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Abstract
Simple, sufficient explanations furnished by short decision lists can be useful for guiding stake-

holder actions. Unfortunately, this transparency can come at the expense of the higher accuracy
enjoyed by black box methods, like deep nets. To date, practitioners typically either (i) insist on
the simpler model, forsaking accuracy; or (ii) insist on maximizing accuracy, settling for post-hoc
explanations of dubious faithfulness. In this paper, we propose a hybrid partially interpretable
model that represents a compromise between the two extremes. In our setup, each input is first
processed by a decision list that can either execute a decision or abstain, handing off authority to
the opaque model. The key to optimizing the decision list is to optimally trade off the accuracy of
the composite system against coverage (the fraction of the population that receives explanations).
We contribute a new principled algorithm for constructing partially interpretable decision lists, pro-
viding theoretical guarantees addressing both interpretability and accuracy. As an instance of our
result, we prove that when the optimal decision list has length k, coverage c, and b mistakes, our
algorithm will generate a decision list that has length no greater than 4k, coverage at least c/2, and
makes at most 4b mistakes. Finally, we empirically validate the effectiveness of the new model.
Keywords: Interpretability, Decision List, Partially Interpretable Models

1. Introduction

In many settings throughout society, it is desirable that decision-makers provide a set of explana-
tions to justify any unfavorable decision. While the effort to pin down what broadly constitutes an
explanation has devolved into a fraught philosophical exercise, we focus here on two desiderata. In
our cases of interest, we would like to produce explanations that are sufficient and simple. Consider
an explanation of the form: “you received an unfavorable decision U because of E”. For explana-
tion E to be sufficient, it must be the case that whenever predicate E is satisfied, the unfavorable
decision U is received. While the explanation doesn’t recommend precise actions to realize the
positive decision in the future, they are still action-guiding in that they point to a condition that must
change. Moreover, these explanations are only useful if the candidate conditions are sufficiently
simple to parse and cover a substantial fraction of the population. The explanation “you were de-
nied a loan because your current credit utilization is exactly 34.12%” is not very useful. But if the
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condition were “because your credit utilization is above 20%”, you could use this information to
plan.

Unfortunately, for many real-world problems, such simplicity-restricted rule lists cannot com-
pete on utility against more expressive model classes. Thus, a tension emerges between the accuracy
of a method and its amenability to such simple sufficient explanations. Many practitioners assert
that we should always use the simpler methods in certain scenarios (Rudin, 2019; Letham et al.,
2015; Lan et al., 2023). Others suggest post hoc heuristics for “explaining” black-box models,
either pointing to “salient” features or approximating the complex model by a simple model for
purposes of furnishing an explanation (Ribeiro et al., 2016; Lundberg and Lee, 2017; Ribeiro et al.,
2018). In both cases, it’s not clear what these ostensible explanations really mean.

In this paper, we propose to navigate this tension as a tradeoff between coverage and accuracy.
We accomplish this by constructing partially interpretable models, where a simple model, amenable
to generating the desired explanations, runs in the foreground, defaulting to a black-box model
whenever it abstains. The key insight is that even when the expressivity of the black-box model
is required to achieve high overall accuracy on the entire population, there may exist large sub-
populations for which the simple model is fit to task. Whenever the simple model, instantiated here
as a decision list, makes a decision, it generates a valid explanation. Whenever the simple model
abstains, no explanation is given. Effectively, our approach partitions the population into an “easier”
subset, for which we can have our cake and eat it, and a more difficult subset, for which accuracy
comes at the cost of explainability. While such hybrid approaches may not be appropriate in all
cases (e.g. when regulatory authorities mandate explanations for all), we believe both that there are
cases when they are appropriate and characterizing this tradeoff is of general conceptual interest.

Specifically, in our proposed partially interpretable models, the “simple model” consists of a
decision list and we are agnostic to the form of the black-box model f . We introduce a principled
algorithm for learning the decision list given a fixed f and derive associated theoretical guarantees
on coverage and accuracy. Decision lists operate by moving from one condition to another until a
condition is satisfied, at which point an output is produced. In our setup, we add a fallback option,
defaulting to f ’s prediction whenever none of the conditions are met. Note that the explanation E
here consists of the set of all conditions tested, starting from the head of the list and going until the
condition that was met.

As a special case, our algorithm can be applied in cases where we only require explanations
of one side of the classification (say, the unfavorable decision). In such cases, the simplicity of
explanations increases dramatically, because we can consider all conditions that are met (e.g., “your
income was too low”, “your credit utilization is too high”) to each constitute a sufficient expla-
nation. In other words, we need only return the conditions that were met, not the conjunction of
all conditions that were tested. This special case is conceptually important given our motivating
examples, where only unfavorable decisions require recourse.

Figure 1 illustrates an example of a partially interpretable model based on a decision list. By
allowing the model to return f ’s choice, we combine f , the opaque model, with the decision list to
create a partially interpretable model. This approach enhances the accuracy of decision lists without
sacrificing interpretability altogether.

Partially interpretable decision list models, which modifies the opaque model f to enhance
transparency, offers several advantages:

1. Accuracy interpretability trade off. Partially interpretable decision list models have the
ability to showcase both ends of the spectrum in terms of interpretability and accuracy. On
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Figure 1: An interpretable decision list model for mammogram classification. The model uses sets
of simple rules that can classify samples as benign or malignant. If no rule matches a
sample, i.e., ⊥ is returned, a non-interpretable neural network f gives a prediction. The
test coverage and accuracy of each rule are shown on the right. The three interpretable
rules cover 63% of the test samples, and the whole model achieves 79% accuracy overall.
The difference in test accuracy between the stand-alone neural network and the one that
includes the partial interpretable model is less than 1%.

one hand, the decision list that consistently produces ⊥ as its result, represents the opaque
model which lacks interpretability. On the other hand, the decision list that never returns
⊥, is a fully interpretable model, although it may come with a potential decrease in accuracy.
Our approach empowers us to find a balance between these two extremes by selecting a partial
interpretable model that best suits the given situation. This flexibility allows us to tailor the
level of interpretability and accuracy according to our specific needs.

