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Abstract
Popular iterative algorithms such as boosting methods and coordinate descent on linear models
converge to the maximum ℓ1-margin classifier, a.k.a. sparse hard-margin SVM, in high dimen-
sional regimes where the data is linearly separable. Previous works consistently show that many
estimators relying on the ℓ1-norm achieve improved statistical rates for hard sparse ground truths.
We show that surprisingly, this adaptivity does not apply to the maximum ℓ1-margin classifier for
a standard discriminative setting. In particular, for the noiseless setting, we prove tight upper and

lower bounds for the prediction error that match existing rates of order ∥w∗∥2/3
1

n1/3 for general ground
truths. To complete the picture, we show that when interpolating noisy observations, the error van-
ishes at a rate of order 1√

log(d/n)
. We are therefore first to show benign overfitting for the maximum

ℓ1-margin classifier.
Keywords: High-Dimensional Statistics, Statistical Machine Learning, Interpolating Models

1. Introduction

The ability to generalize in high-dimensional learning tasks is crucially based on structural assump-
tions on the underlying ground truth. Probably the most commonly studied assumption is that the
observations only depend on few input features, also called sparsity of the ground truth. Popular
iterative algorithms widely used in practice to train models in such settings include coordinate de-
scent (see Wright (2015) for a survey) and boosting methods (e.g., Adaboost Freund and Schapire
(1997)). Numerous influential works (Bartlett et al., 1998; Rudin et al., 2004; Zhang and Yu, 2005;
Shalev-Shwartz and Singer, 2010; Schapire and Freund, 2013; Telgarsky, 2013; Gunasekar et al.,
2018) make an important step towards mathematically understanding these algorithms by showing
that these solutions have the implicit bias of converging to the maximum ℓ1-margin classifier (sparse
hard-margin SVM).

However, so far, there exists relatively little analysis on the generalization capabilities of the
maximum ℓ1-margin classifier. In this paper, we introduce a novel proof technique for studying this
classifier that allows us to obtain tight non-asymptotic matching high probability upper and lower
bounds for the prediction error. As a result, we can answer two open problems for the maximum
ℓ1-margin classifier.
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Problem 1: Benign overfitting Motivated by empirical observations for largely over-parameterized
models (Zhang et al., 2021; Belkin et al., 2019), a recent line of work has shown “benign overfit-
ting” (Bartlett et al., 2020) for linear interpolating classifiers. Specifically, these papers have shown
that their prediction error can yield vanishing rates, although the model interpolates a constant frac-
tion of randomly corrupted observations (Muthukumar et al., 2021; Donhauser et al., 2022; Shamir,
2022). However, so far, no such results exist for the maximum ℓ1-margin classifier. Existing upper
bounds in (Chinot et al., 2021) are tight for arbitrary (adversarial) corruptions but require the frac-
tion of corrupted labels to go to zero to reach vanishing rates. It is unclear whether these rates can
be improved for non-adversarial corruptions. In this paper, we provide a conclusive answer to the
following question:

(Q1): Does the prediction error for the maximum ℓ1-margin classifier yield vanishing rates when a
constant fraction of the labels are randomly corrupted?

In Section 3.1, we show that this is indeed true: The maximum ℓ1-margin classifier achieves a
logarithmic rate of order 1√

log(d/n)
in Theorem 2 and vanishes in high-dimensional regimes when

d > n1+ϵ. We therefore complement the literature on benign overfitting for maximum ℓp-margin
classifiers with p > 1, which can even achieve much faster polynomial rates (Donhauser et al.,
2022).

Problem 2: Adaptivity to sparsity Intuitively, linear estimators relying on the ℓ1-norm should
adapt to (hard) sparse ground truths by achieving faster rates than for ground truths where only
the ℓ1-norm is bounded. For instance, this gap has been proven for ℓ1-norm penalized maximum
average margin classifiers (Zhang et al., 2014), as well as basis pursuit (which achieves exact re-
covery only under sparsity assumptions (Donoho, 2006; Candes and Tao, 2006)) and the LASSO
(Tibshirani, 1996; Van de Geer, 2008) in linear regression settings.

However, so far there are no results in the literature that show adaptivity to sparsity of the (inter-
polating) maximum ℓ1-margin classifier in high-dimensional discriminative learning tasks. While in
the noisy setting studied in Problem 1 (Theorem 2) the rates are dominated by ”the cost of fitting the
noise”, it is still unclear whether adaptivity to sparsity is achievable at least in the noiseless setting.
In fact, recent work (Chinot et al., 2021) posed the following open problem:

(Q2): Is the maximum ℓ1-margin classifier adaptive to sparsity for noiseless data?

In Section 3.2 we show that surprisingly, the answer is negative: The tight rate ∥w∗∥2/31

n1/3 for
(hard-) sparse normalized ground truths w∗ in Theorem 3 is of the same order as the upper bounds
in (Chinot et al., 2021) that hold for general ground truths.

2. Setting

In this section, we introduce the data distribution that we analyze, the prediction error and the
maximum ℓ1-margin classifier. We study a standard discriminative distribution which is commonly
studied in the 1-bit compressed sensing literature (see e.g., Boufounos and Baraniuk (2008); Plan
and Vershynin (2012) and references therein).

We assume that we observe n pairs of i.i.d. input features xi
i.i.d.∼ N (0, Id) and associated labels

yi = sgn(⟨xi, w∗⟩)ξi where w∗ is the (normalized) ground truth (i.e., ∥w∗∥2 = 1). Unlike previous
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works (Chinot et al., 2021), our proofs crucially rely on the Gaussianity of the input features (see
Appendix A for a comparison with existing proof techniques). We say that the label yi is clean if
ξi = 1 and corrupted if ξi = −1. We study the two cases where either all labels are clean (noiseless),
i.e. ∀i : ξi = 1, or where the corruptions ξi ∈ {−1, 1} are randomly drawn from a distribution Pσ
(noisy) only depending on the features in the direction of the ground truth:

ξi|xi
i.i.d.∼ Pσ(·; ⟨xi, w∗⟩). (1)

As proposed in (Donhauser et al., 2022), we make the following technical assumption on the noise
distribution Pσ:

Assumption 1 (Noise model) The function z 7→ Pσ(ξ = 1; z) is a piece-wise continuous function
such that the minimum νf := argmin

ν
EZ∼N (0,1)Eξ∼Pσ(·;Z) (1− ξν|Z|)2+ exists and νf > 0.

This assumption is rather weak and satisfied by most noise models in the literature, such as

• Logistic regression with Pσ(ξi = 1; z) = h(zσ) and h(z) = e|z|

1+e|z|
and σ > 0.

• Random label flips with Pσ(ξ = 1; ⟨xi, w⋆⟩) = 1− σ and σ ∈ (0, 12).

• Random noise before quantization where yi = sgn(⟨w∗, xi⟩+ ξ̃i) with ξ̃i|xi ∼ N (0, σ2) and
σ2 > 0.

Given the data set {(xi, yi)}ni=1, the goal is to obtain an estimate ŵ that directionally aligns with
the normalized ground truth w∗ and thus has a small prediction error:

R(ŵ) := Ex∼N (0,Id)1{sgn(⟨x, ŵ⟩) ̸= sgn(⟨x,w∗⟩)} =
1

π
arccos

(〈
ŵ

∥ŵ∥2
, w∗

〉)
. (2)

By the Taylor series approximation, one can directly see that a small prediction error corresponds
to a small directional estimation error, which is commonly studied in the 1-bit compressed sensing
literature (Boufounos and Baraniuk, 2008) since

R(ŵ) ≈ 1

π

∥∥∥∥ ŵ

∥ŵ∥2
− w∗

∥∥∥∥
2

. (3)

We study the maximum ℓ1-margin interpolators, or equivalently, the sparse hard-margin SVM
solution defined by

ŵ = argmin
w

∥w∥1 s.t ∀i : yi⟨xi, w⟩ ≥ 1.

Remark 1 While our two main results in Section 3, Theorem 2 and 3, are stated for the maximum
ℓ1-margin classifier, the bounds in the theorems hold uniformly for all interpolating classifiers with
large (close to the optimal) ℓ1-margin (see Proposition 15 and 17)

3. Main Results

In this section we state our main result for the noisy (Theorem 2 in Section 3.1) and noiseless setting
(Theorem 3 in Section 3.2). For both results, we assume that the data is distributed as described in
Section 2. Furthermore, we present a discussion comparing our main results with existing results
based on hyperplane tessellation in Appendix A.
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3.1. Main result for noisy observations

Our first main result considers the high noise regime where a constant fraction of the labels are
(randomly) corrupted with high probability. We show in the following theorem that the prediction
error for this setting vanishes at a logarithmic rate.

Theorem 2 (Noisy classification) Assume that the corruptions ξi follow the law in Equation (1)
with Pσ independent of n, d and satisfy Assumption 1. Furthermore, assume that w∗ is s-sparse
with s ≲ n/ log4(d/n). There exist universal constants κ1, κ2, κ3, c1, . . . , c4 > 0 such that for any
n ≥ κ1 and κ2n ≤ d ≤ exp(κ3n

1/5), the prediction error is upper- and lower-bounded by∣∣∣∣R(ŵ)−√ κσ
log(d/n)

∣∣∣∣ ≲ 1

log3/4(d/n)
,

with probability at least 1 − c1 exp
(
−c2 n

log5(d/n)

)
− c3 exp

(
−c4 n

logn log3/2(d/n)

)
over the draws

of the data set and with κσ a constant only depending on Pσ (see Equation (31) in Appendix D for
the definition).

The complete proof of the theorem is deferred to Appendix D while we present a proof sketch in
Section 4. Furthermore, we refer to Section 3.3 for a discussion of the assumptions. We now discuss
the implications of the theorem.

Benign overfitting We are the first to show that the prediction error of the max-ℓ1-margin classi-
fier vanishes albeit interpolating a constant fraction of (randomly) corrupted labels, and thus exhibits
benign overfitting Bartlett et al. (2020). Therefore, our work complements recent work studying
maximum ℓp-margin classifiers with p > 1 that can achieve polynomial rates (Donhauser et al.,
2022).

Comparison with optimal rates Albeit vanishing, the rates in Theorem 2 are only of logarithmic
order and, therefore, far from the mini-max optimal lower bounds of order ∥w∗∥0 log(d)√

n
(Wainwright,

2009; Abramovich and Grinshtein, 2018) that are attained by regularized (non-interpolating) clas-
sifiers maximizing the average margin under ℓ1-norm constraints (see, e.g., (Zhang et al., 2014)).
Theorem 2 can therefore also be understood as a negative result showing that the maximum ℓ1-
margin classifier suffers from overfitting the noise, in the sense that, albeit consistent, the rates are
far from min-max optimal.

3.2. Main result for noiseless observations

Our second main result stated in the following theorem provides tight upper and lower bounds in
the noiseless setting:

Theorem 3 (Noiseless classification) Assume that ∀i, ξi = 1 and w∗ is a s-sparse vector with
s ≤ n2/3 log−14/3 d. There exist universal constants κ1, κ2, κ3, c1, c2, c3 > 0 such that for any
n ≥ κ1 and κ2mn ≤ d ≤ exp(κ3n

1/12), the prediction error is upper- and lower-bounded by∣∣∣∣∣∣R(ŵ)−
(

κ0 ∥w∗∥21
n log1/2(d/mn)

)1/3
∣∣∣∣∣∣ ≲

(
∥w∗∥21

n log(d/mn)

)1/3

,
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with probability at least 1− c1d
−1 − c2 exp

(
−c3 n1/3

log4(d/mn)

)
over the draws of the data set where

we define κ0 = 8√
3π5/2 and mn ≍ (n ∥w∗∥1)2/3 log

1/3(d/(n ∥w∗∥1)2/3) (the exact expression is
given in Equation (14) in Appendix C).

The full proof of the theorem is deferred to Appendix C. Similar to Theorem 2, we provide a proof
sketch in Section 4. and refer to Section 3.3 for a discussion of the assumptions. We now discuss
the implications of the theorem.

Adaptivity to sparsity Existing upper bounds (Chinot et al., 2021) for the maximum ℓ1-margin
classifier hold for any normalized ground truth w⋆ (with ∥w⋆∥2 = 1) and are of order R(ŵ) =

Õ
(
∥w∗∥21
n

)1/3
up to logarithmic factors. Our matching upper and lower bounds in Theorem 3 show

that these rates can only be improved by logarithmic factors under the assumption that the ground
truth is sparse. Maybe unexpectedly, we therefore conclude that the maximum ℓ1-norm classifier
cannot adapt to sparsity of the ground truth!

Suboptimality of maximum ℓ1-margin This lack of adaptivity stands in stark contrast to other
ℓ1-norm constrained classifiers from the one-bit CS literature that can e.g. achieve rates of order
∥w∗∥0 log(d)√

n
under sparsity assumptions (e.g., Zhang et al. (2014); Awasthi et al. (2016)). We remark

that even faster min-max optimal bounds of order ∥w∗∥0 log(d)
n can be obtained by other classifiers

(Gopi et al., 2013; Jacques et al., 2013). Intuitively, the reason for the suboptimality of the rates for
the maximum ℓ1-margin classifier can be explained by the fact that the ground truth w∗ has a small
margin of order Θ( 1√

n
) with high probability, while the maximum ℓ1-margin classifier has a larger

margin at least of order 1 Ω( 1
(n∥w∗∥1)1/3

). That is, the max-ℓ1-margin classifier overfits to samples
close to the decision boundary.

3.3. Discussion of the assumptions in Theorem 2 and 3

In this section, we discuss the generalizability of the assumptions in our main theorems on the
sparsity of the ground truth and the data distribution.

Sparsity of the ground truth w∗ While the upper bound in Theorem 3 can be generalized at the
cost of a logarithmic factor (i.e. as in Chinot et al. (2021)), the lower bound requires a very tight
analysis (proof of Proposition 15 in Appendix C.2) and strongly relies on the sparsity of the ground
truth. We would like to note at this place that only few high-probability lower bounds are known
in the literature (beyond classifiers/regression estimators relying on the ℓ2-norm) and leave lower
bounds for non-sparse ground truths as an exciting and important future work.

Moreover, we mention that the constraint on the degree of the sparsity of the ground truth in
Theorem 2 cannot be relaxed without affecting the upper bound. However, it is an open question
whether one can relax the constraint with a soft-sparsity constraint on the ground truth of the form
∥w∗∥1 ≤

√
n

log(d/n)4
. We note that the bound in Theorem 2 does not depend on the ground truth,

assuming that the degree of sparsity is sufficiently small. Morally, this is because the effect of
fitting the noise dominates the prediction error, similar to the rates for the prediction error of the
minimum-ℓ1-norm interpolator (Basis pursuit) in (Wang et al., 2022).

1. where we make use of Proposition 14 and Lemma 4.1 in Chinot et al. (2021)
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Gaussian distribution of the data The limitation that the data needs to be normally distributed
arises from the use of the Gaussian comparison inequalities (Gordon, 1988; Thrampoulidis et al.,
2015) (see Section 4). This tool turns out to be essential for obtaining tight rates for linear interpo-
lating classifiers and estimators, see e.g., (Donhauser et al., 2022; Wang et al., 2022; Koehler et al.,
2021; Zhou et al., 2022, 2021)). In fact, we are not aware of any work beyond papers studying the
min-ℓ2-norm/max-ℓ2-margin interpolators (Bartlett et al., 2020; Muthukumar et al., 2021), which
is a special case for which closed form solutions exist, that present tight bounds for linear inter-
polating classifiers or estimators for non-Gaussian data. We therefore view generalizations of this
assumption as a major open problem in this literature.

Isotropic features In this paper, we only consider isotropic input features. Technically, our
methodology can also be extended to non-isotropic features (see (Koehler et al., 2021; Zhou et al.,
2021, 2022) for related works in this direction). However, such an extension comes at the price of
substantially more involved proofs and theorem statements — and, therefore, at a cost of readability.
We believe that, despite the less general setting, our results already reveal interesting novel insights.

4. Proof overview

In this section, we give an overview of the proofs of the main results, Theorem 2 and Theorem 3, and
summarize the main tools used in the proof. Both proofs rely on a standard localization/ uniform
convergence argument (see e.g., Koehler et al. (2021); Zhou et al. (2021); Wang et al. (2022);
Donhauser et al. (2022)), where:

1. (Localization) we derive a high-probability upper bound on the ℓ1-norm of the maximum
ℓ1-margin interpolator ŵ over the draws of X and ξ, by finding M > 0 such that

min
∀i: yi⟨xi,w⟩≥1

∥w∥1 =: ΦN ≤M.

2. (Uniform convergence) we derive high-probability uniform bounds over X and ξ for all in-
terpolators w with ∥w∥1 ≤ M . Namely, we find a high-probability lower and upper bound,
respectively, for the minimum (maximum) alignment

Φ− : = min
∥w∥1≤M
∥w∥2≥δ

⟨w,w∗⟩
∥w∥2

s.t. ∀i : yi⟨xi, w⟩ ≥ 1,

Φ+ : = max
∥w∥1≤M
∥w∥2≥δ

⟨w,w∗⟩
∥w∥2

s.t. ∀i : yi⟨xi, w⟩ ≥ 1

with some δ > 0 arbitrarily small, which in turn gives us high probability bounds for the
prediction error using that

R(ŵ) =
1

π
arccos

(〈
ŵ

∥ŵ∥2
, w∗

〉)
.

Remark 4 The constraint ∥w∥2 ≥ δ in the definition of Φ+,Φ− is only added to ensure the op-
timization problems are well defined. In particular, we can choose δ > 0 arbitrarily small and,
therefore, neglect this constraint in the remainder of the analysis.
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The remainder of this section is structured as follows. The first step in our proof in Section 4.1
is similar to previous works on min-norm/max-margin interpolators (see e.g., (Deng et al., 2021;
Donhauser et al., 2022; Koehler et al., 2021; Zhou et al., 2021; Wang et al., 2022)) and involves an
application of Gaussian comparison inequalities (Proposition 6) . This step reduces the optimization
problems ΦN ,Φ− and Φ+ to simpler auxiliary optimization problems ϕN , ϕ− and ϕ+. The novel
contribution of this paper is then to present a very tight analysis of the corresponding auxiliary
optimization problems, which is necessary to obtain the sharp rates in Theorem 2 and 3. To do so,
we first describe in Section 4.2 how these auxiliary optimization problems can be further simplified
using the localized Gaussian width (Proposition 7). While the actual proof is quite technical and
involved, in Section 4.3 we present a high-level summary to provide some intuition and highlight
differences to the analysis of the min-ℓ1-norm interpolator in the regression setting. Moreover,
we explain in Appendix A why existing (standard) approaches based on hyperplane tessellation,
commonly used to study linear classifiers, are insufficient to recover the rates presented in this
paper.

Notation We define the function (·)+ : R → R+, (x)+ = x1{x ≥ 0} where 1{ } is the indicator
function. We denote by s the sparsity (ℓ0-norm) of w∗ and assume w.l.o.g. that the nonzero entries
of w∗ are exactly the first s-entries. Moreover, we use the following notation for components of the
vector w: w∥ ∈ Rd and w⊥ ∈ Rd for components parallel and perpendicular to w∗, respectively.

Furthermore, we use w(S)
⊥ ∈ Rs for the first s-entries of w⊥, and w(Sc)

⊥ ∈ Rd−s for the last d − s
entries of w⊥. We denote by B1, B2 unit balls with respect to the ℓ1 and ℓ2-norms, respectively.
We use κ1, κ2, ... and c1, c2, ... for generic universal positive constants independent of d, n, whose
values may change from display to display throughout the derivations. The standard notations
O(·), o(·), Ω(·), w(·) and Θ(·), as well as ≲,≳ and ≍, are utilized to hide universal constants,
without any hidden dependence on d or n.

4.1. Preliminary Step 1: application of the (C)GMT

The proofs of both main results rely on the following application of the Gaussian Minmax Theorem
(GMT) (Gordon, 1988) and its convex variant (CGMT) (Thrampoulidis et al., 2015).

Recap: (C)GMT For completeness, we first summarize the following variant of the (C)GMT.

Lemma 5 (Corollary of (Gordon, 1988; Thrampoulidis et al., 2015)) LetX1 ∈ Rn×d−s be a matrix
with i.i.d. N (0, 1) entries and let g ∼ N (0, In) and h ∼ N (0, Id−s) be independent random
vectors. Let Sw ⊂ Rs × Rd−s and Sv ⊂ Rn be compact sets, and let ψ : Sw × Sv → R be a
continuous function. Then for the following two optimization problems:

Φ = min
(w1,w2)∈Sw

max
v∈Sv

⟨v,X1w1⟩+ ψ((w1, w2), v)

ϕ = min
(w1,w2)∈Sw

max
v∈Sv

∥w1∥2 ⟨v, g⟩+ ∥v∥2 ⟨w1, h⟩+ ψ((w1, w2), v)

and any t ∈ R holds that:
P(Φ < t) ≤ 2P(ϕ ≤ t)

If, in addition, ψ is a convex-concave function, we also have for any t ∈ R:

P(Φ > t) ≤ 2P(ϕ ≥ t)

7



STOJANOVIC∗ DONHAUSER∗ YANG

In both inequalities, the probabilities on the LHS and RHS are over the draws of X1, and of g, h,
respectively.

