-clock time.

3. Notice that this criterion is strategically equivalent to a discrete-time control problem with the same
transition dynamics as Xα,θ∗ . Thus, all of the following results also apply in the discrete-time case.
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2.1. Working Assumptions

Of particular interest in our approach is the high-frequency regime in which ε ↓ 0. In this
framework, many interactions occur per unit of time, each of which is of negligible impact
both in terms of dynamics and reward. This regime can be encoded by introducing, for any
parameter θ ∈ Θ, rescaled coefficients (µ̄θ, Σ̄, r̄) connected to the original parametrisation
by

µθ = εµ̄θ , Σ = ε
1
2 Σ̄ , and r = εr̄ .

In this rescaled parametrisation, µ̄θ, Σ̄, and r̄ are understood as independent of ε. To im-
prove legibility, we will make alternating use of both representations (µθ,Σ, r) and (µ̄θ, Σ̄, r̄).
While the scaling of µθ and r in ε arises naturally, the one of Σ is a design choice: we con-
sider the covariance ΣΣ⊤ to be linear in ε. Known as the diffusive regime, this preserves
stochasticity4 as ε ↓ 0.

We now impose regularity assumptions on the drift and reward signal, uniformly over
the possible parametrisations and controls (α, θ) ∈ A×Θ. We take ‖·‖ to be the Euclidian
norm on Rd and ‖·‖op for the operator norm on Rd×d associated to ‖·‖.

Assumption 1 The map (µ̄, r̄) is continuous, and there is L0 > 0 such that for all (θ, a) ∈
Θ× A

L0> sup
x∈Rd

‖µ̄θ(x, a)‖
1 + ‖x‖

+ sup
x ̸=x′

‖µ̄θ(x, a)− µ̄θ(x′, a)‖
‖x− x′‖

+ sup
x∈Rd

‖r̄(x, a)‖+ sup
x ̸=x′

‖r̄(x, a)− r̄(x′, a)‖
‖x− x′‖

.

Furthermore, L0 > ‖Σ̄‖op and Σ̄Σ̄⊤ � ς Id for some ς > 0, where � denotes the Loewner
order.

Assumption 1 mainly imposes regularity on both µ̄θ and r̄ through a Lipschitz condition.
We also assume rewards to be bounded, which may be relaxed, but doing so is highly
technical and involves trading off the growth of r with the stability of the process (see
Assumption 2). Note that we do not assume boundedness of µ̄θ. Finally, we assume non-
degeneracy of the noise by requiring Σ̄ to be full rank.

We conclude with Assumption 2 to ensure the stability of the state process. Let Rd
∗ :=

Rd\{0} and R+ := (0,+∞). For k ∈ N, let Ck(Rd
∗;R+) denote the set of k-times continuously

differentiable functions from Rd
∗ to R+. Let ∇ and ∇2 denote the gradient and Hessian

operator respectively.

Assumption 2 There is (ℓV , LV , cV ,MV ,M
′
V ) ∈ R5

+ and a Lyapunov function V ∈
C2(Rd

∗;R+) satisfying, for any (x, x′, a, θ) ∈ Rd × Rd × A×Θ, x 6= x′, and ε ∈ (0, 1):

(i.) ℓV
∥∥x− x′∥∥ ≤ V (x− x′) ≤ LV

∥∥x− x′∥∥ ,
(ii.) sup

x∈Rd
∗

‖∇V (x)‖ ≤MV and sup
x∈Rd

∗

∥∥∇2V (x)
∥∥
op
≤M ′

V ,

(iii.) V (x+ εµ̄(x, a)− x′ − εµ̄(x′, a)) ≤ (1− εcV )V (x− x′) . (4)
4. Another common, but more rigid, regime is to consider Σ = εΣ̄, whose limit regime is deterministic and

known as the fluid limit, see Fernandez-Tapia et al. (2016).
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Assumption 2 is a Lyapunov-like condition through the function V . The condition
(i.) requires that V behaves similarly to a norm, while (ii.) asks that V be smoothly
differentiable everywhere but at 0 and (iii.) imposes a contraction condition on the drifts.

Connection to linear stability. Stability theory has been extensively studied in the
special case of linear dynamics. In this case, we recover Assumption 2 from the Contin-
uous Algebraic Riccati Equation (CARE; see e.g. Lancaster and Rodman (1995, § 4.4)).
Considering linear dynamics µ̄θ(x, a) = Āx + B̄a (given matrices (Ā, B̄) of appropriate
dimensions), continuous stability is guaranteed when the eigenvalues of Ā have negative
real-part or, equivalently, by the existence of a positive semi-definite matrix P solving the
CARE Ā⊤P + PĀ = − Id. For this P , its associated norm V = ‖·‖P is the appropriate
Lyapunov function for Assumption 2. Indeed, conditions (i.) and (ii.) follow as V is a
norm and, for ε ≤ 1/2λmax(P ), we have

V (x+ εµ̄(x, a)− x′ − εµ̄(x′, a))2 = (x− x′)⊤(P + εĀ⊤P + εPĀ+ ε2P )(x− x′)
= (x− x′)⊤(P − ε Id+ε2P )(x− x′)
≤ (x− x′)⊤(P − εP/λmax(P ) + ε2P )(x− x′)
≤ (1− ε/2λmax(P ))V (x− x′)2 .

Taking the square-root and using
√
1− ε/2λmax(P ) ≤ 1 − ε/4λmax(P ) leads to (iii.) with

cV = 1/4λmax(P ).

3. Main results

Our main contribution is a demonstration of the OFU protocol in the near-continuous
time continuous state-action RL problem. The ingredients of OFU are: learning from
accumulated data to design confidence sets; lazy updates to trade off policy revision and
learning guarantees; and planning amongst plausible parameterisations. We summarise this
protocol in Algorithm 1.

Algorithm 1 OFU-Rd

Input: confidence level δ, initial state x0, initial control ϖ0

for n ∈ N∗ do
At time τn, receive r(Xϖ,θ∗

τn−1 , ϖτn−1) and Xϖ,θ∗
τn .

if n satisfies (7) then
nk ← n, k ← k + 1,
Compute θ̂nk

using (5) and Cnk
(δ/3) with (6).

θ̃k ← argmaxθ∈Cnk
(δ/3) ρ

∗
θ

πk ← π∗
θ̃k

using (8)
end if
Play ϖτn := πk(X

ϖ,θ∗
τn ).

end for

Learning. Our algorithm proceeds by episodes, indexed by k ∈ N with nk denoting
the start of the kth episode. At each nk, Algorithm 1 revises its knowledge using the Non-
Linear Least-Square fit and the associated confidence set Cnk

(δ), defined (for βn(δ) given
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and discussed in (12), for all n ∈ N) by

θ̂nk
∈ argmin

θ∈Θ

nk−1∑
n=0

∥∥∥Xϖ,θ∗
τn+1

−Xϖ,θ∗
τn − µθ(Xϖ,θ∗

τn , ϖτn)
∥∥∥2 , (5)

Cnk
(δ) :=

θ ∈ Θ :

√√√√nk−1∑
n=0

∥∥∥µθ(Xϖ,θ∗
τn , ϖτn)− µθ̂nk

(Xϖ,θ∗
τn , ϖτn)

∥∥∥2 ≤ βnk
(δ)

 . (6)

Lazy Updates. Our episodic scheme follows the same rationale as in Jaksch et al.
(2010); Abbasi-Yadkori and Szepesvári (2011), and triggers updates as soon as enough
information is collected. Formally, it constructs a sequence of episodes {Sk}k∈N whose
starting times are defined by n0 := 0 and, for any k ∈ N, nk+1 is the first time n > nk
satisfying (7) √√√√ sup

θ∈Cnk
(δ)

n∑
i=0

∥∥∥µθ(Xϖ,θ∗
τi , ϖτi)− µθ̂nk

(Xϖ,θ∗
τi , ϖτi)

∥∥∥2 > 2βn(δ) . (7)

Planning. Algorithm 1 requires us to be able to plan using any θ ∈ Cnk
(δ) ⊂ Θ, and

as such we will extend the definitions of Xα,θ, ραθ (x0), ρ∗θ(x0) to any (α, θ) ∈ A × Θ by
replacing θ∗ by θ in (1) and (2). An optimal Markov control for ρ∗θ can be obtained by
solving an integral (Hamilton-Jacobi-Bellman) equation of the form

ερ∗θ(x) = max
a∈A
{E[W ∗

θ (x+ µθ(x, a) + Σξ)]−W ∗
θ (x) + r(x, a)} ∀x ∈ Rd ; (8)

Let A be the set of measurable maps from Rd to A. Any map π∗θ ∈ A such that π∗θ(x) is
an argument of the maximum in (8) for all x ∈ Rd is an optimal policy. Algorithm 1 thus
obtains via (8) an optimal control for ρ∗

θ̃
which we denote by π∗θ := π∗θ ◦Xπ∗

θ ,θ5.

3.1. Regret Bound

Stability. Working with unbounded processes and generic drift requires us to prevent state
blow-up, which could degrade regret regardless of learning. In Proposition 2 we combine the
Lyapunov stability of (4) with concentration arguments to show that unstable trajectories
can only happen with low probability. A detailed proof is given in Appendix B.

Proposition 2 Under Assumptions 1 and 2, there is a function Hδ(n) = O
(√

log(nδ−1)
)

such that for any δ ∈ (0, 1), α ∈ A, x0 ∈ Rd, and θ ∈ Θ we have

P

(
sup
t∈R+

‖Xα,θ
t ‖

Hδ(Nt)
≥ 1

)
≤ δ . (9)

Learning. In order for the regret analysis to be meaningful, the learning complexity
metrics of FΘ := (µθ)θ∈Θ (covering number and eluder dimension) must be adapted for

5. We make this notational confusion between the policy π∗
θ and the control process it generates in order

to write ρπθ (x) and Xπ,θ instead of ρπ◦Xπ,θ

θ and Xπ◦Xπ,θ,θ. when π ∈ A
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unbounded functions on unbounded processes. Indeed, attempting to Ξ-cover the class of
linear functions from Rd → Rd would make the regret bound vacuous for every Ξ > 0.
Proposition 2 allows us to restrict ourselves to the set of states effectively traversed by the
state-process Xα,θ∗ . While the quantities have the same intuitions, there is an intricate
technical contribution in this extension whose details we defer to Appendix C.

For R > 0, let B2(R) ⊂ Rd denotes the Euclidean ball of radius R at 0. For any set
S ⊂ Rd, the S-effective covering number of FΘ is the covering number of FΘ|S := {f |S×A :
f ∈ FΘ}. By Proposition 2, we can work with Hδ by formally defining N ε

n as the size of
the smallest cover C ε

n of FΘ such that

sup
µ1∈FΘ

min
µ2∈C ε

n

sup
x∈B2(Hδ(n))

‖µ1(x)− µ2(x)‖ ≤
ε‖Σ̄‖2op
n

. (10)

The Ξ-eluder dimension (for Ξ ∈ R+) of a function class FΘ, introduced in Russo
and Van Roy (2013) and denoted dimE(FΘ,Ξ), is a notion of dimension which is perfectly
tailored to converting fit errors into prediction errors. We defer to Russo and Van Roy
(2013) for its technical definition. For any set S ⊂ Rd, the S-effective eluder dimension is
the eluder dimension of FΘ|S , which we denote by dimS

E(FΘ,Ξ). For n ∈ N∗, let Bn :=
B2(supi∈[n] ‖Xτi‖) and let us define the sequence of effective eluder dimensions (dE,n)n∈N∗

by

dE,n := dimBn
E

(
FΘ,

2ε
1
2

√
n

)
for all n ∈ N∗ and u ∈ R+.

Remark 3 While eluder dimension is perfectly tailored to the needs of regret bounds of
optimistic algorithms, it remains a somewhat abstract measure. For clarity, we reproduce
some known bounds for unmodified eluder dimension from Osband and Van Roy (2014).

(i.) If FΘ = {f |f(x) = θϕ(x)}, for a kernel ϕ : Rd → Bϕ (in which Bϕ is a ball of radius
kϕ > 0 in Rdϕ) and θ ∈ Rd×dϕ, then dimE(FΘ,Ξ) ≤ Õ(ddϕ log(1 + kϕkΘΞ

−1)) in
which kΘ := supθ∈Θ ‖θ‖op.

(ii.) Let g : Rd → Rd be a component-wise independent function with supi∈[d] ‖∂ig‖ ≤ Lg <

+∞ and inf i∈[d] ‖∂ig‖ ≥ ℓg > 0 on Rd and let κg := Lg/ℓg. If FΘ = {f |f(x) =

g(θϕ(x))} for (ϕ, θ) as above, then dimE(FΘ,Ξ) ≤ Õ(ddϕκ2g log(1 + kϕkΘΞ
−1))

Our extension makes these bounds more applicable to unbounded processes, for instance in
(i.) by allowing kernels which do not map Rd to a bounded set, so long as they map each
ball Bn to a ball Bϕ. One example are linear dynamics (ϕ = Id) which incur a complexity
of Õ(d2 log(1 + kΘ supi∈[n]‖X

α,θ∗
τi ‖Ξ−1)).

Theorem 4 Under Assumptions 1 and 2, for any δ ∈ (0, 1), x0 ∈ Rd, there is a constant
C ∈ R+ independent of ε such that Algorithm 1 achieves

RT (ϖ) ≤ C
√
dE,⌈Tε−1⌉ log(N

ε
⌈Tε−1⌉)T log(Tδ−1) (11)
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with probability at least 1 − δ, in which dE,⌈Tε−1⌉ is the effective 2ε/
√
T -eluder dimension

and log(N ε
⌈Tε−1⌉) is the effective ε2‖Σ̄‖2op/T -log-covering number.

Theorem 4 exhibits the scaling in the complexity measures expected from Russo and
Van Roy (2013), both eluder dimension and log-covering numbers, as well as the usual√
T log(Tδ−1) dependency from UCB.

4. Ideas of the Proof

Working on the high-probability event of Proposition 2 allows us to handle the unbounded
state in learning, planning, and optimism.

4.1. Learning

Confidence Sets. The crux of our analysis is incorporating Proposition 2 into the NLLS
method of Russo and Van Roy (2013). Restricting the domain of FΘ allows us to handle
the richness of unbounded models and states while following Russo and Van Roy (2013) to
define confidence sets. Let δ ∈ (0, 1), set β0 := ε

1
2 , and let

βn(δ) := β0 ∨ 2ε
1
2 ‖Σ̄‖op


√√√√1 + 2

(√
2 log

(
4π2n3

3δ

)
+
√
2κn(δ)

)
+
√
κn(δ)

 (12)

in which

κn(δ) := log

(
2π2n2εN ε

n

3δ

(
‖Σ̄‖2op + 8nL2

0(1 +Hδ(n))
))

.

Using this choice (βn)n∈N and replacing nk by n in (6) formally defines the confidence sets
(Cn(δ))n∈N. For any α ∈ A, the probability that the state process Xα,θ∗

t outgrows Hδ(Nt) is
small and, thus, this confidence set will hold with high probability as shown by Proposition 5.

Proposition 5 (Adapted from Osband and Van Roy (2014, Prop. 5)) Under As-
sumptions 1 and 2, for any x0 ∈ Rd, and δ > 0,

P

{θ∗ ∈ ∞⋂
n=1

Cn(δ)

}
∩

 sup
n∈N∗

∥∥∥Xϖ,θ∗
τn

∥∥∥
Hδ(n)

≤ 1


 ≥ 1− δ , (13)

Prediction error. A well-posed confidence set is not sufficient for low-regret ap-
proaches in the OFU paradigm. This high confidence (low fit error) of the NLLS estimator
must be translated as a low online prediction error. In Proposition 6 we obtain first- and
second-order prediction error bounds from the effective eluder dimension. In Proposition 6
the order notation Õ hides terms that are poly-logarithmic in Nt and dE,Nt whose the full
details are given in Appendix C.2.
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Proposition 6 Under Assumptions 1 and 2, for any δ ∈ (0, 1), α ∈ A, x0 ∈ Rd, and
t ∈ R+, we have with probability at least 1− δ

Nt∑
n=1

∥∥∥µθ̂n(Xα,θ∗
τn , ατn)− µθ∗(Xα,θ∗

τn , ατn)
∥∥∥ ≤ Õ (√εdE,Nt log(N

ε
Nt
)Nt + εdE,Nt

)
, (14)

and
Nt∑
n=1

∥∥∥µθ̂n(Xα,θ∗
τn , ατn)− µθ∗(Xα,θ∗

τn , ατn)
∥∥∥2 ≤ Õ (dE,Nt log(N

ε
Nt
)
)
. (15)

Lazy updates. We leverage the second order bound (15) of Proposition 6 to define our
lazy-update scheme (7). We show in Appendix E that this scheme does not degrade the
speed at which Algorithm 1 learns by more than a constant factor, while also ensuring that
the policy is only updated logarithmically in the number of interactions up to any horizon.

