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Abstract
Human perception inherently operates in a multimodal manner. Similarly, as machines interpret the
empirical world, their learning processes ought to be multimodal. The recent, remarkable successes
in empirical multimodal learning underscore the significance of understanding this paradigm. Yet,
a solid theoretical foundation for multimodal learning has eluded the field for some time. While a
recent study by Lu (2023) has shown the superior sample complexity of multimodal learning com-
pared to its unimodal counterpart, another basic question remains: does multimodal learning also
offer computational advantages over unimodal learning? This work initiates a study on the compu-
tational benefit of multimodal learning. We demonstrate that, under certain conditions, multimodal
learning can outpace unimodal learning exponentially in terms of computation. Specifically, we
present a learning task that is NP-hard for unimodal learning but is solvable in polynomial time by
a multimodal algorithm. Our construction is based on a novel modification to the intersection of
two half-spaces problem.

1. Introduction

At the heart of human perception lies multimodality. This capability enables us to perceive and
interrelate different facets of the same empirical object. It’s particularly important during the infan-
tile stage of human development, where it helps unify disparate symbols, fostering comprehensive
cognition as a foundation for adulthood. The analogy of raising a child in a ”room of text” alone
highlights the limitations of a unimodal approach; it’s bound to be counterproductive.

In the realm of machine learning, multimodality plays a role analogous to its significance in
human cognition. Here, we view machine learning as the machine’s process of perception. Mul-
timodal learning entails accumulating vast amounts of training data across various modalities and
subsequently deploying the trained model to handle new unimodal tasks. This learning progression
mirrors the transition from infancy to adulthood in humans. Empirical studies have consistently
shown that models trained using multiple modalities often surpass finely-tuned unimodal models,
even when evaluated on new unimodal data.

In spite of notable empirical successes, like Gato Reed et al. (2022) and GPT-4 OpenAI (2023),
the theoretical explanations of multimodal learning remain relatively underexplored. Thus, estab-
lishing a solid theoretical foundation becomes imperative.

A recent study by Lu (2023) set the stage for a broader understanding of the statistical ad-
vantages of multimodal learning. The research showed that multimodal learning achieves superior
generalization bounds compared to unimodal learning, especially when the data exhibits both con-
nection and heterogeneity. However, the question arose: does multimodal learning also present
computational advantages?

Our work provides an affirmative answer. We show a computational separation between multi-
modal and unimodal learning. Specifically, we introduce a learning task, rooted in the intersection
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of two half-spaces problem, which poses an NP-hard challenge for any unimodal learning algorithm.
Yet, this very task yields to a polynomial solution under a multimodal learning paradigm. This di-
chotomy demonstrates the potential exponential computational advantage of multimodal learning
over its unimodal counterpart. Coupled with the statistical insights from Lu (2023), our findings
further illuminate the vast potential of multimodal learning.

1.1. Related Works

Theoretical Multimodal Learning: despite the empirical success of multimodal learning, a co-
hesive theoretical foundation was long missing in this area. Most existing theoretical findings are
bound by specific assumptions and contexts. For instance, studies such as Zhang et al. (2019);
Amini et al. (2009); Federici et al. (2020); Sridharan and Kakade (2008) navigate multimodal learn-
ing within a multi-view framework, operating under the assumption that individual modalities are,
in isolation, adequate for predictions. Sun et al. (2020); Liang et al. (2023) delve into algorithms
pivoting on information-theoretical relationships across modalities. Ren and Li (2023) consider
the specific problem of the benefit of contrastive loss in multimodal learning with a linear data-
generating model. Huang et al. (2021) studies the generalization ability of multimodal learning in
estimating the latent space representation.

A recent work Lu (2023) proposes a broad-based theory on the statistical guarantee of multi-
modal learning. They prove that multimodal learning admits an O(

√
m) improvement in general-

ization error over unimodal learning. This is achieved by dissecting the learning of the composition
of two hypotheses, where the sum of complexities of the hypotheses is markedly smaller than that
of their composition. Additionally, they pinpoint connection and heterogeneity amidst modalities
as the two pivotal elements propelling these statistical advantages of multimodal learning.

