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Abstract
We consider the problem of learning a labeled hypergraph from a given family of hypergraphs,
using shortest path (SP) queries. An SP query specifies two vertices and asks for their distance in the
target hypergraph. For various classesH of hypertrees, we present bounds on the number of queries
required to learn an unknown hypertree fromH. Matching upper and lower asymptotic bounds are
presented for learning hyperpaths and hyperstars, both in the adaptive and in the non-adaptive
setting. Moreover, two non-trivial classes of hypertrees are shown to be efficiently learnable from
adaptive SP queries, under certain conditions on structural parameters.
Keywords: Hypergraph, Hypertree, Shortest path query, Graph learning

1. Introduction

Hypergraphs are used for representing dependencies between data objects in various applications.
For example, hyperedges are a means of representing chemical interactions in computational biol-
ogy (Murgas et al., 2022), or of user groups in recommender systems (Wang et al., 2022). Hyper-
graphs have been deployed in knowledge representation, constraint satisfaction, machine learning,
and data analysis; their structural and algorithmic aspects are the focus of numerous studies in graph
theory (Berge, 1976; Bretto, 2013).

The focus of this paper is on learning hypergraphs over a known set of vertices, using queries.
In particular, a learning algorithm poses a query that is answered by an oracle, thus revealing partial
information about an unknown target hypergraph H∗ from a given class H of hypergraphs. The
goal of the learning algorithm is to identify all hyperedges in H∗ with a small number of queries.

This kind of setting has been studied extensively for learning (non-hyper-)graphs (Alon and
Asodi, 2005; Alon et al., 2004; Angluin and Chen, 2008; Reyzin and Srivastava, 2007), where
various types of queries have been considered. An edge detection query, for instance, is formulated
as a set V0 of vertices; the oracle will provide the information whether or not any two vertices in
V0 are adjacent in H∗, i.e., whether or not an edge exists among vertices in V0 (Alon and Asodi,
2005). By contrast, an edge counting query for a vertex set V0 asks for the number of edges in
H∗ that connect vertices in V0 (Reyzin and Srivastava, 2007). Betweenness queries, which have
been used both for learning and for verifying graphs (Abrahamsen et al., 2016; Janardhanan, 2017),
specify three vertices in order to find out whether the first vertex lies on a shortest path between the
other two. In a shortest path (SP) query, the learning algorithm selects two vertices v and w, and
the oracle responds with the distance of v and w, i.e., the length of a shortest path between them
(Erlebach et al., 2006; Reyzin and Srivastava, 2007; Mathieu and Zhou, 2013; Kannan et al., 2015).
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SP queries are particularly natural in bioinformatics applications, for example in the context
of learning evolutionary trees, where the distance between two species can be determined through
research, thus providing an oracle to the learning algorithm (King et al., 2003; Hein, 1989).

Query learning of hypergraphs has been studied primarily with a focus on edge detection queries
(Angluin and Chen, 2006; Abasi, 2018; Abasi et al., 2018; Balkanski et al., 2022). By contrast, to
the best of our knowledge, there is no literature on learning hypergraphs with SP queries. Our study
addresses the question how many SP queries are needed in order to identify an unknown hypergraph
in an underlying class of potential target hypergraphs. Intuitively, the class of all hypergraphs over
n vertices does not admit efficient learning algorithms, i.e., the required number of SP queries for
learning arbitrary hypergraphs is quadratic in n. Therefore, we restrict the topological structure
of the hypergraphs under consideration. Specifically, we focus on learning hypertrees—a type of
hypergraph expressive enough to be useful for a variety of applications (e.g., biochemical interaction
networks), yet simple enough to potentially allow for efficient learning algorithms.1

To gain insights into the problem of hypertree learning, we first consider two special cases,
namely hyperpaths, which are hypertrees with smallest possible maximum degree, and hyperstars,
which are hypertrees with largest possible maximum degree. We show that neither of these simple
forms of trees can be learned efficiently if the learning algorithm is non-adaptive, i.e., submits all its
queries upfront in a batch. In the adaptive setting, where the answers to previous queries can affect
the learner’s next queries, it turns out that O(n) SP queries suffice to learn hyperpaths of at least 3
edges, while hyperstars have a query complexity of Θ(mn + cn). Here m is the number of edges
in the hyperstar and c is the size of the intersection of all these edges.

Turning to more complex structures, we provide two adaptive learning algorithms for interesting
classes of hypertrees.

The first one is a recursive procedure for learning any binary hypertree of diameter at least 3;
binary hypertrees are hypertrees in which each edge overlaps with at most three other edges and
each vertex has degree at most 3. This algorithm uses O(dn) SP queries, where d is the unknown
diameter of the target hypertree.

The second algorithm is purely iterative, and learns hypertrees of a more uniform structure;
specifically, it assumes that all edges have identical size and all edge intersections have identical
size. While this type of hypertree may be less useful for real-world applications, our learning algo-
rithm provides insights into which structural properties affect the complexity of hypertree learning.

In the sum, our paper provides the first systematic study of learning hypergraphs (specifically,
various classes of hypertrees) from SP queries. For various topological structures, we provide
matching upper and lower bounds on the SP query complexity, and we provide efficient learning
algorithms for various sub-classes of hypertrees.