4.2. Planning

For a given θ ∈ Θ, the well-posedness of the control problem ρ∗θ(x0) and its resolution are
non-trivial.

Proposition 7 (Adapted from (Abeille et al., 2022, Thm. 2.3 & Rem. 2.4.))
Under Assumptions 1 and 2, there is LW ∈ R+, independent of ε, such that for any θ ∈ Θ

(i.) The map x 7→ ρ∗θ(x) is constant, taking only one value which we denote by ρ∗θ ∈ R;

(ii.) There is an LW -Lipschitz function W ∗
θ such that

ερ∗θ = max
a∈A
{E[W ∗

θ (x+ µθ(x, a) + Σξ)]−W ∗
θ (x) + r(x, a)} ∀x ∈ Rd ; (16)

(iii.) There is π∗θ ∈ A , such that for all x ∈ Rd, π∗θ(x) maximises the right hand side in (16),
and π∗θ ◦Xπ∗

θ ,θ is an optimal Markov control, i.e. ρπ
∗
θ

θ (·) ≡ ρ∗θ.

Proposition 7.(i.) shows that the control problem ρ∗θ is independent of the initial con-
ditions and meaningfully ergodic, which follows from the stability analysis of the process
using (4). Points (ii.) and (iii.) show that there is an optimal policy, which can be com-
puted by solving the HJB equation (16). Unfortunately (16) is an integral equation with
low regularity, owing to the non-local jumps of the system, which complicates its analysis
and the construction of numerical solvers.

4.3. Regret Decomposition

To sketch the proof of Theorem 4, we work on the high-probability event of Proposition 5,
and omit martingale measurability issues this could cause. We will also ignore the random-
ness of jump times and consider T ≲ εNT , with ≲ denoting inequality up to a constant.
Appendix E is dedicated to a complete proof. Recall that ϖ denotes the control generated
by Algorithm 1.

10
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Proof Let k : N → N map an event n to the episode k(n) to which it belongs and let
θn := θ̃k(n). We begin the regret decomposition by applying the HJB equation (16) to
the rewards collected along the trajectory r(Xϖ,θ∗

τn , ϖτn) in the definition of the regret.
Conditioning as appropriate, this yields

RT (ϖ) = Tρ∗θ∗ − ε
NT∑
n=1

ρ
π∗
θn

θn
(0) (R1)

+

NT∑
n=1

E[W ∗
θn(X̃

ϖ,θn
τn+1

)|Fτn ]−W ∗
θn(X

ϖ,θ∗
τn ) (R2)

in which X̃ϖ,θ
τn+1 := Xϖ,θ∗

τn + µθ(X
ϖ,θ∗
τn , ϖτn) + Σξn+1, for (n, θ) ∈ N×Θ, is a counterfactual

one-step transition assuming parameter θ ∈ Θ.
On the event of Proposition 5, θ∗ is in ∩n∈NCn(δ) and the optimism of Algorithm 1

ensures that (R1) is negative. For (R2), the identity

X̃ϖ,θ
τn+1

= X̃ϖ,θ∗
τn+1

− µθ∗(Xϖ,θ∗
τn , ϖτn) + µθ(X

ϖ,θ∗
τn , ϖτn)

combined with the LW -Lipschitzness of W ∗
θ from Proposition 8, yields

R2 ≤ LW

NT∑
n=1

∥∥∥µθn(Xϖ,θ∗
τn , ϖτn)− µθ∗(Xϖ,θ∗

τn , ϖτn)
∥∥∥ (R4)

+

NT∑
n=1

E[W ∗
θn(X

ϖ,θ∗
τn+1

)−W ∗
θn+1

(Xϖ,θ∗
τn+1

)|Fτn ] (R5)

+

NT∑
n=1

E[W ∗
θn+1

(Xϖ,θ∗
τn+1

)|Fτn ]−W ∗
θn(X

ϖ,θ∗
τn ) , (R6)

by adding and subtracting E[W ∗
θn+1

(X̃ϖ,θ∗
τn+1 )|Fτn ] = E[W ∗

θn+1
(Xϖ,θ∗

τn+1 )|Fτn ]. (R6) is a martin-
gale term, which we can bound using concentration theory. Our lazy update-scheme ensures
that θn 6= θn+1 only O(log(NT )) times by time T , keeping (R5) small.

It remains to show that the lazy update-scheme, does not degrade the learning of (R4),
which is controlled by improvements to Proposition 6 in Appendix C which yield

NT∑
n=1

sup
(θ1,θ2)∈Ck(n)(δ)

2

∥∥∥µθ1(Xϖ,θ∗
τn , ϖτn)− µθ2(Xϖ,θ∗

τn , ϖτn)
∥∥∥ ≲ Õ

(√
dE,T ε−1 log(N ε

Tε−1)T
)
.

5. Approximate Planning for ε ↓ 0

Embedding the control problem in continuous time allowed us to extend learning complex-
ity measures and construct an optimistic algorithm for unbounded continuous states in

11
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Sections 3 and 4. The natural next step is to develop efficient sub-routines for each sub-
task in a modular manner. Past work such as UCRL2 (Jaksch et al., 2010) gives some
indications of how to do this. In this section, we present another way to improve computa-
tional efficiency which relies on the power of the near-continuous-time formulation to apply
results from Abeille et al. (2022) to the planning problem.

As ε ↓ 0, ρ∗ε will enter a diffusive limit regime whose limit control problem is

ρ̄ᾱθ (x0) := lim inf
T→+∞

1

T
E
[∫ T

0
r̄(X̄ ᾱ,θ

t , ᾱt)dt

]
in which

{
dX̄ ᾱ,θ

t = µ̄θ(X̄
ᾱ,θ
t , ᾱt)dt+ Σ̄dWt

X̄ ᾱ,θ
0 = x0

(17)

with W denoting a P-Brownian motion, F̄ its filtration, and Ā the set A-valued F̄-predictable
processes. This control problem has been extensively studied, see e.g. (Arisawa and Lions,
1998; Arapostathis et al., 2012), and Proposition 8 shows it to be well-posed.

Proposition 8 (Adapted from Abeille et al. (2022, Thm. 3.4.))
Under Assumptions 1 and 2, for any θ ∈ Θ,

(i.) The map x 7→ ρ̄∗θ(x) is constant, taking only one value which we denote by ρ̄∗θ ∈ R.

(ii.) There is an LW -Lipschitz function W̄ ∗
θ ∈ C2(Rd;R) such that

ρ̄∗θ = max
a∈A

{
µ̄θ(x, a)

⊤∇W̄ ∗
θ (x) + r̄(x, a)

}
+

1

2
Tr[Σ̄Σ̄⊤∇2W̄ ∗

θ (x)], ∀x ∈ Rd . (18)

(iii.) There is π̄∗θ ∈ A such that, for all x ∈ Rd, π̄∗θ(x) maximises the right hand side in
(18), and π̄∗θ ◦ X̄ π̄∗

θ ,θ is an optimal Markov control, i.e. ρ̄π̄
∗
θ

θ (·) ≡ ρ̄∗θ.

The limit HJB equation (18) is purely differential, and, thus, local: the solution at x
depends only on its derivatives at x. This is fundamentally simpler than the non-local
behaviour of (16), in which there are cross-dependencies between points due to the expec-
tation. Moreover, this diffusive PDE belongs to a well-studied family, both from the points
of view of theory (Gilbarg and Trudinger, 1983; Ladyzhenskaya and Ural’tseva, 1968) and
of numerics (Knabner and Angermann, 2003; Kushner, 1977).

These facts strongly motivate the use of these tools to construct approximate planning
methods for (16) in the near-continuous time regime as ε ↓ 0. It is important to note that
this approximation is not a numerical approximation but an approximation of state process
Xα,θ by another state process X̄α,θ. This is only possible because of strong tools from the
theory of viscosity solutions of PDEs available by embedding into continuous time.

Proposition 9 (Adapted from Abeille et al. (2022, Thm. 3.6.))
Under Assumptions 1 and 2, for any γ ∈ (0, 1), there is a constant Cγ > 0, independent of
ε, such that, for any θ ∈ Θ,

|ρ̄∗θ − ρ∗θ| ≤ Cγε
γ
2 and ρ∗θ − ρ

π̄∗
θ

θ (0) ≤ Cγε
γ
2 . (19)

Moreover, there is a function eθ : Rd → R such that,

ερ
π̄∗
θ

θ (0) = E[W̄ ∗
θ (x+ µθ(x, a) + Σξ)]− W̄ ∗

θ (x) + r(x, π̄∗θ(x)) + eθ(x) , ∀x ∈ Rd (20)

and there is C ′
γ > 0, independent of ε, such that |eθ(x)| ≤ C ′

γε
1+ γ

2 (1 + ‖x‖3) for all x ∈ Rd.

12
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Proposition 9, combined with (18) provides a certifiable approximation for solving the
control problem (2) with off-the-shelf diffusive HJB solvers, at a cost independent of ε. An
example of this methodology is seen in (Abeille et al., 2022, § 4), in which (Abeille et al.,
2022, Fig. 1, p. 30) shows the reduction in computational effort. Using this method for
approximate planning on top of Algorithm 1 yields Algorithm 2.

Algorithm 2 OFU-Diffusion

Input: confidence level δ, initial state x0, initial control ϖ′
0

for n ∈ N∗ do
At time τn, receive r(Xϖ′,θ∗

τn−1 , ϖ
′
τn−1

) and Xϖ′,θ∗
τn .

if n satisfies (7) then
nk ← n, k ← k + 1,
Compute θ̂nk

using (5) and Cnk
(δ/3) with (6).

θ̃k ← argmaxθ∈Cnk
(δ/3) ρ̄

∗
θ

π′k ← π̄∗
θ̃k

using (18)
end if
Play ϖ′

τn := π′k(X
ϖ′,θ∗
τn ).

end for

Proposition 9 also provides in (20) an HJB-like representation of the approximation,
which provides a key with which to analyse the regret incurred when using this approxima-
tion. As seen in the sketch of proof of Theorem 10.

Theorem 10 Under Assumptions 1 and 2, for any δ ∈ (0, 1), x0 ∈ Rd, and γ ∈ (0, 1),
there is a pair (Cγ , C) ∈ R2

+ of constants independent of ε such that Algorithm 2 achieves

RT (ϖ
′) ≤ 2Cγε

γ
2 T + C

√
dE,⌈Tε−1⌉ log

(
N ε

⌈Tε−1⌉

)
T log(Tδ−1) (21)

with probability at least 1− δ.

Compared to Theorem 4, Theorem 10 has an additional linear term from the approxi-
mate planning method which scales with Cγε

γ/2. The dependency of the constant in γ is
inherited from the analysis of Abeille et al. (2022) and Cγ < +∞ holds for γ < 1. Quantify-
ing the behaviour of Cγ as γ ↑ 1 is technically intricate. Nevertheless, our bound indicates
that the long run approximation error vanishes as ε ↓ 0 almost as fast as

√
ε, making it

practical for systems with very high jump intensity.
Proof The proof follows the same lines as the proof of Theorem 4 and we only sketch the
appropriate modifications. Instead of (16), apply the HJB-like equation (20) of Proposi-
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tion 9.(iii.) which yields

RT (ϖ
′) = Tρ∗θ∗ − ε

NT∑
n=1

ρ
π̄∗
θn

θn
(0) (R1)

+

NT∑
n=1

E[W̄ ∗
θn(X̃

ϖ′,θn
τn+1

)|Fτn ]− W̄ ∗
θn(X

ϖ′,θ∗
τn ) (R2)

+

NT∑
n=1

eθn(X
ϖ′,θ∗
τn ) (R3)

in which X̃ϖ′,θ∗
τn+1 is defined analogously to X̃ϖ,θ∗

τn+1 . Noticing that W̄ ∗
θ is LW -Lipschitz for

any θ ∈ Θ, just as W ∗
θ is, (R2) can be treated with the same arguments as in the proof

of Theorem 4. On the event of Proposition 5, θ∗ is in ∩n∈NCn(δ) and the optimism of
Algorithm 2 ensures that ρ̄∗θ∗ ≤ ρ̄∗θn = ρ̄

π̄∗
θn

θn
for all n ∈ N. Combining this with Proposition 9,

show that (R1) decomposes into

R1 ≲ ε

(
NT∑
n=1

(ρ∗θ∗ − ρ̄∗θ∗) +
NT∑
n=1

(
ρ̄∗θn − ρ

π̄∗
θn

θn

))
≤ 4NTCγε

1+ γ
2 .

Meanwhile, Proposition 9 implies thatR3 ≤ ε1+
γ
2NT (1+Hδ(NT )

3). Thus, R1+R3 ≲ Cγε
γ
2 T .

6. Conclusion

In this work, we proposed a general framework for the Reinforcement Learning problem of
controlling an unknown dynamical system, on a continuous state-action space, to maximise
the long-term average reward along a single trajectory. In particular, we focused on the
understudied high-frequency systems driven by many small movements. Modelling such
systems as controlled jump processes, we provided an optimistic algorithm which leverages
Non-Linear Least Squares for learning and the diffusive limit regime for approximate plan-
ning. This proof of concept calls for several further refinements to be implementable in
practice.

Optimism. The optimistic step of Algorithm 1 chooses θ̃n in an inefficient manner.
Like in UCRL2 (Jaksch et al., 2010), optimistic exploration can be performed at the same
time as planning by solving an expanded HJB equation, i.e. (18) with the maximum now
taken over (a, θ) ∈ A×Θ. Since our assumptions are uniform in θ ∈ Θ, this is possible up
to a modified regret decomposition, as in Jaksch et al. (2010).

Lazy updates. The way we quantify learning progress to design the lazy update scheme
(7) remains fundamentally discrete. Computationally cheaper lazy update schemes might
be obtained through simpler heuristics. For instance, the scaling of the drift with ε suggests
it could be possible to update periodically, directly in terms of the wall-clock time T .

Case-by-case. As a proof of concept, we endeavoured to study the RL problem in
high generality. However, practical applications must use all available model information
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to refine the method ad hoc. This is true for the learning method (replacing NLLS with an
estimator specialised to the model at hand and bound the eluder dimension and log-covering
numbers) and for numerical schemes on the PDE (18) which are built on a case-by-case basis
for d > 1, see Kushner and Dupuis (2001).
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Near-continuous time RL for continuous spaces

Appendices
Appendix A. Preliminaries

A.1. Organisation of Appendices

We prove the results one by one, starting with stability, then learning, planning, and finally
concluding with the regret proof of Theorem 4.

In Appendix B, we go over the probabilistic properties of our problem and show sev-
eral bounds on the stability of the process, in the sense of high probability and moment
boundedness. In particular, the main objective of this appendix is to prove Proposition 2.

In Appendix C, we show a generalisation of the existing theory of learning with NLLS to
the case of unbounded functions on unbounded domains. The key results are Propositions 5
and 6

In Appendix D, we provide a characterisation of the control part of the RL problem we
analyse, including the diffusion limit approximation, namely Propositions 7 to 9.

In Appendix E, we perform regret analysis and collect the last few results used to prove
the regret bound of Theorem 4. This includes the treatment of the lazy update scheme.

The remainder of Appendix A is devoted to notations and short-hands used throughout,
but each appendix is meant to be as notationally stand-alone as possible.

A.2. General notation

The set of natural numbers including 0 is denoted N, while N∗ := N \ {0} denotes the set
of (strictly) positive integers. For n ∈ N∗, we use [n] to denote the set of positive integers
up to and including n, i.e. [n] := {1, . . . , n}. Let R denote the set of real numbers and
define R+ := (0,+∞) and Rd

∗ := Rd \ {0}. The space of sequences taking values in S will
be denoted by SN. For S ⊂ Rd, we also denote the complement of S by Sc := Rd \ S, we
use the same notation for the complement of a probability event.

We denote by 〈·|·〉 the inner product on Rd, by ‖·‖ the Euclidean norm on Rd, and
by ‖·‖op the associated operator norm on Rd×d. For R ∈ R+ and x ∈ Rd, we denote the
Euclidean ball of radius R centred at x by B2(x,R), and when x = 0 we use the shorthand
B2(R) for B2(0, R).

For d ≥ 1, D ⊂ Rd and D′ ⊂ R, we denote the space of continuous functions from D to
D′ by C0(D;D′). For any k ∈ N∗, we denote Ck(D;D′) the subset of C0(D;D′) containing
all functions which are continuously differentiable up to order k.

