
The Galerkin method beats Graph-Based Approaches for Spectral Algorithms

Vivien Cabannes Francis Bach
Meta AI INRIA, Ecole Normale Supérieure

Abstract

Historically, the machine learning community
has derived spectral decompositions from graph-
based approaches. We break with this approach
and prove the statistical and computational supe-
riority of the Galerkin method, which consists in
restricting the study to a small set of test functions.
In particular, we introduce implementation tricks
to deal with differential operators in large dimen-
sions with structured kernels. Finally, we extend
on the core principles beyond our approach to ap-
ply them to non-linear spaces of functions, such as
the ones parameterized by deep neural networks,
through loss-based optimization procedures.

1 INTRODUCTION

Eigen and singular decompositions are ubiquitous in ap-
plied mathematics. They can serve as a basis to define good
features in machine learning pipelines (Belkin and Niyogi,
2003; Coifman and Lafon, 2006; Balestriero and LeCun,
2022), while a set of good features naturally define pullback
distances on the original data. Those features and distances
are naturally referred to as “spectral embeddings” and “spec-
tral distances”. The latter are thought to provide meaningful
geometries on the data, which explain their uses for clus-
tering (Belkin and Niyogi, 2004; Schubert et al., 2018), as
well as diffusion models (Chen and Lipman, 2023). In the
machine learning community, spectral decompositions are
usually derived from the eigen decompositions of different
graph Laplacians built on top of the data (Chung, 1997; Zhu
et al., 2003; Ham et al., 2004). However, those methods are
known to scale poorly with the input dimension (Bengio
et al., 2006; Singer, 2006; Hein et al., 2007), although they
had applications in many different fields, such as molecular
simulation (Glielmo et al., 2021), acoustics (Bianco et al.,
2019) or the study of gene interaction (van Dijk et al., 2018).

Proceedings of the 27th International Conference on Artificial Intel-
ligence and Statistics (AISTATS) 2024, Valencia, Spain. PMLR:
Volume 238. Copyright 2024 by the author(s).

In this paper, we suggest a different approach to approxi-
mate the spectral decompositions of a large class of opera-
tors. Our method consists in restricting the study of infinite-
dimensional operators on a basis of simple functions, which
is usually referred to as Galerkin, Ritz or Raleigh methods
(Singer, 1962), if not Bubnov or Petrov (Fluid Dynamics,
2012), depending on the research community. We make the
following contributions.

1. We release an algorithm to compute spectral decom-
positions of a large class of operators that is statisti-
cally and computationally efficient,1 and provide ex-
periments to confirm those theoretical findings with
numerical analysis.

2. We show that our method prevails over graph-based
approaches both statistically and computationally. This
opens exciting follow-ups for any spectral-based algo-
rithms, could it be spectral clustering, spectral embed-
dings, or spectral distances.

3. We show that our method prevails over kernelized al-
gorithms based on the use of representer theorems
(Schölkopf et al., 2001; Zhou, 2008). Interestingly, our
Galerkin approach can be seen as unifying and gener-
alizing both random features and the Nystrom method.
To take a concrete example, for the Laplacian problem
considered by Pillaud-Vivien and Bach (2023), their
use of the representer theorems leads to implementa-
tion requiring O(n3d3) flops, while the instantiation
of our generic framework provides an implementation
in O(n2 + n3/2d) flops without any loss from a statis-
tical viewpoint, for n the number of samples, and d the
sample dimension. This opens exciting follow-ups for
any kernel methods dealing with derivatives, such as
Hermite regression.

4. Finally, we extract the core principles behind our
method in order to consider non-linear spaces of func-
tions through loss-based optimization procedures. We
equally discuss how our perspective can model ap-
proaches that have led to state-of-the-art results in self-
supervised learning.

1Our Python library can be downloaded through the command
line $ pip install klap, or built from the source code.

https://github.com/VivienCabannes/laplacian

The Galerkin method beats Graph-Based Approaches for Spectral Algorithms

2 SETUP

This section details the setup, motivations, and a running
example behind our study.

Data. We assume that n samples (xi)i∈[n] have been col-
lected and stored as raw vectors xi ∈ X = Rd.2 The
collection process is idealized as underlying a distribution
ρ ∈ ∆X which has generated the samples as n independent
realizations of the variable X ∼ ρ.

Goal. Let us consider an operator L : L2(ρ) → L2(ρ)
in a large class of operators. To be precise, we assume
that L has discrete spectrum and defines a bilinear form
as an expectation over the data through a known operation
H : L2(ρ)×L2(ρ)×X → R that is supposed to be bilinear
in f and g,

EL(f, g) = ⟨f,Lg⟩L2(ρ) = EX [H(f, g,X)]. (1)

For example, L could be equal to the differential opera-
tor defined with the partial derivative ∂i, in which case
H(f, g, x) = f(x)∂ig(x). Our goal is to approximate the
spectral decomposition of L

L =
∑
i∈N∗

λifi ⊗ gi, (2)

for λi > 0 the ordered singular values of L and fi, gi ∈
L2(ρ) the corresponding left and right singular functions.
The decomposition is performed in L2(ρ), i.e., the (fi), and
respectively the (gi), are orthonormal in L2(ρ).

Running example. A prototypical example is provided by

H0(f, g,X) = ⟨∇f(X),∇g(X)⟩ . (3)

The resulting operator is the Laplacian L0 = ∇∗∇ where
∇ is the Euclidean gradient, and the adjoint is taken with
respect to the L2(ρ)-geometry.3 In this case, L0 is positive
self-adjoint, hence fi = gi.

The operator L0 has found applications for representation
learning, that aims to extract good feature to describe raw
data, as the eigenfunctions fi encode some sort of “modes”
on the input space, while the λi captures a notion of com-
plexity of those (Bousquet et al., 2003; Cabannes et al.,
2023a), similarly to Fourier modes where complexity in-
creases with frequency, see Figure 1.

Interestingly, L0 also relates to Langevin dynamics, which
aims to generate new samples that could have originated
from the original data distribution (Dockhorn et al., 2022).
In particular, when ρ derives from a potential V : X → R,

2In all the following, we use the notation [n] = {1, 2, . . . , n}.
3Laplacians are usually defined as negative self-adjoint op-

erators −∇∗∇ as for the usual Laplacian ∆ =
∑

∂2
ii which

corresponds to adjunction with respect to L2(dx) endowed with
the Lebesgue measure. This paper rather uses the graph-based
convention where Laplacians are positive self-adjoint operators.

Figure 1: Level lines of the first sixteen learned eigenfunc-
tions of L0 when the data generates two half-moons with
d = 2, with Algorithm 3, n = 105 points, and p = 200
Galerkin functions derived from the exponential kernel. See
how those eigenfunctions are separated between the two clus-
ters, and how, on each cluster, they identify with Fourier
modes (i.e., cosines) when distorting the segment [0, 1] into
a half-moon.

i.e., ρ(dx) = exp(−V (x)) dx with dx the Lebesgue mea-
sure, under mild assumptions on V , as detailed in Ap-
pendix A.1, the operator L0 is characterized by

L0 : f 7→ −∆f + ⟨∇V,∇f⟩ .