2. Local advantage: the sufficiency property. Partial interpretable decision list provides a lo-
cal explanation for all examples it covers. This explanation is fully sufficient (Dasgupta et al.,
2022), i.e., whenever the explanation holds, all examples that satisfy the explanation have the
same prediction. This is in strike comparison to the popular post-hoc explanation method An-
chors (Ribeiro et al., 2018). Anchors is a technique for providing a local explanation, which
generates a rule as an explanation for a particular instance. The rule generated by Anchors
is not entirely precise, so if the rule is applied, the label cannot be determined with complete
certainty. Therefore, two users who are subject to the same rule may receive different pre-
dictions, making the rule an unreliable explanation. For example, suppose a user is refused a
loan due to a salary of 15K. In that case, the explanation would not be satisfactory if another
user received a loan with a salary of 10K. In summary, unlike post-hoc explanations such as
Anchors that rely solely on high probability, partially interpretable models take a different ap-
proach by modifying the classifier f itself. This modification aims to provide fully sufficient
explanations, effectively addressing the problem of unreliable rules.

3. Global advantage: model (partial) transparency. Black-box models, which provide lim-
ited transparency, have become the norm in modern machine learning, posing a problem in
consequential scenarios. Fortunately, partial interpretable models enhance transparency. The
procedure we suggest in this paper modifies a black-box model’s predictions to ensure that
a significant portion of the decision-making process becomes more transparent, granting us
valuable insights into the internal mechanisms of the decision-making process.

1.1. Our results

This paper introduces and analyzes a new computationally efficient algorithm for finding partial
interpretable decision lists. There are three main parameters used to quantify the quality of these
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models: length, coverage, and mistakes. Length ensures that the decision list is simple, coverage
measures the probability that the decision list is used, and mistakes indicate the probability of mis-
classifications when the decision list is used. We prove that the new algorithm presented in this
paper have good performance with respect to all three parameters compared to the optimal partially
interpretable model. Namely, we prove the following.

Theorem 1 (main theorem, informal) Suppose there is a partial interpretable decision list with
length k, b mistakes and coverage c. Then, the output of Algorithm 1 is a decision list with at most
O(k) rules, coverage at least Ω(c), and at most O(b) mistakes.

In addition to the theoretical analysis, this paper also includes an empirical evaluation of the
proposed algorithm. We test the algorithm on several datasets and compare its performance to other
black-box models. Our experimental results demonstrate that the proposed algorithm is effective in
producing partially interpretable models that achieve high accuracy while maintaining interpretabil-
ity. Overall, the empirical evaluation provides further evidence of the practical usefulness of the
proposed algorithm in real-world applications.

1.2. Related work

In this paper, we develop partially interpretable models with provable guarantees. Namely, we build
an algorithm that returns a partially interpretable model having approximation bounds compared to
the optimal model. Another advantage of our model is that its explanations are faithful, i.e., the
model satisfies the sufficiency property (Dasgupta et al., 2022). The sufficiency property ensures
that all instances meeting the conditions specified in an explanation share the same label. While
prior research has focused on variants of partially interpretable models, none have been able to
achieve an approximation algorithm that returns a model satisfying the sufficiency property. For
further details, please refer to Table 1 and the next two paragraphs.

Table 1: Comparison with prior research related to partially interpretable models

Work
Criterion

Approximation guarantees Sufficiency

Ours ✓ ✓

Lakkaraju et al. (2016) ✓ ✗

Wang (2019) ✗ ✗

Pan et al. (2020) ✗ ✗

Rafique et al. (2020) ✗ ✗

Wang and Lin (2021) ✗ ✓

Ismail et al. (2022) ✗ ✗

Ferry et al. (2023) ✗ ✗

The only related work having approximation guarantees compared to the optimal model is
Lakkaraju et al. (2016). This work constructs a decision set, which differs from a decision list
as it includes a set of rules without a specific order. Additionally, they have a single objective that
combines all desired model’s parameters (e.g., coverage, accuracy, and complexity). Optimizing
this objective does not ensure simultaneous guarantees for all parameters. In contrast, our approach
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guarantees the performance of each term individually. In simpler terms, our algorithm yields a solu-
tion with a small number of rules, a small number of errors, and a large coverage. Other theoretical
works, such as Ferry et al. (2023), employ a PAC argument to bound accuracy but do not provide
bounds on the coverage. Additionally, Wang and Lin (2021) establishes bounds on the properties of
each rule individually, but it does not offer a bound compared to the optimal solution.

Next, we explore previous research in view of the sufficiency property. Lakkaraju et al. (2016)
uses a decision set approach, wherein, if multiple rules cover an example, the decision defaults
to a tie-breaking function. Consequently, it lacks the sufficiency property. For instance, consider
two samples, x1 covered solely by the rule r1 with a resulting label of 0, and x2 covered by both
r1 and r2. Although the explanation provided by r1 is applicable to x2, it is directed to the tie-
breaking function and may receive a label of 1. The remainder of Table 1 typically employs a gating
mechanism to determine whether to use the black-box model or the interpretable model. However,
a generic gating mechanism poses a challenge to the sufficiency property. For instance, the gating
mechanism might steer x1 towards the interpretable model, which predicts label 0 and provides
explanation r. Yet, r might also cover x2, but the gating mechanism may steer x2 towards the
black-box model, resulting in label 1. Consequently, the explanation r fails to be sufficient for label
determination. Nonetheless, in Wang and Lin (2021) and in our own work, the gating mechanism is
engineered to ensure the sufficiency property is maintained.