2. Preliminaries

A natural generalization of graphs, where edges are made up of 2-subsets of vertices, is the notion
of a hypergraph. For our purposes, a hypergraph H consists of a pair (V,E) of sets, where V is a
finite nonempty set (whose elements are called vertices) and the edge-set E ⊆ P(V ) where P(V )
is the power set of V . We assume that e 6⊂ e′ for any two e, e′ ∈ E. In the special case when every
edge in E has the same cardinality we refer to H as uniform hypergraph. In particular, if every

1. We consider only hypertrees in which the intersection of three or more edges is either empty or equal to the intersec-
tion of any two of these edges.
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Figure 1: If |Ci| ≤ c for all i, the depicted hypergraph is a (≤ c)-hyperpath with m = 5 edges.
Assuming c = |Ci| for all i, it is a c-hyperpath. Vertex v belongs to edge e3, but not to
any other edge.

edge e ∈ E contains precisely r vertices, then H is said to be r-uniform. Finally, the order of a
hypergraph H is simply the cardinality of V , that is, |V |.

Throughout this work, we make use of various terms associated with hypergraphs. For ease of
exposition, we now list several such necessary terms. Suppose H = (V,E) is a given hypergraph.
Then two vertices u and v are said to be adjacent if there is an edge e of H with {u, v} ⊆ e, and in
this case, we say e is incident to both v and u.

Our main focus is concerned with distance in a hypergraph. Consequently, we carefully high-
light the notion of a path in a hypergraph. To this end, a path P in a hypergraph H from v1 to
vs+1 is an alternating sequence v1e1 · · · vsesvs+1 in which v1,. . . , vs+1 ∈ V are distinct vertices,
e1, e2, . . . , es are distinct edges of H , and for i = 1, 2, . . . , s, vi, vi+1 ∈ ei. Further, we say the
length of P is s. Analogous to conventional graphs, a hypergraph H is said to be connected if,
for any two vertices u, v in H , there is a path from u to v. For any connected hypergraph H , we
set the distance, d(x, y), between two vertices x and y as the minimum length of a path from x to
y. Similar to graphs, the maximum distance between a vertex v ∈ V and any other vertex in V is
called the eccentricity of the vertex v and is denoted by ecc(v). The radius (diameter, resp.) of the
hypergraph H is defined as the minimum (maximum, resp.) eccentricity of any vertex. Finally, the
center of a hypergraph is the set of all its vertices of minimum eccentricity.

Beyond paths we also consider cycles in a hypergraph. Thus if v1e1 · · · vs−1es−1vs is a path
from v1 to vs and s > 2 then v1e1 · · · vsesvs+1, v1 = vs+1, is called a cycle of length s.

More generally, for any c ≥ 1, a c-hyperpath is a hypergraph with edge set {e1, . . . , em} such
that the edges can be ordered so that |ei∩ei+1| = c for all i = 1, . . . ,m−1, and ei∩ej = ∅whenever
|i− j| > 1. A c-hyperstar is a hypergraph with edge set {e1, . . . , em} such that |

⋂m
i=1 ei| = c and

ej ∩ ej′ =
⋂m

i=1 ei for all j, j′. When allowing |ei ∩ ei+1| ≤ c (or |
⋂m

i=1 ei| ≤ c, resp.), we instead
use the term (≤ c)-hyperpath (or (≤ c)-hyperstar, resp., where a hypergraph is a (≤ c)-hyperstar
iff it is a c′-hyperstar for some c′ ≤ c), see Fig. 1 for illustration. These types of hypergraphs are
special cases of c-hypertrees and (≤ c)-hypertrees, defined as follows.

A 1-hypertree is a connected hypergraph without cycles. (The absence of cycles implies that no
two edges overlap in more than one vertex.) For c > 1, a hypergraph H ′ is a c-hypertree ((≤ c)-
hypertree, resp.) iff H ′ results from a 1-hypertree H by adding c− 1 vertices (up to c− 1 vertices,
resp.) to the intersection of any maximal set of intersecting edges in H . In such H ′, for any three
edges e1, e2, e3 in H ′, e1 ∩ e2 ∩ e3 is either empty or equals the intersection between any two of the
three edges.

If H is any hypergraph, then the degree of an edge e in H is the number of edges in H that
intersect e. Thus, in a c-hyperpath with m ≥ 2 edges, there are exactly two edges of degree 1; all
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other edges have degree 2. In a c-hyperstar with m edges, each edge has degree m− 1. A hypertree
is called a binary hypertree if its maximum edge degree is at most 3 and no vertex belongs to more
than 3 edges.

2.1. Learning From SP Queries

We consider the problem of using a smallest possible number of shortest path (SP) queries to learn
the edge set of a hidden hypergraph H∗ for which the vertex set V is known. In the underlying
model, a learning algorithm (called learner) issues SP queries in the form of pairs (u, v) ∈ V 2 to
an oracle; the oracle will then respond with the value d(u, v), i.e., the learner is told the length of a
shortest path between u and v.

Adaptive learning proceeds sequentially; at any point in time, the learner is allowed to make
the choice of its next query dependent on the responses to previously asked queries. By contrast, in
non-adaptive learning, the learner fixes its entire set of queries in advance.

This paper focuses on learning hypertrees; in particular, it provides upper and lower bounds on
the smallest possible number of SP queries needed to learn specific subclasses of hypertrees. The
formal proofs of these bounds will require some additional definitions and notation.

Definition 1 Given a hypergraph H with vertex set V and edge set E, the query graph GH (at any
point in time during learning) is defined to be a simple graph with the vertex set V such that any
two vertices u and v are adjacent iff the learner has asked the query (u, v) or (v, u) in the past.

