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Abstract
We consider regret minimization in a general collaborative multi-agent multi-armed bandit model, in
which each agent faces a finite set of arms and may communicate with other agents through a central
controller. The optimal arm for each agent in this model is the arm with the largest expected mixed
reward, where the mixed reward of each arm is a weighted average of its rewards across all agents,
making communication among agents crucial. While near-optimal sample complexities for best
arm identification are known under this collaborative model, the question of optimal regret remains
open. In this work, we address this problem and propose the first algorithm with order optimal regret
bounds under this collaborative bandit model. Furthermore, we show that only a small constant
number of expected communication rounds is needed.
Keywords: Multi-agent multi-armed bandit, Collaborative learning

1. Introduction

In the classic multi-armed bandit problem (Lai and Robbins, 1985; Auer et al., 2002) an agent
sequentially interacts with a set of arms. At each time, the agent selects one of the arms and receives
the corresponding reward drawn from an unknown distribution. The goal of the agent is to minimize
regret defined as the total loss in the rewards compared to always selecting the arm with the highest
expected reward. The trade-off between exploration —selecting each arm several times to learn the
unknown distributions— and exploitation —capitalizing on the information gathered so far to select
the arm with the highest reward— is central to designing efficient bandit algorithms that minimize
the regret. The bandit problem has also been studied under a different setting, referred to as the best
arm identification, where the goal of the agent is to identify the optimal arm with high probability
with as a small number of samples as possible (Even-Dar et al., 2006; Jamieson et al., 2014).

There is an increasing interest in collaborative learning due to modern applications in traffic
routing, communication systems, social dynamics, federated learning, and the Internet of Things
(IoT). We consider a statistical learning point of view to collaborative learning through a general
multi-agent multi-armed bandit model. This collaborative bandit model was proposed in Réda et al.
(2022), which itself was a generalization of the federated learning with the personalization model
introduced in Shi et al. (2021). In this model, M agents interact with K arms. An agent m ∈ [M ]
observes a local reward Xk,m(t) for playing arm k ∈ [K] at time t ∈ [T ]. The actual reward that
the agent receives, however, is a mixed reward X ′

k,m(t) that is a weighted average of local rewards
over all M agents for the same arm k. A special case of this collaborative bandit model limited to
particular weights was introduced in Shi et al. (2021) for a federated learning setting. A detailed
problem formulation highlighting the special case of Shi et al. (2021) is given in Section 2.
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The interdependence among agents due to mixed rewards naturally makes communication among
agents crucial. In fact, it is easy to design problem instances where without communication a
trivial linear in T regret is inevitable. The agents in the collaborative bandit model are allowed to
communicate through a central controller or server. Specifically, the agents can send information
(e.g., empirical means of past local observations) to the server, which will broadcast this information
to all other agents. An ideal algorithm obtains a good performance in terms of regret with few
communication rounds.

The realistic scenarios of collaborative bandit include applications to recommendation systems,
for which one may want to go beyond uniformly personalized learning; favoring the local rewards of
agent m over other agents’ observations in the identification of the optimal arm (Shi et al., 2021).
The setting is also suitable for adaptive clinical trials on K therapies, run by M teams who have
access to different sub-populations of patients. In this context, each sub-population typically aims to
find its best treatment (see details in Réda et al., 2022). Similarly, this setting has applications in
routing and communication systems (Shi et al., 2021).

1.1. Related Work and Contribution

The authors in Shi et al. (2021) provided a conjecture on the lower bound on regret under the special
case of federated learning with personalization1. They also introduced personalized federated upper
confidence bound (PF-UCB) algorithm that achieves anO(log(T )) regret where the implied constant
in the O notation is suboptimal in terms of problem parameters. The authors in Réda et al. (2022)
primarily studied best arm identification under the collaborative bandit model. They proved an
Ω(s∗ log(1δ )) information-theoretic lower bound on the sample complexity for the event that, with
probability at least 1 − δ, each agent identifies their own best arm. In this lower bound, s∗ is the
solution to a constrained optimization problem involving the weights and the mixed reward gaps.
In addition, they used the knowledge of the lower bound to propose weighted collaborative phased
elimination for best arm identification (W-CPE-BAI) algorithm, achieving near-optimal performance
O(s∗ log( 1

∆′
min

) log(1δ )), where ∆′
min is the smallest gap in the expected mixed rewards of the best

arm and a suboptimal arm across all agents.
In the context of our work, Réda et al. (2022) established an Ω(c∗ log(T )) lower bound on regret

that also confirmed the conjecture in Shi et al. (2021). Similar to the previous case, in this lower
bound, c∗ is the solution to a constrained optimization problem involving the weights and the mixed
reward gaps (see Lemma 1 for details). However, designing an algorithm achieving near-optimal
regret was proven to be a challenging task and remained as an open problem. The difficulty arises
from the structure of the constrained optimization problem associated with c∗, which is essentially
different from the one associated with s∗. As noted in Réda et al. (2022), a standard analysis of
phased elimination algorithms would lead to an O( c∗