Other works diverge from the pursuit of constructing interpretable models or even those with
partial interpretability. Instead, their focus lies in adding post-hoc explanations to an existing model
prediction. There are various types of post-hoc explanations, including finding feature attributions
(Lundberg and Lee, 2017; Chen et al., 2018; Senetaire et al., 2023), approximating the model
(Ribeiro et al., 2016, 2018), returning counterfactual examples (Wachter et al., 2017; Mothilal
et al., 2020; Deutch and Frost, 2019), or providing concept explanations (Kim et al., 2018; Es-
pinosa Zarlenga et al., 2022). However, the use of post-hoc explanations poses many difficulties
(Rudin, 2019), and their faithfulness is questionable (Adebayo et al., 2018; Dasgupta et al., 2022).

In a different line of research, various models exist for learning with abstention (Hendrickx et al.,
2021), such as the mistake-bound model (Li et al., 2008; Rivest and Sloan, 1988), active learning
(El-Yaniv and Wiener, 2010; Wiener and El-Yaniv, 2011), online settings (Cortes et al., 2018), and
transductive learning (Goldwasser et al., 2020). The works of Sayedi et al. (2010); Zhang and
Chaudhuri (2016) examined the tradeoff between making mistakes and abstaining. One of the main
differences between our work, and the previous works, is that we limit the way that we can select the
abstaining. Specifically, we limit the abstaining to be obtained by a partially interpretable decision
list. This important restriction is a major challenge of our work.

2. Problem formulation

We denote the example domain by X and the label domain by Y and we fix a classifier f : X → Y .
In this paper,we focus on partially interpretable decision lists with a family of rules R, where each
rule r ∈ R is composed from a condition cond : X → {True,False} and a class label o ∈ Y .

Definition 2 (partially interpretable decision list) Given a classifier f : X → Y , a partially in-
terpretable decision list with family of rulesR is a decision list, where the last condition leads to “I
don’t know” which defaults to the classifier f . More formally, the new model is defined by a series
of rules (r1, o1) . . . , (rk, ok) ∈ R× Y . Given an example x, it goes through the following process:
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• if r1(x) is True return o1

• else if r2(x) is True return o2

• else if . . .

• else return ⊥ and default to f(x)

For example, in Figure 1, r1 is “Shape = Round and Margin = Circumscribed”, o1 is
Benign, r2 is “Shape = Oval and Margin ̸= Ill Defined”, and o2 is Benign.

There are four measures to quantify the quality of a partially interpretable decision list DL :
X → Y ∪{⊥}, which we describe next. The first three measures quantify the interpretability of the
partially interpretable decision list, while the last one measures its performance.

1. Length of decision list—number of rules in the decision list, i.e., k, preferably be as small
as possible.

2. Coverage—empirical coverage (or coverage for short) is the fraction of examples in the train-
ing data x1, . . . , xn that the decision list does not return ⊥.

coverage(DL) :=

∑n
i=1 I(DL(xi) ̸= ⊥)

n
∈ [0, 1].

If the coverage is 0, then the model is simply the opaque model f . If the coverage is 1, then
every prediction is handled by the decision list. Intermediate values allow us to trade off the
accuracy of f and the interpretability of the decision list by compromising on the level of
coverage.

3. Mistakes—empirical fraction of mistakes is the number of examples in the training data
(x1, y1) . . . , (xn, yn) that the decision list returns a wrong answer, divided by the unnormal-
ized coverage

mistake(DL) =

∑n
i=1 I(DL(xi) ̸= ⊥ ∧DL(xi) ̸= yi)∑n

i=1 I(DL(xi) ̸= ⊥)
∈ [0, 1].

4. Complexity of the family of rulesR— various methods exist for measuring its complexity,
such as using |R| for finite classes or employing the VC dimension of R for infinite classes
when Y = {0, 1}. We mainly use |R| as the complexity measure in this paper.

3. Algorithm

This section presents Algorithm 1 that learns a partial interpretable decision list with provable guar-
antees (the proof is in the next section). The algorithm operates by selecting a new rule at each step,
and once the intended coverage is achieved, it defaults to the opaque model, resulting in a partly
decision list. At each step, the algorithm selects a rule that has the minimal ratio of mistakes to
coverage, among all rules that are sufficiently large. The pseudocode for the algorithm can be found
in Algorithm 1.

The algorithm consists of two components: initialization and the main part, which is the rule
selection process. During the initialization phase, which occurs between Lines 5 and 11, various
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Algorithm 1 Learning partial explainer
1: Input: X = {(xi, yi)}ni=1: training data
2: ℓ : fraction covered to be considered large set (ℓ ∈ (0, 1))
3: s : fraction of examples to collect before algorithm stops (s ∈ (0, 1))
4: R : set of rules
5: # Initialization
6: ∀r ∈ R. Cr ← {xi ∈ X : r.cond(xi) = True}
7: ∀r ∈ R. Br ← {xi ∈ X : r.cond(xi) = True ∧ r.oi ̸= yi}
8: t← 1
9: U1 ← X

10: coverage so far← 0
11: rules← []
12:

13: # Rule Selection
14: while coverage so far < s do
15: r ← argminr∈R:|Ut∩Cr|≥ℓn

|Ut∩Br|
|Ut∩Cr|

16: coverage so far← coverage so far + |Ut ∩ Cr|/n
17: Ut+1 ← Ut \ Cr

18: t← t+ 1
19: rules.add(r)
20: end while
21: rules.add(‘else return ⊥’)
22: return rules

parameters are set up. These parameters include Cr, which represents the examples covered by rule
r, and Br, which represents the examples covered by rule r but produce incorrect labels, considered
as mistakes. The main part of the algorithm, the rule selection process, continues until a sufficient
number of examples, defined by the input s, have been covered. In each iteration, as seen in Line 15,
a rule is selected that minimizes the ratio of mistakes to coverage among all rules with a size of at
least ℓ, where ℓ is the input threshold. Once the rule selection process is complete, in Line 22, the
algorithm returns the list of all chosen rules.