A.3. Problem dependent notation

The space of càdlàg (rcll) functions from [0,+∞) to Rd, for d ∈ N∗, is denoted D and P is
a probability measure on Ω := D. (Nt)t∈R+ denotes a marked P-compound Poisson process
of intensity ε−1 > 1, (τn)n∈N denotes the sequence of its arrival times, with τ0 := 0, and
(ξn)n∈N denotes the sequence of its marks. Namely, the sequences (τn)n∈N and (ξn)n∈N
are independent, (τn+1 − τn)n∈N is i.i.d. with exponential distribution of parameter ε and
(ξn)n∈N is i.i.d. with standard Gaussian measure on Rd, which we denoted by ν.
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For t ∈ [0,+∞), Ft := σ((τn, ξn)τn≤t) and the filtration F is the completion of (Ft)t∈R+ .
The set of F-adapted A-valued processes, which we consider as admissible controls, is de-
noted A. For any (x0, α, θ) ∈ Rd ×A×Θ, Xα,θ is the solution of{

Xα,θ
τn = Xα,θ

τn−1 + µθ(X
α,θ
τn−1 , ατn−1) + Σξn

Xα,θ
τ0 = x0

. (22)

When specifying the dependence on the initial condition x0 ∈ Rd is necessary, we write
Xx0,α,θ. This process is defined for any t ∈ [0,+∞) by considering its trajectories as
piece-wise constant on any interval of the form [τn−1, τn) for n ∈ N∗. For any (x0, α, θ) ∈
Rd ×A×Θ, the control problem is denoted by

ρ∗θ(x0) := sup
α∈A

ραθ (x0) in which ραθ (x0) := lim inf
T→∞

1

T
E

[
NT∑
n=1

r(Xx0,α,θ
τn , ατn)

]
.

We denote by W a P-Wiener process (a.k.a Brownian motion), by F̄ the P-augmentation
of the filtration it generates, and by Ā the collection of A-valued and F̄-predictable processes.
For any (x0, ᾱ, θ) ∈ Rd × Ā × Θ, we denote by X̄ ᾱ,θ (or X̄x0,ᾱ,θ if specifying the initial
condition) the solution of {

dX̄ ᾱ,θ
t = µ̄θ(X̄

ᾱ,θ
t , ᾱt)dt+ Σ̄dWt

X̄ ᾱ,θ
0 = x0

. (23)

The associated control problem is denoted by

ρ̄∗θ(x0) := sup
ᾱ∈Ā

ρ̄ᾱθ (x0) in which ρ̄ᾱθ (x0) := lim inf
T→∞

1

T
E
[∫ T

0
r(X̄x0,ᾱ,θ

t , ᾱt)dt

]
.

According to Propositions 7 and 8, we defined the constants ρ∗θ := ρ∗θ(0) and ρ̄∗θ := ρ̄∗θ(0).
For θ ∈ Θ, π̄∗θ denotes a policy in A ( the set of measurable maps from Rd to A) which
maximises the right-hand side of the HJB equation (16) associated to ρ̄∗θ (see Proposition 8).
Throughout, we use the same notation for policies and the Markov controls they induce,
provided there is no ambiguity.

We use ϖ to denote the control process output of Algorithm 1 mathematically. For any
ω ∈ Ω, the trajectory generated by Algorithm 1 is therefore defined as in (22) by Xϖ,θ∗

· (ω).
By definition of Algorithm 1, in its kth episode (i.e. for t ∈ [τnk

, τnk+1)), ϖt = πk(X
ϖ,θ∗

t ),
with πk := π̄∗

θ̃k
.

Throughout these appendices, we will use the shorthand ψε
θ(x, a) := x + εµ̄θ(x, a), for

any (x, a, θ) ∈ Rd × A× θ.
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Appendix B. State Process Stability

A key aspect of our setting is that both the state process Xα,θ, for any (α, θ) ∈ A × Θ,
and the drift µ itself are unbounded. This can lead to an exponential blow-up of the
state process, which can be harmful to both the learning and control aspects. In order to
avoid this difficulty we imposed Assumption 2, which corresponds to a stochastic Lyapunov
condition, and ensures that the state will not explode in expectation. We reinforce this result
by leveraging concentration theory to obtain the high-probability bound of Proposition 2.
Appendix B.1 is dedicated to its proof, and it will be used in the proofs of learning results
and high-probability regret bounds (Appendices C and E).

Proposition 2 Under Assumptions 1 and 2, there is a function Hδ(n) = O
(√

log(nδ−1)
)

such that for any δ ∈ (0, 1), α ∈ A, x0 ∈ Rd, and θ ∈ Θ we have

P

(
sup
t∈R+

‖Xα,θ
t ‖

Hδ(Nt)
≥ 1

)
≤ δ . (9)

Unlike learning and regret, the analysis of the control task is done in expectation via the
HJB equation. Here the unbounded drift will materialise as higher moments of Xα,θ. The
counterpart of Proposition 2 in this case is a moment result, given by Lemma 15, which is
proved in Appendix B.2 and will then be used in Appendix D.

Lemma 15 Under Assumptions 1 and 2, for any p ≥ 2, there is a constant c′p > 0
independent of ε such that

E
[
‖Xx0,α,θ

t ‖
p
]
≤ 1

ℓpV

(
Lp

V e
− cV

4
t‖x0‖p +

4c′p
cV

(
1− e−

cV
4

t
))

,

for any (x0, α, θ) ∈ Rd ×A×Θ and t ∈ [0,+∞).

B.1. Proof of Proposition 2

This appendix is dedicated to the proof of Proposition 2 which is a high probability bound
on the state process. This proof follows the Chernoff method. Thus, we will derive an
exponential moment bound for the state process in Lemma 12. We will first obtain a
stochastic stability condition in expectation in Lemma 11. In what follows, let Rε :=√
8d log(1/ε) and ξ ∼ ν.

Lemma 11 Under Assumptions 1 and 2,

(i.) for any (η, x, a, θ) ∈ Rd × Rd × A×Θ, we have

V (ψε
θ(x, a)−

√
εη) ≤ (1− εcV )V (x−

√
εη) + εMV L0(1 + ‖η‖) ; (24)

(ii.) and, for any (a, θ) ∈ A×Θ, and any x 6∈ B2(ε
1
2 ‖Σ̄‖opRε) we have

E[V (ψε
θ(x, a) + Σξ)] ≤ (1− εcV )V (x) + εc′V

in which c′V is a constant independent of ε.
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Proof

(i.) By Lipschitzness of V and (4), for any (η, x, a, θ) ∈ Rd × Rd × A×Θ, we have

V (ψε
θ(x, a)−

√
εη) = V (ψε

θ(x, a)− ψε
θ(
√
εη, a) + εµ̄(

√
εη, a))

≤ V (ψε
θ(x, a)− ψε

θ(
√
εη, a)) +MV ε

∥∥µ̄(√εη, a)∥∥
≤ (1− εcV )V (x−

√
εη) +MV ε

∥∥µ̄(√εη, a)∥∥ ,
from which (24) follows by using Assumption 1, which implies ‖µ̄(

√
εη, a)‖ ≤ L0(1 +√

ε ‖η‖) ≤ L0(1 + ‖η‖) since ε ∈ (0, 1).

(ii.) For any x ∈ Rd, by the symmetry of the law of Σ̄ξ, by (24) applied for η = Σ̄ξ, and
by taking the expectation, we have

E[V (ψε
θ(x, a) + Σξ)] = E[V (ψε

θ(x, a)−
√
εΣ̄ξ)]

≤ (1− εcV )E[V (x−
√
εΣ̄ξ)] + εMV L0(1 + ‖Σ̄‖opE[‖ξ‖]) . (25)

Since ξ is a standard Gaussian, ‖ξ‖2 is a random variable following a χ2 distribution
with d degrees of freedom, thus E[‖ξ‖2] = d, and by Jensen’s inequality E[‖ξ‖] ≤

√
d.

Thus the second term is bounded by εMV L0(1 +
∥∥Σ̄∥∥

op

√
d).

We now focus on bounding E[V (x − Σξ)]. We would like to use a Taylor expansion,
but care needs to be taken to handle the non-differentiability of V at 0. Under the
expectation, we distinguish two events: the event on which ‖ξ‖ < Rε, which supports
the main mass of ν, and the event on which ‖ξ‖ ≥ Rε, corresponding to the tails.

(a) For the first event we consider (on which ‖ξ‖ < Rε), for any x 6∈ B2(‖Σ‖opRε), we
must have 0 6∈ B2(x, ‖Σξ‖), and thus 0 6∈ (x+∆Σξ)∆∈[0,1]. Since this line segment
doesn’t contain 0 (the only point at which V is not continuously differentiable),
we can perform a second-order Taylor expansion of V to obtain

E[V (x+Σξ)1{∥ξ∥<Rε}]

≤ E
[(

V (x) + ξ⊤Σ⊤∇V (x) +
1

2
Tr[Σξξ⊤Σ⊤∇2V (x̂)]

)
1{∥ξ∥<Rε}

]
for some x̂ ∈ (x + ∆Σξ)∆∈[0,1]. By the Cauchy-Schwartz inequality and the
derivative bounds of Assumption 2, we obtain

E[V (x+Σξ)1{∥ξ∥2<Rε}] ≤ V (x) + E[ξ⊤1{∥ξ∥<Rε}]Σ
⊤∇V (x) +

ε

2
M ′

V ‖Σ̄‖2op

≤ V (x) +
ε

2
M ′

V ‖Σ̄‖2op ,

since E[ξ⊤1{∥ξ∥<Rε}] = 0 by the rotational invariance property of a truncated
Gaussian.

(b) On the second event (on which ‖ξ‖ ≥ Rε), we cannot use a Taylor expansion. In-
stead, we use the Lipschitzness of V followed by the Cauchy-Schwartz inequality,
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and then apply a sub-Gaussian concentration inequality (see e.g. (Ledoux and
Talagrand, 1991, (3.5))):

E[V (x+Σξ)1{∥ξ∥≥Rε}] ≤ V (x) +MV ‖Σ‖op E[‖ξ‖1{∥ξ∥≥Rε}]

≤ V (x) +MV ‖Σ‖op
√
E[‖ξ‖2]P(‖ξ‖ ≥ Rε)

≤ V (x) +MV ‖Σ‖op

√
4de−

R2
ε

8d

≤ V (x) + 2εMV ‖Σ̄‖op
√
d .

To complete the proof, we combine both cases in (25), and let

c′V :=MV L0(1 + ‖Σ̄‖op
√
d) + 2MV ‖Σ̄‖op

√
d+

M ′
V

2
‖Σ̄‖2op.

Lemma 12 Under Assumptions 1 and 2, for any (x0, α, θ) ∈ Rd×A×Θ and any λ ∈ R+,
we have

E
[
eλV (X

x0,α,θ
τn )

]
≤ (n+ 1) exp

(
λ

(
c′V
cV

+ LV (ε
1
2 ‖Σ̄‖opRε + ‖x0‖)

)
+
λ2M2

V ‖Σ̄‖2op
2cV

)
,

for any n ∈ N.

Proof For n ∈ N∗, let us define the following events for i < n: Ei,n−1 := {i = sup{j ∈
{0, . . . , n − 1} : ‖Xα,θ

τj ‖ ≤ ‖Σ‖opRε}} and Ēn−1 := {minj∈{0,...,n−1}‖X
α,θ
τj ‖ > ‖Σ‖opRε}.

Note that both these events are Fτn−1-measurable and that ∪i≤n−1Ei,n−1 = Ēc
n−1, so that

{Ēn−1, E0,n−1, . . . , En−1,n−1} induces a partition of Ω. We begin by working conditionally
on each of these events, and in a second part we will collect them to bound E[exp(λV (Xα,θ

τn )].
For any 0 ≤ i < n, by adding and subtracting E[exp

(
E[λV (Xα,θ

τn )|Fτn−1 ]
)
1Ei,n−1 ] and

by the tower rule, we have

E
[
eλV (Xα,θ

τn )1Ei,n−1

]
= E

[
E
[
eλV (Xα,θ

τn )|Fτn−1

]
1Ei,n−1

]
= E

[
exp

(
E[λV (Xα,θ

τn )|Fτn−1 ]
)
1Ei,n−1

× E
[
exp

(
λV (Xα,θ

τn )− E[λV (Xα,θ
τn )|Fτn−1 ]

)
|Fτn−1

] ]
.

Using a result for Lipschitz functions of Gaussian random variables (see e.g. Boucheron
et al. (2013, Thm 5.5)) applied to V and ξ, we obtain

E
[
eλV (Xα,θ

τn )1Ei,n−1

]
≤ e

λ2

2
M2

V ∥Σ∥2opE
[
exp

(
E[λV (Xα,θ

τn )|Fτn−1 ]
)
1Ei,n−1

]
= e

λ2

2
M2

V ∥Σ∥2opE
[
exp

(
E[λV (ψε

θ(X
α,θ
τn−1

, ατn−1) + Σξn)|Fτn−1 ]
)
1Ei,n−1

]
.

(26)
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If i = n− 1, ‖Xα,θ
τn−1‖ ≤ ‖Σ‖opRε on the event Ei,n−1, and thus we have

E
[
λV (ψε

θ(X
α,θ
τn−1

, ατn−1) + Σξn)
∣∣Fτn−1

]
≤ E

[
λLV

∥∥∥Xα,θ
τn−1

+ µ(Xα,θ
τn−1

, ατn−1) + Σξ
∥∥∥ ∣∣Fτn−1

]
≤ λLV

(
(1 + L0)‖Σ‖opRε + 1 + ‖Σ‖op

√
d
)

by using the fact that E[‖ξ‖] ≤
√

E[‖ξ‖2] =
√
d, as ξ ∼ ν. Noticing that supε∈(0,1) ε

1
2Rε =√

8de−1, let us introduce

CH := LV

(
(1 + L0)‖Σ̄‖op

√
8de−1 + 1 + ‖Σ̄‖op

√
d
)
. (27)

Combining this with (26) yields

E[eλV (Xα,θ
τn )1Ei,n−1 ] ≤ exp

(
λ2

2
M2

V ‖Σ‖
2
op + λCH

)
, (28)

in the case i = n− 1.
If i < n − 1, we can apply the same methodology, and continuing from (26) apply

Lemma 11 to obtain

E
[
eλV (Xα,θ

τn )1Ei,n−1

]
≤ e

λ2

2
M2

V ∥Σ∥2opE
[
exp

(
E
[
λV (ψε

θ(X
α,θ
τn−1

, ατn−1) + Σξn)|Fτn−1

])
× 1{Xα,θ

τn−1
>∥Σ∥opRε}1Ei,n−2

]
, (29)

≤ e
λ2

2
M2

V ∥Σ∥2op+λεc′V E[exp((1− εcV )λV (Xα,θ
τn−1

))1Ei,n−2 ] .

It remains to use an induction argument in n down to n = i + 1 and use the fact that
‖Xα,θ

τi ‖ ≤ ‖Σ‖opRε on Ei,i, to obtain

E
[
eλV (Xα,θ

τn )1Ei,n−1

]
≤ exp

(
λCH + λεc′V

n−1−i∑
k=0

(1− εcV )k +
λ2M2

V ‖Σ‖2op
2

n−1−i∑
k=0

(1− εcV )2k

)

≤ exp

(
λCH + λ

c′V
cV

+
λ2M2

V ‖Σ̄‖2op
2cV

)
. (30)

On the event Ēn−1, that is if the process is never in the ball B2(‖Σ‖opRε) before time
τn, we use the fact that (29) is valid with Ēn−1 and Ēn−2 in place of Ei,n−1 and Ei,n−2.
Applying the induction, we obtain

E
[
eλV (Xα,θ

τn )1Ēn−1

]
≤ exp

(
λLV ‖x0‖+ λ

c′V
cV

+
λ2M2

V ‖Σ̄‖2op
2cV

)
. (31)

Using our partition and combining (28), (30), and (31) we can thus write, for any n ∈ N

E
[
eλV (Xα,θ

τn )
]
≤ E

[
eλV (Xα,θ

τn )

(
1Ēn−1

+
n−1∑
i=0

1Ei,n−1

)]

≤ (n+ 1) exp

(
λ

(
c′V
cV

+ CH + LV ‖x0‖
)
+
λ2M2

V ‖Σ̄‖2op
2cV

)
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which concludes the proof.

With these two lemmas, we can now prove Proposition 2, the main result of this section.
First, let us give the exact definition of Hδ(n):

Hδ(n) :=
1

ℓV
(CH + LV ‖x0‖) +

c′V
ℓV cV

+
MV

ℓV
‖Σ̄‖op

√
2

cV
log

(
π2(n+ 1)3

6δ

)
(32)

in which CH is defined in (27), so that Hδ(n) = O
(√

log(nδ−1)
)
.