In this setting, (1) is known as the Dirichlet energy, and
L0 as the infinitesimal generator of the Langevin diffusion
(Grenander and Miller, 1994; Bakry et al., 2014; Liu and
Wang, 2016).4

3 GALERKIN METHOD

This section introduces our method, and discusses its sta-
tistical efficiency. Our method assimilates to the Galerkin
method, together with a Monte-Carlo quadrature rule to
estimate the scalar product of L2(ρ) (Chatelin, 1983).

3.1 Algorithm

Rather than working with the infinite-dimensional opera-
tor L, we will restrict our study to its action on a finite-
dimensional space of functions. To do so, we consider p
real-valued functions (φi)i∈[p] to cast a vector α ∈ Rp into
a function in L2(ρ) through the embedding

F : Rp → L2(ρ);
α 7→

∑
i∈[p] αiφi,

(4)

4Reciprocally, diffusion models have been proposed as some
form of power methods to estimate eigen decomposition by Han
et al. (2020).

Vivien Cabannes, Francis Bach

Algorithm 1: Galerkin method
Data: Data (xi) ∈ Xn, function H as per (1).
Choose p test functions (φi)i∈[p], (ψi)i∈[p];
Compute L̂ = (

∑
k∈[n]H(φi, ψj , xk))ij ∈ Rp×p;

Compute Φ̂ = (
∑
k∈[n] φi(xk)φj(xk))ij ∈ Rp×p;

Compute Ψ̂ = (
∑
k∈[n] ψi(xk)ψj(xk))ij ∈ Rp×p;

Solve (Λ, A,B) = GSVD(L̂, Φ̂, Ψ̂) (7);
Set λ̂i := Λii, f̂i :=

∑
j∈[p]Aijφi, ĝi :=

∑
Bijψi;

Result: Estimate (λ̂i, f̂i, ĝi) to decompose L as per (2).

and we search for the singular functions as fi = Fαi for
αi ∈ Rp. In full generality, we can distinguish the search
space for left and right singular functions, and introduce a
second family of real-valued functions (ψi)i∈[p] to map β ∈
Rp to a function in L2(ρ) through the embedding G defined
from the (ψi). Restricted to those parametric functions, the
operator L assimilates to the matrix L ∈ Rp×p, defined as

Lij := (F ∗LG)ij = (EX [H(φi, ψj , X)])ij , (5)

where the adjunction is taken with respect to L2(ρ) and Rp,
and the last equation is proven in Appendix A.2.

The search for the decomposition (2) reduces to the search
of the decomposition,

L =
∑
i∈N∗

λiF
∗fig

∗
iG ≈

∑
i∈[t]

λiF
∗Fαiβ

∗
iG

∗G,

where the last equation is due to our search for fi and gi
under the form Fαi and Gβi, together with a threshold t ∈
N. Introducing the t× p matrices A = (αi)i∈[t], B = (βi)
and Λ = diag(λi) ∈ Rt×t, the last equation is rewritten as

L ≈ F ∗FA⊤ΛBG∗G.

In addition to the above decomposition, we should specify
orthogonality constraints,

⟨Fαi, Fαj⟩L2(ρ) = αiF
∗Fαj = αiΦαj = δij ,

where Φ ∈ Rp×p is defined as (see Appendix A.2)

Φij = (F ∗F)ij = (E[φi(X)φj(X)])ij . (6)

Considering empirical averages in the definition of L in (5),
Φ and Ψ in (6) leads to Algorithm 1, where the generalized
singular value decomposition (GSVD) of (L̂, Φ̂, Ψ̂) reads

AL̂B⊤ = Λ, AΦ̂A⊤ = BΨ̂B⊤ = I, (7)

where A,B,Λ ∈ Rp×p and Λ is diagonal with positive
entries. This decomposition exists as soon as t = p and Φ̂
and Ψ̂ are invertible, as shown in Appendix A.3.

Computational complexity. Our method consists in build-
ing and storing the p×pmatrices L̂, Φ̂ and Ψ̂, before solving

the associated generalized singular value decompositions.
The building of the matrix L̂ scales in O(np2cH) flops,
where cH is the cost of evaluating H(φi, φj , xk), while the
decomposition scales in O(p3). As a consequence, the over-
all number of flops is O(np2cH + p3). In terms of memory,
we only need O(p2 + bH) bits of memory where bH is the
memory needed to evaluate a single H(φi, ψj , xk).

3.2 Statistical Efficiency

Our algorithm can be seen through two actions. First, the
operator L in (1) is restricted to its action on imF and imG
with the introduction of the operator L in (5). Second, be-
cause imL and imG are finite-dimensional, the operator L
assimilates to a matrix. This matrix is defined from the dis-
tribution ρ but is approximated with empirical data, leading
to L̂, which will concentrate around L as the number of data
grows. Those facts are captured formally by Theorem 1,
proven in Appendix A.4. It introduces ΠF the orthogonal
projector on imF in L2(ρ). It focuses on the reconstruction
of the inverse L−1 in operator norm, based on the estimation
suggested by Algorithm 1. Controlling the operator norm
allows the reconstruction of both the spectral values and
functions (e.g., Weyl, 1912). Our choice to focus on L−1 is
due to the fact that when L is a differential operator, L is
usually not bounded, but its inverse is compact (Kondrachov,
1945).

Theorem 1. Assume that H(φi, ψj , x) is bounded by H∞
independently of (i, j, x), and that L is invertible. For any
δ > 0, and n > 3max(1, p2H2

∞∥L−1∥−2) log(2p/δ), the
following holds true with probability at least 1 − δ (the
randomness coming from the data),∥∥L−1 −GL̂−1F ∗∥∥

≤ 3∥Ψ1/2L−1∥∥L−1Φ1/2∥
√

8p2H2
∞

3n
log(

2p

δ
).

+
∥∥(I −ΠG)L−1

∥∥+ ∥∥L−1(I −ΠF)
∥∥ , (8)

where ∥·∥ is the operator norm.

The first term in Theorem 1 can be estimated empirically,
it relates to the variance of our estimate. The second and
third term relates to the bias of our estimator, and cannot be
known without specific assumptions on the spectral decom-
position of the operator L.

In the following, we will consider that the features φi and
ψi were actually obtained as independent realizations of a
random variable φ and ψ. In those settings, we introduce
the following operators in L2(ρ)

Σ = Eφ[φφ∗], Ξ = Eψ[ψψ∗],

where the adjunction is understood in L2(ρ). The projection
on F naturally becomes the projection on imΣ1/2. The fol-
lowing theorem, whose proof is provided in Appendix A.5,
refines Theorem 1 in this particular situation.

The Galerkin method beats Graph-Based Approaches for Spectral Algorithms

Theorem 2. Let (ψi)i∈[p] be p independent realizations of
a random function ψ. Let Πp denotes the projection on
the span of the first p spectral functions of Ξ, and Lp =∑
i∈[p] λifig

∗
i . Assume that ∥ψ∥L2(ρ) ≤ M almost surely.