∆′
min

log(T )) regret bound. In this case, the
1

∆′
min

gap is exponentially worse than the log( 1
∆′

min
) gap in the previous case, and can result in poor

performance guarantees.
In this work, we present a novel regret minimization algorithm called collaborative double

exploration (CExp2) and demonstrate that it achieves an O(c∗ log(T )) regret, with only absolute
constants hidden in the O notation. Our regret guarantees for this algorithm match the problem-

1. The term personalization here emphasizes the property of this collaborative learning model that the mixed reward
distributions are agent specific, in contrast to settings where all agents share the same global reward model (see, e.g.,
Tao et al., 2019; Shi and Shen, 2021).
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specific regret lower bound given in Réda et al. (2022). CExp2 comprises a sub-logarithmic initial
round-robin exploration phase, followed by a guided exploration phase that is designed based on
the constrained optimization problem associated with c∗ (hence, the name double exploration).
We prove that by utilizing the initial exploration phase, the guided exploration phase can gather
enough information to efficiently exploit the best arm, resulting in an optimally bounded total
regret. Moreover, we show that CExp2 achieves the order optimal regret bound with only a constant
number of expected communication rounds. Specifically, the number of communication rounds is
O(log( 1

∆min
)). Furthermore, with probability at least 1 − 1

log(T ) , there are only 2 communication
rounds in CExp2, implying that the expected number of communication rounds is only 2 as T grows
large.

1.2. Paper Structure

In Section 2, we introduce the notation and provide the details of the collaborative bandit model.
We also overview the background on regret lower bound and confidence intervals in this setting. In
Section 3, we describe our collaborative bandit algorithm CExp2. The analysis of the algorithms is
given in Section 4, while some details are deferred to the appendix. Further related work is discussed
in Appendix A.

2. Problem formulation

In the collaborative bandit model, there are K arms and M agents. At each sequential time t ∈ [T ],
T ∈ N, each agent m ∈ [M ] is allowed to select an arm k ∈ [K] and observe the corresponding local
reward Xk,m(t) independent across k,m and independent and identically distributed across t. We
use the notation [N ] = {1, 2, . . . , N}, for N ∈ N, throughout the paper. The random local reward
Xk,m(t) is distributed according to a σ-sub-Gaussian distribution νk,m. We say that the distribution
of a random variable X is σ-sub-Gaussian when for all η ∈ R, E[exp(η(X − E[X]))] ≤ exp(η

2σ2

2 ),
for some σ > 0. This property allows us to use statistical confidence bounds on the mean rewards
in algorithm design. We use µk,m = E[Xk,m(t)] to denote the expected value of the rewards. The
agents are interested in the mixed rewards of the arms defined using a fixed and known weight matrix
W = (wn,m)n,m ∈ [0, 1]M×M , satisfying

∑
n∈[M ]wn,m = 1 for all m ∈ [M ], i.e. the columns

of W add up to 1. The weight wn,m represents the importance weight of agent n for agent m.
Specifically, the mixed reward of agent m from arm k at time t is defined as a weighted average of
the local rewards over all agents

X ′
k,m(t) =

M∑
n=1

wn,mXk,n(t), (1)

and its expectation, referred to as expected mixed reward, is denoted by µ′
k,m =

∑M
n=1wn,mµk,n.

We use k∗m = argmaxk∈[K] µ
′
k,m to denote the arm with the largest expected mixed reward for

agent m, assumed unique. Also, for all m and k, we use ∆′
k,m = µ′

k∗m,m − µ′
k,m to denote the gap

between the expected mixed reward of arm k and the arm with the highest mean mixed reward,
for agent m. In addition, for all m and k ̸= k∗m, we define ∆̃′

k,m = ∆′
k,m. In the case of the best

arm k∗m of each agent m, we define ∆̃′
k∗m,m = mink ̸=k∗m ∆′

k,m, equal to the gap for the second best
arm. We introduce the notation ∆̃′ that is different from ∆′ only in the case of the best arm, for the
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convenience of presenting our results and proofs. We also use the notations ∆′
min = mink,m ∆̃′

k,m

and ∆′
max = maxk,m ∆̃′

k,m to denote the smallest and largest gaps for agents, respectively.
At each time t, the agents are allowed to communicate information to a server, in the form of

empirical mean rewards of local observations (similar to Réda et al., 2022; Shi et al., 2021). The
information is then broadcast to all other agents. We aim at designing efficient algorithms with as
few as possible communication rounds. A collaborative learning bandit algorithm π = {πm}m∈[M ]

is a specification of the arm πm(t) ∈ [K] selected by agent m at time t. The performance of π is
measured in terms of its collaborative regret defined as follows:

R(T ) = E

[
M∑

m=1

T∑
t=1

(µ′
k∗m,m − µ′

πm(t),m)

]
. (2)

Shi et al. (2021) considered a special case of the collaborative bandit model with wm,m = α+ 1−α
M

and wn,m = 1−α
M for n ̸= m, for some α ∈ [0, 1]. We note that when wm,m = 1 for all m ∈ [M ] the

problem reduces to the degenerated case of M independent single-agent bandit problems. Moreover,
when wn,m = 1

M for all n,m ∈ [M ], the problem reduces to another special case where all agents
are interested in a global average of the rewards across all agents considered in Shi and Shen (2021).