We see that ϕ controls the upper and lower tail of Φ. Importantly, the inequality is sharp, including
multiplicative constants — a high probability upper (lower) bound for ϕ is also a high probability
upper (lower) bound for Φ. Moreover, ϕ no longer depends on a random matrix X1 but only on two
random vectors g and h, which substantially simplifies the search for bounds for ϕ compared to Φ.

Application of the (C)GMT We can now use Lemma 5 to simplify the problem of bounding the
maximum norm ΦN and the minimum (maximum) alignment Φ−,Φ+. For this, we first define
the corresponding auxiliary optimization problems ϕ. Let z(1), z(2) ∈ Rn, h1 ∈ Rs, h2 ∈ Rd−s
be i.i.d. isotropic zero mean unit variance Gaussian random vectors and define the function fn :
R× R+ → R+,

fn(ν, η) =
1

n

n∑
i=1

(1− ξiν|z(1)i | − z
(2)
i η)2+. (4)

Similar to the analysis in (Deng et al., 2022) for the related minimum-ℓ2-margin classifier, the
key insight is now that we can use Lagrange multipliers to apply Lemma 5 to ”replace” the data-
dependent interpolation constraint ∀i : yi⟨xi, w⟩ ≥ 1 in ΦN ,Φ−,Φ+ with the simpler constraint,

(⟨w(S)
⊥ , h1⟩+ ⟨w(Sc)

⊥ , h2⟩)2

n
≥ fn(⟨w∥, w

∗⟩, ∥w⊥∥2). (5)

Analyzing this new constraint will make up the heart of the proofs of Theorem 2 and 3. While it will
turn out that the constraint in Equation (5) ”captures” the interpolation constraint ∀i : yi⟨xi, w⟩ ≥ 1
very well, there is only very limited geometrical intuition for why this is the case.

Formally, we show Proposition 6 (see Appendix E.1 for the proof) for the auxiliary optimization
problems:2

ϕN = min
w

∥w∥1 s.t Eq. (5) holds and ⟨w(S)
⊥ , h1⟩+ ⟨w(Sc)

⊥ , h2⟩ ≥ 0

ϕ+ = max
∥w∥2≥δ

⟨w∥, w
∗⟩

∥w∥2
s.t w ∈ Γ̃ and ϕ− = min

∥w∥2≥δ

⟨w∥, w
∗⟩

∥w∥2
s.t w ∈ Γ̃.

with set Γ̃ ⊂ Rd,

Γ̃ = {w ∈ Rd s.t Eq. (5) holds and ∥w∥1 ≤M}.

Proposition 6 For any t ∈ R we have:

P(ΦN > t|ξ) ≤ 2P(ϕN ≥ t|ξ)
P(Φ+ > t|ξ) ≤ 2P(ϕ+ ≥ t|ξ)
P(Φ− < t|ξ) ≤ 2P(ϕ− ≤ t|ξ),

where the probabilities in LHS and RHS are over the draws of X and of z(1), z(2), h1, h2, respec-
tively.

2. We define ΦN ,Φ−, ϕN , ϕ− = ∞ and Φ+, ϕ+ = −∞ if the corresponding optimization problems have no feasible
solution.

8
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4.2. Preliminary Step 2: simplification of the auxiliary optimization problems

In a second step, we reduce the auxiliary optimization problems ϕN , ϕ− and ϕ+ to low-dimensional
optimization problems. While a similar approach has also been used in other papers studying
maximum-margin classifiers based on the (C)GMT (see e.g., (Donhauser et al., 2022; Deng et al.,
2022; Zhou et al., 2022)), using the reduction in the mentioned papers would only yield loose
bounds (not yielding sharp rates). Instead, we propose a much tighter reduction relying on the
localized Gaussian width.

Part 1: Bounding ϕ− and ϕ+ In order to reduce the two optimization problems to low-dimensional
optimization problems, we relax the constraint in Equation (5) by bounding the stochastic term
⟨w(S)

⊥ , h1⟩+⟨w(Sc)
⊥ , h2⟩ only using the ℓ1 and ℓ2-norms ofw(S)

⊥ andw(Sc)
⊥ . The first term ⟨w(S)

⊥ , h1⟩
can be simply upper-bounded using Cauchy Schwartz: ⟨w(S)

⊥ , h1⟩ ≤ ∥h1∥2∥w(S)
⊥ ∥2 where we re-

call that h1 ∈ Rs. However, doing the same for the second term ⟨w(Sc)
⊥ , h2⟩ would result in loose

bounds since h2 ∈ Rd−s and d ≫ s. In fact, using Hoelders inequality to bound ⟨w(Sc)
⊥ , h2⟩ ≤

∥w(Sc)
⊥ ∥1∥h2∥∞ would still result in loose bounds. Instead, we make use of a more refined (tight)

upper bound:

⟨w(Sc)
⊥ , h2⟩ ≤ ∥w(Sc)

⊥ ∥1ℓ∗h2

(
∥w(Sc)

⊥ ∥2
∥w(Sc)

⊥ ∥1
B2 ∩B1

)
(6)

where we use the localized Gaussian width ℓ∗h2 : [ 1√
d
, 1] → R+ ,

ℓ∗h2(βB2 ∩B1) := max ⟨w, h2⟩ s.t. ∥w∥2 ≤ β and ∥w∥1 ≤ 1

As a result, we can now relax the constraint in Equation (5) occurring in Γ̃ to:

1

n

(
∥w(Sc)

⊥ ∥1ℓ∗h2

(
∥w(Sc)

⊥ ∥2
∥w(Sc)

⊥ ∥1
B2 ∩B1

)
+ ∥h1∥2∥w(S)

⊥ ∥2

)2

≥ fn

(
⟨w∥, w

(S)
∗ ⟩,

√
∥w(Sc)

⊥ ∥22 + ∥w(S)
⊥ ∥22

)
.

In particular, we note that the resulting relaxed optimization problems for ϕ− and ϕ+ only
depend on the ℓ1 and ℓ2-norms of w(S)

⊥ and w(Sc)
⊥ and are therefore low-dimensional.

Part 2: Bounding ϕN A similar argument can also be used to convert ϕN into a low-dimensional
optimization problem. However, instead of relaxing the constraint in Equation (5), we now need
to tighten it. We can do this by setting w

(S)
⊥ = 0 (which is negligible assuming that s ≪ n)

and choosing w(Sc)
⊥ as a function of β to be the optimizer of the optimization problem defining

ℓ∗h2 (βB2 ∩B1) for which Equation (6) holds with equality.

Reduction to low-dimensional problems Instead of directly using the localized Gaussian width
ℓ∗h2 (βB2 ∩B1), we will use the following (equivalent) curve γ : α ∈ [1, αmax] 7→ γ(α) ∈ Rd−s,

γ(α) = argmin
w

∥w∥22 s.t


⟨w, |h2|⟩ ≥ ∥h2∥∞
w ≥ 0

∥w∥1 = α

, (7)

9
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with αmax = (d − s)
∥h2∥∞
∥h2∥1

. By Lagrange duality, it is then straightforward to show that for any

β ∈ [ 1√
d
, 1], there exists α ∈ [1, αmax] such that γ(α)

α is an optimal solution for the optimization
problem that defines ℓ∗h2(βB2 ∩B1).

In summary, we obtain the upper and lower bounds in Proposition 7, where we use the following

notation; define ν := ⟨w∥, w
∗⟩, ηSc := ∥w(Sc)

⊥ ∥2, ηS := ∥w(S)
⊥ ∥2, η := ∥w⊥∥2 =

√
η2Sc + η2S and

b =
∥w(Sc)

⊥ ∥1
α .

Proposition 7 Let smax ∈ N+ and let w∗ be any s-sparse vector with s ≤ smax. Then, the
optimization problems ϕN , ϕ+ and ϕ− can be bounded by:

ϕN ≤
[

min
ν,b≥0,α∈[1,αmax]

|ν|∥w∗∥1 + b ∥γ(α)∥1 s.t
1

n
b2∥h2∥2∞ ≥ fn(ν, b∥γ(α)∥2)

]
ϕ+ ≤ max

(ν,b,α,ηS)∈Γ

ν√
ν2 + b2 ∥γ(α)∥22 + η2S

ϕ− ≥ min
(ν,b,α,ηS)∈Γ

ν√
ν2 + b2 ∥γ(α)∥22 + η2S

where the last two inequalities hold with probability at least 1 − 2 exp(−c1smax), with universal
constant c1, and constraint set Γ defined by:

Γ =
{
(ν, b, α, ηS) s.t ηS ≥ 0, b ≥ 0, α ∈ [1, αmax]

and
(2
√
smaxηS + b∥h2∥∞)2

n
≥ fn(ν,

√
b2∥γ(α)∥22 + η2S)

and max
{
|ν|∥w∗∥1 −

√
sηS , 0

}
+ bα ≤M

}
. (8)

The proof follows from the above discussion and by applying Gaussian concentration to control
the tail of the term ∥h1∥2.

4.3. Proof sketch for bounding the auxiliary optimization problems

We now describe how we obtain the desired bounds in Theorem 2 and 3. Recall that by Proposi-
tion 6, it suffices to find high probability bounds for ϕN , ϕ−, ϕ+ using the low-dimensional relax-
ations in Proposition 7. We now present the main idea for the proof which is rigorously described
in Appendices C and D. We only discuss lower bounding ϕ−.

Step 1: reducing the problem to bounding the set Γ We first reduce the problem of bounding
ϕ− to one bounding Γ in Equation (8) (where we use Proposition 7):

ϕ− ≥

1 + max
(b,α)∈Γ

b2 ∥γ(α)∥22 +max
ηS∈Γ

η2S

min
ν∈Γ

ν2


−1/2

. (9)

Hence, it suffices to bound the maximum (minimum) of the variables b2 ∥γ(α)∥22, η2S and ν2. Per-
haps surprisingly, this seemingly loose lower bound will turn out to be tight.

10
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Step 2: controlling fn One of the main contributions to the analysis in this paper arises from
controlling the function fn (Equation (4)). To do so, we first show that Γ (from Equation (4.1)) is
contained in a sufficiently small set. We can then carefully apply concentration arguments to show
uniform convergence of fn → Efn. The key insight is then that, using a series expansion, the
expectation Efn can be approximated by the terms in the following equation:

noiseless case: Efn(ν, η) ≈
√
2

3
√
π

1

ν
+

√
2

π

η2

ν
(10)

noisy case: Efn(ν, η) ≈ ζf +
1

2
ζηηη

2 +
1

2
ζνν△ν2 (11)

where △ν = ν−νf and νf , ζηη, ζνν are constants arising from the series expansion (only depending
on Pσ). Moreover, by definition η2 := b2∥γ(α)∥22 + η2S = ∥w(Sc)

⊥ ∥22 + ηS := ∥w(S)
⊥ ∥22.

While the dependency in η is quadratic in both cases, the dependency in ν strongly differs
between the noiseless case (10) and the noisy case (11). To give an intuitive explanation, note that
the expectation

Efn = E(1− ξν|z1| − z2η)2+.

In the noisy case, by assumption, we have that both ξ = 1 and ξ = −1 occur with constant
(non-vanishing) probability. Therefore, we can lower bound the expectation by a quadratic E (1 −
ξν|z1| − z2η)2+ ≳ (1 + ν2 + η2). In contrast, in the noiseless case, we have ξ = 1 a.s. In this
case, we lower-bound (1− ν|z1| − z2η)2+ ≳ (1 + η2) on the event |z1| ≤ 1/ν, which happens with
probability inversely dependent on ν. For more details, we refer the reader to the proofs of Lemma
21 and Proposition 18.

Step 3: bounding the set Γ In the noisy case (Theorem 2), the quadratic approximation from
Equation (11) allows us to utilize parts of the analysis in (Wang et al., 2022) for the minimum-
ℓ1-norm interpolator in regression. For example, we can bound the term maxb,α∈Γ b

2∥γ(α)∥22 in
Equation (9) as follows: we can relax the set Γ in Equation (8) by replacing the third condition by
bα ≤M and using the quadratic form from Equation (11) for the second condition. We then obtain

Γ ⊂ {(ν, b, α, ηS) s.t bα ≤M and
b2∥h2∥2∞

n
≥ ζf +

1

2
ζηη(η

2
Sc + b2∥γ(α)∥22) +

1

2
ζνν△ν2},

which resembles the term in Equation (4) in (Wang et al., 2022). In the noiseless case (Theorem
3), however, such a simplification is not applicable due to the inverse dependency of Efn on ν from
Equation (10). In fact, we would only obtain a trivial (loose) bound when again using the relaxation
bα ≤ M for the third equation in Equation (8). Instead, we need to simultaneously control (b, α)
and ν by iteratively bounding either of them (Appendix C.2), which is the second major technical
contribution of the paper.

5. Related Work

Related work on error bounds for maximum-margin classifiers Existing non-asymptotic upper
bounds for the maximum ℓ1-margin classifier in high-dimensional settings hold for arbitrary (ad-
versarial) corruptions (Chinot et al., 2021) and are discussed in detail in Appendix A . Furthermore,
complementary work (Liang and Sur, 2022) studies asymptotic proportional regimes (n, d → ∞
and d

n → c) where the prediction error does not vanish.
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Beyond the ℓ1-norm, several works present non-asymptotic bounds for the related maximum
ℓp-margin classifiers for p > 1. The paper (Donhauser et al., 2022) studies the case where p ∈
(1, 2) for 1-sparse ground truths and shows that the prediction error can even vanish at polynomial
rates close to the min-max lower bounds when trained on a noisy dataset. Furthermore, the papers
(Muthukumar et al., 2021; Wang et al., 2021; Shamir, 2022) present bounds for the case where p = 2
based on specific proof techniques relying on the geometry of the Euclidean ℓ2 norm. However,
they only obtain vanishing rates, i.e. achieve benign overfitting, when assuming that the covariance
matrix is spiked (i.e., for non-isotropic features).

Related work on proof techniques The proofs in this paper rely on Gaussian comparison results
(Gordon, 1988; Thrampoulidis et al., 2015) described in detail in Section 4 and popularized for non-
asymptotic bounds for linear interpolators in (Koehler et al., 2021). This technique has also recently
been used in the paper (Donhauser et al., 2022) to bound the prediction error of the maximum ℓp-
margin classifier when p ∈ (1, 2). However, the analysis presented in the mentioned paper would
yield loose bounds when p = 1 and is limited to noisy regimes and 1-sparse ground truths.

Other common proof techniques for bounding the prediction error of interpolating linear clas-
sifiers include hyperplane tessellation bounds (Plan and Vershynin, 2014; Chinot et al., 2021), dis-
cussed in detail in Appendix A, and proliferation of support vector results (Muthukumar et al., 2021;
Hsu et al., 2021; Wang et al., 2021; Ardeshir et al., 2021). The idea of the latter approach is es-
sentially to reduce the maximum-margin classifier to an (approximately) equivalent minimum-norm
interpolating classifier. The resulting “simpler” classifier can then be analyzed using tools from re-
gression (Muthukumar et al., 2021; Bartlett et al., 2020). However, so far, such an approach only
exists for the maximum ℓ2-margin classifiers, and it is an open conjecture to prove that proliferation
of support vector results also apply to the maximum ℓ1-margin classifier (Ardeshir et al., 2021).

6. Future work

Early stopped coordinate descent The bounds presented in this paper imply that the maximum
ℓ1-margin classifier are not only only sub-optimal in noisy settings (Theorem 2), but also for noise-
less data (Theorem 3). As discussed in Section 3.2, this is because the classifier overfits on samples
close to the decision boundary. In contrast, ℓ1-norm penalized classifiers which maximize the av-

erage margin (Zhang et al., 2014) achieve much faster rates than ∥w∗∥2/31

n1/3 . An interesting question
for future work is whether these faster rates can be obtained for early stopped coordinate descent
on exponential losses, where we recall that the solutions of these algorithms converge (after infinite
steps) to the maximum ℓ1-margin classifier (Telgarsky, 2013).

Future work on “better” implicit biases When samples in the training data have a small margin
to the ground truth (see discussion in Section 3.2), our results in this paper suggest that the implicit
bias of boosting methods with exponential loss functions and coordinate descent is suboptimal.
Indeed, the maximum ℓ1-margin classifier which is obtained at convergence (Telgarsky, 2013) only
achieves suboptimal rates even in the noiseless setting (see Theorem 3 and subsequent discussion).
An interesting direction for future work is therefore to investigate whether the implicit bias of the
mentioned iterative training algorithms with other loss functions such as polynomial losses would
yield faster rates.

12
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Appendix A. Comparison with bounds relying on hyperplane tessellation

We now discuss the limitations of proofs relying on hyperplane tessellation (see e.g. Plan and Ver-
shynin (2014)) – a standard tool to bound the prediction error of linear classifier in high-dimensional
settings, e.g. in (Chinot et al., 2021).

First, define the Hamming distance of two vectors w1, w2 to be the fraction of training samples
where the corresponding classifiers differ:

dH(w1, w2) =
1

n

∑
i

1{sign(⟨xi, w1⟩ ≠ sign(⟨xi, w2⟩)}.

Note that dH(ŵ, w⋆) corresponds exactly to the fraction of corrupted labels i.e., dH(ŵ, w⋆) =
1
n

∑
i 1{ξi = −1}. The high-level idea of hyperplane tessellation is to bound the directional esti-

mation error (3) (which in turn gives a bound on the prediction error (2)) via the Hamming distance
by uniformly bounding the difference between the Euclidean and scaled Hamming distance

sup
w1,w2∈T

|λdH(w1, w2)− ∥w1 − w2∥2|, (12)

over some large enough set T ⊂ Sd−1 that contains the normalized classifier ŵ
∥ŵ∥2 with high prob-

ability. Here, λ is some universal constant.
Observe that this approach only leads to tight bounds if the difference in Equation (12) is small.

This, however, is not the case for the settings studied in our main results. Indeed, for noisy data
(Theorem 2), by definition of the interpolating classifier we have that

λdH

(
ŵ

∥ŵ∥2
, w∗

)
= Θ(1)

while ∥ ŵ
∥ŵ∥2 −w∗∥2 vanishes at a logarithmic rate. Furthermore, in the noiseless case (Theorem 3),

the Hamming distance dH
(

ŵ
∥ŵ∥2 , w

∗
)

is zero — meaning that we cannot obtain any lower bounds
for the directional estimation error using a hyperplane tessellation argument.

This “weakness” of proofs relying on uniform hyperplane tessellation bounds is also not sur-
prising since such approaches do not take the distributional assumptions of the noise into account —
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in particular, we cannot distinguish between adversarial and non-adversarial noise. In contrast, the
logarithmic rates in Theorem 2 crucially rely on Assumption 1 for the distribution of the corruptions.

In defense of hyperplane tessellation bounds, we finally mention that unlike the proofs presented
in this paper (see Section 4), results relying on hyperplane tessellation bounds give guarantees for
arbitrary corruptions and can also be generalized to non-Gaussian features (Chinot et al., 2021).
Yet, in order to capture the rates in Theorem 2 and 3, new proof techniques are needed.

Appendix B. Preliminary technical tools

The purpose of this section is to cite existing technical tools and simple corollaries of these results.
In subsection B.1 we give some properties of the parametric path γ(α) introduced in Wang et al.
(2022), which we used for reparameterization of optimization problems in preliminary step 2 in
Section 4.2. Afterwards, in subsection B.2 we recall some concentration results, which we make
use of when proving the localization and uniform convergence propositions (see section C and D)
of Theorems 3 and 2.

B.1. A few helpful properties of γ(α)

First, recall from Section 4.1 that h2 ∈ Rd−s contains samples of i.i.d. standard Gaussian random
variables, and for the sake of brevity of notation, we define h := |h2|. Moreover, recall the definition
of the function γ(α) : R → Rd−s from Equation (7):

γ(α) = argmin
w

∥w∥22 s.t


⟨w, h⟩ ≥ ∥h∥∞
w ≥ 0

1⊤w = ∥w∥1 = α

for some scalar variables b ≥ 0, α ∈ [1, (d − s)
∥h∥∞
∥h∥1

]. Without loss of generality, we can assume
that hi > hj for all i > j (see also Wang et al. (2022)). Furthermore, the results of the main
theorems do not change by considering γ(α) : R → Rd since by our assumptions on the sparsity s,
we have d− s ≈ d. Therefore, in all discussion that follows, we will assume that γ(α) : R → Rd.