Proposition 2 Under Assumptions 1 and 2, there is a function Hδ(n) = O
(√

log(nδ−1)
)

such that for any δ ∈ (0, 1), α ∈ A, x0 ∈ Rd, and θ ∈ Θ we have

P

(
sup
t∈R+

‖Xα,θ
t ‖

Hδ(Nt)
≥ 1

)
≤ δ . (9)

Proof Fix n ∈ N, by Markov’s inequality and Assumption 2, for any u > 0, we have

P
(
‖Xα,θ

τn ‖ > u
)
≤ E

[
eλℓV ∥Xα,θ

τn ∥
]
e−λℓV u ≤ E

[
eλV (Xα,θ

τn )
]
e−λℓV u ,

which implies that

P
(
‖Xα,θ

τn ‖ −
c′V
ℓV cV

− CH

ℓV
− LV

ℓV
‖x0‖ > u

)
≤ E

[
eλV (Xα,θ

τn )
]
exp

(
−λℓV

(
u+

c′V
ℓV cV

+
CH

ℓV
+
LV

ℓV
‖x0‖

))
.

Applying Lemma 12, and taking λ = cV ℓV u/(M
2
V ‖Σ̄‖2op), we obtain

P
(
‖Xα,θ

τn ‖ > u+
c′V
ℓV cV

+ ε
1
2
LV

ℓV
‖Σ̄‖opRε+

LV

ℓV
‖x0‖

)
≤ (n+ 1) exp

(
−λℓV u+ λ2

M2
V ‖Σ̄‖2op
2cV

)

= (n+ 1) exp

(
−

cV ℓ
2
V

2M2
V ‖Σ̄‖2op

u2

)
.

Letting u =MV ‖Σ̄‖opℓ−1
V

√
2c−1

V log((n+ 1)/δ′), yields

P

(
‖Xα,θ

τn ‖ ≥
CH

ℓV
+
LV

ℓV
‖x0‖+

c′V
ℓV cV

+
MV

ℓV
‖Σ̄‖op

√
2

cV
log

(
n+ 1

δ′

))
≤ δ′.

Setting δ′ = 6δ/π2(n+ 1)2, and taking a union bound over n ∈ N yields

P

(
sup
t∈R+

Xα,θ
t

Hδ(Nt)
≥ 1

)
= P

(⋃
n∈N
{‖Xα,θ

τn ‖ ≥ Hδ(n)}
)
≤ δ ,

which implies the result since δ ∈ (0, 1) implies log(n3/δ) ≤ log(n3/δ3) = 3 log(n/δ).
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B.2. Expectation Bounds of Higher Orders

In this appendix, we will focus on higher moment conditions of the state process, which will
be used in the control results of Appendix D. In Lemma 13 and Theorem 14 we work to
raise the stochastic stability condition from Lemma 11 to a power p ≥ 2. Lemma 15, the
main result of this section, will follow from this by arguments of Abeille et al. (2022).

Lemma 13 Under Assumptions 1 and 2, for p ≥ 2, there is a function g : Rd × Rd → R+

and a constant Cp > 0 independent of ε satisfying

g(x, η) ≤ εCp

(
1 + V (x−

√
εη)p−1

)
(1 + ‖η‖p) ,

for any (η, x) ∈ Rd × Rd, such that

V (ψε
θ(x, a)−

√
εη)p ≤ (1− εcV )V (x−

√
εη)p + g(x, η) . (33)

for any (η, x, a, θ) ∈ Rd × Rd × A×Θ.

Proof We first raise both sides of (24) to the power p

V (ψε
θ(x, a)−

√
εη)

p ≤
(
(1− εcV )V (x−

√
εη) + εMV L0(1 + ‖η‖)

)p

.

We will now expand the right-hand side. Let a = (1− εcV )V (x−
√
εη) and b = εMV L0(1+

‖η‖), by the binomial theorem we have

(a+ b)p =

p∑
k=0

(
p

k

)
akbp−k = ap + b

p−1∑
k=0

(
p

k

)
akbp−1−k

≤ ap + b(1 + b)p−1(1 + a)p−1
p−1∑
k=0

(
p

k

)
.

Since (1− εcV ) ∈ (0, 1), ε ≤ 1, b ≤ 1+ b, and
∑p−1

k=0

(
p
k

)
≤ 2p, by using the binomial identity

(1 + a)q ≤ 2q−1(1 + aq) for (a, q) ∈ [0,+∞)× [1,+∞), we have

V (ψε
θ(x, a)−

√
εη)p ≤ (1− εcV )V (x−

√
εη)p

+ ε(1 +MV L0(1 + ‖η‖))p(1 + V (x−
√
εη)p−1)2p−2+p . (34)

Finally, we have

(1 +MV L0(1 + ‖η‖))p = (1 +MV L0 +MV L0 ‖η‖)p

≤ (1 +MV L0 + (1 +MV L0) ‖η‖)p

= (1 +MV L0)
p(1 + ‖η‖)p

≤ (1 +MV L0)
p(1 + ‖η‖p)2p−1 . (35)

Combining (34) and (35) leads to the required result.

Recall that ξ ∼ ν is a centred standard Gaussian random variable.

26



Near-continuous time RL for continuous spaces

Corollary 14 Under Assumptions 1 and 2, for any p ≥ 2, there is a constant cp > 0
independent of ε such that

E [V (ψε
θ(x, a) + Σξ)p] ≤

(
1− εcV

2

)
E[V (x−

√
εξ)p] + εcp

for any (x, a, θ) ∈ Rd × A×Θ.

Proof

i. Taking the expectation of the bound on g from Lemma 13 and applying Hölder’s
inequality yields

E[g(x, ξ)] ≤ εCpE
[
(1 + V (x−

√
εξ)p−1)(1 + ‖ξ‖p)

]
≤ εCpE

[
(1 + V (x−

√
εξ)p−1)

(p+1)
p

] p
p+1

E
[
(1 + ‖ξ‖p)p+1

] 1
p+1

≤ 4εCpE
[
1 + V (x−

√
εξ)

(p−1)(p+1)
p

]
E
[
(1 + ‖ξ‖p)p+1

] 1
p+1 ,

by using the identities: for (u, v) ∈ R2
+, (1 + u)(p+1)/p ≤ 4(1 + u(p+1)/p) and (1 +

v)p/(p+1) ≤ 1 + v. Since ξ has bounded moments of any order,

C ′
p := 4CpE

[
(1 + ‖ξ‖p)p+1

] 1
p+1

is a finite constant and we have

E [g(x, ξ)] ≤ εC ′
pE
[
1 + V (x−

√
εξ)

p− 1
p

]
.

ii. Recalling Lemma 13, we have

E [V (ψε
θ(x, a) + Σξ)p] ≤ (1− εcV )E[V (x−

√
εξ)p] + E[g(x, ξ)]

≤
(
1− εcV

2

)
E[V (x−

√
εξ)p]

+ εE
[
C ′
p(1 + V (x−

√
εξ)

p− 1
p )− cV

2
V (x−

√
εξ)p

]
. (36)

iii. Note that, for any p ≥ 2, the function

z ∈ Rd 7→ ‖z‖p−
1
p

1 + ‖z‖p
∈ R+

is bounded, so there exists a constant C ′′
p > 0 such that, for any z ∈ Rd,

C ′
pV (z)

p− 1
p − cV

2
V (z)p ≤ C ′′

p .

Applying this to the expectation in (36), we have

E [V (ψε
θ(x, a) + Σξ)p] ≤

(
1− εcV

2

)
E
[
V (x+

√
εξ)

p]
+ ε(C ′′

p + C ′
p) .

Letting cp := C ′
p + C ′′

p completes the proof.
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Lemma 15 Under Assumptions 1 and 2, for any p ≥ 2, there is a constant c′p > 0
independent of ε such that

E
[
‖Xx0,α,θ

t ‖
p
]
≤ 1

ℓpV

(
Lp

V e
− cV

4
t‖x0‖p +

4c′p
cV

(
1− e−

cV
4

t
))

,

for any (x0, α, θ) ∈ Rd ×A×Θ and t ∈ [0,+∞).

Proof Recall from Theorem 14 that we have

E [V (ψε
θ(x, a) + Σξ)p] ≤

(
1− εcV

2

)
E [V (x+Σξ)p] + εcp (37)

for any (x, a, θ) ∈ Rd × A × Θ. We begin by eliminating the Σξ from the right-hand side
so that we have a proper Lyapunov contraction property on the generator. We expand
V p ∈ C2(Rd; [0,+∞)) and use the fact that E[ξ] = 0 to obtain

E [V (x+Σξ)p] = V (x)p + εpE
[
V (x+∆Σξ)p−1Tr[ξΣ̄Σ̄⊤ξ⊤∇2V (x+∆Σξ)]

]
+ εp(p− 1)E

[
V (x+∆Σξ)p−2Tr

[
ξΣ̄Σ̄⊤ξ⊤∇V (x+∆Σξ)∇V (x+∆Σξ)⊤

]]
for some random variable ∆ taking value in [0, 1]. This is now upper-bounded by using the
Lipschitzness of V and the Cauchy-Schwartz inequality

E [V (x+Σξ)p] ≤ V (x)p + εpM ′
V ‖Σ̄‖2opE

[
(V (x) +MV ∆Σ ‖ξ‖)p−1 ‖ξ‖2

]
+ εp(p− 1)(MV )2‖Σ̄‖2opE

[
(V (x) +MV ∆Σ ‖ξ‖)p−2 ‖ξ‖2

]
.

By the binomial theorem as in the proof of Lemma 13, and as |∆| ≤ 1, we have

E [V (x+Σξ)p] ≤ V (x)p + ε

(
pM ′

V ‖Σ̄‖2opE

[
‖ξ‖2

p−1∑
k=0

(
p− 1

k

)
V (x)k(MV ‖Σ‖op ‖ξ‖)

p−1−k

]

+ p(p− 1)(MV ‖Σ̄‖op)2E

[
p−2∑
k=0

(
p− 2

k

)
V (x)k(MV ‖Σ‖op ‖ξ‖)

p−2−k

])
.

Since ‖ξ‖ is a sub-Gaussian random variable it has moments of all orders, and we can
express the interior of the bracket above as a polynomial in V (x) of order p− 1 with finite
coefficients {ak}p−1

k=0 ⊂ R+. Recalling (37), we thus have

E [V (ψε
θ(x, a) + Σξ)p] ≤ (1− εcV )

(
V (x)p + ε

p−1∑
k=0

akV (x)k
)

+ εcp

≤
(
1− εcV

4

)
V (x)p + ε

(
cp −

cV
4

V (x)p +

p−1∑
k=0

akV (x)k
)
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As in part iii. of the proof of Theorem 14, the interior of the second bracket is a continuous
function which goes to−∞ as ‖x‖ → +∞, so there must be a constant c′p ∈ R+ (independent
of ε) such that

cp + sup
x∈Rd

(
−cV

4
V (x)p +

p−1∑
k=0

akV (x)k

)
≤ c′p < +∞ .

Therefore, we have the desired Lyapunov generator condition

E [V (ψε
θ(x, a) + Σξ)p] ≤

(
1− εcV

4

)
V (x)p + εc′p ,

which is equivalently written for any (x, a) ∈ Rd × A as

1

ε

∫
(V (ψε

θ(x, a) + Σe)p − V (x)p)ν(de) ≤ −cV
4

V (x)p + c′p . (38)

By Itô’s Lemma, (38), and a localisation argument, we have, for any t ≥ t0 ≥ 0, that

E
[
V (Xx0,α,θ

t )
p
]
= E[V (Xx0,α,θ

t0
)
p
]

+ E
[∫ t

t0

1

ε

∫
(V (ψε

θ(X
x0,α,θ
s , αs) + Σe)

p − V (Xx0,α,θ
s )

p
)ν(de)ds

]
≤ E

[
V (Xx0,α,θ

t0
)
p
]
− cV

4

∫ t

t0

E
[
V (Xx0,α,θ

s )
p
]
ds+ (t− t0)c′p .

By a simple comparison argument for ODEs, we then obtain

E
[
V (Xx0,α,θ

t )
p
]
≤ e−

cV
4

tV (x0)
p +

4c′p
cV

(
1− e−

cV
4

t
)
.

Using now Assumption 2, we obtain

E
[
‖Xx0,α,θ

t ‖p
]
≤ 1

ℓpV

(
Lp

V e
− cV

4
t‖x0‖p +

4c′p
cV

(
1− e−

cV
4

t
))

.
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Appendix C. Concentration Inequality and Online Prediction Error

The key result of this section, Proposition 5, builds heavily on (Russo and Van Roy, 2013,
Prop. 5). Proposition 5 differs from this existing result in three ways. First, it is any-time i.e.
does not require a priori knowledge of a time horizon. This is a minor technical refinement,
but it is of practical importance. Second, it applies to a pure-jump process defined on R+.
This apparent complexity vanishes when the filtration of the pure-jump process is chosen
correctly, as the state process is piece-wise constant. Third, and most important, it applies
to learning in a function class (FΘ) of unbounded drifts for an unbounded process Xα,θ,
which is an inherent difficulty in handling continuous state RL problems.

This third extension is non-trivial and leads us to significantly reshuffle the proof struc-
ture of (Russo and Van Roy, 2013) and to incorporate some self-normalised inequality
arguments as well as high-probability bounds on the state from Appendix B. While many
of the original ideas are still used, the way they link together has changed and thus we will
include, in Appendix C.1, a complete derivation for the sake of clarity. In this spirit, we
will prove a generic result (Theorem 18), which itself implies Proposition 5.

Proposition 5 (Adapted from Osband and Van Roy (2014, Prop. 5)) Under As-
sumptions 1 and 2, for any x0 ∈ Rd, and δ > 0,

P

{θ∗ ∈ ∞⋂
n=1

Cn(δ)

}
∩

 sup
n∈N∗

∥∥∥Xϖ,θ∗
τn

∥∥∥
Hδ(n)

≤ 1


 ≥ 1− δ , (13)

Proposition 5 ensures that the sets (Cn(δ))n∈N defined in (6) are valid confidence sets.
In order to bound the regret, we need to go further and to bound the online prediction error
of functions within these confidence sets along the trajectory (see. (58)).

For any n ∈ R, let dE,n denotes the 2
√
ε/n-eluder dimension of the model class re-

stricted to the set Bn := B2(sups≤τn‖X
ϖ,θ∗
s ‖), i.e. dE,n := dimE({f |Bn}f∈FΘ

, 2
√
ε/n). In

Appendix C.2, we derive a general result (Proposition 22) from which Proposition 5 follows.

Proposition 6 Under Assumptions 1 and 2, for any δ ∈ (0, 1), α ∈ A, x0 ∈ Rd, and
t ∈ R+, we have with probability at least 1− δ

Nt∑
n=1

∥∥∥µθ̂n(Xα,θ∗
τn , ατn)− µθ∗(Xα,θ∗

τn , ατn)
∥∥∥ ≤ Õ (√εdE,Nt log(N

ε
Nt
)Nt + εdE,Nt

)
, (14)

and

Nt∑
n=1

∥∥∥µθ̂n(Xα,θ∗
τn , ατn)− µθ∗(Xα,θ∗

τn , ατn)
∥∥∥2 ≤ Õ (dE,Nt log(N

ε
Nt
)
)
. (15)

C.1. Confidence sets

In this section, we work in a generic online learning framework, so that our results can
be more easily compared and contrasted with (Russo and Van Roy, 2013; Osband and
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Van Roy, 2014) and others. We, therefore, introduce some dedicated notation and a stand-
alone assumption for this section.

Consider a set of functions F from Rd → Rd, and fix f∗ ∈ F . We will study pairs of
(random) Rd-valued sequences ((Xi)i∈N, (Yi)i∈N) generated as

Yi = f∗(Xi) + ξi

for (ξi)i∈N a stochastic process in some filtered probability space (Ω′,H∞,H,P), with each
ξi independent of everything else up to time i. We take Hi as the completion of σ({ξj}j≤i),
for i ∈ N, and we let H = (Hi)i≥0.

Given some Rd-valued and H-adapted sequences (Zi)i∈N and (Z ′
i)i∈N, and some n ∈ N∗,

let us define

〈Z|Z ′〉n :=
n−1∑
i=0

〈Zi|Z ′
i〉 and ‖Z‖n :=

√
〈Z|Z〉n .

While ‖·‖n is not a norm, it plays this role and we follow here the notational convention of
(Russo and Van Roy, 2013). We will extend the definitions of 〈·|·〉n and ‖·‖n to n = 0 by
simply taking the empty sum to be 0, i.e. 〈Z,Z ′〉0 := 0.

To simplify notation, we will drop the sequence (Xi)i∈N when it is an argument to a
function inside ‖·‖n or 〈·|·〉n: i.e. ‖f‖n stands for ‖(f(Xi))i∈N‖n. With this notation in
mind, for any n ∈ N, we define f̂n as an arbitrary element of

argmin
f∈F

‖Y − f‖2n .