We use the following notations for the sample means. The sample mean of local observations of
arm k by agent m is denoted by

µ̂k,m(t) =
1

τk,m(t)

t∑
s=1

Xk,m(s)1{πm(s) = k}, (3)

where τk,m(t) denotes the number of times arm k was selected by agent m by the end of round t, and
1 is the indicator function, i.e. for an event F , 1{F} = 1 if F holds true, and 1{F} = 0, otherwise.
The sample mean of the mixed reward is denoted by

µ̂′
k,m(t) =

K∑
n=1

wn,mµ̂k,n(t). (4)

2.1. Regret Lower Bound

Réda et al. (2022) established a regret lower bound for the collaborative bandit model that also
confirmed the conjecture in Shi et al. (2021) for their special case of weights. This result is formally
stated in the following lemma. The lower bound holds for normal distributions over the rewards.
Furthermore, the agents are allowed to communicate after each round.

Lemma 1 Any uniformly efficient collaborative bandit algorithm in which all agents communicate
after each round satisfies lim infT→∞

R(T )
log(T ) ≥ c∗, where

c∗ = min
q∈(R+)K×M

∑
m∈[M ]

∑
k∈[K],k ̸=k∗m

qk,m∆̃′
k,m, (5)

subject to: ∀m ∈ [M ], ∀k ∈ [K],
∑

{n∈[M ]:k∗n ̸=k}

w2
n,m

qk,n
≤

(∆̃′
k,m)2

2
. (6)
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The proof is based on the change of measure technique used in proving regret lower bounds in the
single-agent bandit problem (see, Lai and Robbins, 1985; Salomon et al., 2011). A uniformly efficient
algorithm satisfies R(T ) = o(T γ) for any γ ∈ (0, 1) and for all possible distribution instances
ν = {νk,m}k∈[K],m∈[M ]. The lower bound complexity term c∗ can be intuitively understood as
the value of regret divided by log(T ) for the optimum allocation of the arm plays, guaranteeing
sufficiently small confidence intervals for all mean mixed rewards. The intuition is based on

the observation that the term
∑

{n∈[M ]:k∗n ̸=k}
w2

n,m

qk,n
in the constraints in Lemma 1 appears in the

confidence interval width of the mean mixed rewards (see Equation 11).
A relaxed complexity term was given in Réda et al. (2022), which does not require the knowledge

of the best arm and is easier to work with in algorithm design. Let us define an oracle for the
following optimization problem related to the lower bound, which will also be used in the algorithm.

Definition 2 For any ∆ ∈ (R+)K×M , the oracle P(∆) is the solution to the following constrained
optimization problem.

argmin
q∈(R+)K×M

∑
k∈[K],m∈[M ]

qk,m∆k,m, (7)

subject to: ∀m ∈ [M ],∀k ∈ [K],
∑

n∈[M ]

w2
n,m

qk,n
≤

∆2
k,m

2
. (8)

Réda et al. (2022) proved that the complexity term c∗ in the regret lower bound in Lemma 1 and a
complexity term c̃∗ obtained from the relaxed oracle P are the same up to small constant factors.

Lemma 3 Let (q∗k,m)k,m and c̃∗ be as (q∗k,m)k,m = P(∆̃′) and c̃∗ =
∑

k∈[K],m∈[M ] q
∗
k,m∆̃′

k,m.
Then it holds that

c∗ ≤ c̃∗ ≤ 4c∗. (9)

We thus have c̃∗

4 ≤ c∗, which implies, under the setting of Lemma 1,

lim inf
T→∞

R(T )
log(T )

≥ c̃∗

4
. (10)

2.2. Confidence Intervals

Confidence intervals serve as essential building blocks in the design of efficient bandit algorithms.
For any k ∈ [K],m ∈ [M ], δ ∈ (0, 1), at time t, we define:

Ωδ
k,m(t) :=

√√√√βδ(τk,·(t))
M∑
n=1

w2
n,m

τk,n(t)
(11)

where βδ : (R+)M → R+ is a threshold function defined as:

βδ(N) := 2

(
gM

(
δ

KM

)
+ 2

M∑
m=1

log(4 + log(Nm))

)
(12)
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where gM is some non-explicit function, defined in Kaufmann and Koolen (2021) that satisfies:

gM (δ) ≃ log(
1

δ
) +M log log(

1

δ
) (13)

We then have the following, uniform in time, confidence intervals for mixed mean rewards.

Lemma 4 (Kaufmann and Koolen, 2021; Réda et al., 2022) For any δ ∈ (0, 1), the event F defined
as follows holds with probability larger than 1− δ.

F :=

{
∀t ∈ N,∀k ∈ [K],m ∈ [M ]; |µ̂′

k,m(t)− µ′
k,m| ≤ Ωδ

k,m(t)

}
(14)

Lemma 4 is proven in (Kaufmann and Koolen, 2021, Proposition 24) by constructing mixture
martingales resulting in tight confidence intervals for certain functions of the means of the arms.
We note that, in our setting, the standard Chernoff-Hoeffding type inequalities cannot be directly
applied, as we need to create confidence intervals for µ′

k,m utilizing observations of Xk,n, n ∈ [M ],
in contrast to directly observing samples form X ′

k,m.

