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Abstract
We study distribution-free nonparametric regression following a notion of average smoothness initi-
ated by Ashlagi et al. (2021), which measures the “effective” smoothness of a function with respect
to an arbitrary unknown underlying distribution. While the recent work of Hanneke et al. (2023) es-
tablished tight uniform convergence bounds for average-smooth functions in the realizable case and
provided a computationally efficient realizable learning algorithm, both of these results currently
lack analogs in the general agnostic (i.e. noisy) case.

In this work, we fully close these gaps. First, we provide a distribution-free uniform conver-
gence bound for average-smoothness classes in the agnostic setting. Second, we match the derived
sample complexity with a computationally efficient agnostic learning algorithm. Our results, which
are stated in terms of the intrinsic geometry of the data and hold over any totally bounded metric
space, show that the guarantees recently obtained for realizable learning of average-smooth func-
tions transfer to the agnostic setting. At the heart of our proof, we establish the uniform convergence
rate of a function class in terms of its bracketing entropy, which may be of independent interest.
Keywords: agnostic learning, average smoothness, bracketing numbers, generalization, metric
space

1. Introduction

Numerous frameworks in learning theory and statistics formalize the intuitive insight that “smooth
functions are easier to learn than rough ones” (Györfi et al., 2002; Tsybakov, 2008; Giné and Nickl,
2021). The various measures of smoothness that were studied in a statistical context include the pop-
ular Lipschitz or Hölder seminorms; the bounded variation norm (Long, 2004); Sobolev, Sobolev-
Slobodetskii and Besov norms (Nickl and Pötscher, 2007); averaged modulus of continuity (Sendov
and Popov, 1988; Malykhin, 2010); and probabilistic Lipschitzness in the context of classification
(Urner and Ben-David, 2013; Urner et al., 2013; Kpotufe et al., 2015).

In particular, a recent line of work (Ashlagi et al., 2021; Hanneke et al., 2023) studied a notion
of average smoothness with respect to an arbitrary measure. Informally, the average smoothness
is defined by considering the “local” Hölder (or Lipschitz) smoothness of a function at each point
of the instance space, averaged with respect to the marginal distribution over the space; see Figure
1 for a simple illustration, and Section 2.1 for a formal definition. The main conclusion of the
aforementioned works is that it is possible to guarantee statistical generalization solely in terms of
the average smoothness for any underlying measure, effectively replacing the classic Hölder (or
Lipschitz) constant with a much tighter distribution-dependent quantity. In particular, Hanneke
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Figure 1: Illustration of a function and a measure µ exhibiting a large gap between “worst-case”
smoothness (occurring in low density regions) and average-smoothness with respect to µ;
figure taken from (Hanneke et al., 2023).

et al. (2023) proved a uniform convergence bound for the class of on-average-smooth functions
in the realizable (i.e. noiseless) case, and complemented this result with an efficient realizable
learning algorithm. With regard to the the general case of agnostic learning, the results of Hanneke
et al. had some limitations. In particular, the general reduction from agnostic to realizable learning
(Hopkins et al., 2022) deployed therein left two unfulfilled desiderata. From a statistical perspective,
it remained open whether a function class with bounded average smoothness under some distribution
µ is µ-Glivenko-Cantelli, namely that the excess risk decays uniformly over the class; only the
existence of some returned predictor with small excess risk was established. On the computational
side, the agnostic algorithm is highly inefficient: its runtime complexity is exponential in the sample
size, in contrast with the polynomial-time realizable algorithm.

1.1. Our Contributions.

In this paper we study distribution-free agnostic learning of average-smooth functions, and address
the issues raised above. Our main contributions can be summarized as follows:

• Agnostic uniform convergence (Theorem 4 and Theorem 6). We provide a distribution-
free uniform convergence bound for the class of average-smooth functions in the agnostic
setting (Theorem 6). This bound actually follows from a more general result, in which we
bound the uniform convergence in terms of the bracketing entropy of the class (Theorem 4).
The latter is widely applicable and may be of independent interest.