In other words f̂n is a non-linear least-square fit in F using the first n points of (Xi, Yi)i∈N.
In this generic setting, we introduce Assumption 3, which in our end-goal application sub-
sumes Assumptions 1 and 2 and Proposition 2.

Assumption 3 There is (L,Γ) ∈ R2
+ and a function Hδ : N→ R+ such that

sup
f∈F

sup
x∈Rd

‖f(x)‖
1 + ‖x‖

≤ L ,

and for all i ∈ N∗, ξi is an Hi−1-conditionally Γ2-sub-Gaussian random variable, ξ0 is
Γ2-sub-Gaussian, and the sequence (Xi)i∈N satisfies

P
(
sup
n∈N

‖Xn‖
Hδ(n)

> 1

)
< δ

for all δ ∈ (0, 1).

Let (C Γ
n )n∈N∗ denote a deterministic sequence of finite covers of F , whose cardinalities are

respectively given by (N Γ
n )n∈N∗ , such that for all n ∈ N∗

sup
f∈F

min
g∈CΓ

n

sup
x∈B(Hδ(n))

‖f(x)− g(x)‖ ≤ Γ2

n
.

31



Croissant Abeille Bouchard

The definition of this cover corresponds to one used in Russo and Van Roy (2013) with a
domain restricted to lie in the high-probability region of the state process instead of the
whole domain. This ensures the cover remains finite for all n ∈ N∗.

For any δ ∈ (0, 1), n ∈ N∗, and f ∈ F let us define the quantities

L1
n(δ) := log((Γ2 + 8nL2(1 + sup

i≤n
‖Xi‖22))N Γ

n δ
−1) ,

L0
n(δ) := L1

n(6δπ
−2n−2) ,

C1
n(f) := Γ2 + ‖f − f∗‖2n

C2
n(f) := sup

i≤n
‖f(Xi)− f̂n(Xi)‖ ,

and the event

E0n(δ) :=

{∥∥∥f̂n − f∗∥∥∥
n
≤ 2Γ

√
L1
n

(
3δ

π2n2

)

+ 2

√√√√Γ2 + 2Γ

(
n sup

g∈CΓ
n

C2
n(g)

√
2 log

(
4π2n3

3δ

)
+

√
2n sup

g∈CΓ
n

C2
n(g)L

1
n

(
3δ

π2n2

))}
.

(39)

Building upon the proof method of Russo and Van Roy (2013), the cornerstone of this
section is Lemma 17, which shows that, with high-probability, f∗ is contained in all the
elements of a sequence of confidence sets, each centred at f̂n in the ‖·‖n norm.

Lemma 17 Under Assumption 3, for n ∈ N∗ and δ ∈ (0, 1), we have

P

( ⋂
n∈N∗

E0n(δ)

)
≥ 1− δ .

We begin the proof of Lemma 17 by giving the concentration inequality of Lemma 16.

Lemma 16 Under Assumption 3, for all n ∈ N∗, δ ∈ (0, 1), and f ∈ F

P

(
|〈ξ|f − f∗〉n| ≥ Γ

√
2(Γ2 + ‖f − f∗‖n) log

(
Γ2 + ‖f − f∗‖n

δ

))
≤ δ .

Proof This proof relies on extensively studied arguments for self-normalised inequalities,
but we include it for completeness because it uses non-standard constants. Let us begin by
fixing f ∈ F . For all n ∈ N, let

Zn(f) := 〈ξ|f − f∗〉n .

For any λ ∈ R, let us define the process (Mλ
n (f))n∈N defined by

Mλ
n (f) := exp

(
λZn(f)−

λ2Γ2

2
‖f − f∗‖2n

)
.
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Let us show that Mλ
n (f) is a conditional supermartingale. For any n ∈ N, we have

E
[
Mλ

n+1(f)|Hn

]
=Mλ

n (f)E
[
exp

(
λ〈ξn+1|f(Xn)− f∗(Xn)〉n

)∣∣∣∣Hn

]
e−

λ2Γ2

2
∥f(Xn)−f∗(Xn)∥2n .

(40)

By the Cauchy-Schwartz inequality

|〈ξn|f(Xn)− f∗(Xn)〉n| ≤ ‖ξn‖n ‖f(Xn)− f∗(Xn)‖n

and thus, since ξn is conditionally Γ2-subgaussian with variance Γ2, ‖ξn‖ is Γ2-subgaussian.
Therefore

E
[
exp

(
λ〈ξn|f(Xn)− f∗(Xn)〉n −

λ2Γ2

2
‖f(Xn)− f∗(Xn)‖2n

)
|Hn

]
≤ 1

and thus, by (40), Mλ
n (f) is a supermartingale. By definition of 〈·|·〉0 and ‖·‖0, Mλ

0 (f) = 1,
so that E[Mλ

n (f)] ≤ 1 for all n ∈ N.
We now perform a Laplace trick. Let Φ be the Gaussian measure of mean 0 and variance

Γ−4 on R, and let us define the process (Mn(f))n∈N by

Mn(f) : =

∫
Mλ

n (f)Φ(dλ)

=

∫
exp

(
λZn(f)−

λ2Γ2

2
‖f − f∗‖2n

)
Φ(dλ)

=
1

Γ2 + ‖f − f∗‖2n
exp

{
Z2
n(f)

2Γ2(Γ2 + ‖f − f∗‖2n)

}
.

By Markov’s inequality, P(Mn(f) ≥ δ−1) ≤ δ, and thus

P

Zn(f) ≥ Γ

√√√√2(Γ2 + ‖f − f∗‖2n) log

(
Γ2 + ‖f − f∗‖2n

δ

) ≤ δ .

We will turn to the proof of Lemma 17. Recall (39), which defined for δ ∈ (0, 1) and
n ∈ N∗, the event

E0n(δ) :=

{∥∥∥f̂n − f∗∥∥∥
n
≤ 2Γ

√
L1
n

(
3δ

π2n2

)

+ 2

√√√√Γ2 + 2Γ

(
n sup

g∈CΓ
n

C2
n(g)

√
2 log

(
4π2n3

3δ

)
+

√
2n sup

g∈CΓ
n

C2
n(g)L

1
n

(
3δ

π2n2

))}
.
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Lemma 17 Under Assumption 3, for n ∈ N∗ and δ ∈ (0, 1), we have

P

( ⋂
n∈N∗

E0n(δ)

)
≥ 1− δ .

Proof The proof builds on elements of Russo and Van Roy (2013). We begin by giving two
small auxiliary results which we will use.

i. Let n ∈ N∗, and δ ∈ (0, 1), by a union bound over the family of conditionally sub-
Gaussian random variables (‖ξi‖)i∈[n], we have

P

(
sup
i≤n
‖ξi‖≤Γ

√
2 log

(
2n

δ

))
≥ 1−δ (41)

ii. For any f ∈ F , and n ∈ N∗ we have

‖f∗ − Y ‖2n − ‖f − Y ‖
2
n = 〈f∗ − Y |f∗ − Y 〉n − 〈f − f∗ + f∗− Y |f − f∗ + f∗− Y 〉n
= 〈f∗ − Y |f∗ − Y 〉n − 〈f − f∗|f − f∗〉n

+ 2〈Y − f∗|f − f∗〉n − 〈Y − f∗|Y − f∗〉n
= −‖f − f∗‖2n + 2〈ξ|f − f∗〉n . (42)

Applying (42) with f := f̂n, the n-point non-linear least-square fit, leads to a non-
negative left-hand side and thus∥∥∥f̂n − f∗∥∥∥2

n
≤ 2 |〈ξ|f − f∗〉n| .

At the same time, for all n ∈ N∗, by definition of C Γ
n , it holds that for all g ∈ C Γ

n∥∥∥f̂n − f∗∥∥∥2
n
≤ 2 |〈ξ|g − f∗〉n|+ 2

∣∣∣〈ξ|f̂n − g〉n∣∣∣
≤ 2 |〈ξ|g − f∗〉n|+ 2n sup

i≤n
‖ξi‖2C

2
n(g) . (43)

Combining (41) and (43), we obtain, for all δ ∈ (0, 1), n ∈ N∗, and g ∈ C Γ
n , that

P

(∥∥∥f̂n − f∗∥∥∥2
n
≥ 2 |〈ξ|g − f∗〉n|+ 2nC2

n(g)Γ

√
2 log

(
2n

δ

))
≤ δ (44)

Let us now provide two bounds on C1
n(g) we will use. For all n ∈ N∗, δ ∈ (0, 1) and

g ∈ C Γ
n , let

C1
n(g) ≤ Γ2 + 8nL2(1 + sup

i≤n
‖Xi‖2) . (45)

C1
n(g) ≤ Γ2 +

∥∥∥f̂n − f∗∥∥∥2
n
+
∥∥∥g − f̂n∥∥∥2

n
≤ C1

n(f̂n) + nC2
n(g) , (46)
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Applying Lemma 16 for each g ∈ C Γ
n , by a union bound over g ∈ C Γ

n , we have for any
δ0(n) ∈ (0, 1) (to be fixed at the end), that

δ0(n) ≥ P

 sup
g∈CΓ

n

|〈ξ|g − f∗〉n| ≥ Γ

√√√√2 sup
g∈CΓ

n

C1
n(g) log

(
supg∈CΓ

n
C1
n(g)N

Γ
n

δ0(n)

) .

Applying (45) and (46) this becomes

δ0(n) ≥ P

 sup
g∈CΓ

n

|〈ξ|g − f∗〉n|

≥ Γ

√√√√2(C1
n(f̂n) + n sup

g∈CΓ
n

C2
n(g)) log

(
(Γ2 + 8nL2(1 + supi≤n ‖Xi‖2))N Γ

n

δ0(n)

)
and thus

δ0(n) ≥ P

(
sup
g∈CΓ

n

|〈ξ|g − f∗〉n| ≥ Γ
√

2L1
n(δ0(n))

(√
C1
n(f̂n) +

√
n sup

g∈CΓ
n

C2
n(g)

))
. (47)

Combining (44) and (47) by a union bound gives us

δ0(n) ≥ P

(∥∥∥f̂n − f∗∥∥∥2
n
≥ 2Γ

√
2L1

n

(
δ0(n)

2

)(√
C1
n(f̂n) +

√
n sup

g∈CΓ
n

C2
n(g)

)

+ 2nC2
n(g)Γ

√
2 log

(
4n

δ0(n)

))
.

For all n ∈ N∗, on the complement of this event (whose probability is at least 1 − δ0(n)),
we have

C1
n(f̂n) ≤ Γ2 + Γ

√
2C1

n(f̂n)L
1
n(δ0(n)/2) + hΓn , (48)

in which

hΓn := 2Γ

(
n sup

g∈CΓ
n

C2
n(g)

√
2 log

(
4n

δ0(n)

)
+

√
2n sup

g∈CΓ
n

C2
n(g)L

1
n

(
δ0(n)

2

))
.

Viewing (48) as a second order polynomial in
√
C1
n(f̂n), we obtain via its roots that

√
C1
n(f̂n) ≤ Γ

√
L1
n(δ0(n)/2) +

√(
Γ
√
L1
n(δ0(n)/2)

)2
+ 4(Γ2 + hΓn)

≤ 2Γ
√
L1
n(δ0(n)/2) + 2

√
Γ2 + hΓn .
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Since
∥∥∥f̂n − f∗∥∥∥

n
≤
√
C1
n(f̂n) by definition of C1

n(f̂n), we have

∥∥∥f̂n − f∗∥∥∥
n
≤ 2

√√√√Γ2 + 2Γ

(
n sup

g∈CΓ
n

C2
n(g)

√
2 log

(
4n

δ0(n)

)
+

√
2n sup

g∈CΓ
n

C2
n(g)L

1
n

(
δ0(n)

2

))
+ 2Γ

√
L1
n(δ0(n)/2) .

Therefore, letting

E1n(δ) :=
{∥∥∥f̂n − f∗∥∥∥

n
≤ 2Γ

√
L1
n

(
δ

2

)

+ 2

√√√√Γ2 + 2Γ

(
n sup

g∈CΓ
n

C2
n(g)

√
2 log

(
4n

δ

)
+

√
2n sup

g∈CΓ
n

C2
n(g)L

1
n

(
δ

2

))}
,

we have, for all n ∈ N∗, that P(E1n(δ0(n))) ≥ δ0(n). Letting δ0(n) = 6
π2n2 δ, by a union

bound we obtain

P

( ⋂
n∈N∗

E1n(δ0(n))

)
≥ 1− δ 6

π2

∞∑
n=1

1

n2
= 1− δ .

Noting that E0n(δ) = E1n(δ0(n)) for all δ ∈ (0, 1) and n ∈ N∗ completes the proof.

In the proof of Lemma 17, we used self-normalised inequalities to generalise the results
of Russo and Van Roy (2013) to unbounded states. We now incorporate the high probability
bound of Assumption 3 and formalise confidence sets, which will prove Theorem 18. Theo-
rem 18 can then be specified for our setting by merging it with the results of Appendix B
in Proposition 5.

For δ ∈ (0, 1), let β0 ∈ R+ and let us define the sequence (Cn(δ))n∈N in which

Cn(δ) :=
{
f ∈ F : ‖f − f̂n‖n ≤ βn

}
(49)

with

βn(δ) := β0 ∨ 2Γ


√√√√1 + 2

(√
2Γ log

(
8n

δ

)
+

√
2L0

n

(
δ

4

))
+

√
L0
n

(
δ

4

) . (50)

Theorem 18 Under Assumption 3, we have for all δ ∈ (0, 1)

P

({ ⋂
n∈N∗

{f∗ ∈ Cn(δ)}

}⋂{
sup
n∈N∗

‖Xn‖
Hδ(n)

≤ 1

})
≤ δ

Proof Fix δ ∈ (0, 1), and assume ω ∈ {ω′ ∈ Ω : supn∈N∗‖Xn(ω
′)‖2/Hδ(n) ≤ 1}. In this

case, we have the following bound, for all n ∈ N∗

2n min
g∈CΓ

n

C2
n(g) ≤ 2Γ2
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by definition of C Γ
n as a Γ2n−1 cover on B2(Hδ(n)). Therefore, the event{ ⋂

n∈N∗

E0n(δ)

}⋂{
sup
n∈N∗

‖Xn‖
Hδ(n)

≤ 1

}
is contained in the event

E0(δ) :=

{ ⋂
n∈N∗

{∥∥∥f∗ − f̂n∥∥∥
n
≤ βn(2δ)

}}⋂{
sup
n∈N∗

‖Xn‖
Hδ(n)

≤ 1

}
.

By Lemma 17, Assumption 3, and a union bound, P
(
E0(δ)

)
≥ 1 − 2δ, and we obtain the

result by (49) and (50), i.e. by definition of Cn(δ).

Proposition 5 (Adapted from Osband and Van Roy (2014, Prop. 5)) Under As-
sumptions 1 and 2, for any x0 ∈ Rd, and δ > 0,

P

{θ∗ ∈ ∞⋂
n=1

Cn(δ)

}
∩

 sup
n∈N∗

∥∥∥Xϖ,θ∗
τn

∥∥∥
Hδ(n)

≤ 1


 ≥ 1− δ , (13)

Proof The proof follows by applying Theorem 18 to this setting. Where (Xi)i∈N :=

((Xϖ,θ∗
τi , ϖτi))i∈N, (Yi)i∈N := (Xϖ,θ∗

τi+1 − Xϖ,θ∗
τi )i∈N, F := FΘ and with (ξn+1)n∈N and

(βn(δ))n∈N∗ as defined in Section 2 and (12) respectively. This sets Γ = ‖Σ‖op = ε
1
2 ‖Σ̄‖op.

The only subtlety is that the process Xϖ,θ∗ is measured at random times, but since these
times are independent of anything else, and the process is almost surely constant between
them, they do not affect the proof.

C.2. Widths of confidence sets

In Appendix C.1, we showed how to design confidence sets along a trajectory of Xα,θ for
learning µ by using NLLS to minimise a fit error of the form

N∑
n=1

∥∥∥µ1(Xα,θ∗
τn , ατn)− µ2(Xα,θ∗

τn , ατn)
∥∥∥ ,

for (µ1, µ2) ∈ CN (δ) and N ∈ N∗. When analysing the regret of such a learning algorithm
this is not sufficient: instead of the fit error, we need to control a prediction error of the
form

N∑
n=1

∥∥∥µθn(Xα,θ∗
τn , ατn)− µθ∗(Xα,θ∗

τn , ατn)
∥∥∥ ,

for (µθn)n∈N ⊂ Fθ such that µθn ∈ Cn(δ) for all n ∈ N. The difference is that µθn changes
over time so that the sum counts the errors in predicting the next state made by the sequence
(µθn)n∈N.
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Since we will want to implement lazy updates, we will need a more general result where
the µθn are not all in their respective Cn(δ) but rather are from a piece-wise constant
sequence with µθn := µθk(n)

∈ Ck(n)(δ), where k(n) ≤ n for all n ∈ N. Therefore, as in
Appendix C.1, we begin by showing a general result in the learning framework of Russo
and Van Roy (2013) (Proposition 19), then apply it to our setting to prove Proposition 6.
Using the notation of Appendix C.1, let F be a function class of functions from Rd → Rd,
and recall the arbitrary sequence (Xn)n∈N ⊂ Rd.