Empirical Multimodal Learning: applications of multimodal learning can be traced back to
the last century, aiming at combining vision and audio data to improve the performance of speech
recognition Yuhas et al. (1989); Ngiam et al. (2011). As the field evolved, multimodal learning
carved a niche in multimedia, enhancing capabilities in indexing and search functionalities Evan-
gelopoulos et al. (2013); Lienhart (1998).

Recently, there is a trend in applying multimodal learning in deep learning practices, includ-
ing modality generation Chang et al. (2015); Hodosh et al. (2013); Reed et al. (2016) and large-
scale generalist models Reed et al. (2022); OpenAI (2023). A consistently observed empirical
phenomenon is that a multimodal model is able to outperform a finely-tuned unimodal model, even
on unimodal population data.

2. Setting

In this section, we delineate the setup of multimodal learning and essential background on the
intersection of two half-spaces problem.

2.1. Multimodal Learning Setup

In this paper, we restrict our focus to the fundamental, yet non-trivial, scenario of two modalities for
a clear exposition, adopting the setup of Lu (2023). Formally, the multimodal learning classification
framework encompasses two modalities, denoted as X ,Y ⊂ Rn, and a label space Z = {±}.
Consequently, every data point can be represented as a tuple (x, y, z).
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Given a hypothesis class H and a training dataset (X,Y, Z) with m data points (xi, yi, zi),
our aim in (proper) learning from (X,Y, Z) is to output a hypothesis h ∈ H, that minimizes the
empirical risk:

ℓemp =

∑m
i=1 1h(xi,yi )̸=zi

m
.

When each data point (x, y, z) adheres to a specific data distribution D over (X ,Y,Z), the goal of
(properly) PAC-learning (X,Y, Z) is to output a hypothesis h ∈ H, such that the population risk

ℓpop = E(x,y,z)∼D[1h(x,y)̸=z]

is small with high probability. In addition, we mandate a bijective mapping between x, y for any
potential data point (x, y, z).

For brevity, we occasionally write (X ,Y,Z) for short to denote the learning problem, when it
is clear from the context. The unimodal learning problems (X ,Z) and (Y,Z) can be defined in a
similar way, in which the label y or x is masked. In learning (X ,Z), we are given a hypothesis
class H and a set (X,Z) of training data with m data points (xi, zi). The empirical risk and the
population risk are defined as follows respectively.

ℓemp =

∑m
i=1 1h(xi) ̸=zi

m
, ℓpop = E(x,y,z)∼D[1h(x) ̸=z].

2.2. Intersection of Two Half-spaces

In our quest to demonstrate a computational separation between multimodal and unimodal learning,
we sought to architect a specific learning challenge that presents as NP-hard for unimodal learning,
but for which an efficient multimodal solution exists.

A candidate of such problem is the ’intersection of two half-spaces,’ formally defined below:

Definition 1 (Intersection of two half-spaces) An instance of IntHS is a set of points in Rn each
labeled either ‘+’ or ‘-’ and the goal is to find an intersection of two half-spaces which correctly
classifies the maximum number of points, where a ‘+’ point is classified correctly if it lies inside the
intersection and a ‘-’ point is classified correctly if it lies outside of it.

Previous work has shown that PAC-learning this intersection is inherently NP-hard, even in the
realizable setting, encapsulated in the following result:

Theorem 2 (Khot and Saket (2008)) Let ℓ be any fixed integer and ϵ > 0 be an arbitrarily small
constant. Then, given a set of labeled points in Rn with a guarantee that there is an intersection of
two half-spaces that classifies all the points correctly, there is no polynomial time algorithm to find
a function f of up to ℓ linear threshold functions that classifies 1

2 + ϵ fraction of points correctly,
unless NP = RP.