To calculate the total running time of the algorithm, we need to consider two main factors: the
number of iterations and the time it takes to identify the relevant rule. The number of iterations, I , is
bounded in the next section. At each iteration, we need to find a corresponding rule and update the
set U based on the intersection of Ut with Bt and Ct. This process involves going through all rules
and finding |Ut ∩ Cr| and |Ut ∩ Br|, which can take up to |R| times n in the worst case scenario,
where |R| is the number of rules and n is the size of the training data. Therefore, the overall running
time is O(I · |R| · n).

4. Provable guarantees

In the following section, we will provide provable guarantees on the outcome of Algorithm 1. We
start by introducing the setting and main theorem. Then in Section 4.1, we bound the length of the
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obtained decision list and the empirical mistakes and coverage it achieves. Finally, in Section 4.2,
we move to prove the generalization bound.

Throughout this section, let us focus on a decision list DL consisting of rules R ⊂ R, which
covers examples C from the training data, makes errors B ⊆ C, and has a size of k = |R|:

if r1 then y1 else if r2 then y2 else if r3 . . . ,

where r1, r2, r3, . . . ∈ R. Here, the empirical coverage is c = |C|/n and the empirical mistakes is
b = |B|/|C|. For the proof, we want to rewrite R as a set of disjoint rules. For this purpose, we
defineR(≤k) as the set of at most k conjunctions fromR. Then, the rules inR(≤k) corresponding to
R are r1,¬r1∧ r2,¬r1∧¬r2∧ r3, . . ., and we denote this set by R∗ ⊆ R(≤k). Noticeably, the rules
in R∗ are disjoint. Thus, the total number of mistakes equals the summation of individual mistakes
of rules in R∗.

Theorem 3 (main theorem) Suppose there is a partial interpretable decision list with length k, b
mistakes, coverage c, and with family of rules R. Then for any 0 < α < β < 1 if one runs the
algorithm with ℓ = α

k · c and s = (1−β)c and a family of rulesR(≤k), then the output is a decision
list with at most k

α rules, coverage at least (1− β)c, and at most b/(β − α) mistakes.

For the specific choice of ℓ = α
k and s = (1 − β)c, the number of iterations, I , is bounded by

I ≤ k
α . Consequently, the total running time of the algorithm is O( kα · |R

(≤k)|). The running time
is dominated by k , which is expected to be small if the decision list we are comparing ourselves
to is indeed interpretable. We remark that if plugging α = 1/4 and β = 1/2 in Theorem 3 we can
immediately derive the statement made in the abstract.

Our algorithm has an interesting application where we only need explanations for one class,
such as an unfavorable decision. In this scenario, all rules inR have the same classification outcome
when used as input for Algorithm 1, and the same theoretical guarantees will apply. This approach
is advantageous for interpretability, as each rule in the list can be applied independently of the rules
that come before it in the list order.

Partial decision trees as benchmarks. Up until now, we have been using decision lists as a
benchmark to compare our algorithm’s results. However, some might argue that decision trees
would be a better benchmark due to their wide usage for interpretability and self-explanatory na-
ture. Interestingly, decision trees are a subtype of decision lists, as shown in Blum (1992). This
demonstrates the broad applicability of our results, as they also apply to decision trees benchmarks.
The reason for this is due to the reduction from a decision tree to a decision list. Specifically, a
decision tree having k leaves and depth m is equivalent to a decision list with length k, where the
depth m represents the complexity of the rules’ family. This equivalence is proved by converting
each path from the root to a leaf into a rule for the decision list, see Blum (1992) for more details.

4.1. Proof ideas

The proof analyzes the various parameters of the decision list, including its coverage, mistakes,
length, and the runtime of the algorithm. It bounds these parameters with respect to the optimal
partially interpretable decision list model. Bounding the mistakes is the most challenging aspect
which will be the focus of this section. Furthermore, it is imperative to prove the algorithm is
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well-defined, by establishing the existence of a rule that can be consistently chosen in Line 15. Sub-
sequently, we will demonstrate the primary steps involved in bounding the mistakes and establishing
the well-defined nature of the algorithm.

Denote the uncovered training example at iteration t by Ut. The algorithm only chooses large-
covering rules, where a rule j at time t is large-covering if its coverage, |Cj ∩ Ut|, is at least

|Cj ∩ Ut| ≥
α

k
· cn.

We denote the set of all large-covering rules at iteration t that are in R∗ as Lt. The first step in
the proof is to show that for each iteration t, the union of all the large-covering rules is at least
(β − α)|C|. Namely,

Claim 4 If one runs Algorithm 1 with s = (1−β)c and ℓ = α
k · c, then for each iteration t, it holds

that
Zt := | ∪j∈Lt Cj ∩ Ut| ≥ (β − α)|C|. (1)

The claim reveals that if β exceeds α, Zt is greater than zero, indicating that |Lt| is also greater
than zero. Whenever |Lt| > 0, it must contain at least one rule, making the instruction in Line 15
well-defined. Therefore, one implication of this observation is that the algorithm is well-defined
whenever β is greater than α.

We now proceed to the difficult task of bounding the mistakes. At each time t, we look at the
current mistake-coverage ratio, where for rule j the ratio is equal to

|Bj ∩ Ut|
|Cj ∩ Ut|

.

To bound this term we take average weight of all rules in Lt, weighted by their coverage and
normalized by Zt. We use the disjointedness of rules in Lt and the probabilistic method to establish
that the ratio of mistakes to coverage at each time t is restricted by the inequality:

|Bt ∩ Ut|
|Ct ∩ Ut|

≤ |B|
(β − α)|C|

. (2)

To obtain the desired result, we sum over all iterations. Additional information is in the appendix.

4.2. Generalization

Up until now, our primary focus has been on minimizing empirical coverage and mistake. Known
techniques can leverage these results to bound the generalization error for finite classes. Indeed the
class of decision list is finite for finite rule set. Specifically, if the decision lists are of length k and
over the rule setR, the number of decision lists is at most |R|k.