For a hypergraph H and a vertex v of H , the term d(v, ), called the distance sequence of
v, denotes the string of distance numbers between the vertex v and all other vertices, sorted in
increasing order. For example, if H has ten vertices including v, and the distances from v to the
remaining nine vertices are 1, 1, 1, 2, 2, 3, 3, 3, 4, then d(v, ) = 13, 22, 33, 41.

For any graph and any two vertices u and v in the graph, we define the joint neighborhood of u
and v to be the union of the neighborhood of u and the neighborhood of v, minus {u, v}.

3. Learning hyperpaths

Our first observation is that non-adaptive query learning is too weak a setting for efficient learning
even of very restricted forms of hyperpaths. In particular, we obtain a quadratic lower bound already
for r-uniform c-hyperpaths; this bound remains quadratic in n when c = 1:

Theorem 2 Ω(n2 − n(r − c + 1)) SP queries are needed to non-adaptively learn an r-uniform
c-hyperpath, where r > 2c.

Proof Let H be an r-uniform c-hyperpath, with r > 2c, and assume the edges of H are labelled
e1, . . . , em. As in Fig. 1, we let Ki (i = 1, 2, . . . ,m − 1) be the intersection of ei and ei+1. If
the query graph constructed by the learner contains two non-adjacent vertices u and v whose joint
neighborhood is of size at most n−r+c−2, then the oracle may select two r-uniform c-hyperpaths
H1 and H2 such that u and v are in the e2 with one of them in e2 \ e1 and the other in K1 = e1∩ e2.
Let V1 be the set of vertices that the learner has placed in the joint neighborhood of the non-adjacent
vertices u and v. Hence the size of V1 is at most n− r+ c− 2. Then the oracle places all vertices in
V1 within the edges e2 to em, with c−1 vertices in K1, c vertices in each Ki for i ∈ {2, . . . ,m−1},
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and the remaining vertices are placed in other non-shared sections. Removing the vertices u and v
leaves n − r + c − 2 vertices in the edges ei where i ∈ {2, . . . ,m}. Thus the oracle has sufficient
freedom to label the vertices in V1 as desired. Furthermore, the oracle can freely swap the vertices
u and v; both choices will result in exactly the same answers to the queries asked by the learner.
Consequently, the learner, when receiving responses from the oracle, will be unable to determine
which of u and v to place in K1 and which to place in e2 \ e1. Therefore, the learner is not able
to learn H if the query graph constructed by the learner contains two non-adjacent vertices u and v
whose joint neighborhood is of size at most n− r + c− 2.

Therefore, a successful set of queries must yield a query graph G in which any two vertices u
and v are adjacent or otherwise they have a joint neighborhood of size at least n−r+c−1. Observe
that such a query graph may be disconnected even with one isolated vertex (of course G can not have
two isolated vertices by assumption). Hence the query graph G has at least Ω(n2 − n(r − c + 1))
edges.

Suppose that G is the query graph induced by m(G) SP queries. Hence the minimum number
of edges for such a query graph gives a lower bound for the minimum number of SP queries.

If every vertex has a degree at least n−r+c−1
2 , then we have

2m(G) =

n∑
i=1

di(G) ≥ n (n− r + c− 1)

2
, which implies m(G) ≥ n2 − nr + nc− n

4
.

Otherwise, there exists a vertex v with degree less than n−r+c−1
2 . Then applying the conclusion

above, the degree of each vertex that is not adjacent to v is strictly greater than n−r+c−1
2 . Note there

are at least n− n−r+c−1
2 such vertices that are not adjacent to v, so

2m(G) ≥ n− r + c− 1

2

(
n− n− r + c− 1

2

)
,

that is,

m(G) ≥ n2 − (r − c + 1)2

8
.

The lower bounds on m(G) imply that the learner must ask Ω(n2− n(r− c+ 1)) non-adaptive
SP queries to fully identify the hypergraph H .

By contrast, for the adaptive setting, we will prove below that all (≤ n)-hyperpaths can be
learned with a linear number of queries, as long as they have at least three edges. For two overlap-
ping edges however, we obtain a lower bound with an additional factor of c, where c is the size of
the intersection of the two edges. We state this result explicitly, as it will be useful later on.

Lemma 3 LetH be the class of c-hyperpaths of order n with exactly 2 edges, in which

• one edge (e1) contains a single vertex v∗ in addition to a set C of c = |C| center vertices, and

• the second edge (e2) contains the remaining n− c− 1 vertices, in addition to C.

Then Ω(cn) SP queries are needed to adaptively learn any member ofH.

5



FALLAT MALIUK MOJALLAL ZILLES

Proof Note that the distance sequence d(v, ) for a vertex v satisfies (i) d(v∗, ) = 1c, 2n−1−c, (ii)
d(v, ) = 1n−2, 21, if v /∈ C ∪ {v∗}, and (iii) d(v, ) = 1n−1, if v ∈ C.

Now suppose there are two distinct vertices v, v′ such that a learner L asks at most c queries
containing v or v′. This corresponds to a query graph in which the joint neighborhood of v and v′ has
size at most c. Consider two hypergraphs H1, H2 ∈ H for which d(v, v′) = d(v, u) = d(v′, u) = 1
for all u in the joint neighborhood of v and v′: in H1, the role of v∗ is played by v, while v′ lies in
C; in H2, it is the opposite. In both Hi, all vertices adjacent to v∗ in the query graph are members
of C.

Hence, if the oracle answers 1 to all queries made by L, then L cannot uniquely determine the
target labeling of the vertices. This means that a successful learner must ask enough queries so that
all pairwise joint neighborhoods in the query graph have size greater than c. This requires at least
1
2n(c + 1) queries. We thus obtain the desired lower bound of Ω(cn).