In the setting of Theorem 1, for any δ, with probability
1− δ (the randomness being understood with respect to the
random functions), when p > 3 log(2/ ∥Σ∥ δ),∥∥(I −ΠG)L−1

∥∥ ≤ λ−1
p+1 +

∥∥(I −Πp)L−1
p

∥∥
+
∥∥ΠpΣ−1L−1

p

∥∥√8M2

3p
log(2p/δ). (9)

In Theorem 2, λ−1
p+1 captures how fast the spectrum of L−1

vanishes,
∥∥(I −Πp)L−1

p

∥∥ depends on how well-specified
our model is to retrieve the first p spectral functions of L,
and

∥∥ΠpΞ−1L−1
p

∥∥ relates to the variance of our estimator.
In order to understand the operator norms appearing in the
previous theorems, notice that when fi and gi are singular
functions of Σ and Ξ, we have

∥Σ−1/2L−1Ξ−1/2∥ = sup
i∈N∗

λ−1
i ∥Σ

−1/2fi∥ · ∥Ξ−1/2gi∥.

In other terms, ensuring this norm to be bounded consists
in enforcing that the complexity to reconstruct fi from φ
(captured with ∥Σ−1/2fi∥) and gi from ψ does not grow too
fast compared to the vanishing rates of the sequence (λi).
In particular, when (λi) decreases slowly, we need to en-
sure ∥Σ−1/2fi∥ to be small for many indices in order to
guarantee good reconstruction properties, while when it de-
creases fast, only approximating well the first few spectral
functions guarantee a similar overall reconstruction error.
Those considerations are illustrated with a concrete example
in Section 5.

4 DIFFERENTIAL OPERATORS,
INVARIANT KERNELS

This section discusses a large class of operators that take
the form of equation (1), and natural spaces of functions to
instantiate our algorithm.

Differential operators. A large class of interest lies in the
operators defined through the bilinear form (1) with

Hc(f, g, x) =
∑

α,β∈Nd

cα,β∂αf(x)∂βg(x), (10)

where for α = (α1, . . . , αd) ∈ Nd, ∂αf denotes the partial
derivatives of f where the i-th coordinate is derived αi-
times, and c = (cα,β) is a sequence in R indexed by Nd ×
Nd with a finite number of non zero elements. This class
encompasses the operator L0 in (3), defined through

H0(f, g,X) =
∑
i∈[d]

∂if(x)∂ig(x),

where ∂i denote the partial derivative with respect to the
i-th variables, formally ∂i = ∂ei with ei the i-th vector of
the canonical basis in Rd.

Reproducing kernel Hilbert spaces. In many cases, the
spectral functions of an operator L are known to belong
to a restricted set of functions H. For example, spectral
functions of most differential operators are expected to be-
long to the Sobolev spaces Hs for many s (Shubin, 1987).
Moreover, the set H can often be endowed with a Hilber-
tian structure that makes evaluation map k∗x : f 7→ f(x)
bounded. In this case, k∗x can be represented with kx ∈ H as
k∗x(f) = ⟨f, kx⟩H which is the basis of reproducing kernel
(Schölkopf and Smola, 2001; Berlinet and Thomas-Agnan,
2011). Typical examples are provided by polynomials of de-
gree less than s, by the class of Sobolev functions H(d+1)/2,
or by some subspace of analytical functions, for which one
can consider respectively

kx(y) = q(x⊤y), with q(t) = (1 + t)s, (11)

and with β = 1 and β = 2 respectively,

kx(y) = q(∥x− y∥), with q(t) = exp(−tβ). (12)

The space H equates the closure with respect to its inner
product of the span of the kx for x ∈ X .

Low-dimensional approximation. Reproducing kernel
Hilbert spaces are usually infinite-dimensional. However,
when dealing with a finite number of data, they can be re-
stricted on a finite-dimensional space as a consequence of
representer theorems (Schölkopf et al., 2001). More gener-
ally, most of the action on H can be restricted to the span
of a few number of elements kxi

for xi ∼ ρ (Williams
and Seeger, 2000), or to the span of few “random features”
(Rahimi and Recht, 2007), which leads to strong computa-
tional gain for a low statistical cost (Rudi et al., 2015; Rudi
and Rosasco, 2017). Following the first idea, we set

φi = ψi = kxi
, (13)

for (xi)i∈[p] subsampled from the data (xi)i∈[n], i.e., p < n.
The difference between the projections of spectral func-
tions on imF = Span{kxi

} and their projections on H
is naturally characterized from the difference between the
covariance Σ = E[kXk∗X] and its empirical estimate Σ̂ from
the points (xi)i∈[p], which, when the former has a rapidly
decaying spectrum, can vanish quite fast as p increases.

Implementation. When considering the objective (10) with
the space defined in (13), L̂ becomes

L̂ij =
∑
k,α,β

cα,β∂αkxi
(xk)∂βkxj

(xk).

Often, the structure of this matrix allows to reduce, at the
cost of an increase in memory space, the number of flops
needed to build it compared to a naive implementation. The
next section illustrates this fact through Proposition 1 for
the specific case where L = L0.

Vivien Cabannes, Francis Bach

Constant 1st kind 2nd kind 3rd kind 3rd kind 4th kind

Constant 1st kind 2nd kind 3rd kind 3rd kind 4th kind

Figure 2: Learning spherical harmonics with polynomials of degree three (with kx(y) = (1+ x⊤y)3 which corresponds to features
maps that concatenates all the multivariate monomials of degree smaller or equal to s = 3). Because we consider ρ uniform on
the sphere, the operator L0 is diagonalized by spherical harmonics, which are polynomials of increasing degrees. The polynomial
kernel of degree D allows to learn all harmonics of s-th kind for s smaller or equal to D (the ones of higher kind are polynomials of
higher degree that can not be reconstructed with polynomials of degree D as illustrated with the fourth kind on the figure). Some of
the learned eigenfunctions are represented on the top row, while some ground truths are represented on the bottom row. Our method
learned perfectly valid harmonics, although, for eigenvalues that are repeated, it does not learn the canonical ones, but any basis of
the different eigenspaces (which can be observed with the harmonics of the second kind in the figure).

5 THE LAPLACIAN EXAMPLE

This section details previous considerations for the specific
example where L = L0 in (3).

Specificities. First of all, L0 is self-adjoint positive, inher-
iting its symmetry and positiveness from H0 in (3). More-
over, under mild assumptions on ρ, the Rellich–Kondrachov
embedding theorem holds true, which implies the compact-
ness of L−1 (Kondrachov, 1945). This is useful to apply
the spectral theorem and consider the countable eigenvalue
decomposition of L0. Finally, because L0 is a diffusion
operator, in some cases of interest, its eigenfunctions are
polynomials (Bakry et al., 2021), e.g., when ρ = N (0, I)
or when ρ is uniform on the sphere Sd−1.