Bounding the generalization error for coverage can be achieved through the use of Hoeffding’s
inequality and union bound, as detailed in the appendix. By leveraging the fact that our algorithm
focuses solely on rules that have sufficient coverage, we are able to establish a generalization bound
for the mistakes.

More formally, for a decision list DL in a class H and n training examples, denote by c =
Prx(DL(x) ̸= ⊥) the true coverage, by c′ = 1

n

∑n
i=1 I(DL(xi) ̸= ⊥) the empirical coverage, by

m = Prx,y(DL(x) ̸= ⊥ ∧ DL(x) ̸= y)/c the true mistakes, and by m′ = 1
n

∑n
i=1 I(DL(xi) ̸=

⊥ ∧DL(xi) ̸= yi)/c
′ the empirical mistakes. Then,
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Claim 5 Assume that c′ ≥ γ. For any ϵ, δ ∈ (0, 1) if there are n ≥ 16k
ϵ2γ2 log

2|R|
δ examples, then

with probability at least 1− δ

|c− c′| < ϵ, and
∣∣m′ −m

∣∣ ≤ ϵ

5. Experiments

In the following section we empirically evaluate the performance of partial interpretable decision
lists on real datasets.

5.1. Datasets, setting, models, and hyperparameters

In Table 2, we provide details on the training of partial interpretable decision lists and black-box
models over 13 datasets (further information in Appendix C.1).

Partial interpretable decision lists. The rules are conjunctions of thresholds, every rule condition
takes the form of

∧r
j=1 xij ⋄ θj , where ij is some feature, θj ∈ R is some threshold, and ⋄ is some

operator ≤,≥, or =. Algorithm 1 consists of three hyperparameters: (i) ℓ, a minimum size for the
rule coverage considered, (ii) r∗ = maxr∈R |r|, the maximum number of conjunctions allowed in
the rules, where |r| is the number of conjunctions in the rule r and (iii) the desired coverage. For
each dataset, we conducted a grid search to determine the optimal hyperparameters. The values of ℓ
considered were {0.01, 0.02, 0.05, 0.1, 0.2}, while r∗ was chosen from {1, 2, 3}. We performed 3-
fold cross-validation for each dataset to select the best values of ℓ and r∗, while maximizing the area
under the accuracy vs coverage curve (see Figure 2 and Appendix C.4 for more details on how to
calculate the area under the curve). The best performing hyperparameters are presented in Table 2.

To attain the desired balance between accuracy and interpretability in our partially interpretable
model, we must minimize the total error that includes examples where the model defaults to the
black box model. This is achieved by selecting the appropriate number of rules m such that the total
validation error of the partially interpretable model is not greater than the validation error of the
black box model plus a threshold value of 0.005. We take the largest m that satisfies this criterion,
ensuring that our model is partially interpretable while maintaining high accuracy and coverage.

Black-box model. A grid search was also conducted for each dataset to select the best type of a
black-box model, along with its hyperparameters. The evaluated black-box model types included
neural network (NN), gradient boosted trees (GBT), support vector machine (SVM), and a decision
tree (DT). Similar to the partial interpretable decision lists, a 3-fold cross-validation was performed
to identify the best performing model, and the configuration with the highest mean accuracy was
chosen. The selected black-box model types are shown in Table 2. Further information about the
hyperparameters can be found in Appendix C.2.

5.2. Results

Table 3 illustrates the performance of the partial interpretable decision lists on the test data. This
performance is then compared to the test performance of the best opaque model. In Appendix C.5
we also compared it to a baseline which based on decision trees. The experiment was conducted 10
times, using different splits for training and testing.

For each dataset, we provide the average accuracy of the opaque model, along with its standard
deviation. We also present the accuracy of the partial interpretable decision list. Additionally, to
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Table 2: Dataset properties along with best performing hyperparameters.

Dataset n d Black-box ℓ r∗

heart 270 20 SVM 0.02 2
ionosphere 351 34 SVM 0.1 1

breastcancer 683 9 SVM 0.2 1
diabetes 769 8 SVM 0.2 1
mammo 961 14 NN 0.1 3
careval 1728 15 NN 0.02 1

spambase 4601 57 GBT 0.1 2
compasbin 6907 12 NN 0.1 2
mushroom 8124 113 DT 0.2 1

ficobin 10459 17 GBT 0.05 2
adult 32561 36 GBT 0.05 2
bank 41188 57 GBT 0.2 1
bank2 41188 63 GBT 0.05 1

assess the level of interpretability, we disclose the number of interpretable decision rules utilized by
the model, as well as the average percentage of test samples covered by these rules, along with their
standard deviation.

Across the 13 datasets, the partial interpretable decision list demonstrates a relatively compara-
ble accuracy to the black-box model. The largest decrease in accuracy, observed in the spambase
dataset, is only 0.011, while the average (and median) decrease across all datasets is merely 0.002.

In terms of interpretability, the coverage and the number of rules are the important factors to
consider. The heart dataset yields the least interpretable model, covering only 12.4% of the samples
with simple decision rules. However, across all datasets, a significant number of partial interpretable
decision lists exhibit high interpretability, with an average coverage of 68.6% over the entire dataset
set and a median coverage of 80.1%. When it comes to the number of rules, on 10 out of 13 datasets,
the number of rules did not exceed 15.

During the execution of Algorithm 1, interpretable decision rules are accumulated iteratively.
The process begins with rules that have a low ratio of training mistakes to covered points. As the
algorithm progresses, the selected rules tend to have higher ratios until the algorithm reaches its
conclusion. Consequently, as the interpretable decision rules cover more samples, their accuracy
tends to deteriorate. Figure 2 demonstrates this phenomenon across multiple datasets (the remain-
ing datasets are in Appendix C.3) by showcasing the relationship between the test accuracy and
coverage of the interpretable decision rules alone. The figure specifically focuses on samples that
are covered by the interpretable decision rules and does not include samples that were defaulted to
the opaque model. The curves in the figure are generated by altering the number of decision rules
selected by the algorithm.