A slightly weaker version of the above result which will be of use is the following:

Proposition 3 Let ϵ > 0 be an arbitrarily small constant. Then, given a set of labeled points in
Rn with a guarantee that there is an intersection of two half-spaces that classifies all the points
correctly, there is no polynomial time algorithm to find a function f of an intersection of two half-
spaces that classifies 1

2 + ϵ fraction of points correctly, unless NP = RP.
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It’s clear Proposition 3 is a direct consequence of Theorem 2, given that the intersection of two
half-spaces naturally translates to ℓ linear threshold functions with ℓ = 2. Through out this paper we
will only consider the case of proper learning with our hypothesis class including only intersections
of two half-spaces.

3. A Computational Separation between Multimodal and Unimodal Learning

To demonstrate the computational benefit of multimodal learning, we present an instance in which
both unimodal learning problems (X ,Z) and (Y,Z) are NP-hard, while the multimodal learning
problem (X ,Y,Z) can be solved efficiently. In particular, we require the existence of a bijective
mapping f : X → Y satisfying y = f(x) for any data point (x, y, z) ∈ (X ,Y,Z), so that the hard-
ness result is purely computational. The task of constructing such an instance can be decomposed
into three steps

1. We start by setting (X ,Z) as a NP-hard problem, in this case, an instance of IntHS.

2. Based on (X ,Z), we construct a bijective mapping between x, y, to obtain a new NP-hard
problem (Y,Z) by preserving the IntHS structure.

3. The bijective mapping should be designed carefully, such that the multimodal problem (X ,Y,Z)
can be solved efficiently.

Below we describe the construction of the instance and the main idea behind. A detailed proof
is provided in the next section.

Step 1: We set one of the unimodal learning problem, say (X ,Z), as an instance of IntHS.
We denote any problem of IntHS by H1 ∩ H2 with halfspaces H1, H2 in Rn, where each Hi =
(x|r⊤i x ≤ ci) is determined by the unit vector ri and ci ∈ R.

Step 2: A critical observation is that, any IntHS problem H1 ∩ H2 can be transformed into
a new IntHS problem by applying a coordinate change, under which each x is mapped to a new
point with the corresponding z remaining the same. Denote Q ∈ Rn×n as any orthogonal matrix,
we obtain Ĥ1 ∩ Ĥ2 where Ĥi = (x|r̂⊤i x ≤ ci) by setting r̂i = Qri. Let y = Qx, we create a new
NP-hard unimodal problem (Y,Z), as Q defines a bijective mapping from the set of all IntHS
problems to itself.

Step 3: It remains unclear how the multimodal problem (X ,Y,Z) can be easy to learn. Our
strategy is to design a special Q for each H1 ∩ H2, by encoding the information of H1 ∩ H2 into
the transformation Q. Ideally, with n linearly-independent xi, we can recover the matrix Q by basic
linear algebra. With the exact values of r1, r2 in hand, we get c1, c2 by listing the distances from
all x to the hyperplane r⊤i x = 0 in O(mn2) time. The obtained classifier achieves zero loss on the
training data.

However, it’s challenging to directly encode the vectors r1, r2 into the n × n matrix Q. There
are two main obstacles. First, how to encode the information of r1, r2 is unclear: Q is under the
constraint of an orthogonal matrix, which might be violated by simply filling r1, r2 into Q. Using
more complicated techniques of encoding may bring other concerns such as the existence of a
closed-form representation or whether decoding can be done efficiently. Second, the quality of such
encoding is questionable: even if we find a way to encode r1, r2 into Q, we still need to make sure
(Y,Z) exhausts the set of all possible IntHS instances. Otherwise although each (Y,Z) problem
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is an IntHS instance, the set of all possible (Y,Z) problems is a merely a subset of IntHS,
preventing us from directly applying the NP-hardness result.

Fortunately, we have a very simple remedy: enlarging the dimension n by twice, then using the
first n coordinates for IntHS while the latter 2n coordinates to encode the information of IntHS.
Roughly speaking, we create 2n null coordinates with no effect on the IntHS problem, while they
carry the information of IntHS which can only be retrived by knowing both x, y. In particular, for
any IntHS problem H1 ∩H2, we set Q as

Q =

In 0 0
0 r1√

2
· · ·

0 r2√
2

· · ·

 .