In order to study the optimization problem in Proposition 7, we make use of the following three
properties of the path γ(α):

Concentration of ∥γ(α)∥1 and ∥γ(α)∥2. As proven in Section 3.4 in Wang et al. (2022) the path
γ(α) is a piecewise linear with breakpoints at αm for integers m = 2, . . . , d, with

αm =

(∥∥h[m]

∥∥
1
−mhm

)
∥h∥∞∥∥h[m]

∥∥2
2
−
∥∥h[m]

∥∥
1
hm

where h[m] ∈ Rd denotes vector which is equal to h ∈ Rd on first m components and zero else-
where. Furthermore, the following concentration result holds as shown in Proposition 4 in Wang
et al. (2022).
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Proposition 8 Let tm be given by 2Φ∁(tm) = m/d. There exist universal positive constants
c1, c2, c3, c4 > 0 such that for any m, d with m ≥ c1 and c2m ≤ d ≤ exp(c3m

1/5) we have that:∣∣∣∣∥γ(αm)∥1∥h∥∞
−
(

1

tm
− 2

t3m

)∣∣∣∣ ≤ c4
t5m

and

∣∣∣∣∣∥γ(αm)∥22∥h∥2∞
− 2

mt2m

∣∣∣∣∣ ≤ c4
mt4m

,

with probability at least 1− 6 exp
(
− 2m

log5(d/m)

)
over the draws of h.

Convexity and monotonicity of γ(α). According to Lemma 4 in Wang et al. (2022) the map-
ping α 7→ ∥γ(α)∥22 is convex over [1, αmax], decreasing over [1, αd+1/2] and increasing over

[αd+1/2, αmax] where αd+1/2 :=
∥h∥1∥h∥∞

∥h∥22
satisfies αd < αd+1/2 < αd+1. Furthermore the map

α 7→ ∥γ(α)∥22
∥γ(α)∥21

=
∥γ(α)∥22
α2 is monotonically decreasing.

Inequality constraint at optimal point. According to Claim 3 in Wang et al. (2022) the inequality
constraint in the definition of γ(α) is tight for the optimal solution, i.e., ⟨γ(α), h⟩ = ∥h∥∞.

Furthermore we define tm as solution to equation

2Φ∁(tm) = m/d (13)

for some integer m ∈ [2, d] where Φ∁(.) = P(Z ≥ .) with Z ∼ N (0, 1) is the complementary
cumulative distribution function. We use the following two characterizations of tm:

Approximation of tm. From Remark 2 in Wang et al. (2022) there exists universal constant κ
such that, for all m ≤ d/κ it holds that

t2m = 2 log(d/m)− log log(d/m)− log(π) +
log log(d/m)

2 log(d/m)
+O

(
1

log(d/m)

)
.

Upper and lower bounds of tm. Following the same argument as in Claim 7 and Claim 9 in
Wang et al. (2022), we can prove the following lemma:

Lemma 9 Let m∗ be fixed and assume κ3m∗ ≤ d. Let any fixed constant κ > 0 and assume
that parameter λ satisfies 0 < λ ≤ (log(κ3))

κ/2, and let m∗ be the largest integer m̂ such that
t2m̂ ≥ t2m∗ +

λ
tκm∗

. Then,

m∗ = m∗ exp

(
− λ

2tκm∗

)(
1 +O

(
1

t2m∗

))
and

∣∣∣∣t2m∗ −
(
t2m∗ +

λ

tκm∗

)∣∣∣∣ ≤ O

(
1

m∗

)
.

Moreover, let m∗ be the smallest integer m̂ such that t2m̂ ≤ t2m∗ −
λ
tκm∗

. Then,

m∗ = m∗ exp

(
λ

2tκm∗

)(
1 +O

(
1

t2m∗

))
and

∣∣∣∣t2m∗ −
(
t2m∗ −

λ

tκm∗

)∣∣∣∣ ≤ O

(
1

m∗

)
.

Furthermore, analogously as in proof of Claim 8 in Wang et al. (2022) we get:

t2m∗

t2m∗
=

1

1 + λ
t2+κ
m∗

+O
(

1
t2m∗m∗

) = 1− λ

t2+κm∗

+O

(
1

t2m∗m∗

)
+O

(
λ2

t4+2κ
m∗

)
.

A similar result holds for tm.
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B.2. Concentration results

POINTWISE CONVERGENCE

Lemmas in this section are used in the proofs of Propositions 14 and 16 (localization step). We
recall two standard lemmas for pointwise convergence of functions of random variables to their
expectation:

Lemma 10 (Concentration of Lipschitz functions, Ledoux (1992); Wainwright (2019)) LetX =
(X1, . . . , Xn) be a vector of i.i.d. N (0, 1) random variables and let f : Rn → R be Lipschitz con-
tinuous with Lipschitz constant L. Then

P (|f(X)− Ef(X)| ≥ ϵ) ≤ 2 exp

(
− ϵ2

2L2

)
for any ϵ ≥ 0.

Lemma 11 (Bernstein’s inequality for sub-exponentials, Vershynin (2018)) LetX1, . . . , Xn be
mean zero i.i.d. random variables with sub-exponential norm κ = ∥X∥ψ1

. Then for any ϵ ≥ 0

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp

(
−cnmin

{
ϵ

κ
,
ϵ2

κ2

})
for some universal constant c > 0.

UNIFORM CONVERGENCE

Results from this section are used in the proofs of Propositions 15 and 17 (uniform convergence),
and more specifically, for proving Propositions 19 and 23.

Let X1, . . . , Xn be real i.i.d. random variables with continuous distribution function F and let
Fn be the empirical distribution function defined by Fn(x) = 1

n

∑n
i=1 1{Xi ≤ x}. Then we have:

Lemma 12 (Dvoretzky-Kiefer-Wolfowitz inequality, Dvoretzky et al. (1956); Massart (1990)) For
any ϵ > 0 holds:

P
(
sup
x

|Fn(x)− F (x)| > ϵ√
n

)
≤ 2 exp(−2ϵ2)

Before we recall a result about uniform convergence of functions from a parametrized set, let us
introduce an additional notation. Let G be a countable class of functions g : R → R. For a function
g ∈ G we write Pg = Eg(X), and Png = 1

n

∑n
i=1 g(xi). Moreover, define ∥Pn − P∥G :=

supg∈G |(Pn − P )g|.
Let ϵ1, . . . , ϵn be independent Rademacher random variables. Define P ϵng = 1

n

∑n
i=1 ϵig(xi)

and ∥P ϵn∥G = supg∈G |P ϵng|. We also recall the definition of the Orlicz norm ∥·∥Ψα
. Let α > 0

and define the Orlicz function ψα : R+ → R+ by ψα(x) = exp(xα) − 1. The Orlicz norm of the
random variable X is given by:

∥X∥Ψα
:= inf{λ > 0 : Eψα(|X|/λ) ≤ 1}

For the setting defined in this section we have:
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Theorem 13 (Corollary of Theorem 4 in Adamczak (2008)) For any 0 < t < 1, δ > 0, α ∈
(0, 1] there exists a constant C = C(α, t, δ) such that

P
(
∥Pn − P∥G ≥ (1 + t)E ∥Pn − P∥G + ϵ

)
≤ exp

(
− nϵ2

2(1 + δ)σ2G

)
+ 3 exp

(
−
(

ϵ

CψG

)α)
with

σ2G = sup
g∈G

Var[g(X)] and ψG =

∥∥∥∥∥max
1≤i≤n

sup
g∈G

1

n

∣∣∣g(xi)− EX [g(X)]
∣∣∣∥∥∥∥∥

Ψα

Appendix C. Proof of Theorem 3

In this section, we present the proof of Theorem 3. By Proposition 6, in order to give bounds
for prediction error, it suffices to bound ϕN , ϕ+ and ϕ− (defined in Section 4.1). Furthermore, we
make use of the simplifications in Proposition 7, which allow us to study low-dimensional stochastic
optimization problems. In a first step (localization), we derive an upper bound for ϕN :

Proposition 14 Let the assumptions of Theorem 3 hold, and let κM = 3(72π)−1/6 and mn be the
solution of equation

mn =

√
2

π
(72π)1/6(ntmn ∥w∗∥1)

2/3, (14)

where tmn is defined as in Equation (13) in Appendix B.1. There exists universal positive constants
c1, c2, c3 such that

ϕN ≤ κM

( n

t2mn

∥w∗∥1
)1/3(

1− 2

3

1

t2mn

+
c1
t4mn

)
=:M

holds with probability at least 1− c2 exp
(
−c3 n1/3

log10/3(d/mn)

)
over the draws of h1, h2, z(1), z(2).

The proof of the proposition is deferred to Appendix C.1. The second step (uniform convergence)
gives the following bounds on the elements of the set Γ from Proposition 7:

Proposition 15 Let the assumptions of Theorem 3 hold. Let Γ0 be a set of all (ν, b, α, ηS) that
satisfy: ∣∣∣∣∣ν2 − (288π)−1/3n2/3

∥w∗∥4/31 log2/3(d/mn)

∣∣∣∣∣ ≲ n2/3

∥w∗∥4/31 log(d/mn)
and η2S ≲

1

log7/6(d/mn)

and

∣∣∣∣b2 ∥γ(α)∥22 − 1

3

1

log(d/mn)

∣∣∣∣ ≲ 1

log7/6(d/mn)

where mn is the solution of Equation (14). Then there exist positive universal constants c1, c2, c3
such that Γ ⊂ Γ0 with probability at least 1 − c1d

−1 − c2 exp
(
−c3 n1/3

log4(d/mn)

)
over the draws of

h1, h2, z(1), z(2).
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The proof is deferred to Appendix C.2. From the Propositions 7 and 15 and using that η2S ≥ 0, we
get the following bounds on ϕ+ and ϕ−:

ϕ+ ≤

1 + min
(b,α)∈Γ0

b2 ∥γ(α)∥22 + min
ηS∈Γ0

η2S

max
ν∈Γ0

ν2


−1/2

≤ 1−
4 ∥w∗∥21
mn

(
1− c

log1/6(d/mn)

)

ϕ− ≥

1 + max
(b,α)∈Γ0

b2 ∥γ(α)∥22 + max
ηS∈Γ0

η2S

min
ν∈Γ0

ν2


−1/2

≥ 1−
4 ∥w∗∥21
mn

(
1 +

c

log1/6(d/mn)

)
,

and the statement of Theorem 3 follows straightforwardly when applying Proposition 6 and
using that

R(ŵ) =
1

π
arccos

(〈
ŵ

∥ŵ∥2
, w∗

〉)
=

1

π

√
2

(
1−

〈
ŵ

∥ŵ∥2
, w∗

〉)
+O

(
1−

〈
ŵ

∥ŵ∥2
, w∗

〉)3/2

.

(15)

C.1. Proof of Localization Proposition 14

Recall the upper bound of ϕN from Proposition 7, and note that to upper bound ϕN it is sufficient
to find a feasible point (ν̃, b̃, α̃) which satisfies the constraint, i.e. we have:

ϕN ≤ ν̃ ∥w∗∥1 + b̃α̃ if
1

n
b̃2 ∥h∥2∞ ≥ fn(ν̃, b̃∥γ(α̃)∥2) (16)

holds with high probability for some ν̃ > 0. We further recall that in the noiseless setting we have

f(ν, η) = Efn (ν, η) = E
(
1− ν|Z(1)| − Z(2)η

)2
+
.

with fn from Equation (4). Next, note that the random variable (1−ν|Z(1)|−ηZ(2))2+ for fixed (ν, η)
is a sub-exponential random variable. Furthermore, since (1− ν|Z(1)| − ηZ(2))2+ ≲ 1 + η2(Z(2))2

we see that the subexponential norm of this random variable is bounded by a constant for η ≤ c.
We can therefore apply Lemma 11 to show that for fixed ν, η ≤ c and mn given in Equation (14)
we have

P
(
|fn(ν, η)− Efn(ν, η)| ≲

1

νt4mn

)
≥ 1− 2 exp

(
−c1

n

ν2t8mn

)
.

Since f is an infinitely differentiable function, we can use the Taylor expansion of the function
f = Efn around η = 0 from Equation (56) which holds for ν large. Combining the last two results
we obtain that with probability 1− 2 exp

(
−c1 n

ν2t8mn

)
holds:

fn(ν, b ∥γ(α)∥2) ≤
√
2

3
√
π

1

ν
+

√
2

π

b2 ∥γ(α)∥22
ν

+Ot +Oc (17)
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where Ot := O
(

1
ν3
,
b4∥γ(α)∥42

ν3

)
and Oc := O

(
1

νt4mn

)
.

We claim that for our choice of point (ν̃, b̃, α̃) we get Ot + Oc = 1
ν̃O
(

1
t4mn

)
. Once we have

established inequality (17), the claim that the point (ν̃, b̃, α̃) satisfies constraint from (16) is implied
by proving the following inequality:

1

n
b̃2 ∥h∥2∞ ≥

√
2

3
√
π

1

ν̃
+

√
2

π

b̃2 ∥γ(α̃)∥22
ν̃

+
1

ν̃
O

(
1

t4mn

)
(18)

Defining b̃α = b̃α̃ and rearranging the terms in Equation (18) we obtain the following lower bound
for b̃α:

b̃α
2
≥ nα̃2

∥h∥2∞

√
2

3
√
π
1
ν̃

(
1 +O

(
1
t4mn

))
1−

√
2
π
n
ν̃
∥γ(α̃)∥22
∥H∥2∞

From Section B.1 we have that γ(α) is a piecewise linear function with breakpoints at αm for
m = 2, . . . , d, and thus, we can optimize over integers m instead of α. Using concentration results
from Proposition 8 we get the following result:

b̃α
2
≥ n

1

t2m

(
1− 4

t2m
+O

(
1

t4m

)) √
2

3
√
π
1
ν̃

(
1 +O

(
1
t4mn

))
1−

√
2
π
n
ν̃

2
mt2m

(
1 +O

(
1
t2m

)) (19)

with probability at least 1 − 6 exp
(
− 2m

log5(d/m)

)
. Similarly, as in Remark 1 in Wang et al. (2022),

we choose m, which approximately minimizes the expression above, i.e. to maximize:

t2m

(
1−

√
2

π

n

ν̃

2

mt2m

)
≈ 2 log

(
d

m

)
− 2

√
2

π

n

ν̃m

This gives m = mn(ν̃) :=
√

2
π
n
ν̃ . We claim that for our choice of ν̃ we can set mn as the solution

of equation mn =
√

2
π (72π)

1/6(ntmn ∥w∗∥1)2/3 which is exactly mn given in Equation (14). For
such m = mn we have from Equation (19):

b̃α
2
≥

√
2

3
√
π

n

ν̃t2mn

(
1− 2

t2mn

+O

(
1

t4mn

))
So we let:

b̃α(ν̃) :=

√ √
2

3
√
π

n

ν̃t2mn

(
1− 2

t2mn

+O

(
1

t4mn

))
Now we choose ν̃ which minimizes the upper bound on ϕN in Equation (16) as follows:

ν̃ := argmin
ν>0

ν ∥w∗∥1 + b̃α(ν) = argmin
ν>0

ν ∥w∗∥1 +

√ √
2

3
√
π

n

νt2mn

(
1− 2

t2mn

+O

(
1

t4mn

))
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After minimization, we get that ν̃ is given by:

ν̃ = (72π)−1/6 ∥w∗∥−2/3
1

(
n

t2mn

)1/3(
1− 2

t2mn

+O

(
1

t4mn

))
> 0

Note that indeed mn(ν̃) = mn for this choice of ν̃. Returning to b̃α, we obtain the following:

b̃α := b̃α(ν̃) = 2(72π)−1/6 ∥w∗∥1/31

(
n

t2mn

)1/3(
1 +O

(
1

t4mn

))
Summing up the two terms, we obtain a bound from the proposition. Also, note that for m = mn

we get:

b̃ ∥γ(α̃)∥2 = b̃α
∥γ(α̃)∥2

α̃
=

√
2

3

1

tmn

(
1 +O

(
1

t2mn

))
So, we have Ot = O

(
1
ν3
, η

4

ν3

)
= o

(
1

νt4mn

)
as we assumed at the beginning of the proof. Thus,

the point (ν̃, b̃, α̃) indeed satisfies the inequality (16) with high probability, and we define the upper
bound M := ν̃ + b̃α̃ ≥ ϕN .

C.2. Proof of Uniform Convergence Proposition 15

For the sake of completeness, let us recall the definition of set Γ from Proposition 7:

Γ =

{
(ν, b, α, ηS) s.t ηS ≥ 0, b ≥ 0, α ∈ [1, αmax]

and
1

n
(2
√
smaxηS + b∥h∥∞)2 ≥ fn(ν,

√
b2∥γ(α)∥22 + η2S)

and max
{
|ν|∥w∗∥1 −

√
sηS , 0

}
+ b ∥γ(α)∥1 ≤M

}
with M given in Proposition 14 and smax = Θ(n2/3 log−14/3 d). We further recall the notation

ηSc = b ∥γ(α)∥2 and η =
√
η2Sc + η2S in Section 4.2.

The proof consists of three steps where we iteratively bound the set Γ: for every step, we use
different approximations of fn, and based on them, we develop tighter bounds for ν, ηSc , ηS . Finally,
the statement of the proposition follows from the last, tightest bound. We start with the following
bound:

BOUND 1: ν ∥w∗∥1 ≲M,ν ≳ n1/3

s
1/3
max log d

In order to derive the bounds in this section, we first need to simplify the constraints from the
definition of the set Γ. First, note that we can relax the second constraint to the following two
constraints: bα ≤M and ν ∥w∗∥1 ≤M +

√
sηS . Then, the first constraint is simplified by deriving

an upper bound on the term from the LHS as follows. By using simple quadratic inequality, we have
that for any (ν, b, α, ηS) ∈ Γ it holds that:

1

n
(2
√
smaxηS + b∥H∥∞)2 ≤ 2

n
b2 ∥h∥2∞ +

8

n
smaxη

2
S (20)
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Now, recall that t2mn
≳ log(d/mn) ≥ log κ2 and α ≥ 1, both from Section B.1. We can further

bound the first term from Equation (20) with probability ≥ 1− 1
d as follows:

2

n
b2 ∥h∥2∞ ≤ max

(ν,b,α,ηS)∈Γ

2

n
b2 ∥h∥2∞ ≤ max

α∈Γ

2

n

M2

α2
∥h∥2∞ =

2

n
M2 ∥h∥2∞

≲
1

n

(
n

t2mn

∥w∗∥1
)2/3

log d ≲
∥w∗∥2/31

n1/3
log d,

where we used the concentration of the maximum of i.i.d. Gaussian random variables in the second
line. We can now define the following (larger) set:

Γ1 =

{
(ν, b, α, ηS) s.t η2S

smax

n
+

∥w∗∥2/31

n1/3
log d ≳ fn(ν,

√
b2 ∥γ(α)∥22 + η2S)

and bα ≤M and ν ∥w∗∥1 ≤M +
√
sηS

}
.

