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Abstract
In this paper we describe a randomized algorithm which returns a maximal spanning forest of an un-
known weighted undirected graph making O(n) CUT queries in expectation. For weighted graphs,
this is optimal due to a result in [Auza and Lee, 2021] which shows an Ω(n) lower bound for zero-
error randomized algorithms. These questions have been extensively studied in the past few years,
especially due to the problem’s connections to symmetric submodular function minimization. We
also describe a simple polynomial time deterministic algorithm that makes O( n logn

log logn ) queries on
undirected unweighted graphs and returns a maximal spanning forest, thereby (slightly) improving
upon the state-of-the-art.
Keywords: Cut-queries, Query Algorithms, Randomized Algorithms, Weighted Spanning Forest.

1. Introduction

Learning an unknown graph via queries has been extensively studied for more than two decades.
The general setting is this: there is an undirected graph G = (V,E) whose vertices are known but
edges are unknown. Certain kinds of queries are allowed on this graph. The goal is to reconstruct
the graph with as few queries as possible. Such active learning questions also have applications
in fields such as computational biology (cf. Grebinski and Kucherov (1998)), and connections to
data summarizations or sketches where the answers to the queries can be thought of as holding the
“relevant information” about the graph. More generally, this question falls under the umbrella of
combinatorial search (cf. Aigner (1988); Du and Hwang (2000)) which is a vast area of study that
wishes to “determine an unknown object by means of indirect questions about this object”1.

In this paper, we consider cut-query access to an unknown, undirected, weighted/multi graph.
Every e ∈ E(G) has an associated w(e) > 0. w(e) = 0 for e /∈ E(G). Given a subset S ⊆ V
of vertices, let ∂S be the set containing edges with exactly one endpoint in S. A CUT query
takes input S ⊆ V and returns the value

∑
e∈∂S w(e). CUT query based reconstruction algorithms

for graphs, weighted and unweighted, have been extensively studied, and a lot of these papers
indeed appeared in the ML/AI community, eg, (Angluin and Chen (2008), Choi and Kim (2010),
Bshouty (2009), Choi (2013)). Instead of focusing on the graph reconstruction question (which
has been almost fully resolved; see Section 1.2), we ask in how few queries can one decide if G is
connected, or more generally, find a maximal spanning forest2 in G. The question of connectivity

1. quote from Grebinski and Kucherov (2000)
2. We caution the reader that we are not finding a maximum weight spanning forest with respect to these w(e)’s. Finding

even a good approximation to the maximum weight spanning forest can be shown to need Ω̃(n2) queries whose proof,
although not difficult, is out of scope of this paper.
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has seen a lot of interest in the recent years (cf. Rubinstein et al. (2018); Graur et al. (2020); Lee
et al. (2021); Auza and Lee (2021); Assadi et al. (2021); Apers et al. (2022); Chakrabarty and Liao
(2023)) mainly due to the connections to streaming and sketching, but also due to connections to
submodular function minimization (SFM). The cut-function of an undirected graph is a well known
(symmetric) submodular function, and such functions can be (non-trivially) minimized using O(n3)
queries (Queyranne (1998)) deterministically, and in Õ(n2) queries using randomization (Chekuri
and Quanrud (2021)). On the other hand, there is no ω(n) lower bound known for this question.
This led to recent interest in understanding if for the special case of undirected graph connectivity,
can one design O(n)-query algorithms, or is there a super-linear lower bound.

It is not too hard (cf. Harvey (2008), Theorem 5.10) to design a deterministic O(n log n) query
algorithm to find a spanning forest of an unknown, weighted, undirected graph via mimicking a
Prim-style algorithm using a binary-search style idea. To the best of our knowledge (cf. Apers
et al. (2022), Table 1), this is still the best known result for deterministic algorithms, even for
unweighted undirected graphs. Apers et al. (2022) gives a randomized, zero-error algorithm for
this problem on unweighted graphs, which makes O(n) queries in expectation. However, as argued
in Chakrabarty and Liao (2023), this algorithm used the unweightedness quite crucially, and this
latter paper gave an O(n log log n · (log log log n)2)-query randomized Monte Carlo algorithm that
solved the connectivity question on weighted graphs with constant probability (which is weaker than
a zero-error algorithm). It was left open to match Apers et al. (2022) result for weighted graphs.
The main result of this paper is an affirmative resolution.

Theorem 1 Given CUT query access to an unknown weighted undirected graph G = (V,E,w)
with non-negative weights, there is a polynomial time Las Vegas algorithm returning a maximal
spanning forest of G that makes O(n) queries in expectation.

The query complexity of our algorithm is optimal up to a constant factor; Auza and Lee (2021)
prove that any zero-error randomized algorithm to detect whether a graph is connected or not, even
when the query model is a much stronger3 query model than the CUT query model, needs to make
at least Ω(n) many such queries. To the best of our knowledge, it is the only regime of this problem
where the upper and lower bounds are tight up to constants, and completes the story for learning
maximal spanning forests in weighted undirected graphs using zero-error randomized algorithms.

Our second result is an improved deterministic algorithm for undirected, unweighted graphs.

Theorem 2 Given CUT query access to an unknown unweighted undirected graph G = (V,E),
there is a deterministic algorithm that makes O( n logn

log logn) queries and returns a maximal spanning
forest in G.

This (slightly) improves upon the O(n log n)-query algorithm mentioned in Harvey (2008). It is
known that Harvey’s algorithm can also work with the much weaker “OR” query model where
one only gets to know if the cut value is zero or positive, and in this model, via a connection to
communication complexity of graph connectivity (Hajnal et al. (1988)), an Ω(n log n) lower bound
is known for deterministic algorithms. Our algorithm shows that with the stronger CUT queries one
cannot obtain the same lower bound, and thus opens up possibilities of much better deterministic
algorithms.

3. They consider the LINEAR model where one specifies a
(
n
2

)
-dimensional query vector q and obtains the answer∑

e q(e)w(e).
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Perspective. The problem of finding a maximal spanning forest and deciding the connectivity of
a graph is a classic algorithmic question which has been studied in many models of computation
including dynamic (Kapron et al. (2013); Duan and Zhang (2017)), streaming (Ahn et al. (2012);
Nelson and Yu (2019)), and parallel (Andoni et al. (2018); Behnezhad et al. (2019)) computing. Our
first result, Theorem 1, gives a tight understanding of the problem in terms of query complexity,
closing the gap between O(n log log n) and O(n) left by previous works. Quantitatively, this may
not seem like a big improvement, but it has qualitative value in (a) being an end-of-the-line study for
this problem, (b) ruling out cut functions on weighted undirected graphs as candidate lower bounds
for symmetric SFM, and (c) as we explain in the next subsection, leading to a new algorithmic
technique which may be helpful in other problems. Furthermore, our second result, Theorem 2,
shows that for deterministic algorithms, the simple O(n log n)-query is not optimal, and therefore
can lead to more interest in coming up with deterministic strategies for solving this problem.

1.1. Technical Contribution

In this section, we give a technical overview of both our results. The maximal spanning forest
algorithms in our and all previous papers use the following “Borůvka style” framework: begin with
a collection of n singleton connected components and in phases merge connected components till
one gets a maximal spanning forest. What differs is what each phase does.