• Efficient agnostic algorithm (Theorem 8). We present a polynomial time algorithm for
agnostic learning of on-average-smooth functions. The resulting sample complexity matches
the aforementioned uniform convergence bound, which also matches that of the exponential-
time agnostic algorithm of Hanneke et al. (2023). Furthermore, the algorithm’s running time
matches that of their efficient realizable learning algorithm.
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2. Preliminaries

Setting. Throughout the paper we consider functions f : Ω → [0, 1] where (Ω, ρ) is a metric
space. We will consider a distribution D over Ω× [0, 1] with marginal µ over Ω, such that (Ω, ρ, µ)
forms a metric probability space (namely, µ is supported on the Borel σ-algebra induced by ρ). For
any measurable function f : Ω → [0, 1] we associate its L1 risk LD(f) := E(X,Y )∼D|f(X) − Y |,
and its empirical risk with respect to a sample S = (Xi, Yi)

n
i=1 ∼ Dn : LS(f) :=

1
n

∑n
i=1 |f(Xi)−

Yi|. More generally, we associate to any measurable function its L1 norm ∥f∥L1(µ) := EX∼µ |f(X)|,
and given a sample (X1, . . . , Xn) ∼ µn, we denote its L1 norm with respect to the empirical mea-
sure by ∥f∥L1(µn) :=

1
n

∑n
i=1 |f(Xi)|.

Metric notions. We denote by B(x, r) := {x′ ∈ Ω : ρ(x, x′) ≤ r} the closed ball around x ∈ Ω
of radius r > 0. For t > 0, A,B ⊂ Ω, we say that A is a t-cover of B if B ⊂

⋃
a∈AB(a, t),

and define the t-covering number NB(t) to be the minimal cardinality of any t-cover of B. We
say that A ⊂ B ⊂ Ω is a t-packing of B if ρ(a, a′) ≥ t for all a ̸= a′ ∈ A. We call V a t-net
of B if it is a t-cover and a t-packing. A metric space (Ω, ρ) is said to be doubling with constant
D ∈ N if every ball B ⊂ Ω of radius r verifies NB(r/2) ≤ D. The doubling dimension is defined
as infD∈N log2D, where the infimum runs over all valid doubling constants for (Ω, ρ).

Bracketing. Given any two functions l, u : Ω → [0, 1], we say that f : Ω → [0, 1] belongs to the
bracket [l, u] if l ≤ f ≤ u. A set of brackets B is said to cover a function class F if every function
in F belongs to some bracket in B. We say that [l, u] is a t-bracket with respect to a norm ∥ · ∥ if
∥u − l∥ ≤ t. The t-bracketing number N[ ](F , ∥ · ∥, t) is defined as the minimal cardinality of any
set of t-brackets that covers F . The logarithm of this quantity is called the bracketing entropy.

Remark 1 (Covering vs. bracketing) Having recalled two notions that quantify the “size” of a
normed function space (F , ∥ · ∥) — namely, its covering and bracketing numbers — it is useful
to note they are related through NF (ε) ≤ N[ ](F , ∥ · ∥, 2ε), though no converse inequality of this
sort holds in general. On the other hand, the main advantage of using bracketing numbers for
generalization bounds is that it suffices to bound the ambient bracketing numbers with respect to
the distribution-specific metric, as opposed to the empirical covering numbers which are necessary
to guarantee generalization (van der Vaart and Wellner, 1996, Section 2.1.1).

2.1. Average smoothness (Ashlagi et al., 2021; Hanneke et al., 2023).

The definition of average smoothness closely follows that given by Hanneke et al. (2023). For
β ∈ (0, 1] and f : Ω → R, we define its β-slope at x ∈ Ω to be

Λβ
f (x) := sup

y∈Ω\{x}

|f(x)− f(y)|
ρ(x, y)β

.

Recall that f is called β-Hölder continuous if

∥f∥Hölβ := sup
x∈Ω

Λβ
f (x) < ∞ ;

the latter is known as the Hölder seminorm. In particular, when β = 1, these are exactly the
Lipschitz functions equipped with the Lipschitz seminorm. For a metric probability space (Ω, ρ, µ),
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we consider the average β-slope to be the mean of Λβ
f (X) where X ∼ µ. We define

Λ
β
f (µ) := E

X∼µ

[
Λβ
f (X)

]
.