Statistical efficiency. We now turn to the statistical ef-
ficiency of our estimator. The next theorem, proven in
Appendix A.6, shows how our algorithm succeeds in lever-
aging the smoothness of spectral functions to guarantee fast
rates of convergence.
Theorem 3. Assume that ∥x∥ ≤ M almost surely, i.e., ρ
has compact support, and that L0 is diagonalized by poly-
nomials of increasing order. For s ∈ N, consider the kernel
kx(y) = (.5 + x⊤y/2M2)s and the search for eigenfunc-
tions with (13). For any δ ∈ (0, 1), there exists a constant
cδ such that for n large enough, p = n1/2 and s = sn (set
so d log(λs) + log(s) = log(n)/2), with probability 1− δ,
Algorithm 1 with φi = ψi = kxi guarantees∥∥L−1 −GL̂−1F ∗∥∥ ≤ cδn−d/2(d+1).

This theorem should be compared with the study of Pillaud-
Vivien and Bach (2023) that gives rates in O(n−1/4) with
an algorithm based on a representer theorem that leads to
an implementation in O(n3d3) flops and O(n2d2) mem-
ory bits. In contrast, we can ensure better rates for only

O(n2 + n3/2d) flops and O(n3/2) bits.5 It should equally
be compared with graph-Laplacian approaches whose er-
ror scales in O(n−1/d) for at least O(n2p+ n3) flops and
O(n2) bits to build and get the eigen decomposition of
the graph-Laplacian matrix (which we actually reduce to
O(n2p + np2 + npd) flops and O(n2 + np) bits in Ap-
pendix B.1). Although the result of Theorem 3 might seem
to break the curse of dimensionality, it should be noted that
it could hide constant that grows exponentially fast with
respect to the dimension, which may limit the application
of our method to large dimensional problems where it is
impossible to get a good estimation of ρ without a large
number of data (Cabannes and Vigogna, 2023).

Implementation. We conclude this section by showing that
our method can be implemented with O(np2 + npd) flops
and O(p2 + nd) memory bits.

Proposition 1. Assume that X is endowed with a scalar
product. Given a kernel kx(y) = q(∥x− y∥) defined from
q : R→ R, for x, y, z ∈ X , we have

H0(ky, kz, x) = ⟨∇ky(x),∇kz(x)⟩

=
q′(∥x− y∥)
∥x− y∥

q′(∥x− z∥)
∥x− z∥

(x− y)⊤(x− z). (14)

Similarly for dot-product kernel kx(y) = q(x⊤y),

H0(ky, kz, x) = q′(x⊤y)q′(x⊤z) y⊤z. (15)

Proof. The proof follows from the application of the chain
rule in the calculation of ⟨∇xky(x),∇xkz(x)⟩.

Our implementation computes: (i) X = (x⊤i xk)ik ∈ Rp×n
with O(npd) flops and O(np) bits; (ii) q(X) and q′(X),

5To see this, plug p = n1/2 into the complexity bounds in
O(np2 + npd) and O(np) of the next paragraph.

The Galerkin method beats Graph-Based Approaches for Spectral Algorithms

where the operator is understood elements wise, with O(np)
flops and O(np) bits; (iii) Ψ and L from q(X), q′(X) and
X with O(np2) flops and O(np) bits; (iv) the generalized
eigen decomposition (GEVD) associated with (L,Ψ) with
O(p3) flops in O(p2) bits.6 Adding the steps leads to a total
of O(npd+ np2 + p3) flops and O(np) bits.

Algorithm 2: L0 estimate with dot-product kernel

Data: Data (xi) ∈ Xn, kernel kx(y) = q(x⊤y).
Compute X = (x⊤i xj) ∈ Rp×n with p ≤ n;
Compute Ψ = q(X)q(X)⊤ ∈ Rp×p elementwise;
Compute L = (q′(X)q′(X)⊤);
Update Lij ← XijLij for all i, j ∈ [p];
Solve (λ̂i, (αij)j∈[p])i∈[p] ← GEVD(L,Ψ);
Set f̂i(x) :=

∑
j∈[p] αijkxj

(x).

Result: Estimate (λ̂i, f̂i) of the decomposition of L0.

Algorithm 3: L0 estimate with distance kernel
Data: Data (xi) ∈ Xn, kernel kx(y) = q(∥x− y∥).
Compute X = (x⊤i xj),∈ Rp×n, D = (x⊤i xi) ∈ Rn;
Deduce N = (∥xi − xj∥) ∈ Rp×n and T = q′(N)/N ;
Initialize L = 0 ∈ Rp×p; Ψ = q(N)q(N)⊤ ∈ Rp×p;
for k ∈ [n] do

Set γ(k)ij := (Dk −Xik −Xjk +Xij);

Update Lij ← Lij + γ
(k)
ij TikTjk;

Solve (λi, (αij)j∈[p])i∈[p] ← GEVD(L,Ψ);
Set fi(x) :=

∑
j∈[p] αijkxj

(x).
Result: Estimate (λi, fi) of the decomposition of L.

6 RELATED APPROACHES

6.1 Graph Laplacians

Graph Laplacians are the classical way to estimate spec-
tral decompositions in machine learning (Zhu et al., 2003;
Belkin and Niyogi, 2003; Zhu et al., 2021; Zhu and Koniusz,
2022). Although there exist many variants, those methods
mainly consist in approximating the Laplacian operator L0

with finite differences. For f : X → R

E[∥∇f(X)∥2] ≈
∑
i,j∈[n]

wij(f(xi)− f(xj))2, (16)

where the wij are a set of weights usually taken as (wij) =
D−1/2W̃D−1/2 where w̃ij = exp(−α∥xi − xj∥2) with
α a scale parameter, and D is the diagonal matrix with
Dii =

∑
j∈[n] w̃ij .

Graph Laplacians differ from our approaches in several
aspects. On the positive side, they could present compu-
tational advantages, when the evaluation of H0 in (3) is

6In practice, one might regularize the system as (L + εI,Ψ)
or (L,Ψ + εI) for a small regularizer ε > 0 to avoid diverging
solution αi = +∞ due to inversion instability, especially if the
eigenfunctions of L do not belong to our parametric models.

too costly. Moreover, by tuning the weighting scheme w,
graph Laplacians can estimate different Laplacians, such
as the Laplace-Beltrami operator associated with the data
manifold even if the data are non uniform on this manifold
(Coifman and Lafon, 2006; Hein et al., 2007), while this
operator usually can not be written under the form needed
to apply our framework from (1). However, approximating
a differential operator with finite differences is known to
be statistically inefficient in high dimension (Bengio et al.,
2006; Singer, 2006; Hein et al., 2007), as it will not easily
adapt to the smoothness of the targeted operator. Finally,
graph-Laplacians are used to approximate Laplacian opera-
tors, while our method is more generic.

6.2 Methods based on Loss Optimization

In the era of deep learning, one of the main challenges of
machine learning pipelines is to design a principled loss,
before finding an architecture and an optimizer which can
practically minimize this loss when choosing a good set of
hyperparameters. This section explores the core principles
beyond our approach, and details the possibility to learn
spectral decompositions with any models, including deep
neural networks. To ease the discussion, we assume that L
is symmetric and thus that fi = gi in the following.

In this paper, we started from an objective term EL :
L2(ρ) → R, whose minimization of

∑
i∈[p] EL(fi) under

the constraints that the (fi) are orthogonal inL2(ρ) retrieves
the first eigenspace of L, viz., the span of the fi equates
the one of the first eigenfunctions (f∗i)i∈[p] of L (2). This
property holds true from any unitary norm (Mirsky, 1960),
leading to many losses that could be used to train a neural
network.