Randomized Algorithm (Theorem 1) approach. A phase in our algorithm is a randomized al-
gorithm that takes input a weighted graph with t connected components consisting of learnt edges,
and then performs queries to discover new edges so that the number of connected components go
down to ct for some constant c < 1. The whole creativity lies in how to do this using only O(t)
queries in expectation. Once we have this, a simple geometric sum gives the O(n) query algorithm
in expectation: the algorithm proceeds in O(log n)-rounds making O(n+ cn+ c2n+ . . .) = O(n)
many queries in all. We note here that Apers et al. (2022) obtains the same result on unweighted
graphs, but our algorithm is different and not just a generalization of their algorithm.

To illustrate and underscore our main technical contribution, in Section 3.1, we first focus on a
simpler version of the problem which is, in some sense, the first phase. We assume our unknown,
weighted, undirected graph G = (R ∪ B,E) is bipartite4 with vertices being red, R, or blue, B,
and |R| = |B| = n, and every vertex r ∈ R has at least one neighbor in B and we begin with no
knowledge of the edges. The goal is to design a randomized algorithm (Algorithm 1) which makes
O(n) queries in expectation, and learns at least one edge incident to every red vertex, thereby leading
to a new graph with≤ n connected components (down from the 2n singletons we began with). This
forms the heart of the final maximal spanning forest algorithm, which is described in Section 3.2.

Before we describe the idea behind our algorithm, it is worthwhile describing the idea in Apers
et al. (2022) in unweighted graphs (who also solve the above problem) and why it fails to generalize
with weights. Their algorithm first queries the number of blue neighbors for every red vertex using
O(n) CUT queries; this crucially uses that the graph is unweighted. After this, they partition the
vertices of R into ⌈log2 n⌉ classes where class i contains vertices with degree ≈ 2i, and for each of
these classes, the algorithm samples a subset of vertices from B with probability ≈ 1/2i. It’s not
hard to show that Θ(1) of the vertices in R has exactly one neighbor in the corresponding sampled
subset in B; in other words, with high probability there is a matching of size cn for some c < 1. At

4. We obtain this bipartite graph via a random bipartition, which is described subsequently in Section 3.2.

3



CHAKRABARTY LIAO

this point, Apers et al. (2022) uses an algorithm by Grebinski and Kucherov (2000) which gives an
O(n) query algorithm to recover all the edges of this matching.

The Degree Issue with Weights and Our Bypass. As noted in Chakrabarty and Liao (2023), the
main issue in implementing the above method in weighted graphs is in the first step of figuring out
the number of blue neighbors (let’s call this the blue-degree) of a red node. While this is a near trivi-
ality in unweighted graphs, with weighted graphs there are some provable hardness (see Chakrabarty
and Liao (2023)). Indeed, the lion’s share of the Monte-Carlo O(n log log n ·(log log log n)2) query
algorithm in Chakrabarty and Liao (2023) is spent in estimating the blue-degrees of every red node.
It is left as an open question whether this can be done in O(n) time, and if so, their algorithm could
perhaps be modified to give an O(n) time algorithm. We do not resolve this “degree-estimation”
question; indeed, very recently, Chakraborty et al. (2022) (cf. Theorem 4.1) prove a super-constant
hardness on the problem of estimating the degree and thus this route possibly cannot give a O(n)-
algorithm. Rather, our main insight is that the above idea of “sampling inversely proportional to
degree” can be morally simulated even without knowing the degrees. This idea could potentially be
useful in other applications.

Our Algorithm in a Nutshell. We proceed in ⌈log2 n⌉ iterations. We maintain a subsetR ⊆ R of
red vertices for which we haven’t found a blue neighbor, and initially R = R. In the first iteration,
we sample a subset B ⊆ B where every vertex is present with probability 1/n. Then, we use
known graph reconstruction algorithms (Theorem 4.A or Theorem 4.B) to learn the edges in the
subgraph E(R,B). Since |B| is small, this is a sparse subgraph, and the number of queries needed
is small. Next, we remove every vertex in R for which we have found an edge and proceed to the
next iteration. Now we sample B ⊆ B with probability 2/n, and repeat the same procedure, always
removing vertices from R. In the ith iteration, the sampling probability is 2i/n, and therefore in
the log nth iteration, we reconstruct the graph E(R, B) where recall R is the subset of vertices of
the original R for whom we haven’t discovered an edge. And so, by the end of these iterations, we
would’ve learnt at least one neighbor for every vertex in R completing what we set out to do.

Why is the query complexity of the above algorithm small? Indeed, the worry is that when B
is as big as Ω(n), the graph between R and B may no longer be sparse. We prove (see Lemma
6) that this cannot be the case by noting that by the time B is “large”, all the high-degree vertices
in the original R would already have been removed. In particular, if the degree of a red vertex r
is d(r), which remember is something that we don’t know, then this would have been removed by
the ≈ log2(n/d(r))th iteration. For instance, if |B| = Θ(n), then Θ(log n) rounds of the process
must have passed, and it’s highly likely that the only vertices remaining in R would have degree
Θ(1). And so, in this iteration the graph is sparse as well. This explains the key new idea behind
our randomized algorithm and is formally proven in Lemma 7.

Deterministic Algorithm (Theorem 2) Idea. Our deterministic algorithm is actually pretty sim-
ple and stems from the observation that with CUT queries one can learn neighborhoods of “high”
degree vertices paying ≪ log n queries per vertex. The algorithm keeps doing this and growing
connected components BFS style till the number of edges across the components become much
smaller than O(n log n). Since the graph is unweighted, this estimate can be maintained. Once the
graph becomes this sparse, once again exploiting the power of CUT queries, the whole graph can be
reconstructed using known results. The latter step requires some non-trivial work since naively we
only obtain the information about which pairs of components have an edge between them, which
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is enough for answering the question whether a graph is connected or not; finding the true edges
requires the full power of the CUT-queries. Balancing these two ideas gives an O

(
n logn
log logn

)
query

algorithm. We don’t believe this is the correct answer, but it is perhaps a first step in obtaining
≪ n log n query algorithms a la Harvey (2008), which, recall, would also work with even a weaker
“OR” query model and for which the query complexity is optimal. Details of this algorithm can be
found in Section 4.

1.2. Related Works

The question of reconstructing the whole graph using CUT queries has almost been resolved af-
ter a long series of works (cf. Grebinski and Kucherov (2000); Alon et al. (2004); Alon and
Asodi (2005); Reyzin and Srivastava (2007); Choi and Kim (2010); Mazzawi (2010); Bshouty and
Mazzawi (2011b, 2012); Choi (2013)). For unweighted undirected graphs with m edges, Choi
and Kim (2010) proved the existence of non-adaptive deterministic algorithms making O(

m log m
n

logm )
queries, and Mazzawi (2010) described an efficient adaptive deterministic algorithm with similar
query complexity. This query complexity is information theoretically optimal. For (non-negative)
weighted graphs, Bshouty and Mazzawi (2011a) prove the existence of non-adaptive O(m logn

logm )-
query algorithms. Then in Bshouty and Mazzawi (2011b) the authors describe a deterministic
O(m logn

logm + m log logm)-query adaptive algorithm. If we allow randomization, then Choi (2013)

gives an efficient, randomized O(m logn
logm ) query algorithm which is information theoretically tight

as well. For our efficient randomized algorithm, we use this result. It is an open question to design
efficient non-adaptive algorithms to reconstruct using optimal query complexity.