The vectors r1, r2 are simply flattened and set as the first column of the second block. Since the
norm of this column is 1, Q can be easily made feasible. The identity matrix In ensures (Y,Z)
exhausts the set of all possible IntHS instances. The main result of this paper is given by the
following theorem.

Theorem 4 (Computational separation) There exists a multimodal learning problem (X ,Y,Z)
which is PAC-learnable in polynomial time, while both unimodal learning problems (X ,Z), (Y,Z)
are NP-hard, even if there is a bijective mapping f : X → Y such that y = f(x),∀(x, y, z) ∼
(X ,Y,Z).

Theorem 4 demonstrates that multimodal learning solves some learning tasks exponentially
faster than unimodal learning. Such exponential separation explains the empirical superiority of
multimodal learning from the perspective of computation, supplementing the statistical guatantees
in Lu (2023).

Notably, the two pivotal factors leading to the statistical benefit of multimodal learning in Lu
(2023), namely connection and heterogeneity, are also evident in our construction. In particular,
the mapping Q between X ,Y is bijective, meaning there exists a perfect connection between both
modalities. On the other hand, X ,Y carry different information about the problem, which is useless
alone but effective when put together, indicating s strong heterogeneity.

4. Proof of Theorem 4

We first introduce the necessary ingredients for the construction of the learning problem. For each
pair of unit vectors v1, v2 ∈ Rn, there exist orthogonal matrices in R2n with its first column to be
( v1√

2
, v1√

2
) since ∥( v1√

2
, v1√

2
)∥2 = 1. In particular, for each pair v1, v2 we fix one such orthogonal

matrix F , defining a function F (v1, v2) : R2n → R2n×2n as below:

F (v1, v2) =

(
v1√
2

· · ·
v2√
2

· · ·

)
.

In addition, we define an orthogonal transformation matrix Q(v1, v2) ∈ R3n×3n as

Q(v1, v2) =

(
In 0
0 F (v1, v2)

)
.
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The matrix Q(r1, r2) will serve as a fingerprint of an IntHS problem H1 ∩H2. We also define a
variant of the intersection of two half-spaces problem.

Definition 5 (Low-dimensional intersection of two half-spaces) An instance of IntHSλ is a set
of points in Rn each labeled either ‘+’ or ‘-’, in which the labels only depend on the first λn
coordinates where λ ∈ (0, 1) is a constant. The goal is to find an intersection of two half-spaces
which correctly classifies the maximum number of points, where a ‘+’ point is classified correctly if
it lies inside the intersection and a ‘-’ point is classified correctly if it lies outside of it.

Lemma 6 For every constant λ > 0, learning IntHSλ is NP-hard.

Proof We prove by reduction. Suppose for contradiction IntHSλ can be learnt in polynomial
time, then for each instance of IntHS, we can create a new instance of IntHSλ with dimension
n
λ by extension. In particular, each point x ∈ R

n
λ shares the same label as x[1:n] in the original

IntHS instance. As a result, any classifier of IntHSλ applies to the IntHS problem with the
same accuracy, contradicting Proposition 3.

Now we are ready to state the learning problem (X ,Y,Z): m data points (xi, yi, zi) are given,
where xi, yi ∈ R3n represent the two modalities and zi = ± is the label. It’s guaranteed that there is
an intersection of two half-spaces that classifies all the points correctly, with supports of the defining
unit vectors being the first n coordinates. In other words, it’s a realizable instance of IntHS1

3
.

In particular, there are unit vectors r1, r2 ∈ Rn and constants c1, c2 ∈ R (unknown to the
learner), such that all pairs (xi, zi) can be perfectly classified by Ĥ1∩Ĥ2, where Ĥi = (x|r̂⊤i x ≤ ci)
and r̂i = (ri,02n). Meanwhile, yi = Q(r1, r2)xi holds for all data points, and all pairs (yi, zi) can
be perfectly classified by H̃1 ∩ H̃2, where H̃i = (x|r̃⊤i x ≤ ci) and r̃i = Q(r1, r2)(ri,02n).