Second, we needed a way to enforce orthogonality between
the different fi’s, which led us to consider generalized sin-
gular value decomposition. When the fi’s are learned with
optimization methods, one might naively add a regularizer
to the objective that reads, with f : X → Rp whose coordi-
nates are the fi’s,

R(f) =
∥∥E[f(X)f(X)⊤]− I

∥∥2
= E[(f(X)⊤f(X ′))2]− 2E[∥f(X)∥2] + p, (17)

where X ′ is another independent realization of X , the last
equation being useful in order to get unbiased estimates from
small batches of this objective. Minimizing the resulting
loss EL +R allows to retrieve the spectral decomposition
of L, since

argmin
f :X→Rp

2
∑
j∈[p]

µ−1
i EL(fj) +R(f)

=

(√(
1− λi

µi

)
+
fi

)
i∈[p]

. (18)

A proof of this statement can be found in Zhang et al. (2022)
(see also Johnson et al., 2023; Cabannes et al., 2023b).

Vivien Cabannes, Francis Bach

d=3 d=5 d=11 d=19

102 103 104

number of samples

10−1

E
rr

or
Galerkin

102 103 104

number of samples

10−1

Graph Laplacian

103 104

number of samples

10−1

100

C
om

p
u

te
ti

m
e

(s
) Galerkin

Graph-Laplacian

Figure 3: (Left) Testing error (21) when learning the first 25 “spherical harmonics” eigenvalues as a function of the number of
samples n in different dimension d with Galerkin method. (Middle) Same figure with graph-Laplacian. The error is averaged over
100 runs, with standard deviations shown in solid color, and we pick the best result over three kernels with five different parameters
each with five different values for p (best of 75 for Galerkin), as well as six different scales for weighting in graph-Laplacian (best of
450 for graph-Laplacian). (Right) Computation time for Galerkin method with polynomial kernel of degree three and p = 177.
Experimental setups and reproducibility specifications are detailed in Appendix B.

6.3 Modeling of Self-Supervised Learning

Many representation learning methods can be modeled as es-
timating the first spectral functions of some operators which
are compatible with our framework. In the pre-deep learn-
ing area, the operator L0 in (3) was the operator of choice
to extract “spectral embeddings”. Several self-supervised
learning algorithms can be seen as using variations of this
operator. First, Simard et al. (1991) suggested learning
features that are invariant to small perturbations locally by
working with what we would call today “Jacobian vector
products”. It fell within our framework with

ELTP
(f) = EXEU

[
⟨∇f(x), U⟩2

∣∣∣X] , (19)

where the distribution (U |X = x) specifies the direction of
invariance to be enforced at the point x. When U is uniform
on the sphere, we retrieve L0, although this estimator will
suffer from high variance as detailed in Appendix A.7.

More recently, invariance has been enforced by looking
at finite differences between different data augmentations
ξ, ξ′ ∈ Rd of the same original image x (e.g., Chen et al.,
2020). With our formalism, this would be written

ELSSL(f) = EX
[
Eξ,ξ′

[
∥f(ξ)− f(ξ′)∥2

∣∣∣X]] , (20)

if using the square loss to enforce equality between the
representations f(ξ) and f(ξ′) of the two versions ξ and ξ′

obtained fromX after data augmentation.7 In addition to the
energy term

∑
i EL(fi), self-supervised losses enforce the

features (fi) to differ from one another, either through the
use of contrastive pairs (Chen et al., 2020) that can be under-
stood through the second equation of (17) (HaoChen et al.,

7In the literature, L is often rewritten as the integral opera-
tor associated with the kernel p(ξ, ξ′)/

√
p(ξ)p(ξ′) assuming that

p(ξ) = p(x), with p denoting the different densities against the
Lebesgue measure (assumed to exist) (HaoChen et al., 2021; Lee
et al., 2021; Deng et al., 2022).

2021), or through the use of a “whitening regularizer” (Er-
molov et al., 2021; Zbontar et al., 2021; Bardes et al., 2022)
that assimilates to the first equation of (17) (Balestriero and
LeCun, 2022). In other terms, those approaches could be
modeled through the loss (18) and understood as learning
spectral embeddings. Similarly, vision-language models
with contrastive language-image pre-training (CLIP) could
be modeled with an asymmetric operator defined as per (1).

7 EXPERIMENTS

7.1 Spherical Harmonics

In order to check the validity of our methods, we experiment
in settings where the ground truth is known. To this end, let
us consider the sphere X = Sd−1 in Rd with the uniform
distribution. The operator L0 in (3) identifies to the square
of the orbital angular momentum (Condon and Shortley,
1935; Frye and Efthimiou, 2014), whose eigenfunctions are
known to be the spherical harmonics. Those are polyno-
mials of increasing order. In particular, there are N(d, s)
independent polynomials of degree s, each of them associ-
ated with the eigenvalues λp = µs where, as proven by Frye
and Efthimiou (2014, Theorem 4.4 and Proposition 4.5)

µs = s(s+ d− 2), N(d, s) =
2s+ d− 2

s

(
s+ d− 3

s− 1

)
.

Figure 2 illustrates how our Galerkin approach enables the
learning of spherical harmonics. In order to evaluate the
quality of our method, because the operator norm in L2(ρ)
cannot be computed empirically, we use the surrogate metric

ES(λ̂) ∝
∑
i∈[k]

|λ−1
i − λ̂

−1
i |, ES(0) = 1, (21)

for k = 25, which is bounded by k∥L−1−G∗L−1F∥ when
the retrieved eigenfunctions (f̂i) are orthogonal in L2(ρ) as
a consequence of Weyl’s theorem (Weyl, 1912).

The Galerkin method beats Graph-Based Approaches for Spectral Algorithms

The left of Figure 3 shows how the eigenvalues retrieved
by our method lead to an error ES ≈ cn1/2, since we go
from ES ≈ 2 to ES ≈ 0.2 when going from n = 103 to
n = 105, independently of the dimension (although the
constant c increases as illustrated by the offset of the red
curve). In contrast, as showcased by the middle of Figure 3,
graph Laplacians suffer from the curse of dimensionality.
The right of Figure 3 equally shows how the computation
time scales more or less linearly with n when p is given and
does not depend much on dimension.8 A more thorough
discussion on our experimental setup, on our removal of
confounders, and on the effect of the different parameters at
play is provided in Appendix B.

7.2 Hermite Regression

This paper presents a novel method which might find sev-
eral applications (e.g., Cabannes et al., 2021, for semi-
supervised learning). For example, it opens the path for
Hermite interpolation (Hermite, 1877), where given a set
of n data points (xi), one tries to learn a function f that
interpolates both f(xi) = yi and ∇f(xi) = ti for some
known scalar values (yi) and vectors (ti) in Rd. Hermite
interpolation is usually approached with the least squares
problem,

argmin
f∈F

∑
i∈[n]

{
(f(xi)− yi)2 + ∥∇f(xi)− ti∥2

}
,

with F some search space of functions from Rd to R. De-
pending on F , the argument of the minimum might not
interpolate the data and their derivatives, in which case the
method could be called Hermite regression. Notice that the
loss we are considering can be rewritten as

∥f(x)− y∥2 + ∥∇f(x)− t∥2 = ∥Df − z∥2 ,

where, with (ti) now denoting the coordinates of t ∈ Rd,

Df = (f, ∂1f, . . . ∂df)
⊤, z = (y, t1, . . . , td) ∈ Rd+1.