3. Collaborative Learning in Bandits: A Regret Minimization Algorithm

In this section, we present CExp2, a collaborative bandit algorithm for regret minimization. The
existing work has primarily focused on phased elimination algorithms, which seems a natural choice
in settings like collaborative bandits. These algorithm designs are motivated by the lower bound.
During each phase, the lower bound oracle is employed to obtain a good allocation of the arm plays
based on the current estimate of the problem parameters (here the gaps ∆̃′

k,m).
The allocation obtained by the oracle is then used for a guided exploration of arms in the next

phase. Suboptimal arms are identified and removed from the set of candidate optimal arms at the end
of each phase. In the best arm identification setting, Réda et al. (2022) introduced W-CPE-BAI, a
phased elimination algorithm that achieves near-optimal sample complexity. The performance of a
similar algorithm in the regret minimization setting, however, does not match the regret lower bound,
as discussed in Réda et al. (2021).

A similar shortcoming is also observed for PF-UCB introduced in Shi et al. (2021) for regret
minimization in the special weights setting. The reason for this drastic difference between best arm
identification and regret minimization settings is the subtle difference in the constrained optimization
problems associated with the lower bound complexities in each setting. In particular, we note that
the unknown gaps ∆̃′

k,m appear both in the objective as well as in the constraints in the Oracle P
given in Definition 2.

This is in contrast to the constrained optimization problem associated with the lower bound on
the sample complexity where the unknown gap parameters appear only in the constraints (see, Réda
et al., 2022, Theorem 1). This subtle difference breaks the analysis of standard phased elimination
algorithms for regret minimization in the collaborative bandit model and leaves a significant gap in
the performance (Réda et al., 2022). To address this problem, we introduce CExp2(see Algorithm 1).

3.1. Description of CExp2 Algorithm

CExp2 comprises two exploration phases followed by a third phase in which all agents either exploit
—by playing the arm with the highest sample mean of mixed reward— or switch to any policy π′

with an O(log(T )) regret.
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An example of policy π′ with logarithmic regret is a variation of W-CPE-BAI adopted to the
regret minimization setting. We formally give this variation, W-CPE-Reg, and the proof that it has an
O( c∗

∆′
min

log(T )) regret using an O(log( 1
∆′

min
)) communication rounds, in Section 3.2.

Initial Exploration: In the initial sub-logarithmic exploration phase of CExp2, each agent m ∈
[M ] plays each arm k ∈ [K] for τ1 = ⌈

√
log(T )⌉ times. The length of the initial exploration phase

is denoted by

Tie = MKτ1. (15)

At the end of the initial exploration phase, each agent m computes their local sample mean reward
µ̂k,m(Tie) for each arm k. The sample means of local rewards are shared through the server with
other agents (the first round of communication), which are used to compute the sample means of
mixed rewards µ̂′

k,m(Tie), and estimates of gaps in mixed rewards ∆̂′
k,m(Tie).

Guided Exploration: CExp2 utilizes the gap estimates in mixed rewards and Oracle P to obtain
an allocation of the arm plays (τ ge

k,m)k,m for the guided exploration phase, and ensures each agent m
plays each arm k until reaching τ

ge
k,m. To avoid extreme cases of allocation, which may lead to large

regret, the gap estimates are first projected onto the ( 1
log log(T ) , log log(T )) interval. Specifically, we

introduce, ∀k,m,

∆̂
ge
k,m = min

{
max

{
∆̂′

k,m(Tie),
1

log log(T )

}
, log log(T )

}
. (16)

Then, the allocation design q = P(∆̂ge) is obtained using ∆̂ge. The allocation of the arm plays in the
guided exploration phase is then set to ⌈18qge

k,mB(T )⌉, where B(T ) = βδ′(τk,·), with δ′ = 1
T and

τk,n = T , ∀k, n, is an upper bound on βδ′(τk,·). As given in Section 2.2,

B(T ) ≃ 2 log(KMT ) + 2M log log(KMT ) + 4M log(4 + log(T )). (17)

Thus, we have B(T ) = O(log(KMT )) hiding a small absolute constant 2 for large T . In the
guided exploration phase, each agent m plays each arm k to reach a total number of τ

ge
k,m =

max{τ1, ⌈18qge
k,mB(T )⌉}. Let Tge denote the end of guided exploration phase. At this time, the

sample means of local rewards are shared through the server with other agents (the second round of
communication). Those are used to compute µ̂′

k,m(Tge) and ∆̂′
k,m(Tge) similar to the end of initial

exploration phase.