Furthermore, comparing these curves with the accuracy of the black-box models (as presented
in Table 3) highlights that, for large fraction of the samples, the interpretable decision rules alone
can achieve comparable performance to an opaque model.
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Table 3: Partial interpretable model performance compared to the best black-box model.

Dataset
Black-box

model accuracy
Partial interpretable

model accuracy
Rules

coverage
Number
of rules

heart .821 ± .041 .819 ± .036 .124 ± .071 1
ionosphere .946 ± .022 .948 ± .020 .175 ± .028 1

breastcancer .961 ± .007 .957 ± .012 .801 ± .085 4
diabetes .759 ± .031 .756 ± .038 .626 ± .030 4
mammo .796 ± .023 .791 ± .026 .953 ± .034 15
careval .998 ± .003 .998 ± .003 .541 ± .023 2

spambase .956 ± .005 .944 ± .006 .906 ± .010 20
compasbin .668 ± .012 .666 ± .013 .999 ± .001 15
mushroom 1.00 ± 0.00 1.00 ± 0.00 .265 ± .003 1

ficobin .723 ± .014 .721 ± .013 .984 ± .029 28
adult .840 ± .004 .835 ± .004 .896 ± .026 21
bank .899 ± .002 .898 ± .003 .991 ± .004 9
bank2 .917 ± .002 .911 ± .003 .666 ± .035 14

(a) diabetes (b) mammo (c) compasbin

(d) ficobin (e) adult (f ) bank

Figure 2: Accuracy vs coverage curve. Performance of interpretable rules without defaulting to the
opaque model, comparing the fraction of covered points and the corresponding accuracy
achieved. The curves represent the effect of increasing the number of rules used, based
on the average of 10 random runs with standard deviation in light blue.

6. Conclusion

The paper focuses on partially interpretable decision lists as a hybrid model that offers both perfor-
mance and interpretability advantages. The paper developed a new algorithm for learning partially
interpretable decision lists. It also provided provable guarantees with respect to both interpretabil-
ity and accuracy compared to the optimal partially interpretable decision list. The algorithm was
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experimentally evaluated on 13 different datasets and was found to have good accuracy and inter-
pretability compared to black-box models, indicating that the proposed algorithm is effective.

A few questions surrounding the use of partial decision lists prompt further research. Explor-
ing the scenarios where it is possible to formally prove the advantages of optimal partially inter-
pretable decision lists in terms of accuracy and interpretability. From the experimental side, can we
develop efficient algorithms capable of rapidly pruning any bad rules that may negatively impact
performance. By addressing these questions, future research can contribute to the advancement of
decision-making models that effectively balance accuracy and interpretability.
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Appendix A. Proof of main theorem

Proof of Theorem 3 Denote the uncovered training example at iteration t by Ut. For each rule j
denote by Cj the training examples the rule covers and Bj ⊆ Cj the covered examples that they are
mistake. A claim that will be useful throughout this section is that the union of rules in DL with
large enough coverage, is large. I.e., for α ∈ (0, 1), the large enough rules at time t are

Lt =
{
j ∈ R∗ : |Ut ∩ Cj | ≥

α

k
|C|
}
,

and their cover size is Zt := | ∪j∈Lt Ut ∩ Cj |. Since Cj in R∗ are disjoint Zt =
∑

j |Ut ∩ Cj |.
Claim 7 shows that the large enough rules Lt cover most of the examples, i.e., at least β − α of the
examples in C that are not covered up until time t.

Claim 6 If one runs Algorithm 1 with s = (1− β)c, then at each time t, it holds that

|Ut ∩ C| ≥ β|C|

Proof Assume by contradiction that there is iteration t with |Ut ∩ C| < β|C|, then the examples
taken so far are at least (1−β)|C| examples in C, thus, coverage so far ≥ (1−β)|C|, so algorithm
will not enter the while loop in the t-th iteration.

Claim 7 If one runs Algorithm 1 with s = (1− β)c and ℓ = α
k c, then at each time t, it holds that

Zt := | ∪j∈Lt Ut ∩ Cj | ≥ (β − α)|C|. (3)

Proof The coverage of all the rules in the decision list R that are not in Lt is at most k·αk |C| = α|C|.
The coverage | ∪j∈R∗ Ut ∩Cj | is equal to |Ut ∩C|, as the union of Cj is C. By the previous lemma
this is at least β|C|. Putting the two observations together we get that Zt ≥ β|C| − α|C|, which is
what we wanted to show.

The challenging part of proving Theorem 3 is bounding the number of mistakes, which we prove
in the following lemma. Specifically, we show that if we run the algorithm with ℓ = α/k · c and
s = (1− β)c, for some parameters 0 < α < β < 1), then the number of mistake can increase by at
most a factor of about 1/(β−α).

Lemma 8 Suppose there is a partial interpretable decision list with length k, b mistakes, coverage
c, and with family of rulesR. Then for any 0 < α < β < 1 if one runs the algorithm with ℓ = α

k · c,
s = (1− β)c and a family of rulesR(≤k), the output of the algorithm is a decision list with at most
b/(β − α) mistakes.

Proof The proof contains several steps that prove the claim.
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Bound on the ratio mistakes to coverage at each iteration. The first step in the proof will be to
show that at each iteration, the ratio of mistakes to relative cover is bounded. The bound is the total
number of mistakes to coverage. More precisely, we will prove that at each time t

|Ut ∩Bt|
|Ut ∩ Ct|

≤ |B|
(β − α)|C|

, (4)

where Ct are the examples covered by the rule chosen at time t and Bt ⊆ Ct are the examples
covered with mistake by this rule, at time t.