As a hyperpath of two edges is also a hyperstar, we immediately obtain the following corollary.

Corollary 4 Ω(cn) SP queries are needed to adaptively learn c-hyperpaths of order n with exactly
2 edges. Likewise, Ω(cn) SP queries are needed to adaptively learn c-hyperstars of order n with
exactly 2 edges.

As promised earlier, we now show that a linear number of queries suffices for learning hyper-
paths of at least 3 edges.

Theorem 5 The minimal number of adaptive SP queries for learning any member of the class of
all (≤ n)-hyperpaths that have n vertices and at least 3 edges is in Θ(n). In particular, 3n − 6
queries are sufficient for identifying any member in this class.

Proof The lower bound Ω(n) is obvious. To verify that 3n− 6 queries suffice, consider a learner L
that asks the following queries:

1. L selects any vertex v and asks all n − 1 queries of the form (v, v′) for v′ ∈ V \ {v}. Thus,
L obtains the distance sequence d(v, ).

2. L selects any vertex v1 whose distance to v is maximal, and asks all n− 2 queries of the form
(v1, v

′) for v′ ∈ V \ {v, v1}. Thus, L obtains the distance sequence d(v1, ).

3. L selects any vertex v2 whose distance to v1 is maximal (i.e., this distance equals the diameter
d of H∗), and asks all n−3 queries of the form (v2, v

′) for v′ ∈ V \{v, v1, v2}. (If v happens
to be a vertex at maximal distance to v1, these n− 3 queries are not needed.) Thus, L obtains
the distance sequence d(v2, ).

Then L has asked at most 3n− 6 queries, and the information thus obtained is sufficient to identify
the target hyperpath. To see this, first note that v1 and v2 are vertices “at opposite ends” of the
target hyperpath H∗. That means, we can determine the edge set of H∗ as {e1, . . . , ed}, where (i)
v1 ∈ e1 \ {e2, . . . , ed}, (ii) v2 ∈ ed \ {e1, . . . , ed−1}, and (iii) ei intersects ei+1 for 1 ≤ i ≤ d− 1.
For every vertex v′ in H∗ and each i ∈ {1, . . . , d}, we have:

• v′ ∈ ei \ (ei−1 ∪ ei+1) iff d(v1, v
′) = i and d(v2, v

′) = d− i + 1;

• v′ ∈ ei ∩ ei+1 iff d(v1, v
′) = i and d(v2, v

′) = d− i;

where we assume e0 = ed+1 = ∅. Thus, H∗ is fully identified.
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4. Learning hyperstars

Hyperpaths can be seen as an extreme case of (degenerate) hypertrees. In the same vein, hyperstars
form the opposite extreme. It is thus of interest to contrast our bounds on the SP query complexity
of hyperpaths with the corresponding bounds for hyperstars.

In the non-adaptive setting, hyperstars again require a quadratic number of queries, even when
focusing on r-uniform c-hyperstars, when r and c are known to the learner. The proof is very similar
to that of Theorem 2 and given in Appendix B.

Theorem 6 Ω(n2 − 2n(r − c)) non-adaptive SP queries are needed to learn an r-uniform c-
hyperstar of order n, where r ≥ 3.

As in the case of hyperpaths, the ability to adapt queries depending on the responses of the
oracle reduces the number of queries needed to learn hyperstars. We make use of a result by Liu
and Mukherjee (2022), in order to show that the number of SP queries required for learning any
member of the class of all (not necessarily uniform) (≤ c)-hyperstars of order n is in Θ(mn + cn),
where m is the number of edges in the target hyperstar. This holds irrespective of whether or not m
and c are known to the learner.

Liu and Mukherjee (2022) consider the problem of learning partitions of a graph with member-
ship queries. A hidden graph with n vertices is assumed to have m connected components, and the
goal of the learner is to find out the set of vertices in each component. A membership query asks
whether any two vertices belong to the same component or not. Liu and Mukherjee (2022) show
that the learner (in an adaptive setting) can be forced to make at least (m− 1)n−

(
m
2

)
queries, if m

is known in advance (their Theorem 1.2), and at least mn−
(
m+1
2

)
queries otherwise (their Theorem

1.3). Moreover, both these lower bounds are tight, as Liu and Mukherjee (2022) demonstrate with
Algorithm 1, which was originally proposed by Reyzin and Srivastava (2007).

Algorithm 1 (Reyzin and Srivastava (2007)) Let v0 ∈ V be an arbitrary vertex. Initialize a set
of known vertices as V ∗ = {v0}, and a set of representative vertices as R = {v0}. Then repeat the
following steps until V ∗ = V .

1. For every unknown v ∈ V \ V ∗ and every representative r ∈ R, ask a query for (v, r) to
determine whether v and r belong to the same component.

2. As soon as one of these queries, say (v, r̄), receives the answer yes, then add v to V ∗; we
now know that u and r̄ are in the same component.

3. Else, i.e., if all these queries receive the answer no, then add v to R; we now treat v as the
representative of a newly detected component.

Theorem 7 (Liu and Mukherjee (2022)) Algorithm 1 learns the m components of a hidden graph
with n vertices using at most mn−

(
m+1
2

)
queries if m is not known in advance, and can be capped

to use at most (m − 1)n −
(
m
2

)
queries, if m is known in advance. Both these upper bounds are

tight.