Exploitation/ Switch to π′: At the end of the guided exploration phase, CExp2 either exploits
—by playing the arm with the highest sample mean of mixed reward— or switches to π′, based on the
following condition, with δ′ = 1

T ,

C =

{
∀k ∈ [K],m ∈ [M ], Ωδ′

k,m(T ) <
∆̂′

k,m(Tge)

2

}
. (18)

If C does not hold, CExp2 switches to π′. Otherwise, at the end of the guided exploration phase, each
agent m identifies the arm with the largest empirical mean mixed reward

k̂m = argmax
k∈[K]

µ̂′
k,m(Tge), (19)
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and plays this arm for the remaining time. A detailed pseudo-code for CExp2 is given in Algorithm 1.
The regret performance and the number of communication rounds of CExp2 are presented in the
following theorem and lemma.

Algorithm 1 CExp2, regret minimization in collaborative bandit model.
Input: M agents, K arms, weight matrix W , π′

Initial Exploration:
Each agent m, plays each arm k for τ1 = ⌈

√
log(T )⌉ times.

Agents communicate the sample mean of their local observations.
Agents obtain (∆̂′

k,m(Tie))k,m.
Guided Exploration:
∆̂

ge
k,m ← min

{
max{∆̂′

k,m(Tie),
1

log log(T )}, log log(T )
}

, ∀k ∈ [K],m ∈ [M ]

Let (qge
k,m)k,m = P(∆̂ge)

Each agent m ∈ [M ] plays each action k ∈ [K] until it reaches to a total number of

τ
ge
k,m = max{τ1, ⌈18qge

k,mB(T )⌉}

Agents communicate the sample mean of their local observations
Agents update (∆̂′

k,m(Tge))k,m
Exploitation/Switch to π′:

if ∀k ∈ [K],m ∈ [M ], Ωδ′
k,m(T ) <

∆̂′
k,m(Tge)

2 then
Each agent m plays argmaxk∈[K] µ̂

′
k,m(t) until T

else
Reset all data and play based on π′ until T

end if

Theorem 5 Consider the collaborative bandit model described in Section 2. Consider CExp2 given
in Algorithm 1. Let π′ be W-CPE-Reg. The regret performance of CExp2 satisfies, for some T0 ∈ N,
and for all T ≥ T0,

R(T ) = O
(
c∗ log(T ) +

(∆′
max)

2

∆′
min

(log log(T ))4
)

(20)

The O notation hides only absolute constants which are specified in the analysis section. The
value of the constant T0 is also given in the analysis section. The O(c∗ log(T )) regret bound given
in Theorem 5 proves that the performance of CExp2 matches the lower bound up to an absolute
constant factor. As mentioned, CExp2 also enjoys very few expected number of communication
rounds, as given in the following lemma.

Lemma 6 Under the setting of Theorem 5, the expected number of communication rounds in
CExp2 is bounded by

2 + ⌈log2(
8

∆′
min

)⌉/log(T ). (21)

8
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In addition, with probability at least 1− 1
log(T ) the number of communication rounds in CExp2 is

exactly 2.

According to Lemma 6, as T grows large, CExp2 requires only 2 communication rounds. In
comparison, W-CPE-BAI required ⌈log2( 8

∆′
min

)⌉ communication rounds. The proof is provided in
Appendix B.

3.2. An Example of Algorithms with Logarithmic Regret (π′)

For completeness and correctness of our results, we provide a concrete example of a collaborative
bandit algorithm with logarithmic regret (not necessarily with optimal constant in front of log term),
that can be used as π′ in CExp2. This algorithm, referred to as W-CPE-Reg, is similar to W-CPE-
BAI (Réda et al., 2022), but adopted to the regret minimization setting. W-CPE-BAI was originally
introduced for best arm identification, where the goal of each agent m is to return their candidate
best arm k̂m, with as few samples from arms as possible, satisfying, for a given δ ∈ (0, 1),

P
[
∀m ∈ [M ], k̂m = k∗m

]
≥ 1− δ. (22)

We run W-CPE-BAI with δ = 1
T until it stops. Then, each agent m plays k̂m for the remaining time.

Referring to this procedure as W-CPE-Reg, we have the following result on its regret performance
and communication rounds. The proof is provided in Appendix C.

Lemma 7 Consider the collaborative bandit model described in Section 2. The number of commu-
nication rounds is at most ⌈log2( 8

∆′
min

)⌉. Moreover, the regret performance of W-CPE-Reg described
above satisfies

R(T ) ≤ 128c∗

∆′
min

log2(
8

∆′
min

) log(T ) + o(log(T )). (23)

4. Analysis

In this section, we overview the main steps and challenges in the proof of Theorem 5, while deferring
some details and proof of lemmas to the appendix. The regret of CExp2 is partitioned into three
disjoint parts: the regret Rie during the initial exploration phase t ∈ Tie, the regret Rge during the
guided exploration phase t ∈ Tge, and the regretRex during the third phase t ∈ Tex (exploitation or
switch to π′), which we refer to as exploitation for brevity. We note that

R(T ) = Rie +Rge +Rex. (24)

Let us first introduce two high probability events, ET and BT , on the sample means of mixed
rewards with δ = 1

log(T ) and δ′ = 1
T .