Define the hypothesis set S as

S = {h|h(x) = sgn(min(c1 − r⊤1 x, c2 − r⊤2 x)), ci ∈ R, ∥ri∥2 = 1},

which is exactly the set of all intersection of two half-spaces. We have the following results.

Lemma 7 Properly learning (X ,Z) with S is NP-hard.

Proof It is a direct consequence of Lemma 6, noticing that (X ,Z) is an IntHS1
3

instance.

Lemma 8 Properly learning (Y,Z) with S is NP-hard.

Proof Although (Y,Z) is also an IntHS1
3

instance, we still need to verify that (Y,Z) exhausts
all possible IntHS1

3
instances (otherwise we can’t apply Lemma 6, for example when all (Y,Z)

obey the same IntHS1
3

instance). Notice that Q induces a mapping H1 ∩ H2 → H1 ∩ H2, and

it’s equivalent to proving it is a surjective mapping. For any IntHS1
3

instance Ĥ1 ∩ Ĥ2 where

Ĥi = (x|r̂⊤i x ≤ ci) and r̂i = (ri,02n), because r̂i also has support in the first n coordinates, we
have that r̂i = Q(r1, r2)ri with ri = r̂i, proving the mapping is surjective.
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Lemma 9 Assume m ≥ 3n, (X ,Y,Z) is properly learnable with S (applied to x only) in O(mn2)
time, when there exist 3n data points with linearly-independent xi.

Proof Consider the simple algorithm 1 which consists three steps:

1. find a set S of linearly-independent xi (line 2-6).

2. find Q by solving a linear system of S (line 7-8).

3. rank xi along the directions of r1, r2 to get c1, c2 (line 9-10).

Step 1 runs in O(mn2) time, since testing orthogonality between two points runs in O(n) time and
|S| = O(n). Step 2 runs in O(n3) time which is the complexity of solving a system of linear
equations. Step 3 runs in O(mn) time. Under our assumption m ≥ 3n, the total running time is
O(mn2 + n3 +mn) = O(mn2).

We still need to verify the found classifier h(x):

h(x) = sgn(min(c1 − r⊤1 x, c2 − r⊤2 x))

does classify all data points correctly. By the construction of Q, we know there is a classifier h∗(x)
which classifies all data points correctly, which shares the same ri with h(x):

h∗(x) = sgn(min(c∗1 − r⊤1 x, c
∗
2 − r⊤2 x)).

By the choice of c1, c2, we have that c1 ≤ c∗1, c2 ≤ c∗2. Denote h+ = {x ∈ R3n, h(x) = +}, we
have that

(h+ ∩X) ⊂ (h∗+ ∩X) = X+,

by the fact h+ ⊂ h∗+. Meanwhile, by the construction of h(x), we have that X+ ⊂ h+, and further

X+ = (X+ ∩X) ⊂ (h+ ∩X).

As a result, X+ = h+ ∩X which means h(x) does classify all data points correctly.

Algorithm 1 Learning by decoding
1: Input: m data points (xi, yi, zi).
2: Set S = {x1}, t = 2.
3: while |S| < 3n do
4: If xt is orthogonal to each member of S, add xt to S.
5: t = t+ 1.
6: end while
7: Solving the linear system Qxi = yi, ∀xi ∈ S.
8: Recover r1, r2 from Q.
9: Let X+ be the set of all xi with zi = +.

10: Set ci = maxx∈X+ r⊤i x.

Lemma 9 concerns only the learnability on the training data, to extend this result to PAC-
learnability we introduce the following definition.
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Definition 10 A data distribution D on (X ,Y,Z) is called non-degenerate, if

P(xi,yi,zi)∼D,i∈[3n](∃λ ̸= 0, s.t.
3n∑
i=1

λixi = 0) = 0.

Most distributions whose support has non-zero measure are non-degenerate, including common
uniform and Gaussian distributions. We have the following result for PAC-learnability.

Lemma 11 Assume m data points are sampled from a non-degenerate distribution D and m ≥ 3n,
(X ,Y,Z) is properly PAC-learnable with S (applied to x only) in O(mn2) time. In particular, with
probability at least 1− δ, the generalization error ϵ of algorithm 1 is upper bounded by

ϵ = O

√n logm+ log 1
δ

m

 .