Learning a c-hyperstar is not much different than learning the components of a hidden graph.
Suppose C ⊆ V is the intersection of all edges in the target hyperstar. The modified edges e \ C,
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for e ∈ E, then form a partition of V \ C into m parts. Learning this partition with SP queries is
equivalent to learning the m components of a hidden graph with vertex set V \C, using membership
queries. This is because an SP query on a hyperstar admits only two possible answers: the answer
1 is equivalent to a yes for the corresponding membership query; the answer 2 corresponds to a no.
This means, we can learn a hyperstar by first learning C and then applying Algorithm 1.

Theorem 8 The minimum number of SP queries needed for learning any member of the class of
all (not necessarily uniform) (≤ c)-hyperstars of order n is in Θ(mn+ cn), where m is the number
of edges in the target hyperstar. This holds irrespective of whether or not c and m are known to the
learner.

Proof The upper bound O(mn + cn) is obtained by the following learner L.
First, L picks a vertex v and asks n − 1 SP queries to obtain the distance sequence d(v, ). If

d(v, ) = 1n−1, then v is in the intersection C of all edges of the target hyperstar H∗; we then
repeat this procedure with a new vertex instead of v, until we find the first vertex v′ for which
d(v′, ) 6= 1n−1. In this first stage, L consumes at most (c + 1)(n− 1) ∈ O(cn) queries.

Second, L picks any two vertices v′, v′′ for which it has confirmed d(v′, v′′) = 2. At least one
such pair of vertices has been found in the first stage, if any exists. In particular, v′, v′′ /∈ C. Now
L needs to pose only O(n) additional queries to obtain both d(v′, ) and d(v′′, ). The vertices at
distance 1 from both v′ and v′′ now form the set C.

In the sum, so far, L has spent O(cn) queries to identify C. As argued before the formulation
of Theorem 8, it now suffices for L to invoke Algorithm 1 to learn the remaining parts of each edge
in H∗, which can be done at an additional cost in O(mn), according to Theorem 7. In total, the
number of queries posed by L is in O(mn + cn).

It remains to show a lower bound of Ω(mn + cn). Clearly, the problem of identifying H∗

does not become harder when C is known. Therefore, the lower bound of Ω(mn) for learning
graph components (from Theorem 7) applies to the problem of learning hyperstars as well. A lower
bound of Ω(cn) follows immediately from Corollary 4. In combination, we obtain a lower bound
of Ω(mn + cn).

Remark 9 For adaptive learning of hyperpaths, we showed that the SP query complexity is in
Ω(cn) when the target hyperpaths may consist of only two edges (see Corollary 4). This complexity
is reduced to Θ(n) when the target graph is guaranteed to have at least three edges (Theorem 5).
This raises the question whether the query complexity Θ(mn+cn) in Theorem 8 can also be reduced
to Θ(mn) if the target hyperstar is known to have at least three edges. The answer to this question
is ‘no’. To see this, one can modify Lemma 3 to apply to a class of hyperstars with three edges,
without any change in the lower bound on the query complexity.

5. Learning hypertrees

In this section, we will provide two upper bounds for learning certain families of hypertrees. Each
bound is formulated in terms of various parameters of the target hypertree, corresponding to efficient
learning algorithms for various subclasses of hypertrees. Our first bound implies that binary (≤ c)-
hypertrees can be learned with a number of SP queries that is linear in both n and the diameter d,
while the second bound shows that r-uniform c-hypertrees have an SP query complexity linear in r,
n, and (roughly) the number of edges at any fixed distance from a maximally eccentric vertex.
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Lemma 10 Given any unknown (≤ n)-hypertree with n vertices and unknown diameter d ≥ 3,
2n− 3 adaptive SP queries are sufficient to learn the diameter d as well as to determine a vertex of
maximum eccentricity.

Proof An algorithm L for learning the diameter of a hidden (≤ n)-hypertree H = (V,E) proceeds
as follows. First, L selects an arbitrary vertex v and asks n − 1 queries to obtain the distance
sequence d(v, ). Since H has at least three edges, this distance sequence is not equal to 1n−1. Now
L chooses a vertex, say w, whose distance from v equals the maximum distance number in d(v, ).
Then L asks an additional n− 2 queries to obtain d(w, ) (notice that d(w, v) was already obtained
before). Clearly, ecc(w) ≥ ecc(u) for all u ∈ V . Thus, the diameter of H equals the maximum
distance number occurring in d(w, ). This completes the proof.

Our first upper bound for adaptively learning hypertrees concerns binary hypertrees with arbi-
trary diameter d ≥ 3 and arbitrary size of edge intersections. In the classical graph setting, where
edges contain exactly two vertices, a similar learning problem was studied by Hein (1989), who
provided an algorithm for learning binary trees adaptively with O(n log(n)) SP queries. Hein’s
algorithm, however, does not extend in a straightforward manner to hypertrees. At its core, their
method uses a notion called “depth” of a node (not to be confused with the typical notion of depth of
a node in a tree), which does not translate immediately to the hypertree setting. We hence designed
a new algorithm to prove the following theorem.

Theorem 11 Let H be the class of all binary (≤ n)-hypertrees of order n and diameter at least
3. Then O(nd) SP queries suffice to adaptively learn any target hypertree H ∈ H, where d is the
diameter of H and is not known to the learner in advance.

Proof By Lemma 10, since d ≥ 3, a learner L can first determine a vertex w of maximum eccentric-
ity, as well as the diameter d, at the expense of O(n) SP queries. Then, L calls a recursive procedure
P with three inputs: (i) the vertex set V , (ii) the vertex w and its distance sequence d(w, ), (iii) the
diameter d. The recursive procedure P works as follows.