ET =

{
∀t ≤ T, ∀k ∈ [K],m ∈ [M ]; ∥µ̂′

k,m(t)− µ′
k,m∥ ≤ Ωδ

k,m(t)

}
, (25)

BT =

{
∀t ≤ T, ∀k ∈ [K],m ∈ [M ]; ∥µ̂′

k,m(t)− µ′
k,m∥ ≤ Ωδ′

k,m(t)

}
. (26)
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Based on Lemma 4, we have P[ET ] ≥ 1− 1
log(T ) and P[BT ] ≥ 1− 1

T . These two events are used
in the analysis of Rge and Rex. Also, for the sake of brevity, we use the notations δ = 1

log(T ) and
δ′ = 1

T throughout the proof. We now boundRie,Rge andRex to prove the theorem.

Regret in Initial Exploration: In the initial exploration phase each agent m ∈ [M ] plays each
arm k ∈ [K] for τ1 = ⌈

√
log(T )⌉ times. Thus,Rie is simply bounded as follows

Rie ≤ KM⌈
√
log(T )⌉∆′

max. (27)

Regret in Guided Exploration: By law of total expectation and using the notation “not F” for
complement of an event F , we have,Rge is equal to

E

∑
t∈Tge

M∑
m=1

∆′
πm(t),m

 = E

1{ET }∑
t∈Tge

M∑
m=1

∆′
πm(t),m


︸ ︷︷ ︸

Term 1

+

E

1{not ET }
∑
t∈Tge

M∑
m=1

∆′
πm(t),m


︸ ︷︷ ︸

Term 2

.

(28)

We proceed by boundingRge when ET holds true and when it does not.

ET holds true. We first show that ∆̂ge used in designing the allocation in the guided exploration
phase are within constant factors of the gaps ∆̃′. Recall Ωδ

k,m(t) given in (11). At the end of the
initial exploration phase, we have

Ωδ
k,m(Tie) =

√√√√2

(
gM (

δ

KM
) + 2M log(4 + log(τ1))

) M∑
n=1

w2
n,m

τ1
(29)

= O(
√

log(KM) + log log(T ) + log log(KM log(T ))√
log(T )

), (30)

where O notation hides only small absolute constants. Note that

M∑
n=1

w2
n,m ≤

M∑
n=1

wn,m = 1. (31)

Therefore, Ωδ
k,m(Tie) is decreasing in T as given above. Thus, for a sufficiently large T1, for all

T ≥ T1 and ∀k,m, we have

Ωδ
k,m(Tie) ≤

∆′
k,m

4
. (32)

10
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From the confidence bounds on the sample means of mixed rewards, conditioned on T ≥ T1 and ET ,
we have that

∥∆̂′
k,m(Tie)− ∆̃′

k,m∥ ≤
∆̃′

k,m

2
. (33)

Thus ∆̂′ are the same as ∆̃′ up to absolute constants. I.e. 1
2∆

′
k,m ≤ ∆̂′

k,m ≤
3
2∆

′
k,m, for all k, m.

In addition, let T2 and T3 be the smallest numbers for which 1
log log(T2)

≤ 1
2∆

′
k,m, for all k,m,

and 3
2∆

′
k,m ≤ log log(T3), for all k,m, respectively. Let T0 = max{T1, T2, T3}.

Recall the projections ∆̂ge
k,m of ∆̂′

k,m(Tie) onto ( 1
log log(T ) , log log(T )) interval. Under event ET ,

when T ≥ T0, we have ∆̂k,m(Tie) = ∆̂
′ge
k,m. Thus,

1

2
∆′

k,m ≤ ∆̂
ge
k,m ≤

3

2
∆′

k,m (34)

The following Lemma shows that the complexity term in the oracle P remains within constant factors,
when the input is scaled by up to constant factors. The proof is provided in Appendix D.

Lemma 8 Recall Oracle P from Definition 2. Consider two sets of gaps ∆, ∆̂ ∈ (R+)K×M . Let
q∗ = P(∆), q̂∗ = P(∆̂), and c =

∑
k∈[K],m∈[M ] qk,m∆k,m,ĉ =

∑
k∈[K],m∈[M ] q̂k,m∆k,m. Assume

∀k ∈ [K],m ∈ [M ], a∆k,m ≤ ∆̂k,m ≤ b∆k,m, for some 0 < a < b. Then, ĉ ≤ b
a3
c.

Using Lemma 8, the regret in the guided exploration phase, under event ET and assuming that
T ≥ T0, can be bounded as

Term 1 ≤
∑

m∈[M ],k∈[K]

⌈18qge
k,mB(T )⌉∆′

k,m (35)

≤ 18
∑

m∈[M ],k∈[K]

(q
ge
k,m∆̃′

k,m)B(T ) +
∑

m∈[M ],k∈[K]

∆′
k,m (36)

≤ 216c̃∗B(T ) +KM∆′
max, (37)

where the first inequality comes from P[ET ] ≤ 1 and the third inequality holds by Lemma 8 and (34).
We note that B(T )

log(T ) ≃ 2 for large T by definition. Term 1 is the dominant term in the regret bound.

not ET holds true. To upper bound Term 2, let a = 1
∆′

max log log(T ) and b = log log(T )
∆′

min
. For T ≥ T0,

(34) implies
a∆′

k,m ≤ ∆̂′
k,m ≤ b∆′

k,m ∀k ∈ [K],m ∈ [M ]. (38)

Using Lemma 8.