The question of studying just whether an undirected graph is connected using CUT queries was
perhaps first explicitly noted in Harvey (2008) due to connections to submodular function mini-
mization. The same question for minimum cuts was initiated by the paper Rubinstein et al. (2018)
who described an O(npolylog n) algorithm to find the minimum cut. In fact, the paper of Apers
et al. (2022) mentioned above, gives a randomized Monte Carlo O(n)-query algorithm to solve
this problem. In unweighted graphs, it is not known whether this query complexity is tight, and
the only lower bound is an Ω(n log logn/ log n)-lower bound that follows from the communica-
tion complexity of connectivity result of Raz and Spieker (1995). For weighted graphs, the best
known algorithm to solve the minimum-cut is a randomized Monte Carlo O(npolylog n)-query al-
gorithm by Mukhopadhyay and Nanongkai (2020). There is no O(n) algorithm known for finding
the minimum cut in the weighted case.

Graph reconstruction has also been studied under other query models. In particular, there is the
weak “OR” query model (also known as independent set (IS) queries), where one asks for a subset
S and obtains only the information whether S is an independent set or not. A slightly different
model called the bipartite independent set (BIS) query passes two disjoint subsets A,B and obtains
whether there exists an edge with one endpoint in A and one endpoint in B. This model is more
related to “group testing” question (Dorfman, 1943) where one only gets a weak signal from a query.
Angluin and Chen (2008) described an O(m log n)-query algorithm to learn the whole graph using
IS queries, and this is information theoretically tight. The question of reconstructing the spanning
tree from such weaker models has also been studied. It is not hard to see an Ω(n2) lower bound5

5. Consider a graph on 2n vertices where we have two cliques on n vertices connected with a single edge. Any IS query
containing more than one vertex from any of the parts gives no information. So, the problem reduces to finding a 1
in an n2-dimensional vector where we can only query singletons.

5
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for IS queries. Furthermore, the algorithm in Harvey (2008) works with BIS queries, and indeed, as
mentioned above, in this weaker model this factor is tight. In Assadi et al. (2021), the authors study
the rounds-vs-query trade-off for the problem of learning a spanning tree for BIS queries, and give
a near sharp resolution. Finally, other properties such as estimating the number of edges (Beame
et al. (2020); Chen et al. (2020); Addanki et al. (2022), etc) have been studied under these models,
and more generally this area of understanding the query complexity of learning/estimating graph
parameters under a variety of models is a rich and relevant area of study.

2. Preliminaries and Subroutines

We begin by defining two other notions of queries which have been used in the literature and is often
more convenient to use. We start with the notion of CROSS queries. Given a graph G = (V,E,w)
and two disjoint subsets A,B ⊆ V , CROSS(A,B) returns

∑
e∈E(A,B)w(e), where E(A,B) is the

set of vertex pairs (a, b) ∈ A×B such that (a, b) ∈ E. It’s easy to see the following.

Proposition 3 A CROSS query can be simulated by 3 CUT queries.

Proof CROSS(A,B) = 1
2 · (CUT(A) + CUT(B)− CUT(A ∪B)).

We then state the graph reconstruction results with optimal query complexity and the minor
modifications we need to make for our purposes. The first result is a deterministic, non-adaptive
query algorithm by Bshouty and Mazzawi (2011a) with optimal query complexity.

Theorem 4.A (Follows from Bshouty and Mazzawi, 2011a, Corollary 4). There exists an adaptive,
deterministic algorithm GR1 which takes input a bipartite graph G = (U, V ) on n vertices and m
edges such that U and V are known but m is unknown to the algorithm, and reconstructs the edges
of G along with their weights, making CGR1m logn

logm CROSS queries, for some constant CGR1 > 0.

Theorem 4.B (Follows from Choi, 2013, Theorem 1). There exists an adaptive, randomized
algorithm GR2 which takes input a bipartite graph G = (U, V ) on n vertices and m edges such
that U and V are known but m is unknown to the algorithm, and either reconstructs the edges of G
along with their weights, or aborts. The probability that the algorithm aborts or makes more than
CGR2m logn

logm CROSS queries, for some absolute constant CGR2 > 0, is at most O( logmm ).

Proof See Appendix A.

The next subroutine we need is the simple DFS-style algorithm to find a spanning forest. In
particular, if the number of connected components is q, then the remaining edges in the spanning
forest can be found in O(q log n) many queries. This was also used by Apers et al. (2022) for
unweighted graphs but an inspection of their proof shows that it readily works with weights as
well. The idea is that a single element in the support can be found using binary search, and every
connected component can find an edge coming out of it (if they exist) in O(log n) queries.

Lemma 5 (Paraphrasing Apers et al., 2022, Lemma 5.1) Let G = (V,E) be an n-vertex weighted
graph with non-negative weights. Let G′ be a contraction of G with q many supervertices, which
are given explicitly as the partition P = A1, · · · , Aq of V . There is a deterministic algorithm
DFSSpanningForest that takes in G,G′ and outputs a set of edges F ⊆ E that form a spanning
forest of G′ and makes O(q log n) CUT queries to G.

6



LEARNING SPANNING FORESTS

3. Zero Error Randomized O(n)-Query Algorithm

As mentioned in Section 1.1, to underscore our main technical contribution, in Section 3.1 we focus
on the problem of given a bipartite weighted graph G = (R ⊔ B,E) with 2n singletons with the
promise that every vertex in R has a neighbor in B, how to make O(n) queries in expectation to learn
a subgraph where we learn at least one neighbor incident to every vertex in R. Thus, the number of
connected components go down from 2n to ≤ n. This algorithm is described as Algorithm 1.

The generalization of this that is the subroutine to the spanning forest algorithm is Algorithm 2.
This algorithm takes a graph with t connected components and makes O(t) queries in expectation
to learn edges which leads to < ct connected components for some c < 1. This then can be plugged
into the Apers et al. (2022) framework to give the spanning forest algorithm. This is described
in Section 3.2.

3.1. The Main Idea: Learning edges in a bipartite graph

We assume our unknown, weighted, undirected graph G = (R ⊔ B,E) is bipartite with vertices
being red, R, or blue, B, and |R| = |B| = n, and every vertex r ∈ R has at least one neighbor in
B. We also know the bipartition. The goal is to learn at least one edge incident on every red vertex.
In this section, we describe a randomized algorithm to do this making O(n) queries in expectation.
As explained in Section 1.1, this forms the main heart of the spanning forest algorithm since these
learnt edges reduces the number of connected components by a constant factor.

The algorithm proceeds in ⌈log2 n⌉ iterations. It maintains a subset Ri ⊆ R with R0 = R
which is supposed to signify the subset of red vertices which hasn’t discovered an edge incident on
them. In the ith iteration, the algorithm samples a subset blue vertices Bi ⊆ B at a rate 2i

n . We then
reconstruct all the edges in E(Ri,Bi). Then, we remove any vertices r in Ri participating in any
of these reconstructed edges since we have already found an edge incident on them, to get Ri+1.
Note that in the final round ℓ := ⌈log2 n⌉, the subset Bℓ = B, and thus we would reconstruct all
the edges between E(Rℓ, B). In particular, since all vertices inRℓ have a neighbor in B, we would
succeed with probability 1.

Algorithm 1 SkeletonReduceConnectedComponents

Input: CUT access to a bipartite graph G = (R ⊔ B,E) with |R| = |B| = n and unknown edges
with positive weights. Assumption: each vertex in R each has a neighbor in B.

Output: Set of edges with at least one edge incident on every r ∈ R.
R0 ← R.
i← 0.
for i ≤ ⌈log2 n⌉ do

Sample a set Bi with every b ∈ B sampled with probability 2i

n .
Recover edges Ei := E(Ri, Bi) using GR1 in Theorem 4.A.
R′

i = {v ∈ Ri| v is an endpoint of some e ∈ Ei}.
Ri+1 ← Ri −R′

i.
i← i+ 1.

end
return

⊔
i∈[⌈logn⌉]Ei.