Proof By the assumption that D is non-degenerate, we have that with probability 1, there exist
3n data points with linearly-independent xi. By the conclusion of Lemma 9, the learnt classifier
achieves zero loss on training data.

From classic statistical learning theory, the generalization error of such classifier can be charac-
terized by the VC-dimension of the hypothesis class.

Theorem 12 (Vapnik and Chervonenkis (2015)) With probability at least 1−δ, for every h in the
hypothesis class H, if h is consistent with m training samples, the generalization error ϵ of h is
upper bounded by

ϵ = O

√d logm+ log 1
δ

m

 ,

where d denotes the VC-dimension of H.

We only need to determine the VC-dimension of the class of intersection of two half-spaces in R3n.
It’s well known the VC-dimension of a single half-space is O(n). Blumer et al. (1989) shows that
the k-fold intersection of any VC-class has VC-dimension bounded by O(dk log k). Putting d = n
and k = 2 concludes the proof.

5. Separation in Improper Learning

As an extension of our result in proper learning, we consider the problem whether multimodality
still possesses such exponential computational benefit when the learner is allowed to output arbitrary
hypothesis beyond the hypothesis set H, i.e. the improper learning setting.

The general problem of learning intersections of halfspaces is known to be hard even in the
improper learning setting, defined as below.

Definition 13 (Intersection of half-spaces) An instance of IntHS(N) is a set of points in Rn each
labeled either ‘+’ or ‘-’ and the goal is to find an intersection of N number of half-spaces which
correctly classifies the maximum number of points, where a ‘+’ point is classified correctly if it lies
inside the intersection and a ‘-’ point is classified correctly if it lies outside of it.

8



ON THE COMPUTATIONAL BENEFIT OF MULTIMODAL LEARNING

We will rely on the following hardness of improper learning intersections of halfspaces.

Theorem 14 [Daniely et al. (2014); Daniely and Vardi (2021)] If limn→∞ q(n) = ∞ is a super-
constant, there is no efficient algorithm that improperly learns q(n) numbers of intersections of
halfspaces in Rn.

Using a similar analysis to Theorem 4, we obtain the following separation result.

Theorem 15 (Improper computational separation) There exists a multimodal learning problem
(X ,Y,Z) which is PAC-learnable in polynomial time, while both unimodal learning problems
(X ,Z), (Y,Z) are NP-hard in the improper learning setting, even if there is a bijective mapping
f : X → Y such that y = f(x), ∀(x, y, z) ∼ (X ,Y,Z).

Proof The proof is identical to that of Theorem 4 except for two minor places:

1. We need a strengthened version of Lemma 6 with λ being 1/poly(n).

2. The hard instance construction and the algorithm of multimodal learning is slightly modified
to accommodate the new Lemma.

We begin with the strengthened version of Lemma 6. The definition of IntHS(N)λ follows
directly from Definition 5, and we won’t repeat here.

Lemma 16 Given any super-constant q(n). For all constants C ≥ 1, c > 0, improperly learning
IntHS(q(n)) 1

Cnc
is NP-hard.

Proof We prove by reduction. Suppose for contradiction IntHS(q(n)) 1
Cnc

can be learnt in polyno-

mial time, then for each instance of IntHS(q(n)), we create a new instance of IntHS(q′(Cnc+1)) 1
Cnc

with dimension Cnc+1 by extension, where q′(Cnc+1) = q(n) is still a super-constant. In par-
ticular, each point x ∈ RCnc+1

shares the same label as x[1:n] in the original IntHS(q(n)) in-
stance. Since and polynomial of Cnc is also a polynomial of n, we conclude that any classifier
of IntHS(q(n)) 1

Cnc
applies to the IntHS(q(n)) problem with the same accuracy, contradicting

Theorem 14.