The base case applies when d ≤ 2. Here the target is a binary (≤ n)-hypertree with diameter
at most 2, which means it is a hyperstar with at most 3 edges. The intersection of all edges consists
of exactly the vertices at distance 1 from both w and w′ for some vertex w′ at maximal distance
from w; they are known from calculating d(w, ), thus identifying a suitable choice for w′, and then
calculating d(w′, ). Now P invokes Algorithm 1 to learn the partition of the remaining vertices
into edges; this can be done with O(mn) = O(3n) = O(n) queries (see Theorem 7). The target is
now identified and P terminates.

The general case applies when d ≥ 3. From the calculation of d(w, ), we obtain a vertex v
with d(w, v) = d. Clearly, the (unique) hyperpath Hwv in H that connects w and v is a longest
hyperpath contained in H as a sub-hypergraph. The procedure P now determines Hwv as well as,
for each maximal sub-hypertree H ′ of H that consists of edges not belonging to Hwv, a vertex set
VH′ . Specifically, VH′ is the set of vertices belonging to H ′ but not to Hwv. This is done as follows.

First, the procedure P asks O(n) queries to determine d(v, ). A vertex u belongs to Hwv iff
d(w, u) + d(u, v) ∈ {d, d+ 1}. The actual placement of vertices in edges along Hwv is determined
in the same way as in the proof of Theorem 5, solely based on the responses to previous queries.

Now let t ≥ 2 and consider all vertices u for which d(w, u) + d(u, v) = d + t. These vertices
are not in Hvw. If t is even, such a vertex u is in a sub-hypertree that ends in an edge adjacent to two

9
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w
v

e1 e2 e3 ed

. . .C1 C2 C3 Cd−1

g1 gd−1

h

Figure 2: Learning a longest path Hwv in a hypertree. Here Hwv consists of edges e1 through
ed. Edges g1 and gd−1 are part of sub-hypertrees of type 1, while h is an edge of a
sub-hypertree of type 2.

edges of Hwv. We call this a sub-hypertree of type 1. For illustration, in Fig. 2, such u could lie,
e.g., on a sub-hypertree containing g1 or gd−1, but not on a sub-hypertree containing h. If t is odd,
the vertex u is in a sub-hypertree that ends in an edge adjacent to exactly one edge of Hwv. We call
this a sub-hypertree of type 2. For illustration, in Fig. 2, such u could lie, e.g., on a sub-hypertree
containing h, but not on a sub-hypertree containing g1 or gd−1.

Now, P has identified the vertex sets of all maximal sub-hypertrees in H that are adjacent to
Hwv, except for the intersections of these sub-hypertrees with Hwv.

Since the degree of each edge is at most 3, the distance values d(w, u) and d(u, v) tell us not
only the type of sub-hypertree in which u is located, but also to exactly which edge(s) on Hwv this
sub-hypertree is adjacent. Next, P determines the intersection(s) of these sub-hypertrees with Hwv.
In Fig. 2, this would mean to identify the intersections of (i) g1, e1, and e2, i.e., C1, (ii) gd−1, ed−1,
and ed, i.e., Cd−1, and (iii) h and e3.

The intersections of type 1 sub-hypertrees with Hwv have already been identified when learning
Hwv, since any non-empty intersection of three edges equals the intersection of two of these edges.
In our case, two of these edges belong to Hwv and their intersection is known already. In Fig. 2, the
intersection of g1, e1, and e2 equals the intersection of e1 and e2, and is known already.

Learning the intersections of type 2 sub-hypertrees with Hwv requires additional SP queries. For
each type 2 sub-hypertree H ′, let ei be the edge on the hyperpath Hwv with which the sub-hypertree
H ′ intersects. Further, let V ′ be the set of vertices in H ′, except those belonging to Hwv. (This set
was identified before.) Now procedure P picks any vertex u ∈ V ′ that has the smallest distance to
w (and to v), i.e., d(w, u) ≤ d(w, u′) for all u′ ∈ V ′. Clearly, u belongs to the edge e′ of H ′ that is
adjacent to ei. In Fig. 2, ei would be e3, the sub-hypertree H ′ would be attached to e3 via the edge
e′ = h, and u would be a member of h, but not of e3. Procedure P now asks SP queries of the form
(u, z) for each vertex z ∈ ei. The vertices z for which d(u, z) = 1 belong to the intersection of ei
and e′; all other queried vertices z fulfill d(u, z) = 2 and do not belong to this intersection. This
step costs O(n) queries in total.

10
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Now, for each sub-hypertree H ′ (of type 1 or 2), P chooses a vertex w′ in V ′ that has maxi-
mum distance from w—such w′ must have maximum eccentricity in H ′. This w′ can now be used
to compute the diameter d′ of H ′ in O(n) queries, cf. Lemma 10. Procedure P then calls itself
recursively with (i) the vertex set V ′ of H ′, (ii) the vertex w′ and its distance sequence, and (iii) d′.

This recursion has depth O(d), because d′ < d, so that the base case (diameter at most 2) will
be reached after fewer than d recursive calls. Since the number of SP queries made at each level of
the recursion (across all sub-hypertrees at the same recursive depth) is in O(n), the learner L makes
O(dn) queries overall, while learning the target hypertree.

Next, we present an upper bound for learning r-uniform c-hypertrees of unknown diameter
d ≥ 3. By Lemma 10, for such hypergraphs, finding a vertex w with ecc(w) = d requires O(n) SP
queries. In an r-uniform hypertree, such vertex w satisfies d(w, ) = 1r−1, 2k2(r−c), . . . , dkd(r−c)

for some positive integer values k2, . . . , kd. The value ki is simply the number of edges whose
non-shared portion lies at distance i from w in the target hypertree, see Appendix C.