Term 2 = P(not ET )
∑

m∈[M ],k∈[K]

⌈18qge
k,mB(T )⌉∆′

k,m (39)

≤ P(not ET )

(
18

∑
m∈[M ],k∈[K]

(q
ge
k,m∆̃′

k,m)B(T ) +
∑

m∈[M ],k∈[K]

∆′
k,m

)
(40)

≤ 1

log(T )

(
18 (log log(T ))4

(∆′
max)

3

∆′
min

c̃∗B(T ) +KM∆′
max

)
, (41)

11
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where the last inequality comes from Lemma 8 and P[not ET ] ≤ 1
log(T ) . Since B(T )

log(T ) ≃ 2 for large
T , we have

Term 2 = O
(
(log log(T ))4

(∆′
max)

3

∆′
min

c̃∗
)
, (42)

up to an absolute constant factor of approximately 36.

Regret in Exploitation/Switch to π′: We first consider the exploitation case where the condition C
in (18) is satisfied, and the algorithm proceeds with choosing k̂m = argmaxk∈[K] µ̂

′
k,m(Tge). When

BT holds true, the best arm will be chosen. Because, ∀m, k ̸= k∗m

µ′
k̂m,m

≥ µ̂′
k̂m,m

(Tge)− Ωδ′

k̂m,m
(43)

> µ̂′
km,m(Tge) + Ωδ′

k,m (44)

≥ µ′
k,m. (45)

The second inequality holds by C. Thus, there is no regret in the exploitation phase. When BT
does not hold true, the regret can be simply bounded by KM∆′

max, since P(not BT ) ≤ 1
T . Therefore,

the expected regret under the exploitation caseRex ≤ KM∆′
max.

Now, for the case where C fails and the algorithm switches to π′, we have the following lemma.

Lemma 9 Recall ET and BT and condition C. We have

(ET and BT ) =⇒ C. (46)

Moreover, we note that “not ET ” implies “not BT ”, since Ωδ
k,m ≤ Ωδ′

k,m. Thus, the probability of
switching is bounded by the probability of “not ET ”, which is at most 1

log(T ) . Hence, the regret in
this case is bounded by

Rex ≤
Rπ′

(T )

log(T )
≤ 128c∗

∆′
min

log2(
8

∆′
min

) + o(1). (47)

Adding up the bounds onRie,Rge andRex completes the proof.

5. Conclusion

In this work, we considered the collaborative bandit model given in Réda et al. (2022). While
near-optimal sample complexities were known under this model, the problem of optimal regret
bounds was left as an open question. We addressed this problem and proposed a novel algorithm,
CExp2, achieving order optimal regret bounds by running two rounds of exploration. We also showed
that CExp2 needs only a small constant expected number of communication rounds.

12
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Appendix A. Other related work

There is a vast literature on single-agent stochastic bandits under various statistical models and
assumptions (see, Lai and Robbins, 1985; Auer et al., 2002; Vakili et al., 2013; Abbasi-Yadkori et al.,
2011; Srinivas et al., 2010; Lattimore and Szepesvári, 2020, as some representative works). In the
classic setting, the performance of algorithms was primarily measured in terms of regret (Lai and
Robbins, 1985; Auer et al., 2002), while a best arm identification setting was also later considered in
several works (Even-Dar et al., 2006; Gabillon et al., 2012; Jamieson et al., 2014). The collaborative
bandit model formalized in Shi et al. (2021); Réda et al. (2022) is a generalization of the classic
single-agent bandit to a multi-agent setting.

Collaborative bandit under a pure exploration setting, where all agents face the same bandit
problem, has been considered in Hillel et al. (2013); Tao et al. (2019); Karpov et al. (2020); Chen et al.
(2021); Zhu et al. (2021). Some of these works consider a communication matrix where agents are
allowed to communicate only with their neighbors (see, Zhu et al., 2021). The goal of collaborative
pure exploration is to reduce sample complexity at the cost of communication rounds. Du et al.
(2021) considered a collaborative bandit setting where a kernel is used to model the reward means.
They provided a lower bound on the sample complexity of the best arm identification and also an
algorithm with order optimal performance. Salgia et al. (2023) considered regret minimization under
a collaborative kernel-based setting. The kernel model, however, is inherently different from the
multi-armed bandit considered in the collaborative learning model of Réda et al. (2022).

The phased elimination algorithms are inspired by a simple phased elimination algorithm in-
troduced in Auer and Ortner (2010) for subtle improvements in the regret bounds of the classic
single-agent bandit. These algorithms maintain a set of potential optimal arms which are pruned at the
end of each phase based on the observations gathered so far. This technique has been used in several
bandit algorithms in various settings for both regret minimization and best arm identification (Hillel
et al., 2013; Chen et al., 2017; Fiez et al., 2019; Boursier et al., 2020; Shi et al., 2021; Réda et al.,
2022; Du et al., 2021). Recently, Jin et al. (2021) studied the standard K-armed bandits using
a double-exploration algorithm. However, the algorithm in Jin et al. (2021) follows an “explore-
commit-explore-commit" pattern, while none of the exploration phases are guided in the sense of
our guided exploration phase. Our algorithm follows an “explore-guided explore-exploit/switch"
phases, where in addition to the other difference mentioned before, the last phase includes switching
to a policy which could be a UCB-based policy instead of always committing to one arm, which is
suboptimal. Moreover, our multi-agent setting includes a constrained optimisation problem governing
the lower bound which makes the problem significantly different than the setting in Jin et al. (2021).
In addition, our model due to its collaborative nature requires a more complex confidence bound.