From our discussion above it follows that Γ ⊂ Γ1 with high probability. The goal of this first step is
to show that the bounds ν ∥w∗∥1 ≲M and ν ≳ n1/3

s
1/3
max log d

hold uniformly over all ν ∈ Γ1, implying

that they also hold uniformly for all ν ∈ Γ with high probability.
Step 1.1: Upper bound ν ∥w∗∥1 ≲ M . In all of Step 1.1 we assume that (ν, b, α, ηS) ∈ Γ1

that is, we bound these variables only if they are contained in Γ1. Since by the last constraint of Γ1

it holds that ν ∥w∗∥1 ≤ M +
√
sηS , showing that

√
sηS ≤ cM for some universal constant c > 0

is sufficient to deduce that ν ∥w∗∥1 ≤ (c+ 1)M .
Assume by contradiction that

√
sηS > cM for any constant c > 0. Then, we can relax the first

constraint of Γ1 as follows:

η2S
smax

n
+

∥w∗∥2/31

n1/3
log d ≳ fn(ν,

√
b2 ∥γ(α)∥22 + η2S) =

1

n

n∑
i=1

(1− ν|z(0)i | − z
(1)
i

√
b2 ∥γ(α)∥22 + η2S)

2
+

≥ 1

n

n∑
i=1

(1− ν|z(0)i | − z
(1)
i

√
b2 ∥γ(α)∥22 + η2S)

2
+1{z

(2)
i ≤ −c1}

≥ 1

n

n∑
i=1

(−ν|z(0)i |+ c1ηS)
2
+1{z

(2)
i ≤ −c1}

≥ 1

n

n∑
i=1

(
−M +

√
sηS

∥w∗∥1
|z(0)i |+ c1ηS

)2

+

1{z(2)i ≤ −c1}

≥ 1

n

n∑
i=1

(
−(1 + c−1)

√
sηS

∥w∗∥1
|z(0)i |+ c1ηS

)2

+

1

{
|z(1)i | ≤

c1 ∥w∗∥1
2(1 + c−1)

√
s

}
1{z(2)i ≤ −c1}

≳ η2S
1

n

n∑
i=1

1

{
|z(1)i | ≤

c1 ∥w∗∥1
2(1 + c−1)

√
s

}
1{z(2)i ≤ −c1}
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where in the fourth line we used that ν ≤ M+
√
sηS

∥w∗∥1
, and in fifth that M < c−1√sηS . Next, we use

that

P(|Z(1)| ≤
c1 ∥w∗∥1

2(1 + c−1)
√
s
) ≳

∥w∗∥1√
s

≳
∥w∗∥1√
smax

and P(Z(2) ≤ −c1) ≥ c2 and thus, from Lemma 12 with ϵ = c
√

n
smax

, we obtain the following

inequality holds with probability ≥ 1− exp
(
−c3 n

smax

)
:

η2S
smax

n
+

∥w∗∥2/31

n1/3
log d ≥ c4η

2
S
∥w∗∥1√
smax

(21)

First note that smax = o((n ∥w∗∥1)2/3) and thus η2S
smax
n < c4

2 η
2
S

∥w∗∥1√
smax

. Thus in order for inequal-

ity (21) to hold, we need that ∥w∗∥2/31

n1/3 log d ≥ c4
2 η

2
S

∥w∗∥1√
smax

or equivalently η2S ≲
√
smax log d

n1/3∥w∗∥1/31

≤
√
smax

n1/3 log d. But then
√
sηS ≲ s

3/4
maxn−1/6

√
log d, which is in contradiction with our assumption

that
√
sηS > cM , since s3/4maxn−1/6

√
log d ≲

(
n

log d

)1/3
≲M for smax = Θ(n2/3 log−14/3 d).

Hence we conclude that
√
sηS ≤ cM , and furthermore ν ∥w∗∥1 ≤ c̃M for some universal

constants c, c̃ > 0, which is exactly what we wanted to show in this step.

Step 1.2: Lower bound ν ≳ n1/3

s
1/3
max log d

.

In order to show this lower bound, we first lower bound the function fn for any ν, η as follows:

fn(ν, η) =
1

n

n∑
i=1

(1− ν|z(1)i | − ηz
(2)
i )2+ ≥ 1

n

n∑
i=1

(1− ν|z(1)i | − ηz
(2)
i )2+1{z

(2)
i ≤ 0}

≳
1

n

n∑
i=1

(1− ν|z(1)i |)2+

with probability ≥ 1 − exp(−c1n) for some positive universal constant c1. Combining this in-
equality with the first constraint of Γ1 we have that any (ν, b, α, ηS) ∈ Γ1 must satisfy with high
probability that:

1

n

n∑
i=1

(1− ν|z(1)i |)2+ ≲ fn(ν,

√
b2 ∥γ(α)∥22 + η2S) ≲ η2S

smax

n
+

∥w∗∥2/31

n1/3
log d

≲ max

{
s
1/3
max

n1/3
,
s
1/3
max

n1/3
log d

}
≲
s
1/3
max

n1/3
log d (22)

where in the second line we used that smaxη
2
S ≤ c2M2 ≲ (n

√
smax)

2/3 shown in the previous step,
and that ∥w∗∥2/31 ≤ (smax)

1/3.
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Now, define Fn( 1
2ν ) :=

1
n

∑n
i=1 1{|z

(1)
i | ≤ 1

2ν } and F ( 1
2ν ) := P(|Z(1)| ≤ 1

2ν ) = erf( 1
2
√
2ν
) by

the definition of the error function. We can further simplify inequality (22) as follows:

s
1/3
max

n1/3
log d ≳

1

n

n∑
i=1

(1− ν|z(1)i |)2+ ≥ 1

n

n∑
i=1

(1− ν|z(1)i |)21{1− 2ν|z(1)i |}

≥
nFn(

1
2ν )

n

(
1

2

)2

≳ Fn

(
1

2ν

)
where we used that the number of activated indicators of the set {1{1 − 2ν|z(1)i |}}ni=1 is equal to
nFn(

1
2ν ) and that (1 − ν|z(1)i |)+ ≥ 1

2 when 1 − 2ν|z(1)i | ≥ 0. Then, according to the Dvoretzky-

Kiefer-Wolfowitz inequality from Lemma 12 we have with probability at least 1−2 exp(−cn1/3s2/3max log
2 d)

that

sup
ν

∣∣∣∣Fn( 1

2ν

)
− F

(
1

2ν

)∣∣∣∣ = sup
ν

∣∣∣∣Fn( 1

2ν

)
− erf

(
1

2
√
2ν

)∣∣∣∣ ≲ s
1/3
max

n1/3
log d

Thus we can use the Taylor series approximation of erf(·) around zero to show that ν ≳ n1/3

s
1/3
max log d

,

as we wanted to show.

BOUND 2: ηSc , ηS = O(1), ν ∥w∗∥1 ≥ κM

For this bound we use results from the previous steps. Restricting to the set where ν ≳ n1/3

s
1/3
max log d

,

and ν ≲ M
∥w∗∥1

≲ n1/3, we can use the lower bound from Proposition 18:

fn(ν, η) ≥ κ1
1

ν
+ κ2

η2

ν
(23)

which holds with probability ≥ 1− 2 exp(−c2n1/3).
Now we further simplify the LHS of the first constraint in the definition of set Γ1. Combining

the upper bound from Equation (20) with the lower bound (23), we have

2

n
b2 ∥h∥2∞ +

8

n
smaxη

2
S ≥ fn(ν, η) ≥ κ1

1

ν
+ κ2

b2 ∥γ(α)∥22 + η2S
ν

(24)

As before, we have smax
n = Θ( 1

n1/3 log14/3 d
) from the definition of smax, and, as noted above, we

have that 1
ν ≳ 1

n1/3 . Thus, for n ≥ c we have that 8smax
n ≤ κ2

2ν , and hence:

2

n
b2 ∥h∥2∞ ≥ κ1

1

ν
+ κ2

b2 ∥γ(α)∥22
ν

+ η2S

(
κ2
ν

− 8smax

n

)
≥ κ1

1

ν
+ κ2

b2 ∥γ(α)∥22
ν

+ κ3
η2S
ν

where we set κ3 = κ2
2 . Since the above inequalities hold with high probability, we define a set Γ2

as the set of all (ν, b, α, ηS) that satisfy:

2

n
b2 ∥h∥2∞ ≥ κ1

1

ν
+ κ2

b2 ∥γ(α)∥22
ν

+ κ3
η2S
ν

and bα ≤M and
n1/3

s
1/3
max log d

≲ ν ≲
M

∥w∗∥1
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and by the above discussion we have that with high probability, Γ ⊂ Γ2. Hence, by bounding the
variables ν, η from Γ2, we will also obtain valid upper bounds in Γ as well.

Step 2.1: Upper bound ηSc = O(1). Recall that we use the parameterization of ηSc such that
ηSc = b ∥γ(α)∥2. Thus, we bound ηSc as follows:

η2Sc ≤ max
(ν,b,α,ηS)∈Γ2

b2 ∥γ(α)∥22

≤ max
ν,b,α

[
b2 ∥γ(α)∥22 s.t ∥γ(α)∥22 ≤

2

κ2n
ν ∥h∥2∞ and bα ≤M and ν ∥w∗∥1 ≤ cM

]
= max

α

[
M2 ∥γ(α)∥

2
2

α2
s.t ∥γ(α)∥22 ≤

2c

κ2n

M

∥w∗∥1
∥h∥2∞

]
. (25)

As we mentioned in Section B.1, the function ∥γ(α)∥22
α2 is a monotonically decreasing function in

α, while ∥γ(α)∥22 is a convex function. Thus, similarly to the proofs in Wang et al. (2022), it is
sufficient to find αm < αmn , such that∥∥γ(αm)∥∥22

∥h∥2∞
>

2c

κ2n

M

∥w∗∥1

to obtain an upper bound on ∥γ(α)∥22
α2 (where we implicitly make use of the fact that the set Γ contains

the point (ν̃, b̃, α̃ = αmn , 0) from Proposition 15). Using the concentration results from Section B.1
we can rewrite the above inequality as follows:

2

mt2m

(
1 +O

(
1

t2m

))
>

2c

κ2n

κM

∥w∗∥2/31

(
n

t2mn

)1/3(
1 +O

(
1

t2mn

))
After recalling that t2m = 2 log(d/m) +O(log log(d/m)) from Section B.1, it is straightforward to

show that we can choose m = λ
(
n∥w∗∥1
t2mn

)2/3
with sufficiently small universal constant λ > 0. We

finish this step by substituting this choice of m into the upper bound from Equation (25) to get:

η2Sc ≤M2

∥∥γ(αm)∥∥22
α2
m

= κ2M

(
n ∥w∗∥1
t2mn

)2/3(
1 +O

(
1

t2mn

))
2

m

(
1 +O

(
1

t2m

))
=: B2

ηSc = O(1)

Step 2.2: Upper bound ηS = O(1). Similarly as in the previous step we use the relaxations of the
constraints from the set Γ2 to bound ηS as follows:

η2S ≤ max
(ν,b,α,ηS)∈Γ2

η2S

≤ max
ν,b,α,ηS

[
η2S s.t η2S ≤ 2

κ3n
νb2 ∥h∥2∞ and ∥γ(α)∥22 ≤

2

κ2n
ν ∥h∥2∞

and bα ≤M and ν ∥w∗∥1 ≤ cM

]
≤ max

ν,b,α

[
2

κ3n
νb2 ∥h∥2∞ s.t ∥γ(α)∥22 ≤

2

κ2n
ν ∥h∥2∞ and b ≤ M

α
and ν ≤ c

M

∥w∗∥1

]
≤ 2

κ3n

cM

∥w∗∥1
M2 ∥h∥2∞max

α

[
1

α2
s.t ∥γ(α)∥22 ≤

2c

κ2n

M

∥w∗∥1
∥h∥2∞

]
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Now note that 1
α2 is monotonically decreasing function, while the last constraint is identical to

constraint from Equation (25). Thus using exactly the same arguments as in the previous step we
upper bound η2S as follows:

η2S ≤ 2c

κ3n

M3

∥w∗∥1
∥h∥2∞
α2
m

=
2c

κ3n
κ3M

n

t2mn

t2m(1 +O

(
1

t2mn

,
1

t2m

)
) =: B2

ηS = O(1)

where we again used concentration results from Proposition 8, and approximation t2m = 2 log(d/m)+
O(log log(d/m)) from Section B.1.
Step 2.3: Lower bound ν ∥w∗∥1 ≥ κM . This bound follows the same reasoning as the previous
two steps. Namely, we find a lower bound on ν as follows:

ν ≥ min
(ν,b,α,ηS)∈Γ2

ν

≥ min
ν,b,α

[
ν s.t ν ≥ κ1

2

n

b2 ∥h∥2∞
and ∥γ(α)∥22 ≤

2

κ2n
ν ∥h∥2∞ and bα ≤M and ν ∥w∗∥1 ≤ cM

]

≥ min
ν,b,α

[
κ1
2

n

b2 ∥h∥2∞
s.t ∥γ(α)∥22 ≤

2

κ2n
ν ∥h∥2∞ and b ≤ M

α
and ν ∥w∗∥1 ≤ cM

]

=
κ1n

2M2 ∥h∥2∞
min
α

[
α2 s.t ∥γ(α)∥22 ≤

2c

κ2n

M

∥w∗∥1
∥h∥2∞

]
Similarly as in the previous two steps, since α2 is monotonically increasing function, the minimum
is lower bounded by α2 ≥ α2

m and after substitution of m as defined above, we have:

ν ≥ κ1n

2M2

α2
m

∥h∥2∞
=

κ1
2κ2M

∥w∗∥−2/3
1

(
n

t2mn

)1/3 t2mn

t2m
(1 +O

(
1

t2mn

)
) =: κ

M

∥w∗∥1

where once again we applied Proposition 8, and used that t2m = 2 log(d/m) + O(log log(d/m))
from Section B.1. After noting that we have shown ν ∥w∗∥1 ≥ κM with high probability, we
conclude this part of the proof.

BOUND 3: TIGHT BOUNDS

From Step 2.2 in the previous bound we have ηS = O(1) and thus
√
sηS ≤ √

smaxηS = O(n1/3 log−7/3 d).

Combining this bound with the lower bound M ≳
(

n
log d

)1/3
, we obtain that:

ν ∥w∗∥1 ≤M +
√
sηS ≤M

(
1 +

c1

log2 d

)
≤ κM

( n

t2mn

∥w∗∥1
)1/3(

1− 2

3

1

t2mn

+
c2
t4mn

)
=: M̃

(26)

for some fixed universal constant c1, c2 > 0. Moreover, in Step 2.3 of the previous bound we have
shown that ν ∥w∗∥1 ≥ κM , and thus ν ∥w∗∥1 ≥ κ̃M̃ for some 0 < κ̃ ≤ κ. Combining both results,
we have ν ∥w∗∥1 ∈ [κ̃, 1]M̃ .
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Now we show how we can relax and simplify the first constraint of the set Γ. Recall Equa-
tion (24) and note that it implies 2

nb
2 ∥h∥2∞ + 8

nsmaxη
2
S ≥ κ1

1
ν . Moreover, since ν ∥w∗∥1 ≤ M̃ ,

and ηS ≤ BηS from Step 2.2, we have:

1

n
b2 ∥h∥2∞ ≥ κ1

2

1

ν
− 4smax

n
B2
ηS ≥ κ1

2

∥w∗∥1
M̃

− 4B2
ηS

smax

n
≳

1

n1/3
− 1

n1/3 log14/3 d
≳

1

n1/3

for n large enough, since smax = Θ
(
n2/3 log−14/3 d

)
and ∥w∗∥1

M̃
≥ 1

2
∥w∗∥1
M ≳ 1

n1/3 . Thus, using
this lower bound on b ∥h∥∞ and upper bound ηS ≤ BηS we have:

1

n
(2
√
smaxηS + b ∥h∥∞)2 =

1

n
b2 ∥h∥2∞

(
1 +

2
√
smaxηS

b ∥h∥∞

)2

≤ 1

n
b2 ∥h∥2∞ (1 +Ob)

2

where we defined Ob = c log−7/3 d for some universal constant c > 0. This finishes our relaxation
of the LHS of the first constraint from the definition of Γ.

For the RHS of this constraint, we can apply Corollary 20 with ϵ ≍ 1
n1/3t4mn

to obtain that the
inequality

fn(ν, η) ≥
√
2

3
√
π

1

ν
+

√
2

π

η2

ν
− ϵ

holds with probability at least 1− c1 exp
(
−c2 n

1/3

t8mn

)
.

Now we use the derived relaxations of the first constraint of Γ to define a new set Γ3:

Γ3 =

{
(ν, b, α, ηS) s.t

1

n
b2 ∥h∥2∞ (1 +Ob) ≥

√
2

3
√
π

1

ν
+

√
2

π

b2 ∥γ(α)∥22 + η2S
ν

− ϵ

and bα+ ν ∥w∗∥1 ≤ M̃ and ν ∥w∗∥1 ∈ [κ̃, 1]M̃ and b∥γ(α)∥2 + ηS ≲ 1

}
.

Again, we have that with high probability Γ ⊂ Γ3 and in the following four steps we bound variables
α, ν, ηSc , ηS such that (ν, b, α, ηSc) ∈ Γ3. Furthermore, in the following steps we will use multiple
times the fact that:

1

t4mn

≳
1

log2(d/mn)
≳

1

log2 d

which follows from characterization of t2m from Section B.1.
In order to derive tight bounds on ν, ηSc , ηS in Steps 3.3, 3.4. and 3.5, respectively, we first need

to show an upper and lower bound on α in Steps 3.1 and 3.2, respectively.
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STEP 3.1: UPPER BOUND α ≤ αλmn(λ > 1).

We upper bound α uniformly over Γ3 as follows:

α2 ≤ max
(ν,b,α,ηS)∈Γ3

α2

≤ max
ν,b,α

[
α2 s.t

1

n
b2 ∥h∥2∞ (1 +Ob) ≥

√
2

3
√
π

1

ν
− ϵ and bα+ ν ∥w∗∥1 ≤ M̃ and ν ∥w∗∥1 ∈ [κ̃, 1]M̃

]

≤ max
ν,α

α2 s.t
1

n

(
M̃ − ν ∥w∗∥1

α

)2

∥h∥2∞ (1 +Ob) ≥
√
2

3
√
π

1

ν
− ϵ and ν ∥w∗∥1 ∈ [κ̃, 1]M̃



≤ max
ν,α

[
α2 s.t

α2

∥h∥2∞

(
1− 3

√
π√
2
ϵν

)
≤ 3

√
π√
2

1

n
ν(M̃ − ν ∥w∗∥1)

2(1 +Ob) and ν ∥w∗∥1 ∈ [κ̃, 1]M̃

]

≤ max
α

[
α2 s.t

α2

∥h∥2∞
≤ 12

√
π

27
√
2

1

n

M̃3

∥w∗∥1
(1 +O

(
1

t4mn

)
)

]
(27)

where in the second line we used the second constraint to upper bound b, and in the last line we
used that (1 + Ob)(1 − 3

√
π√
2
ϵν)−1 ≤ 1 + O( 1

t4mn
) and that the function ν(M̃ − ν ∥w∗∥1)2 under

the constraint ν ∥w∗∥1 ∈ [κ̃, 1]M̃ is maximized for ν ∥w∗∥1 = M̃/3. Furthermore, note that
1/3 ∈ [κ̃, 1] since Γ ⊂ Γ3 and point ν = M

3∥w∗∥1
∈ Γ by arguments from the proof of the localization

proposition 14.
Similarly as in the previous bounds, we use that α2 is a monotonically increasing convex func-

tion, and thus in order to lower bound ∥γ(α)∥22, it is sufficient to find a point αm such that αm ≥ αm
for which the constraint of Equation (27) does not hold. Now, using concentration result from
Proposition 8 and definition of M̃ , we have that α = αm does not satisfy the constraint if:

1

t2m

(
1− 4

t2m
+O

(
1

t4m

))
>

1

t2mn

(
1− 2

t2mn

+O

(
1

t4mn

))
We can choose m = λmn for some constant λ > 1 since using characterization of tm from Sec-
tion B.1 we have:

t2mn

t2m
= 1 +

2 log λ

t2mn

+O

(
1

t4mn

)
Thus we finally obtain that α ≤ αm, as we wanted to show.