Theorem 12 Let H be the class of all r-uniform c-hypertrees of order n and diameter at least 3,
where r and c are fixed, and r > 2c. Then

m(
5

2
r − 5

2
c− 2)− d(r − c− 2) + 2c− 3 +

r − c

2

d∑
i=1

k2i + (r − c)
d∑

i=2

kiki−1

SP queries suffice to adaptively learn any target hypertree H ∈ H. In this bound, d denotes the
diameter of H , k1 = 1, and the ki for i > 2 are such that d(w, ) = 1r−1, 2k2(r−c), . . . , dkd(r−c)

for some vertex w of maximum eccentricity in H .2 This number of queries is in

O(n + r
d∑

i=1

k2i + r
d∑

i=2

kiki−1) .

Proof Let H ∈ H. We first fix some terminology. If w is a vertex of maximum eccentricity in
H , let d(w, ) = 1r−1, 2k2(r−c), . . . , dkd(r−c). If e is an edge in H and w /∈ e, then there is some
k > 1 such that exactly r − c vertices in e have distance k from w, while the remaining c vertices
have distance k − 1. The subset ê of r − c vertices at the larger distance is called the edge thrust of
e wrt w. The distance of an edge thrust ê to w is simply the distance of any vertex in ê to w. If e
contains w, then all of e forms its edge thrust; this is the only edge thrust of size r.

There exist ks edge thrusts at distance s from w. We denote these by ês,i for i ∈ [ks]. For
s ∈ {2, . . . , d} and i ∈ [ks], each edge thrust ês,i is a subset of an edge that has c common vertices
with at least one edge thrust ês−1,i where i ∈ [ks−1]. To learn H , we proceed in three phases.

In phase 1, our learner determines a vertex w of maximum eccentricity, as well as the values d
and ks for 2 ≤ s ≤ d. By the proof of Lemma 10, this can be done with O(n) SP queries.

In phase 2, the learner determines all edge thrusts ês,i for s ∈ {2, . . . , d} and i ∈ [ks], as well
as the edge including w. If ks = 1, the learner can already determine the edge thrust ês,i based
on queries from phase 1; ês,i consists of all vertices at distance s from w. For ks > 1, the learner
chooses an arbitrary vertex v1 at distance s of w and then asks SP queries for all pairs (v1, v2) for

2. For each target hypertree H , the actual value of each individual ki depends on the choice of w, we assume a choice
of w that maximizes the stated bound on the number of queries.

11
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all vertices v2 at the same distance s from w. Thus the learner uses ks(r− c)− 2 queries to identify
one edge thrust ês,i for some i ∈ [ks]; in particular, this edge thrust contains the vertex v1. The
learner repeats this algorithm on the remaining vertices for all i ∈ [ks], to learn all edge thrusts ês,i
for i ∈ [ks]. This requires no more than

ks∑
i=2

(i(r − c)− 2) = (r − c)

ks∑
i=2

i− 2(ks − 1) = (r − c)
(ks + 2)(ks − 1)

2
− 2(ks − 1)

SP queries. Let A = {i ∈ [d] | ki ≥ 2}. Our learner asks all these queries for each value of ks, for
a total of

∑
s∈A

∑ks
i=2(i(r − c) − 2) SP queries. As (r − c) (ks+2)(ks−1)

2 − 2(ks − 1) = 0 when
ks = 1, the number of queries used in phase 2 is

∑
s∈A

ks∑
i=2

(i(r − c)− 2) =
d∑

s=1

ks∑
i=2

(i(r − c)− 2) =
r − c

2

d∑
s=1

(ks + 2)(ks − 1)− 2
d∑

s=1

(ks − 1)

=
r − c

2

d∑
s=1

k2s +
m

2
(r − c− 4)− d(r − c− 2) .

In phase 3, our learner determines which edges overlap, and which vertices lie in their inter-
section. To learn all vertices in the intersections of edges in H , let u be a vertex in an edge thrust
êd,i where i ∈ [kd]. The learner asks kd−1(r − c) SP queries to obtain d(u, z) for all vertices z in
edge thrusts êd−1,i for i ∈ [kd−1]. From queries resulting in the answer 1, the learner learns the
intersection of the edge that includes êd,i with the edge thrust êd−1,j , for some j ∈ [kd−1].

The learner repeats this procedure for one vertex each per edge thrust êd,i for i ∈ [kd], to
determine distances to all vertices in êd−1,i for i ∈ [kd−1]. Thus, it uses (r − c) kd kd−1 SP queries
to determine intersections of edges including edge thrusts êd,i and êd−1,j for i ∈ [kd] and j ∈ [kd−1].
In total, to learn all edge intersections in H , it suffices to ask (r − c)

∑d
i=2 kiki−1 SP queries.

Applying Lemma 10, and using the fact that n = m(r − c) + c, the total number of SP queries
asked by our learner is thus at most

2n− 3 +
r − c

2

d∑
i=1

k2i +
m

2
(r − c− 4)− d(r − c− 2) + (r − c)

d∑
i=2

kiki−1

= m(
5

2
r − 5

2
c− 2)− d(r − c− 2) + 2c− 3 +

r − c

2

d∑
i=1

k2i + (r − c)
d∑

i=2

kiki−1 .