Specifically, we will only use Lemma 16 with C = 1, c = 1/2. Now we are ready to state
the learning problem (X ,Y,Z): m data points (xi, yi, zi) are given, where xi, yi ∈ Rn represent
the two modalities and zi = ± is the label. It’s guaranteed that there is an intersection of

√
n − 1

number of half-spaces H1, H2, · · · , H√
n−1 that classifies all the points correctly, with supports of

the defining unit vectors being the first
√
n coordinates. In other words, it’s a realizable instance of

IntHS(
√
n− 1)1/

√
n (with q(x) = x− 1).

In particular, there are unit vectors r1, r2, · · · , r√n−1 ∈ R
√
n and constants c1, c2, · · · , c√n−1 ∈

R (unknown to the learner), such that all pairs (xi, zi) can be perfectly classified by ∩iĤi, where
Ĥi = (x|r̂⊤i x ≤ ci) and r̂i = (ri,0n−

√
n). Similarly, we can define the Q matrix as

Q(v1, v2, · · · , v√n−1) =

(
I√n 0

0 F (v1, v2, · · · , v√n−1)

)
,

9



LU

where the function F (v1, v2, · · · , v√n−1) : Rn−
√
n → R(n−

√
n)×(n−

√
n) is chosen as below:

F (v1, v2, · · · , v√n−1) =


v1√√
n−1

· · ·
v2√√
n−1

· · ·

· · · · · ·
v√n−1√√

n−1
· · ·

 .

Meanwhile, yi = Q(v1, v2, · · · , v√n−1)xi holds for all data points, and all pairs (yi, zi) can be
perfectly classified by ∩iH̃i, where H̃i = (x|r̃⊤i x ≤ ci) and r̃i = Q(v1, v2, · · · , v√n−1)(ri,0n−

√
n).

Via the same argument as Theorem 4, according to Lemma 16, both improperly learning (X ,Z)
and improperly learning (Y,Z) are hard.

We only need to show (X ,Y,Z) can be learnt efficiently. The same algorithm will be applied
to decode all the ri and ci is set as maxx∈X+ r⊤i x. The classifier we use is still

h(x) = sgn(min(c1 − r⊤1 x, c2 − r⊤2 x, · · · , c√n−1 − r⊤√n−1x)).

By the construction of Q, we know there is a classifier h∗(x) which classifies all data points cor-
rectly, which shares the same ri with h(x):

h∗(x) = sgn(min(c∗1 − r⊤1 x, c
∗
2 − r⊤2 x, · · · , c∗√n−1 − r⊤√n−1x)).

By the choice of ci, we have that ci ≤ c∗i , ∀i. Denote h+ = {x ∈ Rn, h(x) = +}, we have that

(h+ ∩X) ⊂ (h∗+ ∩X) = X+,

by the fact h+ ⊂ h∗+. Meanwhile, by the construction of h(x), we have that X+ ⊂ h+, and further

X+ = (X+ ∩X) ⊂ (h+ ∩X).

As a result, X+ = h+ ∩X which means h(x) does classify all data points correctly. The rest of the
proof on PAC learning easily follows from Theorem 4 and we omit it here.

6. Conclusion

In this paper, we take a preliminary step towards unraveling the computational benefit of multi-
modal learning. We demonstrate an exponential separation in computation between multimodal and
unimodal learning by constructing a variant of the intersection of two half-spaces problem, which is
NP-hard for any unimodal algorithm but can be efficiently solved by a multimodal algorithm. Com-
plementing the statistical merits of multimodal learning as shown in Lu (2023), our result provides
a more comprehensive theoretical understanding of the power of multimodal learning.

The main limitation of this work, in our opinion, is on the contrived argument that multimodal
learning is tractable: the efficient learning scheme provided in this work only succeeds on a narrow,
intricately designed class of problem instances. These results alone are not enough to suggest that
computational benefits of multimodal learning are a more general phenomenon.

We conclude with two questions as future directions to improve the preliminary results presented
in this work.
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1. Can we show such separation in computation for more natural learning problems? Ideally, a
good efficient learning algorithm for the multimodal setting should have less dependence on
the problem structure, such as ERM.

2. Can we obtain a general sufficient condition for the computational benefit of multimodal
learning? Even a polynomial improvement is interesting.
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