Notably
Λ
β
f (µ) ≤ ∥f∥Hölβ , (1)

where the gap can be infinitely large, as demonstrated by Hanneke et al. (2023). The notion of
average smoothness induces the corresponding function class (alongside the classic “worst-case”
one):

HölβH(Ω) :=
{
f : Ω → [0, 1] : ∥f∥Hölβ ≤ H

}
,

Höl
β
H(Ω, µ) :=

{
f : Ω → [0, 1] : Λ

β
f (µ) ≤ H

}
.

We occasionally omit µ when it is clear from context. Note that for any measure µ :

HölβH(Ω) ⊂ Höl
β
H(Ω, µ)

due to Eq. (1), where the containment is strict in general. The special case of β = 1 recovers the
average-Lipschitz function class LipH(Ω) ⊂ LipH(Ω, µ) studied by Ashlagi et al. (2021), while
the general case β ∈ (0, 1] was studied by Hanneke et al. (2023).

In particular, we will now recall one of the main results of Hanneke et al. (2023) which estab-
lishes a bound on the bracketing entropy of average-smoothness classes. Crucially, the bound does
not depend on µ, which allows to obtain distribution-free generalization guarantees.

Theorem 2 (Hanneke et al., 2023, Theorem 1) For any metric probability space (Ω, ρ, µ), any
β ∈ (0, 1] and any 0 < ε < H :

logN[ ](Höl
β
H(Ω, µ), L1(µ), ε) ≤ NΩ

((
ε

128H log(1/ε)

)1/β
)

· log
(
16 log2(1/ε)

ε

)
.

Remark 3 (Weak average) Hanneke et al. (2023) also considered the even larger space of func-
tions which are weakly-average-smooth, namely such that supt>0 t · µ(x : Λβ

f (x) ≥ t) ≤ H . Note

that this class is indeed larger than Höl
β
H(Ω, µ) by Markov’s inequality. The bracket entropy bound

in Theorem 2 was actually proven for this even larger class. Consequently, all the uniform conver-
gence results to appear in the next section also hold for this larger class. We choose to focus on the
class Höl

β
H(Ω, µ) throughout this paper for ease of presentation.

3. Generalization bounds

Our first goal is to establish a uniform convergence result for the class Höl
β
H(Ω, µ), which holds

regardless of the distribution D whose marginal is µ (in particular, the bound does not depend on
µ). Notably, a bound of this sort was previously established by Hanneke et al. (2023) only for D
that are realizable by the function class, namely for which there exists an f∗ ∈ Höl

β
H(Ω, µ) with

LD(f
∗) = 0.

In order to leverage Theorem 2 towards establishing an agnostic risk bound, we prove what is
apparently a novel uniform deviation bound in terms of bracketing numbers:
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Theorem 4 Suppose (Ω, ρ) is a metric space, F ⊆ [0, 1]Ω is a function class, and let D be a
distribution over Ω × [0, 1] with marginal µ over Ω. Then with probability at least 1 − δ over
drawing a sample S ∼ Dn it holds that for all f ∈ F , α ≥ 0 :

|LD(f)− LS(f)| ≤ α+O

(√
logN[ ](F , L1(µ), α) + log(1/δ)

n

)
.

Remark 5 (Other losses) The proof of Theorem 4 is the only place throughout the paper that relies
on the considered risk being with respect to the L1 loss. In particular, in Eq. (5) we prove an analog
of the contraction lemma (cf. Mohri et al., 2018, Lemma 5.7) for bracketing entropies with respect
to the L1 loss. This statement holds with essentially the same proof under mild assumption on
the loss, e.g. as long as the loss ℓ(f(x), y) is symmetric with respect to exchanging its variables,
monotone and Lipschitz with respect to |f(x) − y| (with an incurred dependence on the Lipschitz
constant). In particular, since the functions discussed in this paper are bounded, the results are
readily extendable to Lp losses for any p ∈ [1,∞) (naturally yielding p-dependent rates due to the
p-dependent Lipschitz constant).

In our case of interest, plugging the bracket entropy bound for average smoothness classes from
Theorem 2 into the uniform deviation bound in Theorem 4 yields the following:

Theorem 6 For any metric space (Ω, ρ) and distribution D with marginal µ as above, it holds with
probability at least 1− δ over drawing a sample S ∼ Dn that for all f ∈ Höl

β
H(Ω, µ), α ≥ 0 :

|LD(f)− LS(f)| = α+ Õ


√√√√√NΩ

((
α

128H log(1/α)

)1/β)
+ log(1/δ)

n

 .