Appendix B. Proof of Lemma 6

In CExp2, agents communicate with the server at the end of both exploration phases, i.e. initial
exploration and guided exploration. If the condition (18) holds, the algorithm enters the exploitation
phase where no communication happens. Otherwise, the algorithm switches to π′, where the agents
communicate according to π′. Therefore, the expected number of communication rounds is bounded
by

2 + ⌈log2(
8

∆′
min

)⌉P(not C), (48)
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where ⌈log2( 8
∆′

min
)⌉ is the number of communication rounds in π′ introduced is Section 3.2.

Appendix C. Proof of Lemma 7

Réda et al. (2022) considered the best arm identification setting. They introduced the following
relaxed complexity term for the sample complexity lower bound.

s∗ = min
q∈(R+)K×M

∑
m∈[M ]

∑
k∈[K]

qk,m,

subject to: ∀m ∈ [M ], ∀k ∈ [K],
∑

{n∈[M ]:k∗n ̸=k}

w2
n,m

qk,n
≤

(∆′
k,m)2

2
.

They proved that the sample complexity of W-CPE-BAI is at most

32s∗ log2(
1

∆min
) log(

1

δ
) + o(log(

1

δ
)). (49)

Choosing δ = 1
T , we have that the regret of W-CPE-BAI satisfies

R(T ) ≤32s∗ log2(
1

∆min
) log(T ) + o(log(T )) +

TM∆max

T
. (50)

In addition, we prove that s∗ ≤ 4c∗

∆′
min

that completes the proof. Let q̂∗ be the argmin in the
above optimization problem. Also, let q∗ be the argmin in the optimisation problem of Oracle P
given in Definition 2 and c̃∗ be as in Lemma 3. By definition

s∗ =
∑

m∈[M ],k∈[K]

q̂∗k,m

≤
∑

m∈[M ],k∈[K]

q∗k,m

≤ 1

∆′
min

∑
m∈[M ],k∈[K]

q∗k,m∆′
k,m

=
c̃∗

∆′
min

≤ 4c∗

∆′
min

.

The last inequality holds by Lemma 3. Also, note that the number of communication rounds follows
the best arm identification setting, which is proved in Réda et al. (2022) to be at most ⌈log2( 8

∆′
min

)⌉.

Appendix D. Proof of Lemma 8

We note that, ∀m ∈ [M ],
∑

n∈[M ]
a2w2

n,m

qk,n
≤ a2∆2

k,m

2 ≤ ∆̂2
k,m

2 . This shows that { qk,m
a2
}k,m satisfy the

constraints in P(∆̂). Thus, by definition∑
k∈[K],m∈[M ]

q̂k,m∆̂k,m ≤
∑

k∈[K],m∈[M ]

qk,m
a2

∆̂k,m. (51)
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Then, we have

ĉ =
∑

k∈[K],m∈[M ]

q̂k,m∆k,m

≤ 1

a

∑
k∈[K],m∈[M ]

q̂k,m∆̂k,m

≤ 1

a3

∑
k∈[K],m∈[M ]

qk,m∆̂k,m

≤ b

a3

∑
k∈[K],m∈[M ]

qk,m∆k,m

=
b

a3
c

The first and third inequalities follows from a∆k,m ≤ ∆̂k,m ≤ b∆k,m. The second inequality was
shown in (51).

Appendix E. Proof of Lemma 9

Assume ET and BT hold true. Recall the Oracle P from Definition (2). For τ ge, the number of
samples in the guided exploration phase, we have

Ωδ′
k,m(T ) ≤

√√√√βδ′(τk,·(T ))

M∑
n=1

w2
n,m

τ
ge
k,n

≤

√√√√βδ′(τk,·(T ))
M∑
n=1

w2
n,m

⌈18qgek,nB(T )⌉

≤

√
(∆̂

ge
k,m)2

36

≤
∆′

k,m

4
. (52)

The third inequality holds by definition of qge and the constraints in Oracle P . The last inequality
holds by (34). Under BT , we also have, ∀k,m

∥µ̂k,m(Tge)− µ′
k,m∥ ≤ Ωδ′

k,m(T ).

That implies, ∀k,m,

∆̂′
k,m(Tge) ≥ ∆′

k,m − 2Ωδ′
k,m(T ) ≥

∆′
k,m

2
. (53)

From (52) and (53), we conclude, ∀k,m,

Ωδ′
k,m(T ) ≤

∆̂′
k,m

2
. (54)

We thus proved that if both ET and BT hold true, then condition C holds true.
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