STEP 3.2: LOWER BOUND α ≥ αλmn(λ ∈ (0, 1))

The bound in this step is derived similarly to the bound in Step 3.1. However, in this step we cannot

neglect the term
√

2
π
b2∥γ(α)∥22

ν from the first constraint of Γ3, as we did in the previous step. For the
sake of shorter equations, we will write only relaxations of constraints that α needs to satisfy and
skip writing that we minimize over α2 like we did previously.
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We start by rewriting and relaxing the first constraint from Γ3 as follows:

b2

(
∥h∥2∞
n

(1 +Ob)−
√

2

π

∥γ(α)∥22
ν

)
≥

√
2

3
√
π

1

ν
+

√
2

π

η2S
ν

− ϵ

≥
√
2

3
√
π

1

ν
− ϵ ≥

√
2

3
√
π

1

ν
(1−O

(
1

t4mn

)
) (28)

where we used that ϵν = O( 1
t4mn

). Now, using the second constraint of Γ3, we can further relax the
LHS of the previous inequality as follows:

b2

(
∥h∥2∞
n

(1 +Ob)−
√

2

π

∥γ(α)∥22
ν

)
≤

(M̃ − ν ∥w∗∥1)2

α2

(
∥h∥2∞
n

(1 +Ob)−
√

2

π

∥γ(α)∥22
ν

)
(29)

Combining inequalities (28) and (29), and plugging in ν ∥w∗∥1 = κM̃ for κ ∈ [κ̃, 1] yields:

√
2

3
√
π

∥w∗∥1
κM̃

(1−O

(
1

t4mn

)
) ≤ M̃2(1− κ)2

α2

(
∥h∥2∞
n

(1 +Ob)−
√

2

π

∥γ(α)∥22 ∥w∗∥1
κM̃

)

After multiplying the previous inequality by κM̃
∥w∗∥1

α2

M̃2(1−κ)2
and rearranging terms, we obtain:

√
2

π
∥γ(α)∥22 ≤

∥h∥2∞
n

κM̃

∥w∗∥1
(1 +Ob)−

√
2

3
√
π

α2

M̃2(1− κ)2
(1−O

(
1

t4mn

)
) (30)

Note that only the right hand side depends on ν (and thus on κ). Hence maximizing over κ the right
hand side we obtain:

κ = 1−

(
2
√
2

3
√
π

nα2 ∥w∗∥1
∥h∥2∞ M̃3

(1−O

(
1

t4mn

)
)

)1/3

≥ 1−

(
2
√
2

3
√
π

nαm
2 ∥w∗∥1

∥h∥2∞ M̃3
(1−O

(
1

t4mn

)
)

)1/3

>
1

3

where we used that α ≥ αm derived in the previous step. Moreover, note that κ ∈ [κ̃, 1]M̃ , by the
proof of our localization proposition. Substituting this κ into (30) we get the following inequality:

α2/3

∥h∥2/3∞

(
9
√
2

4
√
π

)1/3

(1−O
(

1

t4mn

)
) + n2/3

√
2

π

∥γ(α)∥22
∥h∥2∞

∥w∗∥2/31 ≤ 1

n1/3
M̃

∥w∗∥1/31

(1 +Ob)

Now we further relax the constraint by raising the previous inequality to the third power and keeping
only the first two terms to get:

α2

∥h∥2∞

9
√
2

4
√
π
+ 3

√
2

π

∥γ(α)∥22
∥h∥2∞

∥w∗∥2/31 n2/3
α4/3

∥h∥4/3∞

(
9
√
2

4
√
π

)2/3

≤ 1

n

M̃3

∥w∗∥1
(1 +O

(
1

t4mn

)
)
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We can further relax this constraint by using the that α ≥ αm with m = λ
(
n∥w∗∥1
t2mn

)2/3
as shown

in the Bound 2. Then, we have substitute this value of α only in the second term as follows:

α2

∥h∥2∞

9
√
2

4
√
π
+ 3

√
2

π

∥γ(α)∥22
∥h∥2∞

∥w∗∥2/31 n2/3
α
4/3
m

∥h∥4/3∞

(
9
√
2

4
√
π

)2/3

≤ 1

n

M̃3

∥w∗∥1
(1 +O

(
1

t4mn

)
)

Now, note that the term on the left hand side is a sum of two convex functions in α and thus is
convex. Similarly, as before, we look for αm < αm so that the previous inequality is not satisfied.
Using concentration results from Proposition 8, we get:

3

√
2

π

(
9
√
2

4
√
π

)2/3

∥w∗∥2/31

2n2/3

mt2m

(
1 +O

(
1

t2m

))
1

t
4/3
m

(
1− 8

3

1

t2m
+O

(
1

t4m

))

+
9
√
2

4
√
π

1

t2m

(
1− 4

t2m
+O

(
1

t4m

))
>

9
√
2

4
√
π

1

t2mn

(
1− 2

t2mn

+O

(
1

t4mn

))

and we can choose m = λmn with λ ∈ (0, 1). This gives us a lower bound on α which is tight
enough to obtain bounds on ν with a right multiplicative constant.

STEP 3.3: TIGHT BOUNDS IN ν

Now consider a set Γν3 := Γ3 ∩ {(ν, b, α, ηS) s.t α ≥ αm} with m given in the previous step.
Furthermore, from the arguments in the previous step it holds that Γ ⊂ Γν3 with high probability.

Now, similarly to Step 3.1 we can relax the first constraint of Γ3 to 1
nb

2 ∥h∥2∞ ≥
√
2

3
√
π
1
ν (1 −

O
(

1
t4mn

)
). Combining this lower bound on b with the second constraint of Γ3 we have:

M̃ − ν ∥w∗∥1 ≥ bα ≥

√ √
2

3
√
π

√
n

∥h∥∞
α√
ν
(1−O

(
1

t4mn

)
)

Rearranging the terms we obtain that for any (ν, b, α, ηS) ∈ Γν3 must hold that:

0 ≥ ν3/2 ∥w∗∥1 − M̃ν1/2 +

√ √
2

3
√
π

√
n

α

∥h∥∞
(1−O

(
1

t4mn

)
)

≥ ν3/2 ∥w∗∥1 − M̃ν1/2 +

√ √
2

3
√
π

√
n
αm

∥h∥∞
(1−O

(
1

t4mn

)
)

where we used that α ≥ αm Thus, the constraint C.2 must hold uniformly for all ν ∈ Γν3 . Setting

ν ∥w∗∥1 = κ2M̃ with κ2 ∈ [κ̃, 1] we obtain the following constraint on κ:

κ3 − κ+

√ √
2

3
√
π

n ∥w∗∥1
M̃3

αm

∥h∥∞
(1−O

(
1

t4mn

)
) ≤ 0
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Using definition of M̃ from Equation (26) and concentration inequality from Proposition 8 we
obtain

κ3 − κ+
2

3
√
3

tmn

tm

(
1− 2

t2m
+O

(
1

t4m

))(
1 +

1

t2mn

+O

(
1

t4mn

))
≤ 0

and after substituting m = λmn with λ < 1 we get the following:

κ3 − κ+
2

3
√
3
+

2

3
√
3

log λ− 1

t2mn

+O

(
1

t4mn

)
≤ 0

Thus, we obtain κ2 ∈
[
1
3 − λ̃

t
2/3
mn

, 13 + λ̃

t
2/3
mn

]
for some positive universal constant λ̃, which we can

write as ν ∥w∗∥1 =
M̃
3 (1 +O(t

−2/3
mn )).

STEP 3.4: TIGHT BOUNDS ON ηSc

Define ΓηS
c

3 := Γ3 ∩
{
(ν, b, α, ηS) s.t

∣∣∣ν ∥w∗∥1 −
M̃
3

∣∣∣ ≤ λ̃M̃

t
2/3
mn

}
. Since inequality (30) holds for

Γ3, it also holds for ΓηSc

3 . Multiplying this inequality by n∥w∗∥1
M̃∥h∥2∞

(1− κ)2(1 +Ob)
−1, we get:√

2

π

∥γ(α)∥22
∥h∥2∞

n ∥w∗∥1
M̃

(1− κ)2(1 +Ob)
−1 +

√
2

3
√
π

α2

∥h∥2∞

n ∥w∗∥1
M̃3

(1 +Ob)
−1(1−O

(
1

t4mn

)
)

≤ κ(1− κ)2 ≤ 4

27

and using our established bound on ν ∥w∗∥1 we get (1 − κ)2 ≥ (1 − 1
3 − λ̃

t
2/3
mn

)2 = 4
9(1 −

3λ̃

t
2/3
mn

+

O( 1

t
4/3
mn

)) and hence we obtain:

3

√
2

π

∥γ(α)∥22
∥h∥2∞

n ∥w∗∥1
M̃

(
1− 3λ̃

t
2/3
mn

+O

(
1

t
4/3
mn

))
+

9
√
2

4
√
π

α2

∥h∥2∞

n ∥w∗∥1
M̃3

(1−O

(
1

t4mn

)
) ≤ 1

Note that the function is convex in α. Using concentration, we get for α = αm:

2
2
(
3
π

)1/3
(ntmn ∥w∗∥1)2/3

mt2m

(
1 +O

(
1

t2m

))(
1− 3λ̃

t
2/3
mn

+O

(
1

t
4/3
mn

))

+
t2mn

t2m

(
1− 4

t2m
+O

(
1

t4m

))(
1 +

2

t2mn

+O

(
1

t4mn

))
≤ 1

Now we claim that the m∗ < mn,m∗ > mn given in Lemma 9, respectively, with κ = 1/3 and
parameter µ do not satisfy this inequality for the well-chosen universal constant µ since

2
2
(
3
π

)1/3
(ntmn ∥w∗∥1)2/3

m∗t
2
m∗

(
1− 3λ̃

t
2/3
mn

+O

(
1

t
4/3
mn

))
+
t2mn

t2m∗

(
1− 2

t2mn

+O

(
1

t4mn

))

= 1− µ

t
7/3
mn

(
1−

t2mn

t2m∗

)
+

2µ2 − 6λ̃

t2m∗t
2/3
mn

+O

(
1

t
10/3
mn

)
= 1 +

2µ2 − 6λ̃

t
8/3
mn

+O

(
1

t
10/3
mn

)
> 1
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for µ >
√

3λ̃. Similarly, for m∗ we get:

2
2
(
3
π

)1/3
(ntmn ∥w∗∥1)2/3

m∗t2m∗

(
1− 3λ̃

t
2/3
mn

+O

(
1

t
4/3
mn

))
+
t2mn

t2m∗

(
1− 2

t2mn

+O

(
1

t4mn

))

= 1 +
µ

t
7/3
mn

(
1−

t2mn

t2m∗

)
+

2µ2 − 6λ̃

t2m∗t
2/3
mn

+O

(
1

t
10/3
mn

)
= 1 +

2µ2 − 6λ̃

t
8/3
mn

+O

(
1

t
10/3
mn

)
> 1

In order to bound ηSc we use that b ≤ M̃−ν∥w∗∥1
α , α ≥ αm∗ , and ν ≥ M̃(13 −

λ̃

t
2/3
mn

), respectively, to

obtain:

η2Sc ≤ max
(ν,b,α,ηS)∈Γ

ηSc
3

b2 ∥γ(α)∥22 ≤ max
ν,α

(M̃ − ν ∥w∗∥1)
2 ∥γ(α)∥

2
2

α2

≤ M̃2

(
1− 1

3
+

λ̃

t
2/3
mn

)2 ∥∥γ(αm∗)
∥∥2
2

αm2
∗

and after application of concentration Proposition 8 and definition of M̃ we obtain:

η2Sc ≤
2

3

1

t2mn

exp

(
µ

2t
1/3
mn

)(
1 +O

(
1

t
2/3
mn

))
=

2

3

1

t2mn

(
1 +

µ

2t
1/3
mn

+O

(
1

t
2/3
mn

))
and

η2Sc ≥ min
(ν,b,α,ηS)∈Γ

ηSc
3

b2 ∥γ(α)∥22 ≥ min
ν,α

√
2

3
√
π

n

ν

∥γ(α)∥22
∥h∥2∞

(1−O

(
1

t4mn

)
)

≥
√
2

3
√
π

n ∥w∗∥1

M̃

(
1
3 + λ̃

t
2/3
mn

) 2

m∗t2m∗

(
1 +O

(
1

t2m∗

))
≥ 2

3

1

t2mn

exp

(
− µ

2t
1/3
mn

)(
1−O

(
1

t
2/3
mn

))

≥ 2

3

1

t2mn

(
1− µ

2t
1/3
mn

−O

(
1

t
2/3
mn

))
,

which are the upper and lower bound claimed in the Proposition 15.

STEP 3.5: TIGHT UPPER BOUND ON ηS

Define ΓηS3 := Γ3∩
{
(ν, b, α, ηS) s.t

∣∣∣ν ∥w∗∥1 −
M̃
3

∣∣∣ ≤ λ̃M̃

t
2/3
mn

and α ≤ αm∗ and α ≥ αm∗

}
.

In this step we keep the term η2S
ν from the first constraint of Γ3, and repeat the same steps leading to

Equation (30) to obtain constraint:
√
2

3
√
π

n ∥w∗∥1 α2

M̃3κ(1− κ)2 ∥h∥2∞
(1−O

(
1

t4mn

)
) +

√
2

π
η2S

α2n ∥w∗∥1
∥h∥2∞ M̃3κ(1− κ)2

(1 +Ob)
−1

+

√
2

π
∥γ(α)∥22

n ∥w∗∥1
∥h∥2∞ κM̃

(1 +Ob)
−1 ≤ 1
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As in the Step 3.3 we have that κ(1− κ)2 ≤ 4
27 and κ ≤ 1

3 + λ̃

t
2/3
mn

. Plugging these two bounds into

the inequality above, we further relax the constraint to:

η2S
α2

∥h∥2∞

n ∥w∗∥1
M̃3

≲ 1−3

√
2

π

∥γ(α)∥22
∥h∥2∞

n ∥w∗∥1
M̃

(1− 3λ̃

t
2/3
mn

+O

(
1

t
4/3
mn

)
)

− 9
√
2

4
√
π

α2

∥h∥2∞

n ∥w∗∥1
M̃3

(1−O

(
1

t4mn

)
)

At the end we use derived bounds on α to upper bound ηS as follows:

η2S ≲
M̃3 ∥h∥2∞
α2
m∗
n ∥w∗∥1

[
1−3

√
2

π

∥γ(αm∗)∥
2
2

∥h∥2∞

n ∥w∗∥1
M̃

(1− 3λ̃

t
2/3
mn

+O

(
1

t
4/3
mn

)
)

− 9
√
2

4
√
π

α2
m∗

∥h∥2∞

n ∥w∗∥1
M̃3

(1−O

(
1

t4mn

)
)

]

Finally, after application of concentration Proposition 8 and definitions of αm∗ , αm∗ and M̃ we
obtain η2S ≲ 1

t
7/3
mn

, which finishes the proof of this proposition.

Appendix D. Proof of Theorem 2

In this section we present the proof of Theorem 2. We begin by recalling some definitions: fn(ν, η) =
1
n

∑n
i=1(1− ξiν|z

(0)
i |− z(1)i η)2+ and f(ν, η) = Efn (ν, η) = E

(
1− ξν|Z(1)| − Z(2)η

)2
+

and νf :=

argmin f(ν, 0). Further, define ζf = f(νf , 0), ζηη = d2

d2η
|(νf ,0)f(ν, η), ζνν = d2

d2ν
|(νf ,0)f(ν, η).

which are all non-zero positive constants. We define the constant κσ in Theorem 2 by:

κσ =
2ζf

ζηην2fπ
2
. (31)

In a first localization step, we bound ΦN . By proposition 6, it suffices to the upper bound ϕN , which
by Proposition 7 can be reduced to a low-dimensional stochastic optimization problem. We show:

Proposition 16 Let the assumptions of Theorem 2 hold. Let tmn (as in Equation (13) in Ap-
pendix B.1) be such that 2Φ∁(tmn) = mn/d with mn = nζηη/2. There exist universal positive
constants c1, c2, c3 > 0 such that

(ϕN )
2 ≤

nζf
t2mn

(
1− 2

t2mn

+
c1
t3mn

)
=:M2

with probability at least 1− c2 exp
(
−c3 n

log5(d/n)

)
over the draws of h1, h2, z(1), z(2) and ξ.

The proof of the proposition is deferred to Appendix D.1. As described in Section 4.3, in a second
uniform convergence step, we bound the constraint set Γ from Equation (8):
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Proposition 17 Let the assumptions of Theorem 2 hold and let Γ be as in Equation (8) with M
from Proposition 16. Define a set Γ0 as a set of all (ν, b, α, ηS) that satisfy:

|ν − νf |2 ≲
1

log(d/mn)
and η2S ≲

1

log5/4(d/mn)

and

∣∣∣∣b2 ∥γ(α)∥22 − 2ζf
ζηη log(d/mn)

∣∣∣∣ ≲ 1

log5/4(d/mn)

with mn = nζηη/2. There exist universal constants c1, c2, c3, c4 > 0 such that Γ ⊂ Γ0 with

probability at least 1 − c1 exp
(
−c2 n

log5(d/n)

)
− c3 exp

(
−c4 n

logn log3/2(d/n)

)
over the draws of

h1, h2, z(1), z(2) and ξ.

The proof of the proposition is deferred to Appendix D.2. As a consequence, when applying Propo-
sition 7 we can upper and lower bound ϕ+ and ϕ−:

ϕ+ ≤

1 + min
(b,α)∈Γ0

b2 ∥γ(α)∥22 + min
ηS∈Γ0

η2S

max
ν∈Γ0

ν2


−1/2

≤ 1−
ζf

ζηην2f

1

log(d/mn)

(
1− c

log(d/mn)1/4

)

ϕ− ≥

1 + max
(b,α)∈Γ0

b2 ∥γ(α)∥22 + max
ηS∈Γ0

η2S

min
ν∈Γ0

ν2


−1/2

≥ 1−
ζf

ζηην2f

1

log(d/mn)

(
1 +

c

log(d/mn)1/4

)

Where we slightly abuse the notation by writing (b, α) ∈ Γ0 and similar for ν ∈ Γ0 and ηS ∈ Γ0.
Finally, the proof follows when applying Proposition 6 and using the exact same series expansion
for risk as in Equation (15).

D.1. Proof of Localization Proposition 16

Recall the upper bound for ϕN from Proposition 7. Since w∗ is s-sparse vector, we have that
∥w∗∥1 ≤

√
s, and we can further upper bound ϕN as follows:

ϕN ≤ min
ν,b,α

|ν|
√
s+ b ∥γ (α)∥1 s.t

1

n
b2 ∥h∥2∞ ≥ fn (ν, b ∥γ(α)∥2) (32)

Given that (ν̃, b̃, α̃) is a feasible point for a given upper bound, we have ϕN ≤ |ν̃|
√
s +

b̃ ∥γ(α̃)∥1. Thus, in the following discussion, our goal is to find a single feasible point of the
constraint set from Equation (32).

In order to show that a point satisfies the constraint above, it is necessary to evaluate the function
fn(ν, b ∥γ(α)∥2) at this point. We do this by using the concentration of Lipschitz continuous func-
tion from Lemma 10. Namely, recall that we defined f = E[fn] and thus according to Lemma 10
for any ν, η holds that:

P (|fn (ν, η)− f (ν, η) | ≥ ϵ) ≤ 2 exp

(
−c nϵ2

ν2 + η2

)
(33)
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with some universal constant c > 0. Therefore, with high probability we can approximate the
evaluation of the function fn at a point by the evaluation of the function f at the same point.

From definition of γ(α) we know that ∥γ(α)∥1 = α and hence we can upper bound ϕN by an
optimization problem over ν > 0 and bα := bα as follows:

ϕN ≤ min
ν,bα,α

ν
√
s+ bα s.t

1

n

b2α
α2

∥h∥2∞ ≥ fn

(
ν, bα

∥γ (α)∥2
α

)
(34)

Using Equation (33) with ϵ = ζf t
−3
mn

and for a feasible point (ν, bα
∥γ(α)∥2

α ) we have that:

b2α ∥h∥
2
∞

nα2
≥ f

(
ν, bα

∥γ (α)∥2
α

)
+

ζf
t3mn

(35)

with probability at least 1− 2 exp

(
−c n

t6mn(ν2+b2α∥γ(α)∥
2
2/α

2)

)
.

Recall that we defined νf := argmin f(ν, 0). Now, let us choose ν̃ = νf and show that there
exists a pair (b, α) such that (νf , b, α) is feasible for constraint (35). We propose to search for a point
with parameter (b, α) such that b ∥γ(α)∥2 = bα

∥γ(α)∥2
α is close to zero. We show in Lemma 24 that

f is infinitely differentiable function and thus, using Taylor series approximation of the function
f(νf , ·) : η 7→ f(νf , η) around the point (νf , 0) we can rewrite the constraint (35) as:

b2α ∥h∥
2
∞

nα2
≥ ζf +

1

2
ζηηb

2
α

∥γ (α)∥22
α2

+O

(
b3α

∥γ (α)∥32
α3

)
+

ζf
t3mn

(36)

with ζη :=
∂f(νf ,η)

∂η

∣∣∣
η=0

= 0 and where we recall that by definition ζf = f (νf , 0), ζηη =

∂2f(νf ,η)

∂η2

∣∣∣
η=0

and mn = 1
2ζηηn.

As we mentioned in Section B.1, γ(α) is a piecewise linear function with break points at αm
for m = 2, . . . , d. Therefore, instead of optimizing over α, we optimize over m. Rearranging the
terms from Equation (36) we get:

b2α ≥ nα2
m

∥h∥2∞

ζf

(
1 + 1

t3mn

)
1− 1

2nζηη
∥γ(αm)∥22
∥h∥2∞

−O
(
bαn

∥γ(αm)∥32
αm∥h∥2∞

) (37)

Note that we have only one constraint but two free variables (b, α) and so we can set α̃ = αmn with
mn = 1

2ζηηn. To gain an intuition for why this choice is approximately optimal, one can follow a
similar argument as in Remark 1 in Wang et al. (2022) and show that mn approximately maximizes
expression:

∥h∥2∞
α2
m

(
1− 1

2
nζηη

∥γ (αm)∥22
∥h∥2∞

−O

(
bαn

∥γ(αm)∥32
αm ∥h∥2∞

))
Thus, mn approximately minimizes expression on the right hand side of Equation (37) and maxi-
mally relaxes this constraint on b2α. We now claim that

b̃2α =
nα2

mn

∥h∥2∞

ζf

(
1 + 1

t3mn

)
1− 1

2nζηη
∥γ(αmn )∥

2
2

∥h∥2∞
−O

(
1
t3mn

)
37
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satisfies inequality (37) with probability at least 1− 6 exp
(
− 2mn

log5(d/mn)

)
. Using Proposition 8 we

have with high probability that:

1−1

2
nζηη

∥γ (αmn)∥
2
2

∥h∥2∞
−O

(
1

t3mn

)
> 1−1

2
nζηη

2

mnt2mn

−O
(

1

t3mn

)
= 1− 2

t2mn

−O
(

1

t3mn

)
> 0

for d, n sufficiently large. Applying Proposition 8 once again we can upper bound b̃α:

b̃2α ≤
nζf
t2mn

(
1 +

1

t3mn

)(
1− 4

t2mn

+
c

t4mn

)
1

1− 2
t2mn

−O
(

1
t3mn

) ≤
nζf
t2mn

(
1− 2

t2mn

+
c

t3mn

)

Now applying Proposition 8 we see thatO
(
b̃αn

∥γ(αmn )∥
3
2

αmn∥h∥
2
∞

)
= O

( √
n

tmn
n 1
mn

√
mnt2mn

)
= O

(
1
t3mn

)
and b̃2α indeed satisfy Equation (37). From the upper bound of the sparsity, we have νf

√
s ≲

√
n

t4mn
.