Remark 7 (Doubling metrics) In most cases of interest, (Ω, ρ) is a doubling metric space of some
dimension d,1 e.g. when Ω is a subset of Rd (or more generally a d-dimensional Banach space).
For d-dimensional doubling spaces of finite diameter we have NΩ(ε) ≲

(
1
ε

)d (Gottlieb et al., 2016,
Lemma 2.1), which by plugging into Theorem 6 and optimizing over α ≥ 0 yields the simplified
generalization bound

sup
f∈Höl

β
H(Ω,µ)

|LD(f)− LD(f)| = Õ

(
Hd/(d+2β)

nβ/(d+2β)

)
.

Equivalently, sup
f∈Höl

β
H(Ω,µ)

|LD(f)− LS(f)| ≤ ε whenever n ≥ N for

N = Õ

(
Hd/β

ε(d+2β)/β

)
,

up to a constant that depends (exponentially) on d, but is independent of H, ε.

1. Namely, any ball of radius r > 0 can be covered by 2d balls of radius r/2.
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4. Efficient agnostic learning algorithm

Having established the sample complexity required for controlling the excess risk uniformly over
average-smooth functions, we turn to seeking an efficient agnostic regression algorithm that at-
tains this sample complexity. We note that this is a nontrivial task due to the nature of the class
Höl

β
H(Ω, µ), which is unknown to the learner. Indeed, without knowledge of the underlying dis-

tribution, the learner cannot evaluate a candidate function’s average smoothness with respect to
the given distribution, thus a naive empirical-risk-minimization approach over the function class is
inapplicable. The key to designing an average-smooth regression algorithm is the analysis of the
empirical smoothness induced by the sample, namely the quantity

Λ̂β
f :=

1

n

n∑
i=1

max
Xj ̸=Xi

|f(Xi)− f(Xj)|
ρ(Xi, Xj)β

for any function f : Ω → [0, 1]. Hanneke et al. (2023) proved a tail bound for the empirical
smoothness in terms of the true average smoothness. Subsequently, their agnostic algorithm is
a certain exhaustive search procedure over the space of empirically-smooth functions, and thus
highly inefficient. In particular, the runtime of the algorithm is exponential in the sample size,
which provided ample motivation to seek an efficient one.

In the following theorem we provide a polynomial-time algorithm that matches the same sample
complexity, thus closing the exponential gap.

Theorem 8 There is a polynomial time algorithm A such that for any metric space (Ω, ρ), any
β ∈ (0, 1], 0 < ε < H , and any distribution D over Ω × [0, 1], given a sample S ∼ Dn of size
n ≥ N where N = N(β, ε, δ) satisfies

N = Õ

NΩ

((
ε

640H log(1/ε)

)1/β)
+ log(1/δ)

ε2

 ,

the algorithm constructs a hypothesis f = A(S) such that

LD(f) ≤ inf
f∗∈Höl

β
H(Ω,µ)

LD(f
∗) + ε

with probability at least 1− δ.

Remark 9 (Doubling metrics) As previously discussed, in most cases of interest we have NΩ(ε) ≲(
1
ε

)d for some dimension d ∈ N. That being the case, Theorem 8 yields the simplified sample
complexity bound

N = Õ

(
Hd/β

ε(d+2β)/β

)
,

or equivalently

LD(f) = inf
f∗∈Höl

β
H(Ω,µ)

LD(f
∗) + Õ

(
Hd/(d+2β)

nβ/(d+2β)

)
,

up to a constant that depends (exponentially) on d, but is independent of H,n.
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Remark 10 (Computational complexity) The algorithm described in Theorem 8 involves a single
preprocessing step with runtime Õ(n2ω) where ω ≈ 2.37 is the current matrix multiplication ex-
ponent, after which f(x) can be evaluated at any given x ∈ Ω in O(n2) time. We note that the
computation at inference time matches that of (classic) Lipschitz/Hölder regression (e.g. Gottlieb
et al., 2017).