Remark 13 Let b = max{ki | i ∈ [d]}. We have
∑d

i=1 ki = m and

r
d∑

i=1

k2i + r
d∑

i=2

kiki−1 ≤ br
d∑

i=1

ki + rb
d∑

i=2

ki < brm + rbm = 2brm.

Theorem 12 then implies that the SP query complexity of learning r-uniform c-hypertrees is in
O(rbm) = O(bn). Hence, if b is a constant (as, e.g., in the special case of learning r-uniform
c-hyperpaths), then the upper bound is linear in the number of vertices.
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6. Conclusions

Hypertrees are objects of interest for many applications. This paper analyzed their learnability from
SP queries, which are a natural form of query previously studied in the context of learning graphs,
but not in the context of hypergraphs. There are multiple insights to be gained from our algorithms
and bounds.

For example, there is a strong connection between learning hyperstars and learning graph par-
titions, which was studied by Liu and Mukherjee (2022). Since the hyperstars we consider are just
finite set systems in which the intersection of any two sets equals the intersection of all sets, this
connection is certainly not surprising, but it still turned out useful for our subsequent analysis.

Of potential value are also our algorithms for learning binary hypertrees and for learning r-
uniform c-hypertrees. Firstly, the algorithm for binary hypertrees can possibly be extended to handle
more complex structures, for instance hypertrees of larger degree, where any edge along the path
Hwv can host both a sub-hypertree of type 1 and a sub-hypertree of type 2. A more detailed analysis
of this type of structure is left for future work. Our algorithm for learning uniform hypertrees nicely
reveals the effect of the parameters ki, which are related to the number of edges at a certain distance
away from a vertex of maximum eccentricity. Insights into the effect of these parameters may be
helpful in the design of learning algorithms for more complex classes of hypergraphs, possibly also
using different kinds of queries.

In this vein, we hope that our work lays the foundation for future studies on learning interesting
classes of hypergraphs from various types of queries.
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Table 1: Table of Notation
SP shortest path
d diameter
n number of vertices
m number of edges
r number of vertices per edge in a uniform hypergraph
c number of common vertices between two overlapping edges

d(v, w) distance between vertices v and w
d(v, ) distance sequence of vertex v

(sequence of distances between v and all n− 1 other vertices)
ei the edge with label i in a hypergraph

Zhihui Wang, Jianrui Chen, Fernando E. Rosas, and Tingting Zhu. A hypergraph-based framework
for personalized recommendations via user preference and dynamics clustering. Expert Systems
with Applications, 204:117552, 2022.

Appendix A. Overview of Notation

Table 1 gives an overview of the notation used throughout the paper.

Appendix B. Proof of Theorem 6

Theorem 6 Ω(n2 − 2n(r − c)) non-adaptive SP queries are needed to learn an r-uniform c-
hyperstar of order n, where r ≥ 3.

Proof Let S be a r-uniform c-hyperstar of order n, where r ≥ 3. If the query graph constructed by
the learner contains two non-adjacent vertices u and v whose joint neighborhood is of size at most
n − 2r + 2c, then the oracle can chose two hyperstars in which u is in one edge and and v is in
another. Let V1 be the set of vertices that the learner identifies in the joint neighborhood of u and v.
The size of V1 is at most n − 2r + 2c and contains the vertices in the shared section of S. In this
case the oracle places all vertices in V1 in edges from the third to the final edge.

Hence the oracle has sufficient freedom to place the vertices in V1 as desired, and therefore can
freely swap u and v in the first and second edges. Now, the learner will be unable to decide which
of u and v to place in the first and second edges. Thus the learner is not able to fully identify the
hidden hypergraph as required.

Therefore, a successful set of queries must yield a query graph G in which any two vertices u
and v are adjacent or have a joint neighborhood of size at least n − 2r + 2c + 1. Hence the query
graph G has at least Ω(n2 − 2n(r − c)) edges.

Suppose that G is the query graph induced by m(G) non-adaptive SP queries. Observe that the
minimum number of edges for such a query graph gives a lower bound for the minimum number of
SP queries.
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w1 w2

e1 e2 e3

e4

e5

e6

Figure 3: A 6-uniform 2-hypertree H

If every vertex has a degree at least n−2r+2c
2 , then

2m(G) =
n∑

i=1

di(G) ≥ n (n− 2r + 2c)

2
, which implies

m(G) ≥ n2 − 2nr + 2nc

4
. (1)

Otherwise, there exists a vertex v whose degree is less than n−2r+2c
2 . Then by our conclusion above,

the degree of each vertex that is not adjacent to v is strictly greater than n−2r+2c
2 . There are at least

n− n−2r+2c
2 such vertices that are not adjacent to v , so

2m(G) ≥ n− 2r + 2c

2

(
n− n− 2r + 2c

2

)
,

that is,

m(G) ≥ n2 − (2r − 2c)2

8
. (2)

Inequalities (1) and (2) imply that the learner must ask Ω(n2 − 2n(r − c)) non-adaptive SP
queries to fully identify S.

Appendix C. Illustration of Parameters ki for r-Uniform c-Hypertrees, Theorem 12

Figure 3 shows an example of a 6-uniform 2-hypertree H . The diameter of H is d = 3, and the two
vertices w1 and w2 are of (maximum) eccentricity 3. Using the notation from Theorem 12, for w1

we have d(w1, ) = 1r−1, 2k2(r−c), . . . , dkd(r−c) = 15, 212, 38, which yields k2 = 3, k3 = 2. For
w2, we have d(w2, ) = 1r−1, 2k2(r−c), . . . , dkd(r−c) = 15, 24, 316, which yields k2 = 1, k3 = 4.
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