Theorem 6 The expected number of recovered edges in Algorithm 1 is E[|
⊔

i∈[⌈logn⌉]Ei|] ≤ 5n.

7
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Define d(r) : R → [n] to be a function maps from r ∈ R to the number of r’s neighbors in
B. Note that we don’t know how to obtain or even estimate d(r) in O(1) CUT queries, and this
definition is only for analysis. The proof of the above theorem follows almost immediately from the
next lemma: E[|

⊔
i∈[⌈logn⌉]Ei|] ≤

∑
r∈R

∑
b:(r,b)∈E

5
d(r) = 5n.

Lemma 7 Fix an edge e = (r, b) ∈ E where r ∈ R, b ∈ B. Pr[e ∈
⊔

i∈[⌈logn⌉]Ei] ≤ 5
d(r) .

Proof Let Ei denote the event that e ∈ Ei, that is, the reconstructed graph in the ith round. Our goal
is to show Pr[

⊔
i Ei] ≤

5
d(r) .

For the event Ei to occur, the vertex r must have “survived” the first (i − 1) rounds (that is, no
edge incident to r was discovered before) and the vertex b must be in the set Bi. To this end, for any
0 ≤ j ≤ i− 1, let Fj be the event that no neighbor of r is in Bj . First note that

Pr[Fj ] =

(
1− 2j

n

)d(r)

since none of its d(r) neighbors are present in Bj . Since all the Fj’s, 0 ≤ j ≤ i− 1, and the event
b ∈ Bi are mutually independent, we get that

Pr[Ei] = Pr[b ∈ Bi]
i−1∏
j=0

Pr[Fj ] =
2i

n
·
i−1∏
j=0

(
1− 2j

n

)d(r)

<
2i

n
· e−

(2i−1)d(r)
n (1)

where we used ∀x ̸= 0, 1 + x < ex and geometric series formula for the inequality.
Note that when 2i ≈ n/d(r), the RHS is ≈ 1/d(r), and for every other i either the first term in

the product or the second term in the product in the RHS are orders of magnitude smaller. Therefore,
the sum of Pr[Ei]’s as i ranges from 0 to log n can be bounded by O(1/d(r)). More precisely, let
i∗ = ⌊log2 n

d(r)⌋. We consider the following two cases:

• i ≤ i∗: since (2i−1)d(r)
n ≥ 0, e−

(2i−1)d(r)
n ≤ 1. In the summation

∑i∗

i=0
2i

n e
− (2i−1)d(r)

n , each
term is at most 2i

n , thus

i∗∑
i=0

2i

n
e−

(2i−1)d(r)
n ≤

i∗∑
i=0

2i

n
≤ 2 · 2

i∗

n
≤ 2n

d(r)

1

n
=

2

d(r)
. (2)

• i ≥ i∗ + 1: let k = i− (i∗ + 1). Consider the ratio between i+ 1th term and ith term,(
2i+1

n
e−

(2i+1−1)d(r)
n

)
/

(
2i

n
e−

(2i−1)d(r)
n

)
= 2e−

(2i+1−1)d(r)
n

+
(2i−1)d(r)

n = 2e
2id(r)−2i+1d(r)

n

= 2e−
2id(r)

n ≤ 2e−
2
k+log2

n
d(r) d(r)
n (3)

= 2e−2k

where (3) follows because i = k+(i∗+1) ≥ k+log2
n

d(r) . Notice that 2e−2 < 0.3 and 2e−2 ·

2e−4 = 0.001. The numerical value imply that most of the mass in
∑⌈logn⌉

i=i∗+1
2i

n e
− (2i−1)d(r)

n

8
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is concentrated in the first two terms. One can easily check that
∑⌈logn⌉

i=i∗+1
2i

n e
− (2i−1)d(r)

n ≤
3
2 ·

2i
∗+1

n e−
(2i

∗+1−1)d(r)
n , in other words, the sum is at most 3

2 of the first summand.

The first term is 2i
∗+1

n e−
(2i

∗+1−1)d(r)
n ≤ 2

d(r)e
− (2i

∗+1−1)d(r)
n ≤ 2

d(r) . Therefore

⌈logn⌉∑
i=i∗+1

2i

n
e−

(2i−1)d(r)
n ≤ 3

d(r)
. (4)

Equations (2) and (4) together imply
∑⌈logn⌉

i=0 Pr[Ei] ≤ 5/d(r) by union bound.

Remark: It is worthwhile to note that the above algorithm doesn’t use non-negativity of weights.
This is because of the promise that every red node has at least one blue neighbor. In the full
algorithm (see Section 3.2, or Apers et al. (2022); Chakrabarty and Liao (2023)), the bipartition
is formed randomly, and we abort the bipartition if less than a constant fraction of red nodes have
blue neighbors. However, checking whether a red node r has a blue neighbor can be done with one
CROSS query between r and B only if the weights are non-negative. With negative weights, it is
not to hard to show that Ω̃(n2) queries would be needed to solve the connectivity question.

3.2. Full Algorithm for Learning Spanning Forest in O(n) queries

Outline. Like previous algorithms (Apers et al., 2022; Chakrabarty and Liao, 2023), our spanning
forest algorithm proceeds in phases, and in each phase, the algorithm begins with t of connected
components C1, . . . , Ct and a set of learnt edges such that each Ci is connected in these learnt
edges. In a phase, the algorithm discovers edges crossing these components (thereby connecting
them) in such a way that O(t) CUT queries are made in expectation, and with the newly discovered
edges the number of connected components goes down from t to ct where c < 1. Simply repeating
this till the number components becomes 1 leads to the O(n) algorithm. The details of this is given
in Algorithm 4. To understand an individual phase, let us introduce the definition of representatives
of connected components a la Apers et al. (2022).

Representatives and Active/Inactive Vertices. When the connected components are no longer
singletons, for each connected component Ci we need to select a vertex as the representative for
Ci. To do so, one defines “active” and “inactive” vertices. For a fixed Ci, if there is an edge
e = (u, v) with u ∈ Ci and v ∈ Cj for any j ̸= i, in other words, u has at least a neighbor in a
different connected component, we say that the vertex u is “active”. Otherwise u is “inactive”. For
a connected component Ci, any “active” vertex in Ci can be its representative. After a phase is run,
a representative u can become “inactive”. In this case, we can go through vertices in the (expanded)
connected components that u belongs to, that are not “inactive”, and find an active one as the
new representative. It can also happen that a connected component has multiple representatives
after a phase, in which case we assign an arbitrary one as the representative. Since an “inactive”
vertex will remain “inactive” throughout, one can maintain a representative for each connected
components with an O(n) overhead on the queries. Detailed argument can be bound in the proof
of Theorem 10. Henceforth, we assume that each component Ci has a representative vertex ci ∈ Ci

with the guarantee that ci has an edge to V \ Ci. If not, we learned a connected components in the
final maximal spanning forest and we don’t need to pass it in as part of the input.

9
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Phase of Reducing Connected Components. The following Monte Carlo algorithm (Algo-
rithm 2), named ReduceConnectedComponents is the general version of SkeletonReduceConnectedComponents
(Algorithm 1). It describes one phase of the algorithm, where we start with t connected components
and end with at most 7

8n connected components with constant probability.