The Ξ-eluder dimension of a function class F , for Ξ ∈ R+, introduced in Russo and
Van Roy (2013) is designed for converting fit errors into prediction errors. Unlike Russo and
Van Roy (2013), we must adapt our eluder dimension to work with unbounded functions
on unbounded processes. Failing to do so would lead our results to be largely vacuous since
the eluder dimension of F might be infinite for any Ξ.

We work with a modified eluder dimension, which takes three arguments: a function
class F whose elements have for domain a set X ⊂ Rd; a set S ⊂ X ; and Ξ ∈ R+.
Our modified eluder dimension is the Ξ-eluder dimension of {f |S : f ∈ F}, the class
containing the restrictions to S of elements of F , which we denote by dimS

E(F ,Ξ). In this
way, the eluder dimension of Russo and Van Roy (2013) is dimX

E (F ,Ξ). For n ∈ N∗, let
Bn := B2(supi∈[n] ‖Xi‖) and, for any u ∈ R+, let us define the sequence (dF

E,n(u))n∈N∗ , in
which

dF
E,n(u) := dimBn

E

(
F ,

2u√
n

)
for all n ∈ N∗ and u ∈ R+.

Proposition 19 Let (β̃i)i∈N be a non-decreasing positive real-valued sequence, (f̃i)i∈N, and
(Fi)i∈N be a sequence of subsets of F of the form Fi := {f ∈ F : ‖f − f̃i‖i ≤ β̃i}. Under
Assumption 3, for any n ∈ N∗, we have

n∑
i=1

sup
(f,f ′)∈F2

n

∥∥f(Xi)− f ′(Xi)
∥∥ ≤ 2β̃n

√
dF
E,n(β̃0)n+ dF

E,n(β̃0)2L(1 + sup
i∈[n]
‖Xi‖) , (51)

and
n∑

i=1

sup
(f,f ′)∈F2

n

∥∥f(Xi)− f ′(Xi)
∥∥2 ≤ 4β̃2nd

F
E,n(β̃0)

(
3 + log

(
n8L2(1 + supi∈[n] ‖Xi‖)

16β̃4n(d
F
E,n(β̃0))

2

))
+ 2dF

E,n(1 + 2β̃2nd
F
E,n(β̃0))(1 + 8L2(1 + sup

i∈[n]
‖Xi‖2)) .

(52)

To prove Proposition 19, the key result of Russo and Van Roy (2013) we leverage is
Lemma 20 which we combine with two functional inequalities given in Lemma 21.

For a function class F with domain X ⊂ Rd, and any x ∈ X , let us define

Λ(F ;x) = sup
(f1,f2)∈F2

‖f1(x)− f2(x)‖ .

The quantity Λ(F , x) is the maximal prediction gap at x between two functions in F .
Bounding the prediction error along (Xi)i∈N of a sequence of function classes (Fi)i∈N ⊂ F
means bounding

∑n
i=1 Λ(Fi, Xi) in terms of n ∈ N.
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Lemma 20 [Russo and Van Roy (2013, Prop.3)] Let (f̃i)i∈N be a sequence of elements of
F , (Fi)i∈N be a sequence of subsets of F of the form Fi := {f ∈ F : ‖f − f̃i‖i ≤ β̃i}. For
any Ξ ∈ (0, 1) and n ∈ N, one has

n∑
i=1

1{Λ(Fi;Xi)>Ξ} ≤

(
4β̃2n
Ξ2

+ 1

)
dimBn

E (F ,Ξ) .

Proof Following the proof of (Russo and Van Roy, 2013, Prop.3), the only modification
involves the bound ‖f − f‖n ≤ β̃n, for any (f, f) ∈ F 2

n , which holds by assumption.

Lemma 21 Let (xi)i∈N ∈ RN∗
+ . Assume there is a family of positive sequences ((ζϑn)n∈N)ϑ∈R+

and a family of positive constants (χϑ)ϑ∈R+ such that, for any n ∈ N∗ and ϑ > 0,

n∑
i=1

1{xi>ϑ} ≤
ζϑn
ϑ2

+ χϑ (53)

then the following two inequalities hold
n∑

i=1

xi ≤ 2
√
nζϑn + χϑ sup

i∈[n]
xi (54)

n∑
i=1

x2i ≤ ζϑn

(
3 + log

(
n supi∈[n] x

2
i

(ζϑn)
2

))
+ χϑ(2 + ζϑn)(1 + sup

i∈[n]
x2i ) . (55)

Proof

i. For ϑ > 0, we have by (53)
n∑

i=1

(xi − ϑ)1{xi>ϑ} =
n∑

i=1

∫ xi

ϑ
1{xi>u}du

≤
∫ supi∈[n] xi

ϑ

n∑
i=1

1{xi>u}du

≤
∫ supi∈[n] xi

ϑ

ζϑn
u2

+ χϑdu

= χ sup
i∈[n]

xi −
ζϑn

supi∈[n] xi
− χϑϑ+

ζϑn
ϑ
,

and thus
n∑

i=1

(xi − ϑ)1{xi>ϑ} ≤
ζϑn
ϑ

+ χϑ sup
i∈[n]

xi . (56)

Combining (56) with
n∑

i=1

(xi − ϑ) ≤
n∑

i=1

(xi − ϑ)1{xi>ϑ}
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yields
n∑

i=1

xi ≤ nϑ+
ζϑn
ϑ

+ χϑ sup
i∈[n]

xi .

Setting ϑ =
√
ζϑn/n yields (54).

ii. To prove (55), we iterate the bound (56)
n∑

i=1

(xi − ϑ)21{xi>ϑ} = 2

n∑
i=1

∫ xi

ε
(xi − u)1{xi>u}du

≤ 2

n∑
i=1

∫ supi∈[n] xi

ϑ
(xi − u)1{xi>u}du

≤ 2

∫ supi∈[n] xi

ϑ

ζϑn
ϑ

+ χϑ sup
i∈[n]

xidu

≤ 2

(
χ(sup

i∈[n]
x2i − sup

i∈[n]
xiϑ) + ζϑn log

(supi∈[n] xi
ϑ

))
≤ 2ζϑn log

(supi∈[n] xi
ϑ

)
+ 2χϑ sup

i∈[n]
x2i .

Now, by some algebraic manipulations of
∑n

i=1 x
2
i , completing the square, discarding

negative terms, and using (56) in the third step, we get
n∑

i=1

x2i ≤
n∑

i=1

x2i1{xi>ϑ} + ϑ2
n∑

i=1

1{xi>ϑ}

≤
n∑

i=1

(xi − ϑ)21{xi>ϑ} + 2ϑ

n∑
i=1

xi1{xi>ϑ} + nϑ2

≤ 2ζϑn log
(supi∈[n] xi

ϑ

)
+ 2χϑ sup

i∈[n]
x2i + ϑ

(
ζϑn
ϑ

+ χϑ sup
i∈[n]

xi + ϑn

)
+ nϑ2 .

Taking ϑ = ζϑn/
√
n and factoring, using also u ≤ 1 + u2 for u ∈ R, yields

n∑
i=1

x2i ≤ ζϑn

(
3 + log

(
n supi∈[n] x

2
i

(ζϑn)
2

))
+ χϑ(2 + ζϑn)(1 + sup

i∈[n]
x2i ) .

Proposition 19 Let (β̃i)i∈N be a non-decreasing positive real-valued sequence, (f̃i)i∈N, and
(Fi)i∈N be a sequence of subsets of F of the form Fi := {f ∈ F : ‖f − f̃i‖i ≤ β̃i}. Under
Assumption 3, for any n ∈ N∗, we have

n∑
i=1

sup
(f,f ′)∈F2

n

∥∥f(Xi)− f ′(Xi)
∥∥ ≤ 2β̃n

√
dF
E,n(β̃0)n+ dF

E,n(β̃0)2L(1 + sup
i∈[n]
‖Xi‖) , (51)
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and
n∑

i=1

sup
(f,f ′)∈F2

n

∥∥f(Xi)− f ′(Xi)
∥∥2 ≤ 4β̃2nd

F
E,n(β̃0)

(
3 + log

(
n8L2(1 + supi∈[n] ‖Xi‖)

16β̃4n(d
F
E,n(β̃0))

2

))
+ 2dF

E,n(1 + 2β̃2nd
F
E,n(β̃0))(1 + 8L2(1 + sup

i∈[n]
‖Xi‖2)) .

(52)

Proof The proof consists in applying Lemma 21 to Lemma 20, with xi = Λ(Fi, Xi),
ζϑn = 4β̃2 dimBn

E (F ,Ξ) (Bn := B2(supi∈[n] ‖Xi‖)), and χϑ = dimBn
E (F ,Ξ). When we set

the value of ϑ in the proof of Lemma 21, χϑ becomes

dimBn
E

F ,

√
4β̃2n
n

 ≤ dimBn
E

F ,

√
4β̃20
n


as (β̃n)n∈N is non-decreasing and the eluder dimension is decreasing in its third argument.
An analogous remark holds for ζϑn . We can thus substitute ζϑn = 4β̃2nd

F
E,n(β̃0) and χϑ =

dF
E,n(β̃0) in (54) and (55), which gives the result.

We now apply Proposition 19 to our setting. For n ∈ N∗, let us recall the shorthand
notation

dE,n := dimBn
E

(
FΘ, 2

√
ε

n

)
(57)

in which we extended the notation from (Xi)i∈N to Xα,θ in the self-evident manner.

Proposition 22 Under Assumptions 1 and 2, for any (α, θ) ∈ A × Θ and t ∈ R+, any
non-decreasing positive real-valued sequence (β̃n)n∈N, any (µ̃n)n∈N ⊂ FΘ, and any sequence
(Fn)n∈N of subsets of Fθ of the form

Fn =

µ ∈ FΘ :

√√√√n−1∑
i=0

∥∥∥µn(Xα,θ
τi , ατi)− µ̃n(X

α,θ
τi , ατi)

∥∥∥2
2
≤ β̃n

 ,

we have
Nt∑
n=1

sup
(µ1,µ2)∈Fn

∥∥∥µ1(Xα,θ
τn , ατn)− µ2(Xα,θ

τn , ατn)
∥∥∥ ≤ 2βNt

√
dE,Nt + dE,Nt2εL0(1 + sup

s≤t
‖Xα,θ

s ‖) ,

(58)

and
Nt∑
n=1

sup
(µ1,µ2)∈Fn

∥∥∥µ1(Xα,θ
τn , ατn)− µ2(Xα,θ

τn , ατn)
∥∥∥2

≤ 4β2NT
dE,Nt

(
3 + log

(
Nt8ε

2L2
0(1 + sups≤t‖X

α,θ
s ‖)

16β4Nt
d2E,Nt

))

+ 2dE,Nt(1 + 2β2Nt
dE,Nt)

(
1 + 8ε2L2

0(1 + sup
s≤t
‖Xα,θ

s ‖2)
)
. (59)
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Proof Immediate by applying Proposition 19 to our setting, as we did in the proof of
Proposition 5.

Under the event of Proposition 5, which ensures that θ∗ ∈ ∩n∈NCn(δ), we can derive
from Proposition 22 a bound on the prediction error relative to the true dynamics Xα,θ∗

generated by the control α ∈ A, in particular, we are interested in α = ϖ.

Proposition 6 Under Assumptions 1 and 2, for any δ ∈ (0, 1), α ∈ A, x0 ∈ Rd, and
t ∈ R+, we have with probability at least 1− δ

Nt∑
n=1

∥∥∥µθ̂n(Xα,θ∗
τn , ατn)− µθ∗(Xα,θ∗

τn , ατn)
∥∥∥ ≤ Õ (√εdE,Nt log(N

ε
Nt
)Nt + εdE,Nt

)
, (14)

and
Nt∑
n=1

∥∥∥µθ̂n(Xα,θ∗
τn , ατn)− µθ∗(Xα,θ∗

τn , ατn)
∥∥∥2 ≤ Õ (dE,Nt log(N

ε
Nt
)
)
. (15)

Proof This follows from Proposition 22 by choosing (β̃n)n∈N = (βn(δ))n∈N and (Fn)n∈N =
(Cn(δ))n∈N, i.e. choosing (µ̃n)n∈N = (µθ̂n)n∈N, the NLLS fit on n points. It is key to notice
that these choices of (β̃n)n∈N, (Fn)n∈N, and (µ̃n)n∈N are adapted to F, and therefore we
can apply Proposition 22 on the event of Proposition 5 without issues. This yields

Nt∑
n=1

∥∥∥µθ̂n(Xα,θ∗
τn , ατn)− µθ∗(Xα,θ∗

τn , ατn)
∥∥∥ ≤ 2βNt(δ)

√
dE,Nt + 2εL0dE,Nt(1 +Hδ(NT )) ,

and
Nt∑
n=1

∥∥∥µθ̂n(Xα,θ∗
τn , ατn)− µθ∗(Xα,θ∗

τn , ατn)
∥∥∥2

≤ 4βNT
(δ)2dE,Nt

(
3 + log

(
8ε2L2

0Nt(1 +Hδ(Nt))

16βNt(δ)
4d2E,Nt

))
+ 2dE,Nt(1 + 2βNt(δ)

2dE,Nt)(1 + 8ε2L2
0(1 +Hδ(Nt)

2)) .

To obtain the estimates of (14)–(15), it suffices to recall the definitions of βn(δ) (i.e. (12))
and Hδ(n) (i.e. (32)).
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Appendix D. Planning and Diffusive Limit Approximation

Our work builds upon (Abeille et al., 2022), but with specialised results for our setting. This
paper recovers the key results of this section (Propositions 7 to 9) under a stronger and more
abstract set of assumptions. For the comfort of the reader, we present the necessary steps
to extend their results to our assumptions. Since our assumptions do not directly subsume
theirs, we exhibit in each case from Assumptions 1 and 2 how to recover the keystone results
which underpin the technical arguments of (Abeille et al., 2022).

We begin with the well-posedness results for the pure jump case (Proposition 7) and the
diffusive limit case (Proposition 8) and then focus on the approximation result linking the
two regimes (Proposition 9). In Abeille et al. (2022), Proposition 7 corresponds to Theorem
2.3. and Remark 2.4. In Appendix D.1, we show how it follows from Assumptions 1 and 2
by proving the two intermediary results used in Abeille et al. (2022) to prove the result.

Proposition 7 (Adapted from (Abeille et al., 2022, Thm. 2.3 & Rem. 2.4.))
Under Assumptions 1 and 2, there is LW ∈ R+, independent of ε, such that for any θ ∈ Θ

(i.) The map x 7→ ρ∗θ(x) is constant, taking only one value which we denote by ρ∗θ ∈ R;

(ii.) There is an LW -Lipschitz function W ∗
θ such that

ερ∗θ = max
a∈A
{E[W ∗

θ (x+ µθ(x, a) + Σξ)]−W ∗
θ (x) + r(x, a)} ∀x ∈ Rd ; (16)

(iii.) There is π∗θ ∈ A , such that for all x ∈ Rd, π∗θ(x) maximises the right hand side in (16),
and π∗θ ◦Xπ∗

θ ,θ is an optimal Markov control, i.e. ρπ
∗
θ

θ (·) ≡ ρ∗θ.

In Abeille et al. (2022), Proposition 8 corresponds to Theorem 3.4. In Appendix D.2,
we show that it also follows from Assumptions 1 and 2 by proving that (Abeille et al., 2022,
Assumption 5) holds under Assumptions 1 and 2.

Proposition 8 (Adapted from Abeille et al. (2022, Thm. 3.4.))
Under Assumptions 1 and 2, for any θ ∈ Θ,

(i.) The map x 7→ ρ̄∗θ(x) is constant, taking only one value which we denote by ρ̄∗θ ∈ R.

(ii.) There is an LW -Lipschitz function W̄ ∗
θ ∈ C2(Rd;R) such that

ρ̄∗θ = max
a∈A

{
µ̄θ(x, a)

⊤∇W̄ ∗
θ (x) + r̄(x, a)

}
+

1

2
Tr[Σ̄Σ̄⊤∇2W̄ ∗

θ (x)], ∀x ∈ Rd . (18)

(iii.) There is π̄∗θ ∈ A such that, for all x ∈ Rd, π̄∗θ(x) maximises the right hand side in
(18), and π̄∗θ ◦ X̄ π̄∗

θ ,θ is an optimal Markov control, i.e. ρ̄π̄
∗
θ

θ (·) ≡ ρ̄∗θ.