We will now outline the proof of Theorem 8, which appears in Section 5.2 along the full de-
scription of the algorithm. Denoting the Bayes-optimal risk by L∗ = inf

f∗∈Höl
β
H(Ω,µ)

LD(f
∗), we

assume without loss of generality (by a standard approximation argument) that the infimum is ob-
tained, and let f∗ ∈ Höl

β
H(Ω, µ) be a function with LD(f

∗) = L∗. Given a sample (Xi, Yi)
n
i=1 ∼

Dn, the algorithm first constructs labels (f̂(Xi))
n
i=1 such that

LS(f̂) ≤ L∗ +
ε

3
(2)

and
Λ̂β

f̂
≲ L . (3)

We show that such a “relabeling” is obtainable by solving a linear program which minimizes the em-
pirical error under the empirical smoothness constraint. This program is feasible since f∗ satisfies
both conditions with high probability. Indeed, f∗ satisfies Eq. (2) by Theorem 6 (for large enough
sample size), while Eq. (3) follows from the aforementioned tail bound of empirical smoothness.
With these labels in hand, we invoke an approximate-extension procedure due to Hanneke et al.
(2023) that extends f̂ to f : Ω → [0, 1] satisfying LS(f) ≤ LS(f̂) +

ε
3 and Λ

β
f (µ) ≲ Λ̂β

f̂
with

high probability. Combining the latter property with Eq. (3) yields Λ
β
f (µ) ≲ H . Thus, we have

overall obtained some f in the average-smooth class (with a slightly inflated average-smoothness
parameter) whose empirical risk is bounded according to Eq. (2) by

LS(f) ≤ LS(f̂) +
ε

3
≤ L∗ +

2ε

3
.

Finally, invoking Theorem 6 we conclude that the smooth-on-average f has small excess risk, re-
sulting in

LD(f) ≤ LS(f) +
ε

3
≤ L∗ + ε

with high probability, whenever the sample is large enough.

5. Proofs

5.1. Proof of Theorem 4

We start by denoting the loss class LF ⊆ [0, 1]Ω×[0,1] :

LF := {ℓf (x, y) := |f(x)− y| : f ∈ F} . (4)

We will show that for any α > 0, the bracketing entropy of LF is no larger than that of F , namely

N[ ](LF , L1(µ), α) ≤ N[ ](F , L1(µ), α) . (5)
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To that end, fix α > 0, let Bα be a minimal α-bracket of F , and denote for any f ∈ F by [fL, fU ] ∈
Bα its associated bracket. For ℓf ∈ LF as defined in Eq. (4), we define the bracket [(ℓf )L, (ℓf )U ] as

((ℓf )L(x, y), (ℓf )U )(x, y)) :=


(0, fU (x)− fL(x)), if fL(x) ≤ y ≤ fU (x)

(fL(x)− y, fU (x)− y), if y < fL(x)

(y − fU (x), y − fL(x)), if y > fU (x) .

Notice that this is indeed a valid bracket, since fL(x) ≤ f(x) ≤ fU (x) implies that for any (x, y) ∈
Ω× [0, 1] :

(ℓf )L(x, y) =


0, if fL(x) ≤ y ≤ fU (x)

fL(x)− y, if y < fL(x)

y − fU (x), if y > fU (x)

≤


|f(x)− y|, if fL(x) ≤ y ≤ fU (x)

f(x)− y, if y < fL(x)

y − f(x), if y > fU (x)

= |f(x)− y| = ℓf (x, y) ,

and similarly

(ℓf )U (x, y) =


fU (x)− fL(x), if fL(x) ≤ y ≤ fU (x)

fU (x)− y, if y < fL(x)

y − fL(x), if y > fU (x)

≥


|f(x)− y|, if fL(x) ≤ y ≤ fU (x)

f(x)− y, if y < fL(x)

y − f(x), if y > fU (x)

= |f(x)− y| = ℓf (x, y) .