Lines 2 to 6 of Algorithm 2 first creates the bipartite graph that was assumed in Algorithm 1 by
coloring each connected component either red or blue uniformly at random. It is designed so as to
ensure that a constant fraction of the “red representatives” have an edge to some blue-component
vertex. Recall in Algorithm 1, we assumed every red vertex had a blue neighbor, but even if a
constant fraction had them, even then there would be a constant factor drop. The rest of the algo-
rithm is very similar to Algorithm 1 with a couple of differences: (i) we maintain a “budget” on the
queries and if we ever cross it we ABORT, and thus get a Monte-Carlo algorithm, and (ii) instead
of the non-constructive deterministic GR1, we replace it with the randomized Monte Carlo GR2
from Theorem 4.B, which always ensures we don’t ever make ω(t) queries.

Algorithm 2 ReduceConnectedComponents

Input: G2 with t connected components C1, · · · , Ct, each with ≥ 1 representative.
Output: Either return a graph with ≤ 7

8 t connected components with constant probability or
ABORT.

1 R← ∅.
2 For i ∈ [t], pick color ci from {red, blue} uniformly at random. Color all vertices in Ci to ci.
3 B ← vertices colored blue.
4 R← red representatives with ≥ 1 blue neighbor. // Takes O(t) CROSS queries.
5 if |R| < t

8 then
6 ABORT.
7 i← 0.
8 R0 ← R.
9 budget← 120CGR2t. // Recall CGR2 from Theorem 4.B.

10 for i ≤ log t do
11 Sample a set Bi with every b ∈ B sampled w.p. 2i

t .
12 while budget > 0 do
13 Run GR2 as described in Theorem 4.B on Ei := E(Ri, Bi), always decrement budget by 1

whenever a CROSS query is made.
14 if budget = 0 then
15 ABORT. // ABORT either because sampled edges > 15t or

running GR2 has failed

16 R′
i = {v ∈ Ri| v is an endpoint of some e ∈ Ei}.

17 Ri+1 ← Ri −R′
i.

18 i← i+ 1.
end

end
19 return G2 +

⊔
i∈[⌈log t⌉]Ei.

10
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Lemma 8 Let G = (V,E) be a weighted graph with non-negative weights. Suppose G2 is a
subgraph of G with t connected components for some t ≥ n

logn . Algorithm 2 makes O(t) queries,
and with probability≥ 1/10 returns a graph with≤ 7

8 t connected components, or returns ABORT.

We union bound the ABORT probability by upper bound each ABORT events. The first event
in Line 6 occurs when there are too many red representatives with no blue neighbor. The second
event in Line 15 occurs either because the sampling step samples too many edges or the subroutine
GR2 from Theorem 4.B has failed. By choosing constants carefully, these events are bounded by a
constant respectively.
Proof See Appendix A.

One can now easily obtain a zero-error algorithm by repeating if an ABORT is encountered.

Algorithm 3 ZeroErrorReduceCC

Input: G2 with t connected components C1, · · · , Ct, each with ≥ 1 representative.
Output: A graph with ≤ 7

8 t connected components.
while True do

Result← ReduceConnectedComponents(G2) (Algorithm 2).
if Result is not ABORT then

return Result
end

Corollary 9 Let G = (V,E) be a weighted graph with non-negative edge weights. Given a sub-
graph G2 of G with t connected components for some t ≥ n

logn , Algorithm 3 returns a graph with
≤ 7

8 t connected components making O(t) CROSS queries in expectation.

Finishing up the Borůvka style argument. One can now use the above ZeroErrorReduceCC as
a subroutine to get a zero-error randomized algorithm to find a spanning forest of an undirected
weighted graph which makes O(n) queries in expectation. We include the algorithm and analysis
towards the final (maximal) spanning forest algorithm 6.

Theorem 10 Let G = (V,E,w) be a weighted graph in which we want to find a spanning forest
where |V | = n. V is known, E and edge weights w ∈ (R+)|E| are hidden. Algorithm 4 is a zero
error algorithm that reconstructs a spanning forest of G making O(n) CUT queries in expectation.

Proof See Appendix A.

4. Deterministic Spanning Forest Algorithm

We describe a polynomial time deterministic algorithm to learn a spanning forest of an undirected
unweighted graph which makes O( n logn

log logn) queries, where n is the number of vertices in G. The
algorithm proceeds in two stages. In the first stage, the algorithm finds “dense connected com-
ponents” in O( n logn

log logn) queries with the guarantee that the number of unknown edges across the

6. The algorithm and analysis below are nearly identical to that in Chakrabarty and Liao (2023)

11
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Algorithm 4 SpanningForestAlgorithm

1 Input: G = (V,E) with w(e) ≥ 0 for all e ∈ E.
2 Output: A spanning forest of G.
3 n← |V |.
4 i← 0.
5 Gi ← (V, ∅).
6 for v ∈ V do
7 if |E({v}, V \v)| > 0 then
8 Mark v as active.
9 else

10 Mark v as inactive.
end

11 while i < 6 log log n do
12 Gi+1 ← ZeroErrorReduceCC(Gi) (Algorithm 3)
13 If any of old representatives in Gi is still active, mark it as the next representative in Gi+1.

Otherwise keep marking vertices in Gi+1 inactive until one finds an active vertex.
14 i← i+ 1

end
15 F ← Find the spanning forest of Gi with DFSSpanningForest in Lemma 5.
16 return F .

components is “small”. In the second stage, it learns all these edges by (i) shrinking all connected
components to be a “super node”, (ii) using graph reconstruction algorithms to find pseudo-edges
connecting these super-nodes, and then (iii) using ideas from coin-weighing algorithms to recover
the true edges.

4.1. Find Dense Connected Components.

We first describe a deterministic algorithm which makes O
(

n logn
log logn

)
queries and returns a collec-

tion C = (C1, . . . , Ck) of connected components along with E′ ⊆ E which are spanning trees of
each Ci. The guarantee is that the number of cross-edges E[C] defined as {(u, v) ∈ E : u ∈
Ci, v ∈ Cj , i ̸= j} is small.

We maintain A ⊆ V to be a set of “active vertices” which is initialized to V . These are the set
of vertices from which we haven’t begun exploring.

Definition 11 For any vertex v, let resedge(v) be the set of edges between v and the set of vertices
A. Let resdeg(v) := |resedge(v)| to be the number of these edges.

We will use the following subroutines.

Lemma 12 (Bshouty, 2009) Let x ∈ {0, 1}N be an unknown Boolean vector accessed via query-
ing a subset S ⊆ [N ] and obtaining

∑
i∈S xi (sum-query access). If x has d ones, then there is a

polynomial time deterministic algorithm BshoutyCW to reconstruct x which makes O(d log(N/d)/ log d)
sum-queries.

12
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Next is the notion of an ADDITIVE query. Given a graph G = (V,E,w) and subset S ⊆ V , the
additive query ADDITIVE(S) returns the sum of weights

∑
e=(a,b)∈E,a∈S,b∈S w(e).

Lemma 13 (Paraphrasing Bshouty and Mazzawi, 2011b, Theorem 3) There exists a polynomial
time deterministic algorithm that reconstructs a weighted hidden graph G = (V,E,w) where w :
E 7→ R+ using O(m logn

logm +m log logm) ADDITIVE queries.

Proposition 14 Any algorithm making t ADDITIVE queries can be simulated by an algorithm
making n+ t CUT queries.

Proof This follows by noting that ADDITIVE(S) = 1
2 ·

(∑
v∈V CUT(v)− CUT(S)

)
. That is, once

CUT({v}) is known for all the n different v ∈ V , any ADDITIVE query can be answered using a
single CUT query.