Since (ν̃, b̃, α̃) is a feasible point, from Equation (34) and derived bounds on νf
√
s and b̃α follows

that

M :=

√
nζf
t2mn

(
1− 2

t2mn

+
c̃

t3mn

)

is an upper bound on ϕN with probability at least 1− 2 exp

(
−c n

log3(d/n)(ν2f+b2α∥γ(αmn )∥
2
2/α

2
mn)

)
−

6 exp
(
−c n

log5(d/n)

)
. The proposition is proved after noting that ν2f + b̃2α ∥γ (αmn)∥

2
2 /α

2
mn

=

O(1).

D.2. Proof of Uniform Convergence Proposition 17

The proof of the proposition follows from several steps where in each step we approximate fn using
the bounds on (ν, ηSc , ηS) from the previous steps to obtain a tighter bound on (ν, ηSc , ηS) using
the tools developed in Wang et al. (2022). The probability statement in Proposition 17 follows when
taking the union bound over all equations which we condition on throughout the proof.

Furthermore, we note that the set Γ from Proposition 7 is not empty as clearly the choice
(ν̃, b̃, α̃, 0) from Section D.1 leads with high probability to a feasible point due to the choice of
M . Moreover, we can even relax set Γ from Proposition 7 and bound the variables that are elements
of the following set:{

(ν, b, α, ηS) s.t
1

n
(2
√
smaxηS + b ∥h∥∞)2 ≥ fn(ν,

√
b2∥γ(α)∥22 + η2S) and bα ≤M

}
⊃ Γ.

(38)

where we implicitly assume bounds ηS ≥ 0, b ≥ 0, α ∈ [1, αmax] in all of the following discussion.
The inclusion of Γ in the above set holds, since any point satisfying max

{
|ν|∥w(S)

∗ ∥1 −
√
sηS , 0

}
+

bα ≤M satisfies bα ≤M as well. In what follows, we bound the variables of interest from Propo-
sition 17 if they are elements of the above given set, which, by inclusion, implies high probability
bounds of the same variables in the set Γ.
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BOUND 1: ν2, η2Sc , η2S = O(1)

In order to apply Lemma 22 in the next step, which gives tight bounds for fn, we first need to show
that, with high probability, ν2, η2, η2S = O(1). This is the goal of this first step. More specifically,
the goal of this first step is to show that there exist universal constants Bν,1, BηSc ,1, BηS ,1 > 0
such that for any element (ν, b, α, ηS) of Γ0 we have ν2 ≤ B2

ν,1, ηSc = b ∥γ(α)∥2 ≤ BηSc ,1 and
ηS ≤ BηS ,1 with high probability over the draws of h1, h2, z(1), z(2) and ξ.

For this first step, we use the fact that in the presence of label noise, fn is lower bounded by a
quadratic function as stated in Lemma 21 i.e. we have that

fn(ν,
√
b2∥γ(α)∥22 + η2S) ≥ cνν

2 + cη(b
2 ∥γ(α)∥22 + η2S) ≥ cηη

2
S

holds with probability ≥ 1 − exp(−cn). As a result, we can relax the first constraint in Definition
(38) of Γ to

1

n
(2
√
smaxηS + b ∥h∥∞)2 ≥ cνν

2 + cηb
2 ∥γ(α)∥22 + cηη

2
S (39)

This implies that cηη2S ≤ 1
n(2

√
smaxηS + b ∥h∥∞)2 ≤ 8

nsmaxη
2
S + 2

nb
2 ∥h∥2∞. Thus for some

universal constants c1, c2 > 0 we have

η2S ≤ 2

cηn
b2 ∥h∥2∞

(
1− 8

cηn
smax

)−1

≤ 2

cηn
b2 ∥h∥2∞

(
1 +

c1
t8mn

)
≤ c2
n
b2 ∥h∥2∞

where we used that smax = Θ
(

n
t8mn

)
. Now define universal constant c > 0 as the smallest constant

satisfying

1

n
(2
√
smaxηS + b ∥h∥∞)2 ≤ 2

n
b2 ∥h∥2∞

(
1 +

4c2
n
smax

)
≤ c

n
b2 ∥h∥2∞ (40)

Combining Equations (39) and (40) we can relax the first constraint of Γ to

c

n
b2 ∥h∥2∞ ≥ cνν

2 + cηb
2 ∥γ(α)∥22 + cηη

2
S .

This approximation leads to an optimization problem similar to the one discussed in Lemma 1
in Wang et al. (2022). After further relaxations we obtain exactly the same form of the inequality,
and hence we can use the arguments from Wang et al. (2022). Define the following set:

Γ1 =
{
(ν, b, α, ηS) s.t

c

n
b2 ∥h∥2∞ ≥ cνν

2 + cηb
2 ∥γ(α)∥22 + cηη

2
S and bα ≤M

}
It is evident from the previous discussion that Γ ⊂ Γ1 with high probability. Thus, deriving high-
probability bounds on Γ1 gives valid bounds for Γ as well. In the following three steps, we bound
variables ηSc , ν, ηS from the set Γ1, respectively.
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Step 1.1: Upper bound on ηSc . In this step, as well as in almost every step that follows, we use
the fact that, by relaxing constraints from the definition of the set Γ1 and bounding the variables on
this larger set, we obtain valid bounds for the variables in Γ1 and, more specifically, in Γ. Moreover,
recall that by our reparametrization from Section 4.2 we have η2Sc = ∥w(Sc)

⊥ ∥22 = b2 ∥γ(α)∥22.
Hence, we relax the first constraint in definition of Γ1 to show that:

η2Sc ≤ max
(ν,b,α,ηS)∈Γ1

b2 ∥γ(α)∥22 ≤ max
b,α

[
b2 ∥γ(α)∥22 s.t

c

n
b2 ∥h∥2∞ ≥ cηb

2 ∥γ(α)∥22 and bα ≤M
]

= max
1≤α≤αmax

[
M2 ∥γ(α)∥

2
2

α2
s.t

c

n
∥h∥2∞ ≥ cη ∥γ(α)∥22

]
(41)

Now note that as discussed in Section B.1 ∥γ(α)∥22 is convex. Therefore, the set of feasible α
that satisfy the last constraint is a nonempty interval. Indeed, to see that the interval is not empty,
recall that we defined M in such a way that (b, αmn) ∈ Γ with high probability for bαmn ≤
M . As Γ ⊂ Γ1 ⊂ {α s.t c

n ∥h∥
2
∞ ≥ cη ∥γ(α)∥22}, with high probability αmn satisfies the

constraint in Equation (41). Furthermore, since ∥γ(α)∥22
α2 is monotonically decreasing, to upper bound

Equation (41) it is sufficient to find α < αmn such that the constraint from Equation (41) does not
hold, i.e. we should have:

∥γ(α)∥22
∥h∥2∞

>
c

cηn
. (42)

It is sufficient to only consider the discretized version of α, i.e., αm, for which we have access to
the tight concentration inequalities from Proposition 8. We now claim that αm withm = λm

n
log(d/n)

satisfies the inequality (42) for some positive universal constant λm > 0. Using the characterization
t2m = 2 log(d/m)+O(log log(d/m)) and concentration inequalities from Section B.1 we show that
m satisfies Equation (42) since

2

mt2m

(
1−O

(
1

t2m

))
>

1

nλm

(
1−O

(
log log(d/n)

log(d/n)

))
>

c

cηn
,

where last inequality holds for d/n sufficiently large and λm small enough.

Therefore, from Equation (41) and the concentration inequality from Proposition 8, we get:

η2Sc ≤M2

∥∥γ(αm)∥∥22
α2
m

≤
nζf
t2mn

2

m

(
1 +O

(
1

t2mn

))
=: B2

ηSc ,1,

with BηSc ,1 = Θ(1), as desired.
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Step 1.2: Upper bound on ν. Similarly as in the previous step, we first relax the first constraint
from definition of Γ1 and use obtained constraints to upper bound ν2 as follows:

ν2 ≤ max
(ν,b,α,ηS)∈Γ1

ν2

≤ max
ν,b,α,ηS

[
ν2 s.t

c

n
b2 ∥h∥2∞ ≥ cνν

2 and
c

n
b2 ∥h∥2∞ ≥ cηb

2 ∥γ(α)∥22 and bα ≤M
]

=
c

ncν
∥h∥2∞max

b,α

[
b2 s.t

c

n
∥h∥2∞ ≥ cη ∥γ(α)∥22 and bα ≤M

]
=

c

ncν
M2 ∥h∥2∞ min

1≤α≤αmax

[
1

α2
s.t

c

n
∥h∥2∞ ≥ cη ∥γ(α)∥22

]
(43)

Since 1
α2 is a monotonically decreasing function, we can use exactly the same reasoning as in the

Step 1.1 to obtain a high probability upper bound 1
α2 ≤ 1

α2
m

. Hence, using Equation (43) and the
concentration results from Proposition 8 we upper bound ν as follows:

ν2 ≤ c

ncν
M2 ∥h∥

2
∞

α2
m

≤
cζf
cν

t2m
t2mn

(
1 +O

(
1

t2mn

))
=: B2

ν,1,

and in particular, after using the characterization t2m = 2 log(d/m) + O(log log(d/m)) from Sec-
tion B.1, we have again that Bν,1 = Θ(1).

Step 1.3: Upper bound on ηS . Replacing ν by ηS and applying exactly the same procedure as in
the Step 1.2, we obtain that with high probability:

η2S ≤ c

ncη
M2 ∥h∥

2
∞

α2
m

≤
cζf
cη

t2m
t2mn

(
1 +O

(
1

t2mn

))
=: B2

ηS ,1,

for BηS ,1 = Θ(1), which completes the first part of the proof.

BOUND 2: △ν2, η2Sc , η2S = O
(

1
log(d/n)

)
Recall that νf := argmin f(ν, 0) and define △ν = ν − νf . Conditioning on the event where the
bounds from the first step hold for ν, ηSc , ηS , the goal of this second step is to show that for any
element (ν, b, α, ηS) of Γ we have △ν2 = O

(
1

log(d/n)

)
, η2Sc = b2 ∥γ(α)∥22 = O

(
1

log(d/n)

)
and

η2S = O
(

1
log(d/n)

)
with high probability over the draws of h1, h2, z(1), z(2) and ξ.

From the previous step, we know that, with high probability, ν2 ≤ B2
ν , ηSc ≤ BηSc ,1 and

ηS ≤ BηS ,1. Hence we can use Lemma 22 to obtain a tight lower bound for fn, which is based
on uniform convergence of fn to its expectation in Proposition 23, and relax the constraint from
definition of the set Γ as follows:

1

n
(2
√
smaxηS + b ∥h∥∞)2 ≥ fn(ν,

√
b2∥γ(α)∥22 + η2S) ≥ f(ν,

√
b2 ∥γ(α)∥22 + η2S)−Oc (44)

≥ ζf + c̃ν△ν2 + c̃ηb
2 ∥γ(α)∥22 + c̃ηη

2
S −Oc,
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where we choose Oc = O
(

1
t3mn

)
and hence the bound holds uniformly with probability at least

1− exp
(
−c2 n

t6mn

)
− exp

(
−c3 n

t3mn
logn

)
.

Now we show how we can relax and simplify the LHS from Equation (44). Since c1mn ≤ d,
we have, according to Equation (44) that 1

n(2
√
smaxηS + b ∥h∥∞)2 ≥ 1

2ζf . As before, we also have
1
n(2

√
smaxηS + b ∥h∥∞)2 ≤ 8smax

n η2S +
2
nb

2 ∥h∥2∞. Combining last two expressions with the bound
ηS ≤ BηS ,1 from Step 1.3 we have:

1

n
b2 ∥h∥2∞ ≥ 1

4
ζf −

4smax

n
B2
ηS ,1 ≥

1

8
ζf

for n, d large enough since smax = Θ
(

n
t8mn

)
. Thus we have:

1

n
(2
√
smaxηS + b ∥h∥∞)2 =

1

n
b2 ∥h∥2∞

(
1 +

2
√
smaxηS

b ∥h∥∞

)2

≤ 1

n
b2 ∥h∥2∞

(
1 + 2BηS ,1

√
8

ζf

√
smax

n

)2

and 1
n(2

√
smaxηS + b ∥h∥∞)2 ≤ 1

nb
2 ∥h∥2∞

(
1 + c

√
smax
n

)
for a large enough constant c > 0.

Furthermore, define Ob = c
√

smax
n = Θ

(
1
t4mn

)
.

Motivated by Equation (44) and discussion after it, we define the following set:

Γ2 =

{
(ν, b, α, ηS) s.t

1

n
b2 ∥h∥2∞ (1 +Ob) ≥ ζf + c̃ν△ν2 + c̃ηb

2 ∥γ(α)∥22 + c̃ηη
2
S −Oc

and bα ≤M

}
Again, from the discussion in this section, we have that with high probability Γ ⊂ Γ2. Similarly as
in the previous bound, we will bound variables of interest i.e. ηSc , ν, ηS in the set Γ2 and use the
inclusion of the set Γ in Γ2 to claim that these bounds are valid even in Γ.

Step 2.1: Upper bound on ηSc . Similarly to the Equation (41) in Step 1.1, we relax constraints
of Γ2 to obtain:

η2Sc ≤ max
(ν,b,α,ηS)∈Γ2

b2 ∥γ(α)∥22

≤ max
b,α

[
b2 ∥γ(α)∥22 s.t

1

n
b2 ∥h∥2∞ (1 +Ob) ≥ ζf + c̃ηb

2 ∥γ(α)∥22 −Oc and bα ≤M

]
≤ max

b,α

[
b2 ∥γ(α)∥22 s.t b2 ≥ (ζf −Oc)

(
1

n
∥h∥2∞ (1 +Ob)− c̃η ∥γ(α)∥22

)−1

and b ≤ M

α

]

= max
α

[
M2

α2
∥γ(α)∥22 s.t

1

n

M2

α2
∥h∥2∞ (1 +Ob) ≥ ζf + c̃η

M2

α2
∥γ(α)∥22 −Oc

]
. (45)

Multiplying the constraint on both sides with α2 and using the fact that ∥γ(α)∥22 is convex shows

that the set of feasible α is again a (non-empty) interval. Thus, by the monotonicity of ∥γ(α)∥22
α2 the
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problem reduces again to finding αm < αmn (where we use again that αmn satisfies the constraints
with high probability) such that αm violates the constraint in Equation (45), i.e.,

ζf −Oc

1 +Ob

nα2
m

M2 ∥h∥2∞
+

c̃η
1 +Ob

n

∥∥γ(αm)∥∥22
∥h∥2∞

> 1 (46)

We now show that we can choose m = λmmn with a universal constant λm ∈ (0, 1). Indeed,
applying Proposition 8 and using the characterization t2m = 2 log(d/m)− log log(d/m)− log(π)+
log log(d/m)
2 log(d/m) +O

(
1

log(d/m)

)
from Section B.1 we get:

ζf −Oc

1 +Ob

nα2
m

M2 ∥h∥2∞
= 1 +

2 log λm − 2

t2mn

+O

(
1

t3mn

)

and
c̃η

1 +Ob
n

∥∥γ(αm)∥∥22
∥h∥2∞

=
1

t2mn

4c̃η
ζηηλm

+O

(
1

t4mn

)
where O(.) has hidden dependencies on λm. Hence, it is straight forward to see that for any d ≥ cn
with universal constant c > 0 (and thus tmn lower bounded), we can find a universal constant λm
such that Equation (46) holds.

Hence, we can upper bound η2Sc in Equation (45) as follows:

η2Sc ≤M2

∥∥γ(αm)∥∥22
α2
m

≤
nζf
t2mn

2

m

(
1 +O

(
1

t2m

))
≤

2ζf
ζηηλm log(d/n)

(
1 +O

(
1

log(d/n)

))
=:

B2
ηSc ,2

t2mn

with B2
ηSc ,2 = Θ(1).

Step 2.2: Upper bound on △ν. Instead of directly bounding ν, here we upper bound △ν2 with
ν = νf +△ν and thus obtain both an upper and a lower bound for ν. Similarly as before, we have:

△ν2 ≤ max
(ν,b,α,ηS)∈Γ2

△ν2 ≤ max
ν,b,α

[
△ν2 s.t

1

n
b2 ∥h∥2∞ (1 +Ob) ≥ ζf + c̃ν△ν2 −Oc

and
1

n
b2 ∥h∥2∞ (1 +Ob) ≥ ζf + c̃ηb

2 ∥γ(α)∥22 −Oc and bα ≤M

]
= max

b,α

[
1

c̃ν

(
1

n
b2 ∥h∥2∞ (1 +Ob)− ζf +Oc

)
s.t

1

n
b2 ∥h∥2∞ (1 +Ob) ≥ ζf + c̃ηb

2 ∥γ(α)∥22 −Oc and bα ≤M

]

= max
α

[
1

c̃ν

(
1

n

M2

α2
∥h∥2∞ (1 +Ob)− ζf +Oc

)
s.t

1

n

M2

α2
∥h∥2∞ (1 +Ob) ≥ ζf + c̃η

M2

α2
∥γ(α)∥22 −Oc

]
(47)
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As in Step 1.2 we use that 1
α2 is a monotonically decreasing function and the fact that αm from

the previous step, withm = λmmn and αm ≤ αmn , does not satisfy the constraint in Equation (47).
Thus we can upper bound △ν2 as follows:

△ν2 ≤ 1

nc̃ν

M2

α2
m

∥h∥2∞ (1 +Ob)−
ζf
c̃ν

+
Oc

c̃ν
≤

ζf t
2
m

t2mn
c̃ν

(
1 +

2

t2mn

)
−
ζf
c̃ν

+O

(
1

t3mn

)
=
ζf (2− 2 log(λm))

c̃ν2 log(d/n)

(
1 +O

(
1

log(d/n)

))
=:

B2
△ν,2
t2mn

for some B2
△ν,2 = Θ(1).

Step 2.3: Upper bound on ηS . Following the same steps as in Step 2.2 with ν replaced by ηS we
can show that there exists universal constant BηS ,2 = Θ(1) such that:

η2S ≤ 1

nc̃η

M2

α2
m

∥h∥2∞ (1 +Ob)−
ζf
c̃η

+
Oc

c̃η
≤
ζf (2− 2 log(λm))

c̃η2 log(d/n)

(
1 +O

(
1

log(d/n)

))
=:

B2
ηS ,2

t2mn

BOUND 3: PROOF OF THE PROPOSITION

We already know that ν is concentrated around νf . However, to obtain a tight expression for the
risk and also a valid lower bound, we need to obtain tighter bounds for η2Sc and η2S conditioning on
the bounds of the previous step, leading to Proposition 17.

Note that f is an infinitely differentiable function as we prove in Lemma 24. Thus, in this part of
the proof we can use the Taylor series approximation of the function f where we use the result from
the last step to bound the higher-order terms involving △ν, ηSc and ηS . Similarly as in equation
(44), we obtain from Proposition 23 and the second order Taylor series approximation of f around
the point (νf , 0) that with high probability,

1

n
b2 ∥h∥2∞ (1 +Ob) ≥ ζf +

1

2
ζνν△ν2 +

1

2
ζηηb

2 ∥γ(α)∥22 +
1

2
ζηηη

2
S −Oc −Of

with Of = O(△ν3 + η3Sc + η3S) = O
(

1
t3mn

)
and Oc,Ob = O

(
1
t3mn

)
.