Any rule j at time t have mistakes-to-coverage ratio |Ut∩Bj |
|Ut∩Cj | . Take a weighted average of

mistakes-to-coverage ratio among all rules in Lt in the following way. The weight of rule j ∈ Lt

is |Ut ∩ Cj |/Zt (recall that Zt is defined in Equation 3). Hence, among all large enough rules, the
average ratio of mistakes to size is equal to∑

j

|Ut ∩Bj |
|Ut ∩ Cj |

|Ut ∩ Cj |
Zt

=
∑
j

|Ut ∩Bj |
Zt

≤
∑
j

|Ut ∩Bj |
(β − α)|C|

,

where the last inequality follows from Claim 7. From the disjointness of R∗, the weighted-average
of mistakes to size is bounded by

|Ut ∩B|
(β − α)|C|

≤ |B|
(β − α)|C|

.

From the probabilistic method there must be a rule in Lt that satisfies this ratio. Since the algorithm
takes a large set with the best mistake-to-coverage ratio, for all t we have that |Ut∩Bt|/|Ut∩Ct| ≤
|B|/(β − α)|C|.

Bounding total number of mistakes. From the last step, Equation 4, we know that at every time
t,

|Ut ∩Bt| ≤
|B| · |Ut ∩ Ct|
(β − α)|C|

Summing over all times we get a bound on total number of mistakes∑
t

|Ut ∩Bt| ≤
|B|

|C|(β − α)

∑
t

|Ut ∩ Ct|

The total coverage of the decision list we build is
∑

t |Ut ∩ Ct|. Thus, the mistake is bounded
by ∑

t |Ut ∩Bt|∑
t |Ut ∩ Ct|

≤ |B|
|C|
· 1

β − α

Now we are ready to prove the main theorem.
Proof (of Theorem 3)

Taking a rule at each step. An immediate implication of the Claim 7, is that at each step there is
at least one rule in Lt and thus, the algorithm, and specifically Line 15, is well-defined.
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Bounding number of rules. By construction, at each time t, the coverage is large enough. I.e.,
for all t, |Ut ∩ Ct| ≥ α|C|/k. The algorithm stops once it took at least (1− β)|C| examples. Thus
after at most k(1−β)

α ≤ k
α iterations the algorithm stops.

Running time. We proved that the number of iterations is bounded by k
α . At each iteration we go

over all rules, achieving the desired running time of O(|R(≤k)| · kα).

Coverage. Once the algorithm stops, the coverage is at least (1− β)c.

Appendix B. Generalization

Proof (of Claim 5) The bound on the coverage for a specific hypothesis follows from Hoeffding’s
inequality, see the next claim. We can use union bound over all decision lists to get the required
bound on the coverage.

As for the mistakes, from Hoeffding’s inequality, we know that for every hypothesis in the class
it holds that |mc−m′c′| ≤ ϵ′, |c− c′| ≤ ϵ′.

|m−m′| =
∣∣∣∣mc

c
− m′c′

c′

∣∣∣∣ ≤ ∣∣∣∣m′c′ + ϵ′

c′ − ϵ′
− m′c′

c′

∣∣∣∣
=

∣∣∣∣m′(c′)2 + ϵ′c′ −m′c′(c′ − ϵ′)

(c′ − ϵ′)c′

∣∣∣∣
=

∣∣∣∣ϵ′c′ + ϵ′m′c′

(c′ − ϵ′)c′

∣∣∣∣ ≤ 2ϵ′c′

(c′ − ϵ′)c′
=

2ϵ′

c′ − ϵ′
≤ 4ϵ′

γ
≤ ϵ

where the second inequality follows from m′c′ ≤ c′, the third from ϵ′ ≤ c′/2 and c′ ≥ γ and the
last from taking ϵ′ = ϵγ

4 .

For a specific decision list the empirical and true are similar:

Claim 9 For any hypothesis h : X → Y, a ∈ Y , for any ϵ, δ ∈ (0, 1), for n ≥ 1
ϵ2
log 1

δ , with
probability at least 1− δ ∣∣∣∣∣ 1n

n∑
i=1

Ih(x)̸=a − Pr[h(x) ̸= a]

∣∣∣∣∣ ≤ ϵ

The claim follows immediately from Hoeffding’s inequality.

Fact 10 (Hoeffding’s inequality) For X1, . . . , Xn ∈ [0, 1] independent random variables

Pr

(∣∣∣∣∣ 1n∑
i

E[Xi]−
1

n

∑
i

Xi

∣∣∣∣∣ > ϵ

)
< exp(−2nϵ2)

19



FROST LIPTON MANSOUR MOSHKOVITZ

Appendix C. Additional experimental information

C.1. Datasets

We utilized a collection of 13 datasets for our experimental evaluation, which were sourced from
Moshkovitz et al. (2021). All the datasets were obtained from publicly available repositories, in-
cluding:

• https://github.com/yangarbiter/interpretable-robust-trees

• https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/

• https://github.com/ustunb/risk-slim

• https://github.com/chenhongge/RobustTrees

• https://github.com/Jimmy-Lin/GeneralizedOptimalSparseDecisionTrees/
tree/master/experiments/datasets

These datasets have been previously used in research on interpretable models (Ustun and Rudin,
2017; Lin et al., 2020; Moshkovitz et al., 2021). In line with the approach described in Moshkovitz
et al. (2021), we applied the same scaling and preprocessing methods to these datasets. All features
were scaled to the range [0, 1] using the formula (x − min)/(max − min), where x represents the
feature value, and min and max denote the minimum and maximum values of the respective feature
across the entire dataset.

Classification tasks All 13 datasets in our study involve binary classification tasks. Below is a
list of the specific tasks along with their objectives:

• heart: Detect the presence of heart disease in a patient.

• ionosphere: Identify whether the radar data shows evidence of any structure in the ionosphere.

• breastcancer: Identify whether the given sample is benign.

• diabetes: Predict the presence of diabetes in the patients within the dataset.

• mammo: Predict whether the sample from mammography is malignant.

• careval: Evaluate cars.

• spambase: Predict whether an email is a spam.