Using proposition 14, we get

Corollary 15 Given m ≥ n, there exists a polynomial time deterministic algorithm WtdGraphReconDetBM
that reconstructs a weighted hidden graph G = (V,E,w) where w : E 7→ R+ using O(n+m logn

logm +
m log logm) CUT queries.

Lemma 16 For any vertex v and any subset A ⊆ V , the set of edges resedge(v) can be learnt using
O
(
resdeg(v)·logn
log resdeg(v)

)
queries via the deterministic algorithm BshoutyCW as described in Lemma 12.

Proof Once v and A are fixed, then one can think of learning resedge(v) as figuring out the following
unknown vector x ∈ {0, 1}|A| which has a coordinate for every vertex in A. The uth coordinate is 1
if (v, u) ∈ E and 0 otherwise. Note that querying

∑
u∈S xu for S ⊆ A is precisely a CROSS query.

The lemma follows from Lemma 12.

Our algorithm proceeds by doing a breadth first search from active vertices only trying to con-
nect to other active vertices only if resdeg(v) ≥ L = Θ(log n/(log log n)2). If no such vertex
exists, then we treat the component discovered so far as one component. The full details are de-
scribed in Algorithm 5.

Lemma 17 Algorithm 5 makes O( n logn
log logn)CUT queries and returns C with |E[C]| = O

(
n logn

(log logn)2

)
.

Proof Queries are only made in Line 11 and in Line 13 of Algorithm 5. Amortized, the number
of queries made in Line 11 is at most n since we do it whenever the queue is emptied and a vertex
never re-enters Q because it enters the queue as an inactive vertex. The queries of Line 13 are made
only when resdeg(v) ≥ L, and so the number of queries is O

(
resdeg(v) · lognlogL

)
. We can charge

O
(

logn
logL

)
= O

(
logn

log logn

)
to every vertex w that is being added to C (alternately being deemed

inactive). Since a vertex is added to C at most once, amortized the total number of such queries is
at most O( n logn

log logn).
Orient all the edges (u, v) of E[C] for u ∈ Ci and v ∈ Cj from u to v if i < j. That is, if u is

marked inactive earlier than v. Note that the out-degree of every such vertex is < L because when it
was made inactive, resdeg(v) < L, and the final out-degree can only go down (maybe some active
vertex was added to C as BFS progressed). Since |E[C]| is precisely the sum of these out-degrees,
the lemma follows.

13
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Algorithm 5 ConnectedComponentDiscovery

Input: A graph G = (V,E) with CUT query access.
Output: Return C = (C1, . . . , Ck), E′ ⊆ E. Total number of queries: O

(
n logn
log logn

)
.

/* Guarantees: (i) Each Ci is connected using edges of E, (ii)

number of cross-edges |E[C]| is O
(

n logn
(log logn)2

)
*/

1 E′ ← ∅; A← V .
2 L← logn

(log logn)2
.

3 C ← ∅. // Set of connected components
4 while A ̸= ∅ do
5 Let x ∈ A be an arbitrary active vertex.
6 Start new connected component C ← {x} and A← A \ {x}.
7 Q.add(x) // Start BFS from x; Q is a queue
8 while Q ̸= ∅ do
9 v ← Q.remove().

10 C ← C ∪ {v}. // Add v to the connected component.
11 Query resdeg(v).
12 if resdeg(v) ≥ L then
13 Use algorithm BshoutyCW to learn resedge(v).
14 E′ = E′ ∪ resedge(v).
15 For all w such that (v, w) ∈ E′: Q.add(w) and A← A \ {w}.

/* Add w to Q and mark it inactive */

end
16 Add C to C. // C is connected; all vertices v ∈ C have resdeg(v) < L.

end
return C

4.2. Recover True Edges between Components

Consider the unknown undirected weighted/multi graph H = (C, F ) whose vertices are the com-
ponents returned by Algorithm 5 and we form F by adding the pair (Ci, Cj) for every vi ∈ Ci and
vj ∈ Cj such that (vi, vj) ∈ E(G). We call the edges in F as “pseudo-edges”. We begin with a
simple observation.

Lemma 18 A CUT query in H can be simulated by a CUT query in G. H is connected if and only
if G is connected.

Proof Given a subset T ⊆ C, note that ∂H(T ) is precisely ∂G(
⋃

C∈T C): the weight/number of
parallel copies of (Ci, Cj) for Ci ∈ T and Cj /∈ T is precisely the number of edges of the form
(vi, vj) where vi ∈ Ci and vj ∈ Cj . Thus, if H is disconnected, then G is disconnected. If H is
connected, then G is connected because every Ci is connected in G.

Using the fact that H can be reconstructed using O(mH logn
logmH

+ mH log logmH) deterministic
CUT queries via Corollary 15 where mH is the total number of edges (even counting without mul-
tiplicity), and using the fact that mH ≤ nL, we get that H can be reconstructed in O(nL logn

log(nL) +

14
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nL log log(nL)) = O(nL + nL log log n) = O( n logn
log logn) queries. Thus, if we only cared to know

if G is connected or not, we would have our O(n log n/ log logn) query algorithm by just checking
if the reconstructed H is connected or not.

However, the spanning forest of H contains pseudo-edges of the form (Ci, Cj), but we need to
return true edges of G. We now describe the process to do the same. We first begin with a simple
observation.

Lemma 19 Suppose (Ci, Cj) is a pseudo-edge in F . Then, a true edge (vi, vj) with vi ∈ Ci and
vj ∈ Cj can be found in O(log |Ci| + log |Cj |) CUT queries using a binary-search style routine
BinSearch.

Proof Indeed, for this we don’t need the full power of CUT queries, but just knowing whether a cut
is empty or not suffices. We take an arbitrary half of A ⊆ Ci and perform a CROSS(A,Cj) query.
If it is > 0, then we recurse on (A,Cj) and if it is = 0 we recurse on (Ci \ A,Cj). In log |Ci|
such queries, we discover vi ∈ Ci which has at least one edge to some vertex in Cj . We then
repeat the same process by taking an arbitrary half B ⊆ Cj but not performing CROSS({vi}, B).
In O(log |Cj |) more queries we would recover the desired edge (vi, vj).

Now fix a spanning forest F of H . For each (Ci, Cj) ∈ F we want to recover a true edge
(vi, vj) with vi ∈ Ci and vj ∈ Cj . If the degree of every vertex Ci ∈ F was ≤ D, then we could
simply use the algorithm in Lemma 19 to obtain all such true edges with number of queries equaling∑

(Ci,Cj)∈F

O(log |Ci|+ log |Cj |) ≤ D ·
∑
Ci∈F

log |Ci| ≤︸︷︷︸
AM-GM

O(kD log(n/k)) ≤ O(nD)

where |C| = k. So, if D ≤ logn
log logn , we would be done. However, D could indeed be as large

as Θ(n). To take care of this, we need to handle the “high-degree” vertices of F separately, again
using the fact that CUT queries give us more power. Here is the observation. Let Ci be a vertex
with degree D ≥ logn

log logn in F . Let C1, . . . , CD be its neighbors. Now consider the bipartite graph
H ′ whose vertices are the vertices in Ci in one part and the vertices {C1, C2, . . . , Cj} in the other
part, with an edge between vi ∈ Ci and Cj iff there exists vj ∈ Cj such that (vi, vj) ∈ E(G). We
now use WtdGraphReconDetBM to learn all the edges in H ′ deterministically. Thus, for all the
pseudo-edges (Ci, Cj) incident on Ci, we discover one endpoint (that lying in Ci) of ≥ D many
true edges. This is how we take care of high-degree vertices. The full algorithm details are given
in Algorithm 6.