Step 3.1: Upper and lower bound on ηSc . We proceed in the same manner as in the previous
two steps. We relax the constraint in definition of Γ and define the following set:

ΓηS
c

3 =

{
(ν, b, α, ηS) s.t

1

n
b2 ∥h∥2∞ (1 +Ob) ≥ ζf +

1

2
ζηηb

2 ∥γ(α)∥22 −Oc −Of and bα ≤M

}

Clearly, we have again with high probability that Γ ⊂ ΓηS
c

3 . The only difference between ΓηS
c

3 and
Γ2 lies in the constant c̃η which is replaced by the tighter constant ζηη/2. However, this makes a
big difference, as this allows us to choose m < mn < m much tighter. Similar to Equation (46) we
again require that m = m,m satisfies

ζf −Oc −Of

1 +Ob

α2
m

∥h∥2∞

n

M2
+

ζηη
2(1 +Ob)

n
∥γ(αm)∥22
∥h∥2∞

> 1. (48)
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However, this expression allows us to choose m and m as in Lemma 9, with κ := 1/2, m∗ := mn

and parameter λ > 0. We only show it for m as the same argument holds for m. Applying
Proposition 8, the LHS from Equation (48) can be bounded by

ζf −Oc −Of

1 +Ob

α2
m

∥h∥2∞

n

M2
=
t2mn

t2m

(
1− 4

t2m
+

2

t2mn

+O

(
1

t3mn

))

= 1− λ

t
5/2
mn

− 2

t2mn

+O

(
1

t3mn

)
+O

(
1

t2mn
mn

)

and
ζηη

2(1 +Ob)
n

∥∥γ(αm)∥∥22
∥h∥2∞

=
2

t2mn

+
λ

t
5/2
mn

+
λ2

4t3mn

+O

(
1

t3mn

)
+O

(
1

t2mn
mn

)
with O(.) having hidden dependencies on universal constant λ. In particular, as a result, we see that
we can choose λ such that Equation (48) holds for any d > cn with universal constant c > 0. Hence
we can upper bound η2Sc as follows:

η2Sc ≤M2

∥∥γ(αm)∥∥22
α2
m

≤
nζf
t2mn

2

m

(
1 +O

(
1

t2mn

))
≤

4ζf
ζηη

1

t2mn

(
1 +

λ

2
√
tmn

+O

(
1

tmn

))
Furthermore, we also obtain a lower bound for η2Sc . Similar as in Lemma 5/6 Wang et al. (2022), we
can lower bound (using again the monotonicity of ∥γ(α)∥2

α and the fact that any feasible α ≤ αm)

η2Sc ≥ min
b

b2 ∥γ(αm)∥22 s.t b2 ≥
ζf −Oc −Of

∥h∥2∞
n (1 +Ob)− 1

2ζηη ∥γ(αm)∥
2
2


=

ζf −Oc −Of

∥h∥2∞
n (1 +Ob)− 1

2ζηη ∥γ(αm)∥
2
2

∥γ(αm)∥22 ≥
4ζf
ζηη

1

t2mn

(
1− λ

2
√
tmn

+O

(
1

tmn

))
Step 3.2: Upper bound on ηS . In order to upper bound ηS we further constrain ΓηS

c

3 and define
a set:

ΓηS3 =

{
(ν, b, α, ηS) s.t

1

n
b2 ∥h∥2∞ (1 +Ob) ≥ ζf +

1

2
ζηηb

2 ∥γ(α)∥22+
1

2
ζςςη

2
S −Oc −Of

and bα ≤M

}
Note that ΓηS3 ⊂ ΓηS

c

3 and thus we can use boundsm,m from the previous part. Upper bounding ηS
by other variables from the first constraint of ΓηS3 and using that 1

α2 and −∥γ(α)∥22
α2 are monotonically

decreasing and increasing in α, respectively, we obtain the following high probability bound:

η2S ≤ 2

ζηη

(
M2

n

(
∥h∥2∞
α2
m

(1 +Ob)−
1

2
ζηηn

∥γ(αm)∥22
α2
m

)
− ζf +Oc +Of

)

=
2ζf
ζηη

[
1

t2mn

(
1− 2

t2mn

+
c̃

t3mn

)(
t2m

(
1 +

4

t2m
+

c2
t3mn

)
− 2mn

m

(
1 +

c3
t2m

))
− 1

]
+O

(
1

t3mn

)
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where the second line follows again from concentration results from Proposition 8. Multiplying all
the terms gives η2S ≲ 1

t
5/2
mn

, as we wanted to show.

Note that we could prove in the exact same way that △ν2 = O

(
1

t
5/2
mn

)
, but this does not

change tightness of our result in Theorem 2 and hence we skip this step and conclude the proof of
Proposition 17.

Appendix E. Technical Lemmas

E.1. Application of CGMT: Proof of Proposition 6

The proof essentially follows exactly the same steps as in Koehler et al. (2021) and (Donhauser
et al., 2022) except for a few simple modifications, which we describe next.

In order to apply Lemma 5 we first rewrite ΦN using the Lagrange multipliers v ∈ Rn as
follows:

ΦN = min
w

max
v≥0

∥w∥1 + ⟨v, 1−DyXw⟩

= min
(w∥,w⊥)

max
v≥0

∥w∥ + w⊥∥1 +
〈
v, 1−DyX∥w∥

〉
− ⟨v,DyX⊥w⊥⟩

where Dy = diag(y1, y2, . . . , yn). Since Dy and X⊥ are independent, we note that DyX⊥ ∈ Rn×d

has i.i.d. entries distributed according to the standard normal distribution, and hence DyX⊥
d
= X⊥

with d
= denoting equivalence of random variables in distribution. When comparing the expression

obtained with the definition of Φ from Lemma 5, it is obvious that we should takeX1 := X⊥, w1 :=
w⊥, w2 := w∥ and the function ψ(w, v) := ∥w∥+w⊥∥1+

〈
v, 1−DyXw∥

〉
, which is a continuous

convex-concave function on the whole domain since every norm is a convex function. Motivated by
expression for ϕ from Lemma 5, we further define

ϕ̃N := min
(w∥,w⊥)

max
v≥0

∥w∥ + w⊥∥1 +
〈
v, 1−DyX∥w∥

〉
− ∥w⊥∥2 ⟨v, g⟩ − ∥v∥2 ⟨w⊥, h⟩

= min
(w∥,w⊥)

max
λ≥0

∥w∥ + w⊥∥1 − λ
(
⟨w⊥, h⟩ −

∥∥∥(1−DyX∥w∥ − g∥w⊥∥2
)
+

∥∥∥
2

)
= min

(w∥,w⊥)
∥w∥ + w⊥∥1 s.t ⟨w⊥, h⟩ ≥

∥∥∥(1−DyX∥w∥ − g ∥w⊥∥2
)
+

∥∥∥
2

where in the second equality we set λ := ∥v∥2. Define w(S)
⊥ = ΠSw⊥, w

(Sc)
⊥ = ΠScw⊥ where ΠS

and ΠSc are projections on supp(w∗) and the other d − s entries, respectively. So we can rewrite
ϕ̃N as:

ϕ̃N = min
(w∥,w

(S)
⊥ ,w

(Sc)
⊥ )

∥w∥ + w
(S)
⊥ ∥1 + ∥w(Sc)

⊥ ∥1

s.t ⟨w(S)
⊥ , h1⟩+ ⟨w(Sc)

⊥ , h2⟩ ≥ ∥(1−DyX∥w∥ − g

√
∥w(S)

⊥ ∥22 + ∥w(Sc)
⊥ ∥22))+∥2

with h1 ∼ N (0, Is) and h2 ∼ N (0, Id−s), independent of each other. Under the constraint that
⟨w(S)

⊥ , h1⟩ + ⟨w(Sc)
⊥ , h2⟩ ≥ 0 we can square the last inequality and scale with 1

n to obtain the

46



TIGHT BOUNDS FOR MAXIMUM ℓ1-MARGIN CLASSIFIERS

following RHS:

1

n
∥(1−DyX∥w∥−g

√
∥w(S)

⊥ ∥22 + ∥w(Sc)
⊥ ∥22)+∥

2
2

=
1

n

n∑
i=1

(1− ξisgn(⟨(x∥)i, w
(S)
∗ ⟩)⟨(x∥)i, w∥⟩ − gi∥w⊥∥2)2+,

which is exactly the function fn(⟨w∥, w
∗⟩, ∥w⊥∥2), as defined in Equation (4). Therefore, compar-

ing with the expression for ϕN from Proposition 6 we note that ϕ̃N ≡ ϕN .
In order to complete the proof of the proposition, we need to discuss the compactness of the

feasible sets in the optimization problem so that we can apply Lemma 5 to ΦN and ϕN . For this
purpose, we define the following truncated optimization problems ΦrN (t) and ϕrN (t) for some r, t ≥
0:

ΦrN (t) := min
∥w∥1≤t

max
∥v∥≤r
v≥0

∥w∥1 + ⟨v, 1−DyXw⟩

ϕrN (t) := min
∥w∥+w

(S)
⊥ ∥1+∥w(Sc)

⊥ ∥1≤t
max

0≤λ≤nr
∥w∥ + w

(S)
⊥ ∥1 + ∥w(Sc)

⊥ ∥1

− λ

(
1

n
(⟨w(S)

⊥ , h1⟩+ ⟨w(Sc)
⊥ , h2⟩)−

√
fn(w)

)
.

By definition it follows that ϕr1N (t) ≥ ϕr2N (t) for any r1 ≥ r2, and thus we have that

P(ϕN ≥ t|ξ) ≥ lim
r→∞

P(ϕrN (t) ≥ t|ξ). (49)

Furthermore, by making use of the simple (linear) dependency on λ in the optimization objective in
the definition of ΦN , a standard limit argument as in the proof of Lemma 7 in Koehler et al. (2021)
shows that:

lim
r→∞

P(ΦrN (t) > t|ξ) = P(ΦN > t|ξ).

Finally, the proof follows when noting that we can apply Lemma 5 directly to ΦrN (t) and ϕrN (t) for
any r, t ≥ 0, which gives us P(ΦrN > t|ξ) ≤ 2P(ϕrN ≥ t|ξ). Combining the last inequality with
Equations (49) and E.1 completes the proof for ΦN .

The proof for Φ+ and Φ− uses the same steps as discussed above. We only detail the proof for
Φ− here, as the proof for Φ+ follows from the exact same reasoning.

Now, let MB1 = {w ∈ Rd : ∥w∥1 ≤ M} be an ℓ1-ball of radius M and note that we optimize
over (w∥, w

(S)
⊥ , w

(Sc)
⊥ ) ∈ Sw where Sw = {w s.t ∥w∥2 ≥ δ}∩MB1 is a compact set. Furthermore,

define the function ψ by ψ(w, v) :=
⟨w∥,w

(S)
∗ ⟩

∥w∥2
+
〈
v, 1−DyX∥w∥

〉
, which is a continuous function

on Sw since ∥w∥2 ≥ δ. Similarly as above, we can overcome the issue of the compactness of the set
Sv by using a truncation argument as proposed in Lemma 4 in Koehler et al. (2021). In particular,
we define

Φr− := min
w∈Sw

max
∥v∥≤r
v≥0

⟨w,w∗⟩
∥w∥2

+ ⟨v, 1−DyXw⟩ ,

ϕr− := min
w∈Sw

max
0≤λ≤nr

⟨w∥, w
∗⟩

∥w∥2
− λ

(
1

n
(⟨w(S)

⊥ , h1⟩+ ⟨w(Sc)
⊥ , h2⟩)−

√
fn(w)

)
.
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for which we have

P(Φ− < t|ξ) ≤ lim
r→∞

P(Φr− < t|ξ) and lim
r→∞

P(ϕr− ≤ t|ξ) = P(ϕ− ≤ t|ξ).

We note that the first statement follows from the definition of Φ− and the monotonicity of Φr− in r,
while the second statement follows from a limit argument as in Lemma 4 in Koehler et al. (2021).
Finally, we conclude the proof by applying the first part of Lemma 5 to Φr− and ϕr− and defining
z(1) = ⟨X∥, w

∗⟩ with X∥ the row-wise projection of X in the subspace spanned by w∗

E.2. Lower bounds for fn in noiseless setting

Recall that ν = ⟨w∥, w
(S)
∗ ⟩, ηS = ∥w(S)

⊥ ∥2, ηSc = ∥w(Sc)
⊥ ∥2 and η = ∥w⊥∥2 =

√
η2S + η2Sc . In the

noiseless setting we defined the following two functions:

fn(ν, η) =
1

n

n∑
i=1

(1− ν|z(1)i | − z
(2)
i η)2+

f(ν, η) = Efn (ν, η) = EZ(1),Z(2)∼N (0,1)(1− ν|Z(1)| − Z(2)η)2+.

In this section we show multiple lower bounds of fn. First, we show a bound with non-tight con-
stants and then show a tight result based on uniform convergence of fn to f . At the end we give a
corollary of the uniform convergence proposition which is used in the proof of the Proposition 15.

LOWER BOUNDING fn WITH NON-TIGHT CONSTANTS

We show the following proposition:

Proposition 18 Assume that ν satisfies c1 ≤ ν ≤ νmax for some universal constant c1 > 0.
There exist universal constants κ1, κ2, c2 such that for any ν, η that satisfy the given assumption,
the inequality

fn(ν, η) ≥ κ1
1

ν
+ κ2

η2

ν

holds with probability ≥ 1− 2 exp
(
−c2 n

(νmax)2

)
over the draws of z(1), z(2).

Proof
Similarly to the above, we have the following:

fn(ν, η) =
1

n

n∑
i=1

(1− ν|z(1)i | − z
(2)
i η)2+ ≥ 1

n

n∑
i=1

(1− ν|z(1)i |+ c1η)
2
+1{z

(2)
i ≤ −c1}

≳
1

n

n∑
i=1

(1− ν|z(1)i |+ c1η)
2
1{1− ν|z(1)i | ≥ 1

2
, z

(2)
i ≤ −c1}

≳ (1 + η2)
1

n

n∑
i=1

1{1− ν|z(1)i | ≥ 1

2
, z

(2)
i ≤ −c1}
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Moreover, from independence of Z(1) and Z(2), the fact that P
(
Z(2) ≤ −c1

)
= Φ∁(c1) ≥ c2 and

concentration of Bernoulli random variables we obtain that fn(ν, η) ≳ (1 + η2) 1n
∑n

i=1 1{1 −
ν|z(1)i | ≥ 1

2} with probability ≥ 1− exp(−c3n). Now in order to lower bound the last term we note
that:

P
(
|Z(1)| ≤ 1

2ν

)
= erf

(
1

2
√
2ν

)
≳

1

ν

where we used Taylor approximation erf
(

1
2
√
2ν

)
≳ 1

ν for any ν ≥ c1 with c1 > 0 sufficiently

large. From Lemma 12 with ϵ ≍
√
n/νmax we obtain that uniformly over ν, η fn(ν, η) ≳ 1

ν + η2

ν
with probability at least 1− 2 exp(−c2n/(νmax)

2).

UNIFORM CONVERGENCE OF fn TO f

Similarly as in Section E we define a random variable X = (Z(1), Z(2)) and a set of functions
G0 := {(Z(1), Z(2)) 7→ (1 − ν|Z(1)| − Z(2)η)2+ |νmax ≥ ν ≥ νmin, η ≤ ηmax} with νmin =
Θ(νmax), νmin = Ω(n1/6) and ηmax ≤ c2 for some universal constant c2 > 0. Using notation of
Section B.2 we have that Pgν,η = Egν,η(Z(1), Z(2)) = f(ν, η) and Pngν,η = fn(ν, η), we show the
following result:

Proposition 19 There exist positive universal constants c1, c2, c3 > 0 such that for any ϵ ≳ logn√
n

holds

P
(
∥Pn − P∥G0

≤ c1
log n√
n

+ ϵ

)
≥ 1− c2 exp

(
−c3nϵ2

)
.

Proof The proof is based on Theorem 13. We choose α = 1 and show that the condition from
Theorem 13 requiring finite Orlicz norms is satisfied for this choice of α. We divide the proof into
three steps, where in a first step we bound the variable ψG0 , then we bound Rn(G0), and finally we
bound σ2G0

and apply Theorem 13.

Step 1: Bounding ψG0 By the definition of Orlicz norms, ψG0 is given by:

ψG0 = inf{λ > 0 : E[exp(
1

λ
max
1≤i≤n

sup
gν,η∈G0

1

n
|gν,η(z(1)i , z

(2)
i )− E[gν,η]| − 1]) ≤ 1} (50)

Note that (1 − ν|z(1)|)+ ≤ 1 and thus we have gν,η(z(1), z(2)) = (1 − ν|z(1)| − z(2)η)2+ ≲ 1 +
(z(2))2η2 for any z(1), z(2), η, ν, implying that

max
i

sup
ν,η

|gν,η(z(1)i , z
(2)
i )| = max

i
sup
ν,η

|(1− ν|z(1)i | − z
(2)
i η)2+| ≤ c1z

(2)
max

with vector z(2)max = max1≤i≤n |z(2)i |. Furthermore, it also holds E[gν,η] ≲ 1 + η2E(Z(2))2 ≤
1 + η2max ≤ c3 for some universal constant c3 > 0.
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Using these results and applying the triangle inequality, the term inside of expectation in Equa-
tion (50) can be bounded as:

E
[
exp

( 1
λ
max
i

sup
ν,η

1

n

∣∣∣(1− ν|z(1)i | − z
(2)
i η)2+ − E[(1− ν|Z(1)| − Z(2)η)2+]

∣∣∣)]
≤ E

[
exp

( 1

nλ
max
i

sup
ν,η

(1− ν|z(1)i | − z
(2)
i η)2+

)]
· exp

( 1

nλ
sup
ν,η

E[(1− ν|Z(1)| − Z(2)η)2+]
)
≤ E

[
exp

( c1
nλ
z2max

)]
exp

( c3
nλ

)
(51)

for some positive universal constants c1, c3. Now we split the expectation from the above inequality
into two terms:

E
[
1
[
zmax <

√
2 log(n)

]
exp

( c1
nλ
z2max

)]
≤ exp

(
2c1 log n

nλ

)
and

E
[
1
[
zmax ≥

√
2 log n

]
exp

( c1
nλ
z2max

)]
= 2nE

[
1
[
zmax = |z1|, |z1| ≥

√
2 log n

]
exp

( c1
nλ
z21

)]

≲ n

∫ ∞

z1=
√
2 logn

∫ z1

−z1
· · ·
∫ z1

−z1
exp

( c1
nλ
z21

)[ 2n∏
i=2

exp(−1
2z

2
i )√

2π
dzi

]
dz1

≲ n

∫ ∞

√
2 logn

exp

(
−z21

(
1

2
− c1
nλ

))
dz1 ≲

exp
(
2c1n
nλ

)
√
log n(1− 2c1

nλ )
(52)

where we assumed that λ > 2c1
n . Now choosing λ = cλ

logn
n with a positive constant cλ sufficiently

large, we find that the condition in Equality (50) is satisfied for this λ, which implies that ψG0 ≤
cλ

logn
n .

Step 2: Bounding Rn(G0) In order to apply Theorem 13 we need to upper bound E ∥Pn − P∥G0
.

Since E ∥Pn − P∥G0
≤ 2Rn(G0), we can instead upper bound the Rademacher complexity Rn(G0),

which we do next. Recall the definition of the Rademacher complexity:

Rn(G0) = E

[
sup

gν,η∈G0

∣∣∣∣∣ 1n
n∑
i=1

ϵigν,η(z
(1)
i , z

(2)
i )

∣∣∣∣∣
]

(53)

Define random variable z̃ := |z(1)|1{|z(1)| ≤ 1+ηmax
√
3 logn

νmin
} and note that for all ν, η and 1 ≤ i ≤

n holds

(1− ν|z(1)i | − z
(2)
i η)2+1{z(2)max ≤

√
3 log n} = (1− νz̃i − z

(2)
i η)2+1{z(2)max ≤

√
3 log n}.