Moreover, by construction we see that for any (x, y) ∈ Ω × [0, 1] : (ℓf )U (x, y) − (ℓf )L(x, y) =
fU (x)− fL(x), hence

∥(ℓf )U − (ℓf )L∥L1(D) ≤ ∥fU − fL∥L1(µ) ≤ α ,

showing we indeed constructed an α-bracket. As it is clearly of size at most |Bα|, we proved Eq. (5).
Now note that for any f ∈ F :

LD(f)− LS(f) = ∥ℓf∥L1(D) − ∥ℓf∥L1(Dn)

≤ ∥ℓf − (ℓf )L∥L1(D) + ∥(ℓf )L∥L1(D) − ∥ℓf∥L1(Dn)

≤ ∥(ℓf )U − (ℓf )L∥L1(D) + ∥(ℓf )L∥L1(D) − ∥ℓf∥L1(Dn)

≤ α+ ∥(ℓf )L∥L1(D) − ∥ℓf∥L1(Dn)

≤ α+ ∥(ℓf )L∥L1(D) − ∥(ℓf )L∥L1(Dn) ,

8
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hence
sup
f∈F

(LD(f)− LS(f)) ≤ α+max
(ℓf )L

(
∥(ℓf )L∥L1(D) − ∥(ℓf )L∥L1(Dn)

)
.

Similarly, we also have

sup
f∈F

(LS(f)− LD(f)) ≤ α+ max
(ℓf )U

(
∥(ℓf )U∥L1(Dn) − ∥(ℓf )U∥L1(D)

)
,

thus overall

sup
f∈F

|LD(f)− LS(f)| ≤ α+max
(ℓf )L

(
∥(ℓf )L∥L1(D) − ∥(ℓf )L∥L1(Dn)

)
+ max

(ℓf )U

(
∥(ℓf )U∥L1(Dn) − ∥(ℓf )U∥L1(D)

)
.

In order to bound the right-hand side, all that is left is a standard application of Hoeffding’s inequal-
ity with a union bound over the finite bracket class, whose size is bounded by N[ ](F , L1(µ), α) due
to Eq. (5). Minimizing over α > 0 completes the proof.

5.2. Proof of Theorem 8

Algorithm 1 Approximate extension

1: Input: Sample S = (Xi)
n
i=1, labels (f̂(Xi))

n
i=1, exponent β ∈ (0, 1], accuracy parameter

γ > 0.
2: Preprocessing:
3: Sort (X1, . . . , Xn) according to

w(Xi) = max
j ̸=i

∣∣∣f̂(Xi)− f̂(Xj)
∣∣∣

ρ(Xi, Xj)β
.

4: Let S′ ⊂ {X1, . . . , Xn} consist of the n− ⌊γn⌋ points with smallest w(Xi) value.
5: Let A ⊂ S′ be a γ1/β net of S′.
6: Inference:
7: For any x ∈ Ω, compute

(u∗, v∗) = argmax
(u,v)∈A×A

f̂(v)− f̂(u)

ρ(x, u)β + ρ(x, v)β

and set

f(x) := f̂(u∗) +
ρ(x, u∗)β

ρ(x, u∗)β + ρ(x, v∗)β
(f̂(v∗)− f̂(u∗)) .

We will state two propositions due to Hanneke et al. (2023) which, together with Theorem 6,
will serve as the main components of the proof.

9
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Proposition 11 (Hanneke et al., 2023) Let f : Ω → [0, 1] and µ be any distribution over Ω. Then
with probability at least 1− δ over drawing a sample (Xi)

n
i=1 ∼ µn it holds that

Λ̂β
f ≤ 5 log2(2n/δ)Λ

β
f (µ) .

Proposition 12 (Hanneke et al., 2023) Algorithm 1 is an algorithm with Õ(n2) preprocessing
time and O(n2) inference time, that given any γ > 0, a sample S ∼ Dn and any function
f̂ : S → [0, 1], provided that n ≥ N for

N = Õ

(
NΩ(γ) + log(1/δ)

γ

)
,

constructs a function f : Ω → [0, 1] such that with probability at least 1− δ :

• LS(f) ≤ LS(f̂) + γ(1 + 2Λ̂β

f̂
).

• Λ
β
f (µ) ≤ 5Λ̂β

f̂
.

We are now ready to prove Theorem 8. Let δ′ = δ
3 , and fix α, γ > 0 to be determined later.