Theorem 20 Algorithm 5 and Algorithm 6 is a deterministic algorithm that returns a maximal
spanning forest of G in O

(
n logn
log logn

)
queries.

Proof We have already analyzed the query complexity of Algorithm 5 in Lemma 17. Lemma 18
implies that the number of edges in H is O

(
n logn

(log logn)2

)
. The number of queries made in Line 1

of Algorithm 6 is therefore, as argued in the beginning of this subsection, O( n logn
log logn). The number

of queries made in Line 6 of Algorithm 6 is O(mi logni

logmi
+ mi log logmi) where mi is the number

of edges in the bipartite graph Hi and ni is the number of vertices. The second term, summed over
all calls, and using the fact that

∑
imi = O(nL), would together be at most O(n log n/ log logn).
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Algorithm 6 JoinConnectedComponents

Input: Unknown undirected graph G = (V,E) with CUT query access; C = (C1, . . . , Ck); E′ ⊆ E
such that each Ci is connected using edges in E′.

Output: Return spanning forest of G Total number of queries: O
(

n logn
log logn

)
.

1 Learn the pseudo-graph H = (C, F ) using WtdGraphReconDetBM in Corollary 15.
2 F be arbitrary spanning forest of H .
3 E′′ ← ∅.
4 for Ci ∈ F with degree D > logn

log logn do
5 Let C1, . . . , CD be neighbors of Ci in F .
6 Use WtdGraphReconDetBM to learn bipartite graph Hi := (Ci, {C1, . . . , CD}).
7 Replace {Ci} in F with {v : v ∈ Ci} and edges E′ ∩ E[Ci].
8 Add minimal collection of edges from Hi to ensure Ci ∪ {C1, . . . , CD} is connected, to E′′.

end
/* Now all Ci’s in F have degree at most logn

log logn. */

9 for all remaining (Ci, Cj) or (Ci, v) pseudo-edges of F do
10 Use BinSearch to learn true edge (vi, vj) or (vi, v) with vi ∈ Ci and vj ∈ Cj , and add to E′′.

end
11 return E′ ∪ E′′.

The first term, if mi ≥ ni would give O(1) per edge, which again amortized would be O(nL). If
mi ≪ ni, then using mi ≥ log n/ log log n, we would still pay O( logn

log logn) per true edge added to
E′′ at that round. Since the total number of true edges in E′′ is at most n − 1, we would in all pay
O(n log n/ log log n).

5. Conclusion

We give an optimal Las Vegas algorithm style that recovers a maximal spanning forest of an un-
known, weighted, undirected graph using O(n) queries in expectation. The algorithm uses Apers
et al. (2022)’s framework, and extends the O(n) zero-error algorithm in unweighted graph to
weighted case. It also closes the gap between the lower bound result of Ω(n) in Auza and Lee
(2021) and previous upper bound of O(n log n). A key ingredient of the improvement is that we
circumvent the degree estimation, which is possible not an O(1)-query operation in weighted graphs
given the results of Chakraborty et al. (2022). We do this by removing the high degree represen-
tatives step by step using random sampling with a sample rate increasing from close to zero to
one.

For unweighted graphs, we give an O(n log n/ log logn)-query poly-time deterministic algo-
rithm slightly improving the state-of-the-art. Our algorithm doesn’t work with weights yet again
due to the need for knowing degree (Line 11 in Algorithm 5), and we don’t know how to bypass it
without randomization. However, the more interesting question is to obtain O(n) query determin-
istic algorithms even for unweighted graphs, or prove its impossibility.
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Appendix A. Missing Proofs

Proposition 21 (from Chakrabarty and Liao, 2023, Claim 3) Let t1, t2, · · · , tj be integers at least
2. If

∑j
i=1 ti = t where n

logn ≤ t ≤ n and j ≤ log n, then
∑j

i=1
ti

log ti
≤ 4t

log t = O( t
log t).

Proof Partition {ti} into sets P1 = {ti|ti ∈ [2, t/ log2 t)}, P2 = {ti|ti ∈ [t/ log2 t, t]}. For ti ∈ P1,
note |P1| ≤ log n ≤ 2 log t, it follows that∑

i∈P1

i

log i
≤

∑
i∈P1

i ≤ 2 log t · t

log2 t
=

2t

log t
.

For ti ∈ P2, since ti >
√
t, log ti ≥ 1

2 log t. So ti/ log ti ≤ ti/
1
2 log t =

2ti
log t . For those ti,∑

i∈P2

i

log i
≤

∑
i∈P2

2i

log t
≤ 2t

log t
.

Combine the two inequalities,∑
i∈P

i

log i
=

∑
i∈P1

i

log i
+

∑
i∈P2

i

log i
≤ 4t

log t
= O(

t

log t
).

Theorem 22 (Theorem 4.A in the main body) (Follows from Bshouty and Mazzawi, 2011a, Corol-
lary 4). There exists an adaptive, deterministic algorithm GR1 which takes input a bipartite graph
G = (U, V ) on n vertices and m edges such that U and V are known but m is unknown to the
algorithm, and reconstructs the edges of G along with their weights, making CGR1m logn

logm CROSS
queries, for some absolute constant CGR1 > 0.

Theorem 23 (Theorem 4.B in the main body) (Follows from Choi, 2013, Theorem 1). There exists
an adaptive, randomized algorithm GR2 which takes input a bipartite graph G = (U, V ) on n
vertices and m edges such that U and V are known but m is unknown to the algorithm, and either
reconstructs the edges of G along with their weights, or aborts. The probability that the algorithm
aborts or makes more than CGR2m logn

logm CROSS queries, for some absolute constant CGR2 > 0, is at

most O( logmm ).

To prove Theorem 4.A and Theorem 4.B, we use the following results:

Lemma 24 (Bshouty and Mazzawi, 2011a, Corollary 4). There exists a non-adaptive determinstic
algorithm GraphReconstructionBM that uses O(m logn

logm ) ADDITIVE queries and reconstruct any
weighted hidden graph with at most m edges.

Note that the above algorithm uses additive queries. An additive query on S ⊆ V returns the sum
of edge weights in the induced subgraph with vertex set S, and in general is stronger than CROSS
queries7. Observe that if G = (R,B) is a bipartite graph, an additive query on S is equivalent
to a CROSS query CROSS(S ∩ R,S ∩ B). We will only be reconstructing bipartite graphs, and
therefore, we only need the following corollary which is a restatement of the above lemma.

7. While 3 additive queries can simulate a CROSS query, it was shown in Lee et al. (2021) that Ω(n) CROSS queries
may be needed to simulate an additive query.
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Corollary 25 There exists a non-adaptive, deterministic algorithm GraphReconstructionBM (GRBM
in short) that uses O(m logn

logm ) CROSS queries and reconstruct any weighted hidden bipartite graph
with at most m edges.

Bshouty and Mazzawi (2011a) only proves the existence of a query algorithm but neither gives
an explicit construction, nor does it give a polynomial time recovery algorithm. Indeed, it is an
outstanding open question to obtain a non-adaptive and/or deterministic algorithm with this query
complexity. The polynomial time complexity was resolved in Choi (2013) via an adaptive, random-
ized Monte Carlo8 algorithm.

Lemma 26 (Paraphrasing Choi, 2013, Theorem 1). One can construct a randomized polyno-
mial time adaptive algorithm GraphReconstructionChoi (GRC in short) which given an unknown
weighted graph G on n vertices with at most m edges, makes O

(
m logn
logm

)
CROSS queries, and with

probability 1−O( logmm ) returns the edges of G and their weights.