We now apply the triangle inequality to Equation (53) to obtain:

E sup
ν,η

∣∣∣ 1
n

n∑
i=1

ϵi(1− ν|z(1)i | − z
(2)
i η)2+

∣∣∣ ≤ E sup
ν,η

∣∣∣ 1
n

n∑
i=1

ϵi(1− νz̃i − z
(2)
i η)2+1{z(2)max ≤

√
3 log n}

∣∣∣
+ E sup

ν,η

∣∣∣ 1
n

n∑
i=1

ϵi(1− ν|z(1)i | − z
(2)
i η)2+1{z(2)max >

√
3 log n}

∣∣∣ (54)
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Then, using that (·)+ is 1-Lipschitz, we can bound expectation of the first term from Equation (54)
as follows:

E sup
ν,η

∣∣∣∣ 1n
n∑
i=1

ϵi(1− νz̃i − z
(2)
i η)2+1{z(2)max ≤

√
3 log n}

∣∣∣∣
≲ E sup

ν,η

∣∣∣∣∣ 1n
n∑
i=1

ϵi(1− νz̃i − z
(2)
i η)21{z(2)max ≤

√
3 log n}

∣∣∣∣∣
= E sup

ν,η

∣∣∣∣∣ 1n
n∑
i=1

ϵi

[
(1− νz̃i)

2 − 2(1− νz̃i)z
(2)
i η + (z

(2)
i )2η2

]
1{z(2)max ≤

√
3 log n}

∣∣∣∣∣

We use again the triangle inequality and consider each of the three terms above:

• Note that |νz̃i| ≤ νmax
νmin

ηmax
√
3 log n ≲

√
log n and using concentration of sub-exponential

random variables from Lemma 11 we obtain:

E sup
ν

∣∣∣∣∣ 1n
n∑
i=1

ϵi(1− νz̃i)
2
1{z(2)max ≤

√
3 log n}

∣∣∣∣∣ ≤ E sup
ν

∣∣∣∣∣ 1n
n∑
i=1

ϵiν
2z̃2i 1{z(2)max ≤

√
3 log n}

∣∣∣∣∣
+ E sup

ν

∣∣∣∣∣ 1n
n∑
i=1

ϵi(−2νz̃i)1{z(2)max ≤
√

3 log n}

∣∣∣∣∣+ E

∣∣∣∣∣ 1n
n∑
i=1

ϵi1{z(2)max ≤
√
3 log n}

∣∣∣∣∣ ≲ log n√
n

• Similarly as in the previous case, we use triangle inequality to split expectation into two terms
and then use that |z(2)i η| ≤ z

(2)
maxηmax ≲

√
log n and |νz̃iz(2)i η| ≤ 3νmax

νmin
η2max log n ≲ log n,

and apply concentration from Lemma 11 to get:

E sup
ν,η

∣∣∣∣∣ 1n
n∑
i=1

2ϵi(1− νz̃i)z
(2)
i η1{z(2)max ≤

√
3 log n}

∣∣∣∣∣ ≲ log n√
n

• Last, use that η2(z(2)i )2 ≤ η2max(z
(2)
max)2 ≲ log n, and again concentration of sub-exponential

random variables from Lemma 11 to obtain:

E sup
η

∣∣∣∣∣ 1n
n∑
i=1

ϵi(z
(2)
i )2η21{z(2)max ≤

√
3 log n}

∣∣∣∣∣ ≲ 1√
n
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Thus, we bounded the first term from Equation (54). Now, we bound the second term. Since
|ϵi(1− ν|z(1)i | − z

(2)
i η)2+| ≤ (1 + z

(2)
i η)2 we obtain:

E sup
ν,η

∣∣∣∣ 1n
n∑
i=1

ϵi(1− ν|z(1)i | − z
(2)
i η)2+1{z(2)max >

√
3 log n}

∣∣∣∣
≲ E sup

η

1

n

n∑
i=1

(1 + z
(2)
i η)21{z(2)max >

√
3 log n}

≲
1

n
E

n∑
i=1

(1 + (z
(2)
i )2)1{z(2)max >

√
3 log n} ≲ E

[
(z(2)max)

2
1{z(2)max >

√
3 log n}

]
≲ n

∫ ∞

z1=
√
3 logn

z21 exp(−z21/2)dz1 ≲
√
log n√
n

where in the last step we used the same approach as for obtaining Equation (52). After adding all
terms, we obtain Rn(G0) ≲

logn√
n

.

Step 3: Proof of the statement To apply Theorem 13, we also need to bound the variance σ2G0
.

But, it is straightforward that there exists some positive universal constant cσG0 > 0 such that the
variance is bounded as follows:

σ2G0
≤ sup

gν,η∈G0

E
[
g2ν,η
]
≤ cσG0

(
1 + η4max

)
Substituting all derived bounds into the probability statement from Theorem 13 we obtain for ϵ ≳
logn√
n

:

P
(
∥Pn − P∥Gσ

≥ 2(1 + t)RGσ + ϵ
)
≤ exp

(
−c2nϵ2

)
+ 3 exp

(
−c3

nϵ

log n

)
≤ c4 exp(−c2nϵ2)

with c−1
2 = 2(1 + δ)cσG0

(
1 + η4max

)
and c−1

3 = Ccλ, which concludes the proof.

Corollary 20 There exist positive universal constants c1, c2 such that for any ν, η satisfying con-
straint in G0 and ϵ ≳ logn√

n
, inequality

fn(ν, η) ≥
√
2

3
√
π

1

ν
+

√
2

π

η2

ν
− ϵ

holds with probability at least 1− c1 exp(−c2nϵ2) over the draws of z(1), z(2).

Proof Recall that f(ν, η) = E[fn(ν, η)]. From Proposition 19 we have fn(ν, η) ≥ f(ν, η)− ϵ uni-
formly over all admissible (ν, η) with probability ≥ 1− c1 exp(−c2nϵ2). According to Lemma 24,
f is an infinitely differentiable function and thus we can express it by Taylor series. First, we
determine the coefficients of the series of f(ν, ·) : η 7→ f(ν, η).
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The constant coefficient is given by:

f(ν, 0) = E(1− ν|Z(1)|)2+ =
2√
2π

∫ 1/ν

0
(1− νz)2 exp

(
−z

2

2

)
dz

= (ν2 + 1)erf

(
1√
2ν

)
+

√
2

π
ν

(
exp

(
− 1

2ν2

)
− 2

)
=

√
2

3
√
π

1

ν
+O

(
1

ν3

)
where we used the Taylor expansion around 0 for functions erf and exp. The first derivative coeffi-
cient is given by

∂

∂η
f(ν, η)|η=0 = −2E[Z(2)(1− ν|Z(1)| − ηZ(2))+]|η=0 = 0

since Z(1) and Z(2) are independent random variables and E[Z(2)] = 0. Now consider the second
derivative coefficient:

∂2

∂η2
f(ν, η)|η=0 = 2E

[
1{1− ν|Z(1)| − ηZ(2)}(Z(2))2

]
|η=0 = 2P

(
|Z(1)| ≤ 1

ν

)
= 2erfc

(
1√
2ν

)
= 2

√
2

π

1

ν
+O

(
1

ν3

)
where in the last step we used the Taylor series approximation of the error function around zero.
Now, in order to analyze higher order derivatives, we show using Leibniz integral rule that:

∂3

∂η3
f(ν, η) =

2

π

∂

∂η

∫ 1/η

Z(2)=−∞

∫ (1−ηZ(2))/ν

Z(1)=0
(Z(2))2 exp

(
−1

2
(Z(2))2

)
exp

(
−1

2
(Z(1))2

)
dZ(1)dZ(2)

= − 2

πν

∫ 1/η

Z(2)=−∞
(Z(2))3 exp

(
−1

2
(Z(2))2

)
exp

−1

2

(
1− ηZ(2)

ν

)2
 dZ(2) (55)

Now, note that for higher order derivatives, the term that comes from differentiating the upper bound
1/η is equal 0 for η = 0 since it is of the form poly(1/η) exp(−1/(2η2)) which is zero for any poly-

nomial. Thus, the main term which we need to consider comes from the term exp

(
−1

2

(
1−ηZ(2)

ν

)2)
.

Note that after taking the differential with respect to this term, we obtain an additional multiplica-
tive factor 1/ν2. However, we also obtain the multiplicative term (1− νZ(2)), which can be further
differentiated with respect to η. Taking all this into account one can show that for k = 2, 3, ...

∂2k

∂η2k
f(ν, η)

∣∣∣
η=0

=

O

 1

ν2k−1

∫ 1/η

Z(2)=−∞
(Z(2))2k(1− ηZ(2)) exp

(
−1

2
(Z(2))2

)
exp

−1

2

(
1− ηZ(2)

ν

)2
 dZ(2)

∣∣∣∣
η=0


with all other terms either vanishing at η = 0 or having in front of the integral multiplicative constant
1
νp with p > 2k − 1. Thus, for η = 0, using that the Gaussian moments are bounded, we obtain
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∂2k

∂η2k
f(ν, η)|η=0 = O

(
1

ν2k−1

)
. Similarly to Equation (55), one can show that every odd differential

at η = 0 is equal to the scaled odd moments of the standard Gaussian random variable, implying
that ∂2k+1

∂η2k+1 f(ν, η)|η=0 = 0.
Taking all derived coefficients into consideration, we can express f using the following Taylor

series:

f(ν, η) =

√
2

3
√
π

1

ν
+

√
2

π

η2

ν
+O

(
1

ν3
,
η4

ν3

)
(56)

At the end, since η = O(1) and ν = Ω(n1/6) we have O
(

1
ν3
, η

4

ν3

)
= o(ϵ), which finishes the proof.

E.3. Lower bounds for fn in noisy setting

Recall that we have defined ν = ⟨w∥, w
∗⟩, ηS = ∥w(S)

⊥ ∥2, ηSc = ∥w(Sc)
⊥ ∥2 and η = ∥w⊥∥2 =√

η2S + η2Sc , and also the following two functions:

fn(ν, η) =
1

n

n∑
i=1

(1− ξiν|z(1)i | − z
(2)
i η)2+

f(ν, η) = Efn (ν, η) = EZ(1),Z(2)∼N (0,1)EξRV∼P(·|Z(1))(1− ξRVν|Z(1)| − Z(2)η)2+. (57)

In this section we show three lower bounds for fn of increasing tightness. First, we show a lower
bound by a quadratic form in ν and η, after that we bound fn by a sum of a quadratic form and a
constant, and the last bound is based on the uniform convergence of fn to f which we prove at the
end of this subsection.

LOWER BOUNDING fn BY A QUADRATIC FORM

We show the following lemma.

Lemma 21 There exist universal positive constants cν , cη only depending on Pσ and c such that
for any ν, η we have that:

fn(ν, η) ≥ cνν
2 + cηη

2

with probability at least 1− exp (−cn) over the draws of z(1), z(2), ξ.

Proof We can assume that ν ≥ 0 since the other cases follow exactly from the same argument.
First, we show an auxiliary statement which we use later in the proof. Namely, we claim that
there exists some positive constant c1 such that for all z ∈ [z1, z2], Pσ (ξ = −1; z) > c1 for some
z1, z2 ∈ R and z1 ̸= z2. Let us prove this statement by contradiction and assume that there exists
no z ∈ [z1, z2] that satisfies the previous equation. Then, for almost any z ∼ N (0, 1), we have
Pσ(ξ; z) = +1 and hence the minimum of the function f(ν, η) = Efn(ν, η) is obtained for ν = ∞.
However, this is in contradiction with Assumption 1 in Section 3.1. Hence there exists some z for
which P (ξ = −1; z) > c1. By the assumption on Pσ in Section 3.1 we assume piecewise continuity
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of z → Pσ(ξ = −1; z) and hence there exists some interval [z − δ, z + δ] =: [z1, z2] in which the
given probability is bounded away from zero.

We can assume without loss of generality that this interval does not contain zero, since in that
case we can always define a new interval of the form [ϵ, z2] or [z1,−ϵ] for ϵ > 0 small enough,
which does not contain zero. Let us define z̃ = min{|z1|, |z2|}.

We can now bound fn(ν, η) as follows:

fn(ν, η) =
1

n

n∑
i=1

(1− ξiν|z(1)i | − z
(2)
i η)2+

≥ 1

n

n∑
i=1

1{ξi = −1, z
(1)
i ∈ [z1, z2], z

(2)
i < −c2}(1− ξiν|z(1)i | − z

(2)
i η)2+

≥ (1 + z̃ν + c2η)
2 1

n

n∑
i=1

1[ξi = −1, zi
(0) ∈ [z1, z2], zi

(1) < −c2]

From Section 4.2 we have that Z(2) is independent of ξRV and Z(1). Hence:

P(ξRV = −1, Z(1) ∈ [z1, z2], Z
(2) < −c2)

= P(ξRV = −1|Z(1) ∈ [z1, z2])P(Z(1) ∈ [z1, z2])P(Z(2) < −c2) ≥ c1

(
Φ∁(z1)− Φ∁(z2)

)
Φ∁(c2) ≥ c

for some positive universal constant c. Now using concentration of i.i.d. Bernoulli random variables
we obtain:

fn(ν, η) ≥ (1 + z̃ν + c2η)
2 c

2
≳ ν2 + η2

with probability at least 1− exp (−cn).

LOWER BOUNDING fn BY A QUADRATIC FORM WITH CONSTANT

Recall that △ν = ν − νf . We show the following lemma.

Lemma 22 Let Bν , Bη > 0 be universal positive constants. Then, there exist positive constants
c̃ν , c̃η > 0 and c1, c2, c3 > 0 only depending on Pσ, such that for any ϵ ≥ c1√

n
and any ν2 ≤

B2
ν , η ≤ Bη we have that:

fn(ν, η) ≥ ζf + c̃ν (△ν)2 + c̃ηη
2 − ϵ

with probability at least 1− exp
(
−c2nϵ2

)
− exp

(
−c3 nϵ

logn

)
over the draws of z(1), z(2), ξ.

Proof First note that from the uniform convergence result in Proposition 23 we have that f(ν, η) ≥
fn(ν, η) − ϵ, with f from Equation (57), with high probability. Thus, it is sufficient to study f .
Clearly, by the convexity of f we have that f ≥ ζf with ζf = f(νf , 0) where we use the simple
fact that (νf , 0) is the global minimizer of f , which follows from the assumption on Pσ in Section
3.1. Furthermore, it is not difficult to check that for for any ν, η, ∇2f(ν, η) ≻ 0 and therefore, f is
strictly convex on every compact set. Hence, the proof follows.
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UNIFORM CONVERGENCE OF fn TO f

Recall that Z(1), Z(2) ∼ N (0, 1) are independent Gaussian random variables and ξRV a random
variable with ξRV|Z(1) ∼ Pσ(.;Z(1)). Using notation introduced in Section B.2 with random vari-
able X = (Z(1), Z(2), ξRV), and Gσ = {gν,η | |ν| ≤ Bν , η ≤ Bη}, we note that

Pgν,η = Egν,η(Z(1), Z(2), ξRV) = f(ν, η) and Pngν,η = fn(ν, η).

We show the following result:

Proposition 23 There exist positive universal constants c1, c2, c3 > 0 such that

P
(
∥Pn − P∥Gσ

≤ c1√
n
+ ϵ

)
≥ 1− exp

(
−c2nϵ2

)
− exp

(
−c3

nϵ

log n

)

Proof The proof of the proposition is based on the application of Theorem 13 and follows exactly
the same steps as proof of Proposition 19. In order to apply Theorem 13 we need to upper bound
three terms - ψGσ , σ

2
Gσ

and Rn(Gσ). Similarly as in proof of Proposition 19 we split proof into three
steps:

Step 1: Bounding ψGσ Recall the definition of ψGσ from Theorem 13:

ψGσ = inf{λ > 0 : E[exp(
1

λ
max
i

sup
ν,η

1

n
|gν,η(z(1)i , z

(2)
i , ξi)− E[gν,η]| − 1]) ≤ 1}

Since |ν|, η are bounded by constants, we have that

E[gν,η] = E[(1− ξRVν|Z(1)| − Z(2)η)2+] ≤ c(1 +B2
ν +B2

η) ≤ c2 (58)

for some positive universal constants c2 that may depend on Bν , Bη. Furthermore, we have:

(1− ξiν|z(1)i | − z
(2)
i η)2+ ≤ c(1 + (B2

ν +B2
η)z

2
max) ≤ c1z

2
max (59)

where zmax = max1≤i≤2n{|z(1)i |, |z(2)i |}. Similarly to inequality (51), we apply the triangle in-
equality and bound the two terms using Equations (58) and (59) to obtain:

E
[
exp

( 1
λ
max
i

sup
ν,η

1

n

∣∣∣(1− ξiν|z(1)i | − z
(2)
i η)2+−E[(1− ξRVν|Z(1)| − Z(2)η)2+]

∣∣∣)]
≤ E

[
exp

( c1
nλ
z2max

)]
exp

( c2
nλ

)
Thus we obtain that ψGσ ≤ inf{λ > 0 : E[exp( c1nλz

2
max) exp(

c2
nλ) − 1] ≤ 1}, which is similar to

expression (51) in the proof of Proposition 19. Hence following the same argument we conclude
that ψGσ ≤ cλ

logn
n for some universal constant cλ > 0.
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Step 2: Bounding Rn(Gσ) The upper bound on the Rademacher complexity is derived as follows.
First use the fact that (·)+ is 1-Lipschitz to obtain:

Rn(Gσ) = E

[
sup

gν,η∈Gσ

∣∣∣∣∣ 1n
n∑
i=1

ϵigν,η(z
(1)
i , z

(2)
i , ξi)

∣∣∣∣∣
]

≤ 2E

[
sup

|ν|≤Bν ,η≤Bη

∣∣∣∣∣ 1n
n∑
i=1

ϵi(1− ξiν|z(1)i | − z
(2)
i η)2

∣∣∣∣∣
]
, (60)

then expand quadratic form and apply triangle inequality for every term to obtain that (60) is upper
bounded by:

2E

[∣∣∣∣∣ 1n
n∑
i=1

ϵi

∣∣∣∣∣
]
+ 2E

[
sup

|ν|≤Bν ,η≤Bη

∣∣∣∣∣ 1n
n∑
i=1

ϵi2ξiν|z(1)i |z(2)i η)

∣∣∣∣∣
]

+2E

[
sup
η≤Bη

∣∣∣∣∣ 1n
n∑
i=1

ϵi(−2z
(2)
i η)

∣∣∣∣∣
]
+ 2E

[
sup
η≤Bη

∣∣∣∣∣ 1n
n∑
i=1

ϵi(z
(2)
i )2η2

∣∣∣∣∣
]

+2E

[
sup

|ν|≤Bν

∣∣∣∣∣ 1n
n∑
i=1

ϵi(−2ξiν|z(1)i |)

∣∣∣∣∣
]
+ 2E

[
sup

|ν|≤Bν

∣∣∣∣∣ 1n
n∑
i=1

ϵiν
2(z

(1)
i )2

∣∣∣∣∣
]

Finally, since sums above do not depend on ν and η any more, we can use standard concentration
results for sub-exponential random variables to obtain that Rn(Gσ) ≲ 1√

n
.

Step 3: Proof of the statement Similarly to Equation (58), we can bound the variance straight-
forwardly as follows:

σ2Gσ
≤ sup

gν,η∈Gσ

E
[
g2ν,η
]
≤ cσGσ

(
1 +B4

ν +B4
η

)
for some positive universal constant cσGσ > 0.

Combining all derived bounds and using that E ∥Pn − P∥Gσ
≤ 2Rn(Gσ) we obtain from The-

orem 13:

P
(
∥Pn − P∥Gσ

≥ 2(1 + t)RGσ + ϵ
)
≤ exp

(
−c2nϵ2

)
+ 3 exp

(
−c3

nϵ

log n

)
with c−1

2 = 2(1 + δ)cσGσ
(
1 +B4

ν +B4
η

)
and c−1

3 = Ccλ, which concludes the proof.

E.4. Additional lemmas

Lemma 24 The function (ν, η) 7→ EZ(1),Z(2)∼N (0,1)(1 − ν|Z(1)| − Z(2)η)2+ is an infinitely dif-
ferentiable function. Furthermore, under Assumption 1 from Section 2, the function (ν, η) 7→
EZ(1),Z(2)∼N (0,1)EξRV∼P(·|Z(1))(1 − ξRVν|Z(1)| − Z(2)η)2+ is also an infinitely differentiable func-
tion.
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Proof Note that the conditional expectation of the first function is given by:

EZ(2)|Z(1)=z(1) [(1− ν|z(1)| − ηZ(2))2+]

=

∫ 1
η
(1−ν|z(1)|)

−∞

1√
2π

exp

(
−1

2
(z(2))2

)
(1− ν|z(1)| − ηz(2))2dz(2)

= η(1− ν|z(1)|) exp
(
− 1

2η2
(1− ν|z(1)|)2

)
+ ((1− ν|z(1)|)2 + η2)Φ

(
1

η
(1− ν|z(1)|)

)
,

which is an infinitely differentiable function in ν and η. Since the function given in the lemma is an
expectation of an infinitely differentiable function, it is also infinitely differentiable, which finishes
the first part of the proof.

Now, note that using Assumption 1 we can rewrite the second function as:

EZ(1)

[
P(ξRV = 1|Z(1))EZ(2)|Z(1) [(1− ν|Z(1)| − ηZ(2))2+]

+ P(ξRV = −1|Z(1))EZ(2)|Z(1) [(1 + ν|Z(1)| − ηZ(2))2+]

]
.

But, similarly to above, we can show that EZ(2)|Z(1) [(1 + ν|Z(1)| − ηZ(2))2+] is infinitely differen-
tiable, implying that the whole function is also infinitely differentiable.
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