In other terms, Hermite regression is a instance of the more
generic type of linear regression problems, i.e.,

argmin
f :X→R

E(X,Z)[∥Df(X)− Z∥2] = (D∗D)−1D∗fz,

with fz(x) = E[Z |X = x] ∈ Rd and the adjunction
understood in L2(Rd,Rd, ρ) with the ℓ2-product topology.

Classical approaches based on representer theorems typi-
cally require O(n3d3) flops (Zhou, 2008). In contrast, for
Hermite regression, we have already seen how to build
an approximation of the operator D∗D = L0 + I with

8The left part of the plot actually shows a better scaling then
linear which can be explained by the fact that we are plotting tn ≃
c1np

2 + c2pnd+ c3p
3 with c3, due matrix inversion, expected to

be much bigger than c1 and c2, due to matrix multiplication.

x

f
(x

)

Galerkin regression

Signal

Hermite regression

Plain regression

Figure 4: Comparison between plain regression and “Her-
mite regression” with the Gaussian kernel, n = 1000 and
p = 100 when learning a constant function without noise (a
task known to be hard for the Gaussian kernel).

O(np2 + npd) flops. An approximation of the second term
D∗fz is easier to build, and a naive implementation leads to
O(npd) flops. The resulting algorithms, Algorithm 4 and 5
in Appendix B.4, cut down cost to O(np2 + npd) flops,
matching kernel ridge regression implementations that can
“handle billions of points effectively” (Meanti et al., 2020).
In other terms, we cut down the computational bottleneck
associated with the usage of derivatives in kernel methods.

8 CONCLUSION

This paper introduced an algorithm that can be seen as an
instance of the Galerkin method to compute the spectral
decomposition of a large class of operators. It showcased its
usefulness theoretically through a series of approximation
guarantees. It was put in perspective with graph-Laplacians,
which can be seen as estimating differential operators with
finite differences, and suffer from the curse of dimensional-
ity. Those statistical considerations were validated empir-
ically. We later detailed efficient implementations of our
approach with structured reproducing kernels, which we
have packaged into a Python library to be used off-the-shelf.
Those efficient implementations break down computational
bottlenecks arising when dealing with derivatives in ker-
nel methods based on representer theorems. In particular,
we show how one may perform Hermite regression with
O(np2 + npd) flops, with p chosen by the user, instead of a
naive implementation that would scale in O(n3d3).

Finally, we discussed the core principle beyond our ap-
proach to design losses whose optimization enables learning
the spectral decomposition of linear operators with non-
linear spaces of functions, e.g., with deep neural networks.
Those losses were designed to be convex on the cone of
positive matrices (f(X)f(X)⊤), although when models are
not convex, training dynamics might exhibit robustness and
stability issues, requiring proper hyperparameters tuning
to induce behaviors of interest. We equally extended on
how our setting models recent approaches to representation
learning, at least when losses are approximated with squared
distances, unveiling abstract linear operators beyond them.

Vivien Cabannes, Francis Bach

Acknowledgement. The authors would like to thank Loucas
Pillaud-Vivien and Ricky Chen for fruitful discussions.

References

Dominique Bakry, Ivan Gentil, and Michel Ledoux. Anal-
ysis and Geometry of Markov Diffusion Operators.
Springer, 2014.

Dominique Bakry, Stepan Orevkov, and Marguerite Zani.
Orthogonal polynomials and diffusion operators. Annales
de la Faculté des Sciences de Toulouse, 30(5):985–1073,
2021.

Randall Balestriero and Yann LeCun. Contrastive and non-
contrastive self-supervised learning recover global and
local spectral embedding methods. In NeurIPS, 2022.

Adrien Bardes, Jean Ponce, and Yann LeCun. VICReg:
Variance-invariance-covariance regularization for self-
supervised learning. In ICLR, 2022.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for
dimensionality reduction and data representation. Neural
Computation, 15(6):1373–1396, 2003.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps
and spectral techniques for embedding and clustering. In
NeurIPS, 2004.

Yoshua Bengio, Olivier Delalleau, and Nicolas Le Roux.
Label propagation and quadratic criterion. In Semi-
Supervised Learning. MIT Press, 2006.

Alain Berlinet and Christine Thomas-Agnan. Reproduc-
ing Kernel Hilbert spaces in Probability and Statistics.
Springer Science & Business Media, 2011.

Michael Bianco, Peter Gerstoft, James Traer, Emma
Ozanich, Marie Roch, Sharon Gannot, and Charles-Alban
Deledalle. Machine learning in acoustics: Theory and ap-
plications featured. The Journal of the Acoustical Society
of America, 146(5):3590–3628, 2019.

Olivier Bousquet, Olivier Chapelle, and Matthias Hein. Mea-
sure based regularization. In NeurIPS, 2003.

Sébastien Bubeck. Convex optimization: Algorithms and
complexity. Foundations and Trends in Machine Learn-
ing, 8(3-4):231–357, 2015.

Vivien Cabannes and Stefano Vigogna. How many samples
are needed to leverage smoothness? In NeurIPS, 2023.

Vivien Cabannes, Loucas Pillaud-Vivien, Francis Bach, and
Alessandro Rudi. Overcoming the curse of dimensionality
with Laplacian regularization in semi-supervised learning.
In NeurIPS, 2021.

Vivien Cabannes, Alberto Bietti, and Randall Balestriero.
On minimal variations for unsupervised representation
learning. In ICASSP, 2023a.

Vivien Cabannes, Bobak Kiani, Randall Balestriero, Yann
LeCun, and Alberto Bietti. The SSL interplay: Aug-
mentations, inductive bias, and generalization. In ICML,
2023b.

Françoise Chatelin. Spectral Approximation of Linear Op-
erators. Academic Press, 1983.

Ricky Chen and Yaron Lipman. Riemannian flow matching
on general geometries, 2023. ArXiv preprint 2302.03660.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. In ICLR, 2020.

Fan Chung. Spectral Graph Theory. American Mathemati-
cal Society, 1997.

Ronald Coifman and Stéphane Lafon. Diffusion maps. Ap-
plied and Computational Harmonic Analysis, 21(1):5–30,
2006.

Edward Condon and George Shortley. The Theory of Atomic
Spectra. Cambridge University Press, 1935.

Heinz Otto Cordes. Spectral Theory of Linear Differen-
tial Operators and Comparison Algebras. Cambridge
University Press, 1987.

Zhijie Deng, Jiaxin Shi, Hao Zhang, Peng Cui, Cewu Lu,
and Jun Zhu. Neural eigenfunctions are structured repre-
sentation learners, 2022. ArXiv preprint 2210.12637.

Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Score-
based generative modeling with critically-damped
Langevin diffusion. In ICLR, 2022.