• campasbin: Determine if a convicted criminal will re-offend.

• mushroom: Determine whether the mushroom is poisonous.

• ficobin: Predict a person’s credit risk.

• adult: Predict whether the person’s income is greater than 50,000.

• bank and bank2: Determine if the client opens a bank account after a marketing call.
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C.2. Black-box hyperparameters

For the black-box training we have executed a grid search over the following combinations of hy-
perparameters from scikit-learn (Pedregosa et al., 2011).

1. NN

•

hidden layer sizes ∈{[10], [10, 10], [10, 10, 10], [10, 10, 10, 10]}∪
{[100], [100, 100], [100, 100, 100], [100, 100, 100, 100]}∪
{[1000], [1000, 100], [1000, 200, 100]}

• alpha ∈ {0.00005, 0.0001, 0.0002}
• batch size ∈ {auto, 8, 16}
• solver ∈ {lbfgs, adam}
• max iter ∈ {200, 500}

2. GBT

• learning rate ∈ {0.01, 0.05, 0.1, 0.15, 0.2}
• n estimators ∈ {10, 100, 250, 500, 1000, 2000}
• max depth ∈ {3, 5, 7, 9, 11}

3. SVM

• kernel ∈ {linear, rbf}
• C ∈ {0.1, 0.2, 0.5, 1.0, 2.0, 5.0}
• gamma ∈ {scale, auto, 1e− 5, 5e− 5, 1e− 4, 5e− 4, 1e− 3, 1e− 2}

4. DT

• criterion ∈ {gini, entropy, log loss}
• max depth ∈ {None, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20}
• min samples split ∈ {2, 5, 10, 0.1, 0.05, 0.01}
• min impurity decrease ∈ {0.0, 0.01, 0.02, 0.05, 0.1, 0.2}
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C.3. Accuracy vs coverage curves

(a) heart (b) ionosphere (c) breastcancer

(d) diabetes (e) mammo (f ) careval

(g) spambase (h) compasbin (i) mushroom

(j) ficobin (k) adult (l) bank

(m) bank2

Figure 3: Accuracy vs coverage curve. Performance of interpretable rules without defaulting to the
opaque model, comparing the fraction of covered points and the corresponding accuracy
achieved. The curves represent the effect of increasing the number of rules used, based
on the average of 10 random runs with standard deviation in light blue.
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C.4. Area under the curve for coverage versus accuracy plot

In order to calculate the area under the curve for coverage versus accuracy, we start by constructing
a partial explainer (Algorithm 1) with perfect coverage by setting the algorithm’s parameter s to 1.
Let us denote the number of learned rules as m. Then, for each i ∈ {1, . . . ,m}, we evaluate the
validation accuracy and coverage of the list containing rules 1, . . . , i — forming the accuracy versus
coverage curve. Ultimately, we compute the area beneath this curve.
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C.5. Partially interpretable models comparison

Next we compare between the performance of two partial interpretable models. One model is our
proposed solution, employing decision lists, while the other is a baseline utilizing a decision tree.
In the decision tree-based approach, we initially learn a complete decision tree for the classification
task, subsequently resorting to a non-interpretable black-box model for low accuracy leaves.

In the same fashion as we determine the number of rules in our partially interpretable model, we
also choose the leaves in the decision tree-based approach, which default to the black-box model.
This selection minimizes the number of leaves that default to the black-box model while guarantee-
ing that the overall validation error of the partially interpretable model remains within a threshold
of 0.005 compared to the validation error of the black box model.

Table 4 presents the mean±std accuracy and coverage for both approaches, along with the num-
ber of rules utilized by each model (excluding those defaulting to the black-box model). Our partial
interpretable decision list outperforms the decision tree-based approach in terms of accuracy and
coverage across 7 out of the 13 datasets. More specifically, in 6 of these datasets, both accuracy
and coverage surpass those of the competitor. In the remaining dataset, spambase, while accuracy
is slightly lower, coverage is significantly higher. Conversely, the decision tree-based approach
performs better on 4 datasets, albeit in 3 of them (adult, bank, and bank2), it does so at the ex-
pense of substantially increased rule complexity, which compromises model interpretability. In the
remaining 2 datasets, both methods yield similar results.

Table 4: Compare our partially interpretable model, which utilizes decision lists, with the standard
decision tree model, wherein low accuracy leaves default to a black-box model. Rows
highlighted in green indicate superior performance of our model, while those in red signify
the decision tree-based approach’s superiority. In the remaining rows, the methods exhibit
comparable performance.

Ours Decision tree
Dataset Accuracy Coverage # of rules Accuracy Coverage # of rules

heart .819 ± .036 .124 ± .071 1 .809 ± .049 .132 ± .085 1
ionosphere .948 ± .020 .175 ± .028 1 .935 ± .025 .101 ± .227 4

breastcancer .957 ± .012 .801 ± .085 4 .956 ± .009 .737 ± .242 3
diabetes .756 ± .038 .626 ± .030 4 .760 ± .032 .167 ± .151 3
mammo .791 ± .026 .953 ± .034 15 .790 ± .025 .893 ± .137 4
careval .998 ± .003 .541 ± .023 2 .991 ± .005 .018 ± .005 10

spambase .944 ± .006 .906 ± .010 20 .951 ± .005 .032 ± .012 32
compasbin .666 ± .013 .999 ± .001 15 .665 ± .014 .998 ± .004 107
mushroom 1.00 ± 0.00 .265 ± .003 1 1.000 ± .000 1.000 ± .000 15

ficobin .721 ± .013 .984 ± .029 28 .718 ± .008 .857 ± .071 43
adult .835 ± .004 .896 ± .026 21 .837 ± .005 .904 ± .033 151
bank .898 ± .003 .991 ± .004 9 .899 ± .002 .997 ± .005 23
bank2 .911 ± .003 .666 ± .035 14 .913 ± .001 1.000 ± .000 32
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