Remark 23 Proposition 8.(iii.) is not stated as is in (Abeille et al., 2022, Thm. 3.4), but
it follows from it by the same arguments as (Abeille et al., 2022, Remark 2.4).
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Propositions 7 and 8 together ensure that both the prelimit and limit regimes are well
posed, while Proposition 9 gives the rate of convergence of the control problems along this
limit. This result is essentially contained in the proof of (Abeille et al., 2022, Thm. 3.6),
but since its statement is different, we include a proof for completeness in Appendix D.3.

Proposition 9 (Adapted from Abeille et al. (2022, Thm. 3.6.))
Under Assumptions 1 and 2, for any γ ∈ (0, 1), there is a constant Cγ > 0, independent of
ε, such that, for any θ ∈ Θ,

|ρ̄∗θ − ρ∗θ| ≤ Cγε
γ
2 and ρ∗θ − ρ

π̄∗
θ

θ (0) ≤ Cγε
γ
2 . (19)

Moreover, there is a function eθ : Rd → R such that,

ερ
π̄∗
θ

θ (0) = E[W̄ ∗
θ (x+ µθ(x, a) + Σξ)]− W̄ ∗

θ (x) + r(x, π̄∗θ(x)) + eθ(x) , ∀x ∈ Rd (20)

and there is C ′
γ > 0, independent of ε, such that |eθ(x)| ≤ C ′

γε
1+ γ

2 (1 + ‖x‖3) for all x ∈ Rd.

D.1. Proof of Proposition 7

In Abeille et al. (2022), Theorem 2.3 and Remark 2.4 follow from Lemmas A.1 and A.2,
which respectively give a mixing condition and a moment bound forXα,θ. We already proved
(Abeille et al., 2022, Lemma A.2) in Lemma 15. Moreover, Lemma 24 which reproduced
(Abeille et al., 2022, Lemmas A.1) holds with only minor modifications of the proof from
Abeille et al. (2022).

Lemma 15 Under Assumptions 1 and 2, for any p ≥ 2, there is a constant c′p > 0
independent of ε such that

E
[
‖Xx0,α,θ

t ‖
p
]
≤ 1

ℓpV

(
Lp

V e
− cV

4
t‖x0‖p +

4c′p
cV

(
1− e−

cV
4

t
))

,

for any (x0, α, θ) ∈ Rd ×A×Θ and t ∈ [0,+∞).

Lemma 24 For any (x, x′) ∈ Rd × Rd, θ ∈ Θ, and α ∈ A,

E
[
‖Xx,α,θ

t −Xx′,α,θ
t ‖

]
≤ LV

ℓV

∥∥x− x′∥∥ e−cV t

for any t ∈ [0,+∞).

Proof We can follow the proof of Abeille et al. (2022) using Assumption 2 directly without
resorting to the higher order Lyapunov function ζ which they use.
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D.2. Proof of Proposition 8

Proposition 8, such as it is stated in (Abeille et al., 2022, Thn 3.4.) relies on their As-
sumption 5. This assumption contains two conditions, which we will show respectively in
Lemmata 25 and 26.

As detailed in (Abeille et al., 2022, Remark 3.2.(i)), the first condition can be shown by
proving an analogue of (Abeille et al., 2022, Lemma A.1) for the diffusive limit process (23).
In terms of arguments of the proof, this analogue requires only a change in the stochastic
generator used in Itô’s Lemma6. In the proof of Lemma 25, we, therefore, show how to adapt
(Abeille et al., 2022, Lemma A.1) to the generator of the diffusion under Assumptions 1
and 2.

In the proof of (Abeille et al., 2022, Lemma A.1), there are two key steps. First, study
the discounted version of the control problem, and show that it is equi-Lipschitz continuous
in the discount, which rests on the result in Lemma 25. Then one takes the vanishing
discount limit in the HJB equation using the theory of viscosity solutions to complete the
proof.

Lemma 25 For any (x0, x
′
0) ∈ Rd × Rd, θ ∈ Θ, α ∈ A,

E
[∥∥∥X̄x,α,θ

t − X̄x′,α,θ
t

∥∥∥] ≤ LV

ℓV

∥∥x− x′∥∥ e−cV t

for any t ∈ [0,+∞).

Proof If x0 = x′0, this is trivially true by pathwise-uniqueness, so we suppose x0 6= x′0. Let
us consider (x1, x2) ∈ Rd × Rd with x1 6= x2. By a Taylor expansion in (4), we obtain as
ε→ 0

(µ̄(x1, a)− µ̄(x2, a))⊤∇V (x1 − x2) ≤ −cV V (x1 − x2) . (60)

The Lyapunov function V is not differentiable at 0, so we will construct an approximating
sequence for it. Let erf denote the error function and let Vι := V erf(ιV ) for ι > 0. Note
that Vι ∈ C1(Rd;R+) and Vι is Lipschitz, let us show that it satisfies (60) everywhere.

Let z := x1 − x2. Since z 6= 0 we have

∇Vι(z) = ∇V (z)

(
erf(ιV (z)) +

2ι√
π

V (z)e−ι2V 2(z)

)
.

By Assumption 2, this implies that

(µ̄θ(x1, a)− µ̄θ(x2, a))⊤∇Vι(z) ≤ −cV V (z)erf(ιV (z))− 2ι√
π
cV V (z)2e−ι2V 2(z)

≤ −cV Vι(z) . (61)

Since ∇Vι is continuous in z, and so is the right-hand side, we can let ‖z‖ → 0 and conclude
the bound also holds for x1 = x2.

6. For a general overview of this sort of stability results and of Stochastic Lyapunov conditions in the
diffusive case, see e.g. (Khasminskii, 2012, § 5.7).
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We now apply Itô’s lemma for the process X̄x,α,θ− X̄x′,α,θ to Vι. Using (61), this yields,
for t ≥ t0 ≥ 0,

E
[
Vι

(
X̄x0,α,θ

t − X̄x′
0,α,θ

t

)]
≤ E

[
Vι

(
X̄x0,α,θ

t0
− X̄x′

0,α,θ
t0

)]
+ E

[∫ t

t0

(
µ̄θ

(
X̄x0,α,θ

s , αs

)
− µ̄θ

(
X̄

x′
0,α,θ

s , αs

))⊤
∇Vι

(
X̄x0,α,θ

s − X̄x′
0,α,θ

s

)
ds

]

≤ E
[
Vι

(
X̄x0,α,θ

t0
− X̄x′

0,α,θ
t0

)]
−
∫ t

t0

cV E
[
Vι

(
Xx0,α,θ

s −Xx′
0,α,θ

s

)]
ds .

We conclude by the same ODE comparison argument as in the proof of Lemma 15 and then
pass to the limit as ι→ 0 to obtain the claimed result using Assumption 2.(i.).

While Lemma 25 showed that (Abeille et al., 2022, Assumption 5.(i)) is implied by
Assumptions 1 and 2. It remains now to verify their Assumption 5.(ii.) . Note that by
(Abeille et al., 2022, Remark 3.2.(ii.)), an equation of the form of their (3.3) is sufficient to
do so. Lemma 26 gives exactly this result with (62), by noting that (Abeille et al., 2022,
(3.4)) holds by Assumption 2.

Lemma 26 Under Assumptions 1 and 2, for any p ≥ 2 there are (c̄p, c̄
′
p) ∈ R2

+ such that

µ̄θ(x, a)
⊤∇V (x)p +Tr[Σ̄Σ̄⊤∇2V (x)p] ≤ −c̄pV (x)p + c̄′p (62)

for any (x, a, θ) ∈ Rd × A×Θ.

Proof Let us take (x, x′) ∈ Rd × Rd such that ‖x− x′‖ ≥ ε/(1 − εL0), which implies
‖x− x′ +∆(µθ(x, a)− µθ(x′, a))‖ > 0 for any ∆ ∈ [0, 1] and for all (a, θ) ∈ A × Θ and we
can expand (4), which gives

−εcV V (x− x′) ≥ (µθ(x, a)− µθ(x′, a))⊤∇V (x− x′)

+
1

2
(µθ(x, a)− µθ(x′, a))⊤∇2V (x̂)(µθ(x, a)− µθ(x′, a)) ,

in which x̂ = x+ ∆̂(x′ − x) for some ∆̂ ∈ [0, 1]. Thus

(µ̄θ(x, a)− µ̄θ(x′, a))⊤∇V (x− x′)

≤ −cV V (x− x′)− ε

2
(µ̄θ(x, a)− µ̄θ(x′, a))⊤∇2V (x̂)(µ̄θ(x, a)− µ̄θ(x′, a)) .

Letting ε → 0, the constraint on (x, x′) vanishes as well as the second term (on compact
sets), and we recover

(µ̄θ(x, a)− µ̄θ(x′, a))⊤∇V (x−x′)+ 1

2
Tr[Σ̄Σ̄⊤∇2V (x−x′)] ≤ −cV V (x−x′)+ d

2
‖Σ̄‖2opM ′

V .
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Taking x′ = 0 implies that

µ̄θ(x, a)
⊤∇V (x) +

1

2
Tr[Σ̄Σ̄⊤∇2V (x)] ≤ −cV V (x) + C

for all (x, a) ∈ Rd
∗ × A, in which C := d‖Σ̄‖2opM ′

V /2 + L0MV .
Notice that, since V ∈ C2(Rd

∗;R+) and vanishes at 0 (see Assumption 1), V (·)p can be
extended by continuity at 0 so that V (·)p ∈ C2(Rd;R+). For any (x, a, θ) ∈ Rd ×A×Θ, let

k(x, a) : = µ̄θ(x, a)
⊤∇V (x)p +

1

2
Tr
[
Σ̄Σ̄⊤∇2V (x)p

]
= pµ̄θ(x, a)

⊤∇V (x)V (x)p−1

+
1

2
Tr
[
Σ̄Σ̄⊤

(
pV (x)p−1∇2V (x) + p(p− 1)V (x)p−2∇V (x)∇⊤V (x)

)]
= pV p−1(x)

(
µ̄θ(x, a)

⊤∇V (x) +
1

2
Tr[Σ̄Σ̄⊤∇2V (x)]

)
+
p(p− 1)

2
V (x)p−2Tr[Σ̄Σ̄⊤∇V (x)∇⊤V (x)]

≤ −pcV V (x)p + CpV (x)p−1 +
dp(p− 1)

2
(‖Σ̄‖opMV )2V (x)p−2

and we can now choose c̄p = −pcV /2, for which there exists a constant c̄′p such that

−c̄pV p(x) + CpV p−1(x) +
dp(p− 1)

2
(‖Σ̄‖opMV )2V p−2(x) ≤ c̄′p

for all x ∈ Rd.

D.3. Proof of Proposition 9

The rest of this section is dedicated to showing Proposition 9 using modifications of the
proof of (Abeille et al., 2022, Thm. 3.6.) to which it corresponds. Here we produce a
self-contained proof in order to clarify how (20) is derived from the proof.

Proposition 9 (Adapted from Abeille et al. (2022, Thm. 3.6.))
Under Assumptions 1 and 2, for any γ ∈ (0, 1), there is a constant Cγ > 0, independent of
ε, such that, for any θ ∈ Θ,

|ρ̄∗θ − ρ∗θ| ≤ Cγε
γ
2 and ρ∗θ − ρ

π̄∗
θ

θ (0) ≤ Cγε
γ
2 . (19)

Moreover, there is a function eθ : Rd → R such that,

ερ
π̄∗
θ

θ (0) = E[W̄ ∗
θ (x+ µθ(x, a) + Σξ)]− W̄ ∗

θ (x) + r(x, π̄∗θ(x)) + eθ(x) , ∀x ∈ Rd (20)

and there is C ′
γ > 0, independent of ε, such that |eθ(x)| ≤ C ′

γε
1+ γ

2 (1 + ‖x‖3) for all x ∈ Rd.
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Proof The first part of Proposition 9, i.e. (19), corresponds to Abeille et al. (2022,
Thm. 3.6.), which we previously showed holds in our setting by verifying its assumptions.
We now prove the second claim. Let

δrεθ(x, a) := µ̄θ(x, a)
⊤∇W̄ ∗

θ (x)+
1

2
Tr[Σ̄Σ̄⊤∇2W̄ ∗

θ (x)]−
1

ε

(
E
[
W̄ ∗

θ (ψ
ε
θ(x, a) + Σξ)

]
− W̄ ∗

θ (x)
)
.

From (18), and Proposition 8.(iii.) we have

ρ̄∗θ = max
a∈A

{
µ̄θ(x, a)

⊤∇W̄ ∗
θ +

1

2
Tr[Σ̄Σ̄⊤∇2W̄ ∗

θ (x)] + r̄(x, a)

}
= µ̄θ(x, π̄

∗
θ(x))

⊤∇W̄ ∗
θ (x) +

1

2
Tr[Σ̄Σ̄⊤∇2W̄ ∗

θ (x)] + r̄(x, π̄∗θ(x))

which implies

ερ
π̄∗
θ

θ (0) = E[W̄ ∗
θ (ψ

ε
θ(x, π̄

∗
θ(x))+Σξ)]−W̄ ∗

θ (x) + r(x, π̄∗θ(x)) + ε(δrεθ(x, π̄
∗
θ(x)) + ρ̄∗θ − ρ

π̄∗
θ

θ (0)).

Note that |δrεθ(x, π̄∗θ(x))| ≤ supa∈A |δrεθ(x, a)|, which by Abeille et al. (2022, (3.10)) is
bounded by cγε

γ
2 (1 + ‖x‖3) for some constant cγ > 0. An application of (19) yields

ρ̄∗θ − ρ
π̄∗
θ

θ (0) = ρ̄∗θ − ρ∗θ + ρ∗θ − ρ
π̄∗
θ

θ (0) ≤ 2Cγε
γ
2

and, at the same time, ρ̄∗θ − ρ
π̄∗
θ

θ (0) ≥ ρ̄∗θ − ρ∗θ ≥ −Cγε
γ
2 . Therefore, there is a function

eθ : Rd → R such that (20) holds, which also satisfies

|eθ(x)| ≤ (2Cγ + cγ)ε
1+ γ

2 (1 + ‖x‖3) .
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Appendix E. Regret Analysis

In this final appendix, we complete the analysis of the regret of Algorithms 1 and 2. Seeing
as the proof of Theorem 4 is directly contained in the proof of Theorem 10, as indicated in
the proof sketch of the latter, we will only prove the latter. First, we will give the regret
decomposition, and then in the later sections, we will bound terms one by one calling upon
the results of the previous appendices.

Theorem 10 Under Assumptions 1 and 2, for any δ ∈ (0, 1), x0 ∈ Rd, and γ ∈ (0, 1),
there is a pair (Cγ , C) ∈ R2

+ of constants independent of ε such that Algorithm 2 achieves

RT (ϖ
′) ≤ 2Cγε

γ
2 T + C

√
dE,⌈Tε−1⌉ log

(
N ε

⌈Tε−1⌉

)
T log(Tδ−1) (21)

with probability at least 1− δ.

E.1. Regret Decomposition

Recall that we defined k : n ∈ N 7→ k(n) as the map associating to each event n the episode
of Algorithm 1 in which they occur. Like in Section 4.3, let us define θn = θ̃k(n) for all
n ∈ N. The regret of Algorithm 1, which generates the control ϖ ∈ A, is

RT (ϖ) := Tρ∗θ∗ −
NT∑
n=1

r(Xϖ,θ∗
τn , ϖτn)

By definition of ϖ in Algorithm 1, ϖτn = π̄∗θn(X
ϖ,θ∗
τn ), so that

RT (ϖ) := Tρ∗θ∗ −
NT∑
n=1

r(Xϖ,θ∗
τn , π̄∗θn(X

ϖ,θ∗
τn ))

At the heart of the decomposition is the use of the HJB-type equation (20) applied for
each n at the point Xϖ,θ∗

τn . For clarity, let us introduce for all n ∈ N the random variable
X̃ϖ,θn

τn+1 equal in distribution, conditionally on Fτn , to the random variable ψε
θn
(Xϖ,θ∗

τn , ϖτn)+
Σξn+1. With this notation (20) becomes

ερ
π̄∗
θn

θn
(0) = E[W̄ ∗

θn(X̃
ϖ,θn
τn+1

)|Fτn ]− W̄ ∗
θn(X

ϖ,θ∗
τn ) + r(Xϖ,θ∗

τn , π̄∗θn(X
ϖ,θ∗
τn )) + eθn(X

ϖ,θ∗
τn ) . (63)

This imagined evolution of the system represents the counterfactual induced by a single
step transition at time τn+1, according to the belief in θn. With this notation, applying (63)
yields

RT (ϖ) = Tρ∗θ∗ −
NT∑
n=1

ερ
π̄∗
θn

θn
(0) +

NT∑
n=1

eθ∗(X
ϖ,θ∗
τn ) +

NT∑
n=1

E[W̄ ∗
θn(X̃

ϖ,θn
τn+1

)|Fτn ]− W̄ ∗
θn(X

ϖ,θ∗
τn ) .