Aleksandr Ermolov, Aliaksandr Siarohin, Enver Sangineto,
and Nicu Sebe. Whitening for self-supervised representa-
tion learning. In ICML, 2021.

Fluid Dynamics. Georgii Ivanovich Petrov (on his 100th
birthday). Fluid Dynamics, 47:289–291, 2012.

Christopher Frye and Costas Efthimiou. Spherical Har-
monics in p Dimensions. World Scientific Publishing
Company, 2014.

Aldo Glielmo, Brooke Husic, Alex Rodriguez, Cecilia
Clementi, Frank Noé, and Alessandro Laio. Unsuper-
vised learning methods for molecular simulation data.
Chemical Reviews, 121(16):9722–9758, 2021.

Gene Golub and Christian Reinsch. Singular value decom-
position and least squares solutions. Numerische Mathe-
matik, 14:403–420, 1970.

Michael Greenacre. Theory and Applications of Correspon-
dence Analysis. Academic Press, 1984.

Ulf Grenander and Michael Miller. Representations of
knowledge in complex systems. Journal of the Royal
Statistical Society. Series B (Methodological), 56(4):549–
603, 1994.

Jihun Ham, Daniel Lee, Sebastian Mika, and Bernhard
Schölkopf. A kernel view of the dimensionality reduction
of manifolds. In ICML, 2004.

The Galerkin method beats Graph-Based Approaches for Spectral Algorithms

Jiequn Han, Jianfeng Lu, and Mo Zhou. Solving high-
dimensional eigenvalue problems using deep neural net-
works: A diffusion Monte Carlo like approach. Journal
of Computational Physics, 423:109792, 2020.

Jeff HaoChen, Colin Wei, Adrien Gaidon, and Tengyu Ma.
Provable guarantees for self-supervised deep learning
with spectral contrastive loss. In NeurIPS, 2021.

Charles Harris, Jarrod Millman, Stéfan van der Walt,
Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric
Wieser, Julian Taylor, Sebastian Berg, Nathaniel Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fer-
nández del Río, Mark Wiebe, Pearu Peterson, Pierre
Gérard-Marchant, Kevin Sheppard, Tyler Reddy, War-
ren Weckesser, Hameer Abbasi, Christoph Gohlke, and
Travis Oliphant. Array programming with NumPy. Na-
ture, 585(7825):357–362, 2020.

Matthias Hein, Jean-Yves Audibert, and Ulrike von
Luxburg. Graph Laplacians and their convergence on
random neighborhood graphs. Journal of Machine Learn-
ing Research, 8:1325–1368, 2007.

Charles Hermite. Sur la formule d’interpolation de La-
grange. (Extrait d’une lettre de M. Hermite à M. Bor-
chardt). Journal für die reine und angewandte Mathe-
matik, 84:70–79, 1877.

Daniel Johnson, Ayoub El Hanchi, and Chris Maddison.
Contrastive learning can find an optimal basis for approx-
imately view-invariant functions. In ICLR, 2023.

Ian Jolliffe. Principal Component Analysis. Springer, 2002.

Vladimir Kondrachov. On certain properties of functions
in the spaces Lp. Doklady Akademii Nauk SSSR, 48(8):
563–565, 1945.

Jason Lee, Qi Lei, Nikunj Saunshi, and Jiacheng Zhuo.
Predicting what you already know helps: Provable self-
supervised learning. In NeurIPS, 2021.

Qiang Liu and Dilin Wang. Stein variational gradient de-
scent: A general purpose Bayesian inference algorithm.
In NeurIPS, 2016.

Giacomo Meanti, Luigi Carratino, Lorenzo Rosasco, and
Alessandro Rudi. Kernel methods through the roof: Han-
dling billions of points efficiently. In NeurIPS, 2020.

Stanislav Minsker. On some extensions of Bernstein’s in-
equality for self-adjoint operators. Statistics & Probabil-
ity Letters, 127:111–119, 2017.

Leon Mirsky. Symmetric gauge functions and unitarily
invariant norms. The Quarterly Journal of Mathematics,
11(1):50–59, 1960.

Loucas Pillaud-Vivien and Francis Bach. Kernelized diffu-
sion maps. In COLT, 2023.

Ali Rahimi and Benjamin Recht. Random features for large-
scale kernel machines. In NeurIPS, 2007.

Alessandro Rudi and Lorenzo Rosasco. Generalization
properties of learning with random features. In NeurIPS,
2017.

Alessandro Rudi, Raffaello Camoriano, and Lorenzo
Rosasco. Less is more: Nyström computational regu-
larization. In NeurIPS, 2015.

Bernhard Schölkopf and Alexander Smola. Learning with
Kernels: Support Vector Machines, Regularization, Opti-
mization, and beyond. MIT Press, 2001.

Bernhard Schölkopf, Ralf Herbrich, and Alex Smola. A
generalized representer theorem. In COLT, 2001.

Erich Schubert, Sibylle Hess, and Katharina Morik. The
relationship of DBSCAN to matrix factorization and spec-
tral clustering. In Lernen, Wissen, Daten, Analysen, 2018.

Mikhail Shubin. Pseudodifferential Operators and Spectral
Theory. Springer, 1987.

Patrice Simard, Bernard Victorri, Yann LeCun, and John
Denker. Tangent prop - a formalism for specifying se-
lected invariances in an adaptive network. In NeurIPS,
1991.

Amit Singer. From graph to manifold laplacian: The con-
vergence rate. Applied and Computational Harmonic
Analysis, 21(1):128–134, 2006.

Josef Singer. On the equivalence of the Galerkin and
Rayleigh-Ritz methods. The Aeronautical Journal, 66
(621):592, 1962.

Joel Tropp. An introduction to matrix concentration inequal-
ities. Foundations and Trends in Machine Learning, 8
(1-2):1–230, 2015.

David van Dijk, Roshan Sharma, Juozas Nainys, Kristina
Yim, Pooja Kathail, Ambrose Carr, Cassandra Burdziak,
Kevin R. Moon, Christine Chaffer, Diwakar Pattabiraman,
Brian Bierie, Linas Mazutis, Guy Wolf, Smita Krish-
naswamy, and Dana Pe’er. Recovering gene interactions
from single-cell data using data diffusion. Cell, 174(3):
716–729, 2018.

Charles van Loan. Generalizing the singular value decom-
position. Journal on Numerical Analysis, 13(1):76–83,
1976.

Hermann Weyl. Das asymptotische verteilungsgesetz der
eigenwerte linearer partieller differentialgleichungen (mit
einer anwendung auf die theorie der hohlraumstrahlung).
Journal on Numerical Analysis, 74(4):441–479, 1912.

Christopher Williams and Matthias Seeger. Using the Nys-
tröm method to speed up kernel machines. In NeurIPS,
2000.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and
Stéphane Deny. Barlow twins: Self-supervised learning
via redundancy reduction. In ICML, 2021.

Vivien Cabannes, Francis Bach

Wei Zhang, Tiejun Li, and Christof Schütte. Solving eigen-
value PDEs of metastable diffusion processes using artifi-
cial neural networks. Journal of Computational Physics,
465:111377, 2022.