Denote L∗ = inf
f∈Höl

β
H(Ω,µ)

LD(f), and let f∗ ∈ Höl
β
H(Ω, µ) be such that LD(f

∗) ≤ L∗ + α.
We will now describe two desirable events that hold with high probability over drawing the sample
S ∼ Dn, which we will condition on throughout the rest of the proof. Consider the event in which

Λ̂β
f∗ ≤ Ĥ := 5 log2(2n/δ′)H , (6)

and note that this event holds with probability at least 1 − δ′ according to Proposition 11. Further
consider the event in which for all f ∈ Höl

β

5Ĥ
(Ω, µ) :

|LD(f)− LS(f)| = α+ Õ


√√√√√NΩ

((
α

640Ĥ log(1/α)

)1/β)
+ log(1/δ′)

n

 , (7)

and note that this event holds with probability at least 1− δ′ according to Theorem 6. In particular,
since f∗ ∈ Höl

β
H(Ω, µ) ⊂ Höl

β

5Ĥ
(Ω, µ), we get that as long as

n = Ω̃

NΩ

((
α

640Ĥ log(1/α)

)1/β)
+ log(1/δ′)

α2

 , (8)

it holds that
LS(f

∗) ≤ LD(f
∗) + 2α ≤ L∗ + 3α . (9)
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Thus, by solving the following feasible linear program over the variables
(
f̂(Xi), erri, Ĥi

)n
i=1

:

Minimize
n∑

i=1

erri

subject to erri ≥
∣∣∣f̂(Xi)− Yi

∣∣∣ ∀i ∈ [n] (10)

0 ≤ f̂(Xi) ≤ 1 ∀i ∈ [n]

1

n

n∑
i=1

Ĥi ≤ 5Ĥ ∀i ∈ [n] (11)

|f̂(Xi)− f̂(Xj)| ≤ Ĥi · ρ(Xi, Xj)
β ∀i, j ∈ [n] : Xi ̸= Xj (12)

it is possible to find (f̂(X1), . . . , f̂(Xn)) so that

LS(f̂) =
n∑

i=1

∣∣∣f̂(Xi)− Yi

∣∣∣ Eq. (10)
≤

n∑
i=1

erri
(⋆)

≤ L∗ + 4α

and

Λ̂β

f̂
=

1

n

n∑
i=1

max
Xj ̸=Xi

|f̂(Xi)− f̂(Xj)|
ρ(Xi, Xj)β

Eq. (12)
≤ 1

n

n∑
i=1

Ĥi

Eq. (11)
≤ 5Ĥ ,

within polynomial time. Indeed, the feasibility is observed by considering the variable assignment

f̂(Xi) = f∗(Xi) (13)

erri = |f∗(Xi)− Yi| (14)

Ĥi = max
Xj ̸=Xi

|f∗(Xi)− f∗(Xj)|
ρ(Xi, Xj)β

, (15)

since Eqs. (13) and (14) imply Eq. (10); Eqs. (13) and (15) imply Eq. (12); and Eq. (6) implies
Eq. (11). Moreover, (⋆) follows as long as the program is solved up to accuracy at most α due to
Eq. (9). The runtime required for solving the program with O(n2) constraints up to accuracy at
most α is bounded, according to the currently best known complexity of linear programming, by
Õ
(
(n2)ω

)
= Õ

(
n2ω
)

where ω ≈ 2.37 is the current matrix multiplication exponent (Cohen et al.,
2021).

With such f̂ in hand, we can apply Algortithm 1 in order to obtain f : Ω → [0, 1], whose
guaranteed by Proposition 12 to satisfy with probability at least 1− δ′ :

LS(f) ≤ LS(f̂) + γ(1 + 2Λ̂β

f̂
) ≤ L∗ + 4α+ γ(1 + 5Ĥ)

and
Λ
β
f (µ) ≤ 5Λ̂β

f̂
≤ 5Ĥ = 25 log2(2n/δ′)H .

By Eq. (7) and Eq. (8), the latter property ensures that

LD(f) ≤ LS(f) + 2α ≤ L∗ + 6α+ γ(1 + 5Ĥ) .

11
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Setting
α =

ε

12
, γ =

ε

2 + 10Ĥ
= Θ̃

( ε

H

)
,

and applying the union bound yields

LD(f) ≤ L∗ + ε

with probability at least 1− 3δ′ = 1− δ.
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