= (T − εNT )ρ
∗
θ∗ (R1)

+ ε

NT∑
n=1

(ρ∗θ∗ − ρ
π̄∗
θn

θn
(0)) +

NT∑
n=1

eθ∗(X
ϖ,θ∗
τn ) (R2)

+

NT∑
n=1

E[W̄ ∗
θn(X̃

ϖ,θn
τn+1

)|Fτn ]− W̄ ∗
θn(X

ϖ,θ∗
τn ). (64)
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The first term, (R1), quantifies the deviation of the Poisson clock from its mean. On the
other hand, (R2) quantifies both the optimistic nature of Algorithm 1 and the approximation
error of its approximate planning. The third term, (64), resembles a martingale (up to
reordering), but it fails to be one on two key counts. First, the element from the family of
functions (W̄ ∗

θn
)n∈N used at each step n changes. Second, the expectation terms are with

respect to the counterfactual transitions (X̃ϖ,θ∗
τn+1 )n∈N while the random terms use the real

transitions (Xϖ,θ∗
τn+1 )n∈N.

Note that we can control the difference between the counterfactual and the real trajectory
at a one-step time horizon, by using

X̃ϖ,θ
τn+1

d
= Xϖ,θ∗

τn+1
− µθ∗(Xϖ,θ∗

τn , ϖτn) + µθ(X
ϖ,θ∗
τn , ϖτn) , (65)

in which d
= denotes equality in the same conditionally distributional sense as above. By

adding and subtracting relevant terms to exhibit the key quantities we get:
NT∑
n=1

E[W̄ ∗
θn(X̃

ϖ,θn
τn+1

)|Fτn ]− W̄ ∗
θn(X

ϖ,θ∗
τn ) ≤

NT∑
n=1

E[W̄ ∗
θn(X̃

ϖ,θn
τn+1

)|Fτn ]− E[W̄ ∗
θn(X

ϖ,θ∗
τn+1

)|Fτn ]

+

NT∑
n=1

E[W̄ ∗
θn(X

ϖ,θ∗
τn+1

)|Fτn ]− E[W̄ ∗
θn+1

(Xϖ,θ∗
τn+1

)|Fτn ]

+

NT∑
n=1

E[W̄ ∗
θn+1

(Xϖ,θ∗
τn+1

)|Fτn ]− W̄ ∗
θn(X

ϖ,θ∗
τn ) .

Using (65), and the uniform LW -Lipschitzness of (W̄ ∗
θn
)n∈N, we get for each n ∈ N

E[W̄ ∗
θn(X̃

ϖ,θn
τn+1

)|Fτn ]− E[W̄ ∗
θn(X

ϖ,θ∗
τn+1

)|Fτn ] ≤ LW

∥∥∥µθn(Xϖ,θ∗
τn , ϖτn)− µθ∗(Xϖ,θ∗

τn , ϖτn)
∥∥∥

and thus the regret term (64) is bounded by

NT∑
n=1

E[W̄ ∗
θn(X̃

ϖ,θn
τn+1

)|Fτn ]− W̄ ∗
θn(X

ϖ,θ∗
τn ) ≤ R3 +R4 +R5

in which

R3 : = LW

NT∑
n=1

∥∥∥µθn(Xϖ,θ∗
τn , ϖτn)− µθ∗(Xϖ,θ∗

τn , ϖτn)
∥∥∥ (R3)

R4 : =

NT∑
n=1

E[W̄ ∗
θn(X

ϖ,θ∗
τn+1

)− W̄ ∗
θn+1

(Xϖ,θ∗
τn+1

)|Fτn ] (R4)

R5 : =

NT∑
n=1

E[W̄ ∗
θn+1

(Xϖ,θ∗
τn+1

)|Fτn ]− W̄ ∗
θn(X

ϖ,θ∗
τn ) . (R5)

At the end of this decomposition, we have constructed a true martingale in (R5), which we
bound in Appendix E.6. The first term (R3) accumulates the fit error described in Proposi-
tion 6, up to the lazy updates, which we study in Appendix E.4. The term (R4) is bounded
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by the number of effective updates of θn (namely,
∑NT

n=1 1{θn+1 ̸=θn}) in Appendix E.5. Fi-
nally, the bounds on (R1) and (R2) are given in Appendices E.2 and E.3 respectively.

To combine the high-probability events used to bound (R1) and (R5), with the event of
Proposition 5 used by the other terms, we will perform a union bound. This corresponds
to the δ/3 used in the definition of the confidence sets of Algorithm 1.

E.2. Bounding the Poisson clock variation term (R1)

We bound (R1) using Lemma 27 which is a standard sub-exponential concentration result,
see e.g. (Buldygin and Kozachenko, 2000, Lemma 4.1). It implies

P

(
|T − εNT | ≥ 2

√
εT log

(
6

δ

)
∨ 2ε log

(
6

δ

))
≤ δ

3
.

Lemma 27 For any T ∈ R∗
+ and δ ∈ (0, 1),

P

(
|εNT − T | > 2

√
εT log

(
2

δ

)
∨ 2ε log

(
2

δ

))
≤ δ .

Proof Let υ := ε−1T . For any λ ∈ [−1, 1], E[eλ(NT−υ)] = exp(υ(eλ − 1 − λ)) ≤ eλ
2υ.

Therefore, NT is (
√
2υ, 1)-subexponential (see e.g. (Buldygin and Kozachenko, 2000)) and

therefore,

P (|NT − υ| > c) ≤

{
e−

c2

4υ for c ∈ (0, 2υ]

e−
c
2 for c > 2υ

,

which implies

P

(
|NT − υ| > 2

√
υ log

(
2

δ

)
1{δ≥e−υ} + 2 log

(
2

δ

)
1{δ≤e−υ}

)
≤ δ .

E.3. Bounding the optimistic approximation term (R2)

There are two terms in (R2). The second is the most straightforward as it can be bounded
by applying the bound on eθ∗ of Proposition 9, which yields

NT∑
n=1

eθ∗(X
ϖ,θ∗
τn ) ≤ 2C ′

γNT ε
1+ γ

2 (1 + sup
s≤T
‖Xϖ,θ∗

s ‖3) .

We decompose the remaining term of (R2) into

ε

NT∑
n=1

(ρ∗θ∗ − ρ
π̄∗
θn

θn
) = ε

NT∑
n=1

(
ρ∗θ∗ − ρ̄∗θ∗ + ρ̄

π̄∗
θ∗

θ∗ − ρ̄
π̄∗
θn

θn
+ ρ̄∗θn − ρ

∗
θn + ρ∗θn − ρ

π̄∗
θn

θn

)
≤ 4NTCγε

1+ γ
2 + ε

NT∑
n=1

(
ρ̄
π̄∗
θ∗

θ∗ − ρ̄
π̄∗
θn

θn

)
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by applying Proposition 9 to all but the second pair of terms.
On the event of Proposition 5, with δ/3 in place of δ, we have θ∗ ∈ ∩n∈N∗Cn(δ/3) and

thus, by definition of Algorithm 1, ρ̄π̄
∗
θ∗

θ∗ − ρ̄
π̄∗
θn

θn
≤ 0 for all n ∈ N∗ . Thus, on this event we

have

ε

NT∑
n=1

(ρ∗θ∗ − ρ
π̄∗
θn

θn
) ≤ 4NTCγε

1+ γ
2 .

E.4. Bounding the prediction error term (R3)

Because of the lazy updates, µθn = µθk(n)
is chosen within Ck(n)(δ/3) instead of Cn(δ/3)

preventing us from using directly Proposition 22. Nevertheless, the lazy update scheme is
designed not to degrade the overall learning performance by more than a constant factor.
Leveraging (7),

n−1∑
i=1

∥∥∥µθn(Xϖ,θ∗
τi , ϖτi)− µθ∗(Xϖ,θ∗

τi , ϖτi)
∥∥∥ ≤ {2βn(δ/3) if n < nk

βn(δ/3) if n = nk
(66)

As a result, µθn is chosen within an inflated version of Cn(δ/3), defined as in (6) but with
βn(δ/3) replaced by 2βn(δ/3). Thus, we can follow the same arguments as in the proof of
Proposition 6, by applying Proposition 22 to the inflated confidence sets, up to the constant
factor 2 in the bounds. And therefore on the event of Proposition 5, we have

R3 = LW

NT∑
n=1

∥∥∥µθn(Xϖ,θ∗
τn , ϖτn)− µθ∗(Xϖ,θ∗

τn , ϖτn)
∥∥∥

≤ 6LWβNT
(δ/3)

√
dE,Nt + LWdE,NtHδ/3(NT ) .

E.5. Bounding the lazy-update term (R4)

We observe that (R4) is bounded by

R4 =

NT∑
n=1

E[W̄ ∗
θn(X

ϖ,θ∗
τn+1

)− W̄ ∗
θn+1

(Xϖ,θ∗
τn+1

)|Fτn ]

≤ 2LW

NT∑
n=1

E
[(

1 + ‖Xϖ,θ∗
τn+1
‖
)
1{θn ̸=θn+1}|Fτn

]
≤ 2LW

NT∑
n=1

(
(1 + εL0)(1 + ‖Xϖ,θ∗

τn ‖) + ε
1
2 ‖Σ̄‖opE [‖ξn+1‖ |Fτn ]

)
1{θn ̸=θn+1}

≤ 2LW (1 + εL0)

(
1 + sup

s≤T
‖Xϖ,θ∗

s ‖+
√
dε

1
2 ‖Σ̄‖op

)
NT∑
n=1

1{θn ̸=θn+1} .

Thus bounding the number of updates with Lemma 28 bounds (R4).
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Lemma 28 Under Assumptions 1 and 2, Algorithm 1 generates episodes which satisfy for
all T ∈ R+ and δ ∈ (0, 1)

NT∑
n=1

1{θn ̸=θn+1} ≤ 4βNT
(δ/3)2dE,Nt

(
3 + log

(
Nt8ε

2L2
0(1 + sups≤t‖X

ϖ,θ∗
s ‖)

16βNt(δ/3)
4d2E,Nt

))
+ 2dE,Nt(1 + 2βNt(δ/3)

2dE,Nt)(1 + 8ε2L2
0(1 + sup

s≤t
‖Xϖ,θ∗

s ‖2)) .

Proof Consider k ∈ N∗, by (7), each time we trigger an update we have

2βnk
(δ/3)2 < sup

θ∈Cnk−1
(δ)

∥∥∥µθ − µθ̂nk−1

∥∥∥2
nk

≤ sup
θ∈Cnk−1

(δ)

∥∥∥µθ − µθ̂nk−1

∥∥∥2
nk−1

+ sup
θ∈Cnk−1

(δ)

nk∑
n=nk−1+1

∥∥∥µθ(Xϖ,θ
τn , ϖτn)− µθ̂nk−1

(Xϖ,θ
τn , ϖτn)

∥∥∥2
≤ βnk

(δ/3)2 +

nk∑
n=nk−1+1

Λ(Cnk−1
(δ/3);Xϖ,θ

τn , ϖτn)
2 .

Summing over all episodes, since the sequence (βn(δ/3))n∈N is non-decreasing, we have that
for all T ∈ R+

NT∑
n=1

Λ(Cnk
(δ/3); (Xτn , ϖτn))

2 ≥
KT∑
k=1

βnk
(δ/3)2 ≥ KTβ0(δ/3)

2 ,

in which KT := k(NT ) ∈ N is the number of episodes by time T . An application of the
second part of Proposition 22, i.e. (59) now yields the desired result as β0(δ/3)2 = ε.

E.6. Bounding the martingale term (R5)

Let
Zn := E[W̄ ∗

θn(X
α,θ∗
τn )|Fn−1]− W̄ ∗

θn(X
α,θ∗
τn ) .

By definition

R5 = E[W̄ ∗
θNT+1

(Xϖ,θ∗
τNT+1

)|FτNT
] + W̄ ∗

θ0(x0) +

NT∑
n=1

Zn .

On the one hand, Zn is a LW ‖Σ‖op-Lipschitz function of ξn, which is Gaussian and of mean
0. Therefore, by (Boucheron et al., 2013, Thm 5.5), Zn is LW ‖Σ‖op-sub-Gaussian and

P

(
NT∑
n=1

Zn > LW ‖Σ̄‖op

√
2εNT log

(
1

δ

))
≤ δ . (67)
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On the other hand, by the uniform Lipschitzness of (W̄ ∗
θ )θ∈Θ, W̄ ∗

θ0
(x0) ≤ LW (1 + ‖x0‖)

and

E[W̄ ∗
θNT+1

(Xϖ,θ∗
τNT+1

)|FτNT
] ≤ LW (1 + E[‖Xϖ,θ∗

τNT+1
‖|FτNT

])

≤ LW (1 + εL0 + (1 + εL0)‖Xϖ,θ∗
τNT
‖+ ε

1
2 ‖Σ̄‖opE[‖ξNT+1‖ |FτNT

])

≤ LW (1 + εL0)

(
1 + sup

s≤T
‖Xϖ,θ∗

s ‖2 + ε
1
2 ‖Σ̄‖op

√
dLW

)
. (68)

Combining (67) and (68) yields

R5 ≤ LW

∥∥Σ̄∥∥
op

√
2εNT log

(
3

δ

)
+ 2LW (1 + εL0)(1 + sup

s≤T
‖Xϖ,θ∗

s ‖+ ε
1
2 ‖Σ̄‖op

√
dLW )

(69)

with probability at least 1− δ/3.

E.7. Collecting the bounds

We conclude the proof of Theorem 4 by collecting all the terms from Appendices E.2–E.6
and simplifying them. By a union bound over the events listed in steps Appendices E.2,
E.4 and E.6, with probability at least 1− δ

RT (ϖ) ≤ 2L0

(√
εT log

(
6

δ

)
∨ 2ε log

(
6

δ

))
+ 4NTCγε

1+ γ
2 + 2C ′

γNT ε
1+ γ

2 (1 +H3
δ/3(NT ))

+ 6LWβNT
(δ/3)

√
dE,NT

+ 2εL0LWdE,NT
(1 +Hδ/3(NT ))

+ 2LW (1 + εL0)
(
1 +Hδ/3(NT ) + dε

1
2 ‖Σ̄‖op

)
×

4βNT
(δ/3)2dE,Nt

(
3 + log

(
Nt8ε

2L2
0(1 +Hδ/3(NT ))

16βNT
(δ/3)4d2E,NT

))

+ 2dE,NT
(1 + 2βNt(δ/3)

2dE,NT
)(1 + 8ε2L2

0(1 +Hδ/3(NT )
2))


+ LW

∥∥Σ̄∥∥
op

√
2εNT log

(
3

δ

)
+ 2LW (1 + εL0)(1 +Hδ/3(NT ) + ε

1
2 ‖Σ̄‖op

√
dLW ).
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This can be more simply expressed for some constants C(i)
R ∈ R+, i ∈ [5], as

RT (ϖ) ≤ C(1)
R (Cγ + C ′

γ)ε
1+ γ

2NT log(NT )
3 + C

(2)
R

√
dE,NT

εNT log

(
NT (1 + εN ε

NT
)

δ

)
+ C

(3)
R

(
1 + εdE,NT

log(NT ) log(NT (1 + εN ε
NT

))
)
dE,NT

log(NT )
4

+ C
(4)
R

√
εT log

(
1

δ

)
+ C

(5)
R

(
1 + log

(
1

δ

))
still with probability at least 1 − δ. On this high-probability event, we can write RT (ϖ)
(up rounding up Tε−1 where necessary and up to a change in the constants) as

RT (ϖ) ≤ C(1)
R (Cγ + C ′

γ)ε
γ
2 T log

(
T

ε

)
+ C

(2)
R

√
dE,T ε−1T log

(
Tε−1(1 + εNTε−1)

δ

)
+ C

(3)
R

(
1 + εdE,T ε−1 log(Tε−1) log(Tε−1(1 + εN ε

Tε−1))
)
dE,T ε−1 log(Tε−1)4

+ C
(4)
R

√
εT log

(
1

δ

)
+ C

(5)
R

(
1 + log

(
1

δ

))
.

Considering only the two dominant terms and ignoring logarithmic factors we get the
claimed bound.
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