As stated, both results (Theorem 4.A and Theorem 4.B) assume knowledge of this parameter
m which is an upper bound on the number of edges. For our purposes, the number of edges would
be unknown (in fact, random variables), and so we use a simple modification via a doubling-trick
to get an efficient algorithm that recovers the hidden edges of a graph using CROSS queries that
doesn’t require to know the number of the hidden edges to be known. Now we are ready to state the
proof.
Proof We run WtdGraphReconChoi in Lemma 26 with number of edge guesses 21, 22, · · · growing
in powers of 2. Let CGRC be the hidden constant in the query complexity of Lemma 26. After
guessing 2i, WtdGraphReconChoi terminates with CGRC · 2

i logn
log 2i

queries. If WtdGraphReconChoi
returns recovered edges, we check

1. If the edges indeed exist in G.
2. If all the edges are recovered.

For a guess 2i, checking the recovered edges are indeed in G takes at most 2i queries. Checking
if all edges are recovered takes 1 CROSS query because G is bipartite and it takes 1 query to get the
sum of all edge weights. One then check if the sum of the recovered edge weights equal to the sum
of actual edge weights.

When the guess 2i ≥ m, running WtdGraphReconChoi with guess 2i fails with probability
O( logmm ). Hence the probability that the algorithm stops at guess 2i

∗
where i∗ is the smallest i such

that 2i ≥ m is 1−O( logmm ). Conditioned on the algorithm stops on the guess 2i
∗
, we show that the

total number of queries is
∑i∗

i=1CGRC · 2
i logn
log 2i

≤ 16CGRC · m logn
logm .

8. The error probability in Theorem 1 of Choi (2013) is only stated as 1− o(1), however, in the statement of Theorem
3 which uses Theorem 1, it is mentioned as O(logm/m).
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i∗∑
i=1

(
CGRC ·

2i log n

log 2i

)
≤ 4CGRC ·

(
2i

∗+1 log n

log 2i∗+1

)
(by Proposition 21)

≤ 16CGRC ·
(
2i

∗−1 log n

log 2i∗+1

)
≤ 16CGRC ·

(
m log n

logm

)
Set CGR2 to be 16CGRC and we are done.
The proof of Theorem 4.A is similar to the proof of Theorem 4.B.

Lemma 27 Let G = (V,E) be a weighted graph with non-negative weights. Suppose G2 is a
subgraph of G with t connected components for some t ≥ n

logn . Algorithm 2 makes O(t) queries,
and with probability≥ 1/10 returns a graph with≤ 7

8 t connected components, or returns ABORT.

Proof Let C1, · · · , Ct be the connected components of G2. Algorithm 2 begins by coloring the com-
ponents red or blue uniformly at random. If a component is colored red/blue, we color all its vertices
with the same color. Let B be the set of vertices colored blue. Call a representative r of a component
“good” if it is colored red and d(r) ≥ 1. Note that a representative is good with probability ≥ 1/4;
its component has to be colored red and one of its neighbor’s component has to be colored blue.
Since it has at least one neighbor outside its component (since it’s a representative), the probability
follows. Hence E[|R|] ≥ t/4 and Pr[|R| ≤ t

8 ] ≤
1
2 . Therefore, the probability Algorithm 2 aborts

in Line 6 is ≤ 1
2 .

Fix an iteration i. Let Xi be the number of edges in E(Ri, Bi) which is a random variable. The
induced subgraph (Ri, Bi) has at most n vertices. By Theorem 4.A or Theorem 4.B, it takes at most
max(CGR1, CGR2) ·

(
Xi logn
logXi

)
queries to recover the edges in E(Ri, Bi). More precisely, if we run

the deterministic algorithm from Theorem 4.A, we recover these edges with probability 1. If we
run the efficient randomized algorithm from Theorem 4.B, we recover these edges with probability
1−O(logm/m).

By Lemma 7, E[
∑

0≤i≤⌈log t⌉Xi] =
∑

e Pr[e ∈ ∪i∈[log t]Ei] ≤
∑

r∈R0

5
d(r) · d(r) = 5|R0| ≤

5t. By Markov’s Inequality, Pr[
∑

0≤i≤⌈log t⌉Xi ≥ 15t] ≤ 1
3 . Conditioned on the event

∑
0≤i≤⌈log t⌉Xi ≤

15t, it takes

⌈log t⌉∑
i=0

max(CGR1, CGR2)

(
Xi log n

logXi

)
≤ max(CGR1, CGR2) log n(4 ·

15t

log t
) (by Proposition 21)

≤ 120max(CGR1, CGR2)t

many queries to recover all edges with probability≥ 1−O(log t logm/m). Note we have multiplied
by log t to account for the union bound over the log t different reconstructions.

Since the budget is initialized to be 120max(CGR1, CGR2)t, we can recover all the edges when∑
iXi ≤ 15t with failure probability O( log t logmm ) ≤ 1

100 , for large enough m. Contrapositively,
if we abort in Line 15, either

∑
iXi > 15t (which is ≤ 1/3) or due to the failure probabilities of
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the log t different invocations of GR2 (which is ≤ 1/100). The overall ABORT probability can be
union bounded by

Pr[ABORT in Line 6] + Pr[ABORT due to
∑
i

Xi ≥ 15t]+

Pr[ABORT due to failures of GR2] ≤ 1

2
+

1

3
+

1

100
<

9

10
.

If Algorithm 2 doesn’t abort,Ri = ∅ at the end since every representative in R are connected to
some component in B after edge sampling. Since |R| ≥ t

8 , the number of connected components
shrinks by ≥ t/8, and therefore G2 +

⊔
i∈[⌈log t⌉]Ei has ≤ 7

8 t connected components.
We still need to show the number of queries is O(t). We can check if a representative has

a blue neighbor using 1 CROSS query and there can be at most t representatives. In the sam-
pling/recovery stage, the total number of queries is bounded by the initialized value of budget
which is 120max(CGR1, CGR2)t. Hence the algorithm uses at most O(t) queries.

Theorem 10 Let G = (V,E,w) be a weighted graph in which we want to find a spanning forest
where |V | = n. V is known, E and edge weights w ∈ (R+)|E| are hidden. Algorithm 4 is a zero
error algorithm that reconstructs a spanning forest of G making O(n) CUT queries in expectation.

Proof
The queries used in Algorithm 4 are from: (1) calling Algorithm 3 in Line 12, (2) finding active

vertices in line 6 - 10 and 13, and (3) finding the spanning forest with subgraph Gi in Line 15.
Line 12: By Corollary 9, the total expected number of queries that used in calling Algorithm 3 is at
most

∑6 log logn
i=0

(
7
8

)i
n = O(n).

Line 6 - 10 and 13: To learn whether a vertex is active takes 1 query. Every time Algorithm 4
invokes Algorithm 3, in each connected component, we find one “active” vertex (if there is any)
by iterating over vertices that are not “inactive” at the end. Once a vertex is “inactive”, it becomes
“inactive” forever. The only vertices that we may query more than once are the representatives, in
which case in the ith call of Algorithm 3 there are at most (7/8)in of them. So the total number of
queries used to find representatives is at most n+

∑6 log logn
i=0 (78)

in = O(n).

Line 15: After 6 log log n calls of Algorithm 3, the number of connected components of G6 log logn

is at most (78)
6 log logn−1 ≤ 1

logn . We apply Lemma 5 to find the remaining tree edges deterministi-
cally which takes O(n) CROSS queries. Summing up the queries from the three parts, we conclude
the total expected number of queries is O(n).
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