Ding-Xuan Zhou. Derivative reproducing properties for ker-
nel methods in learning theory. Journal of Computational
and Applied Mathematics, 220(1):456–463, 2008.

Hao Zhu and Piotr Koniusz. Generalized Laplacian eigen-
maps. In NeurIPS, 2022.

Hao Zhu, Ke Sun, and Piotr Koniusz. Contrastive Laplacian
eigenmaps. In NeurIPS, 2021.

Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. Semi-
supervised learning using Gaussian fields and harmonic
functions. In ICML, 2003.

Checklist
1. For all models and algorithms presented, check if you

include:
(a) A clear description of the mathematical setting,

assumptions, algorithm, and/or model. [Yes]
(b) An analysis of the properties and complexity

(time, space, sample size) of any algorithm. [Yes]
(c) (Optional) Anonymized source code, with spec-

ification of all dependencies, including external
libraries. [Yes]

2. For any theoretical claim, check if you include:
(a) Statements of the full set of assumptions of all

theoretical results. [Yes]
(b) Complete proofs of all theoretical results. [Yes]
(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical results,
check if you include:
(a) The code, data, and instructions needed to repro-

duce the main experimental results (either in the
supplemental material or as a URL). [Yes]

(b) All the training details (e.g., data splits, hyperpa-
rameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or statis-
tics and error bars (e.g., with respect to the ran-
dom seed after running experiments multiple
times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data, mod-
els) or curating/releasing new assets, check if you in-
clude:
(a) Citations of the creator If your work uses existing

assets. [Not Applicable]
(b) The license information of the assets, if applicable.

[Not Applicable]
(c) New assets either in the supplemental material or

as a URL, if applicable. [Not Applicable]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable, e.g.,
personally identifiable information or offensive
content. [Not Applicable]

5. If you used crowdsourcing or conducted research with
human subjects, check if you include:
(a) The full text of instructions given to participants

and screenshots. [Not Applicable]
(b) Descriptions of potential participant risks, with

links to Institutional Review Board (IRB) ap-
provals if applicable. [Not Applicable]

(c) The estimated hourly wage paid to participants
and the total amount spent on participant compen-
sation. [Not Applicable]

The Galerkin method beats Graph-Based Approaches for Spectral Algorithms

Subtleties. In this paper, we have explicitly dissociated between the way to estimate the quadratic form ⟨f,Lf⟩, and the
space of functions to estimate its spectral decomposition. In particular, we have seen how the curse of dimensionality can
be avoided when considering smooth spaces of functions that align well with eigenfunctions. We have also discussed the
possibility to estimate the quadratic from associated with L through subsampling, or through finite differences. This creates
a lot of different potential implementations under the name of graph Laplacians.

Limitations. It should be noted that, although it is likely, it has not been formally proven that the original graph Laplacian
implementations suffer from minimax lower bound in Ω(n1/d) (or alike) over the class of operators with smooth eigen-
functions. Moreover, even if such lower bounds were proved, it does not rule out the highly unlikely possibility that there
exists a single operator for which some graph Laplacian method convergences in Θ(n1/d) while our method does in Θ(n1/2)
(or alike), while for all the other operators it beats our method. Finally, note that one can always define the class of functions
for which a method with tuned hyper parameters "beats the curse of dimensionality". However, for the original graph
Laplacians, these classes of functions are likely to be of low interest regarding operators encountered in real problems.

A Proofs

A.1 Characterization of L0

The characterization of L0 follows from multidimensional integration by part,

⟨f,L0g⟩L2(ρ) =

∫
f(x)(L0g)(x)p(x) dx = E[⟨∇f(X),∇g(X)⟩]

= lim
r→+∞

∑
i∈[d]

∫
∥x∥<r

∂if(x)︸ ︷︷ ︸
u′

p(x)∂ig(x)︸ ︷︷ ︸
v

dx

= lim
r→+∞

∑
i∈[d]

∫
∥x∥=r

f(x)︸︷︷︸
u

p(x)∂ig(x)︸ ︷︷ ︸
v

⟨ei, n⟩dS −
∫
∥x∥<r

f(x)︸︷︷︸
u

∂i(p(x)∂ig(x))︸ ︷︷ ︸
v′

dx

= −
∫
f(x)

1

p(x)

∑
i∈[d]

∂i(p(x)∂ig(x))p(x) dx,

where we used the fact, when p is regular enough, e.g. V is coercive, the surface integral goes to zero when g and f are
smooth enough. As a consequence,

(L0f)(x) = −
1

p(x)

∑
i∈[d]

∂i(p(x)∂if(x)) = −
1

p(x)

∑
i∈[d]

p(x)∂2iif(x) + ∂ip(x)∂if(x)

= −∆f(x)− 1

p(x)
⟨∇p(x),∇f(x)⟩ = −∆f(x)− ⟨∇ log p(x),∇f(x)⟩

= −∆f(x) + ⟨∇V (x),∇f(x)⟩ .

A.2 Operator Details

Consider the mapping F , we have

⟨f, Fα⟩L2(ρ) =
∑
i∈[p]

αi ⟨f, φi⟩L2(ρ) =
〈
(⟨f, φi⟩L2(ρ))i∈[p], α

〉
Rp

= ⟨F ∗f, α⟩Rp .

As a consequence, with the adjunction with respect to L2(ρ) and (Rp, ℓ2)

F ∗ : f ∈ L2(ρ) 7→ (⟨f, φi⟩L2(ρ))i∈[p] ∈ Rp.

We deduce the characterization of Φ given in (6),

F ∗Fα = (⟨Fα,φi⟩L2(ρ))i∈[p] = (
∑
j∈[n]

αj ⟨φj , φi⟩L2(ρ))i∈[p] = (⟨φj , φi⟩L2(ρ))i,j∈[p]α = Ψα.

Similarly for the characterization of L in (5),

F ∗LGα = (⟨LGα,φi⟩L2(ρ))i∈[p] = (EL(Gα,φi))i∈[p] = (
∑
j∈[n]

αjEL(φj , ψi))i∈[p] = (EL(φj , ψi))i,j∈[p]α = Lα.

Vivien Cabannes, Francis Bach

A.3 Generalized Singular Value Decomposition

Let us consider three matrices L,Φ,Ψ in Rp×p. We would like to show that there exists three matrices A,B, S such that

ALB⊤ = S, AΦA⊤ = I, BΨB⊤ = I.

Remark that this generalized SVD is not the two-matrices version of van Loan (1976), but the weighted single-matrix one
that appeared in correspondence analysis (Greenacre, 1984; Jolliffe, 2002).

To find such a decomposition, let us consider the singular value decomposition of

Φ−1/2LΨ−1/2 = XSY ⊤, X⊤X = Y ⊤Y = I.

We have
X⊤Φ−1/2LΨ−1/2Y = S, (Φ−1/2X)⊤Φ(Φ−1/2X) = (Ψ−1/2Y)⊤Ψ(Ψ−1/2Y) = I.

As a consequence, setting A = (Φ−1/2X)⊤ and B = (Ψ−1/2Y) we get

ALB⊤ = S, AΦA⊤ = BΨB⊤ = I.

The first equation can equally be written, using that A−1 = ΦA⊤,

ALB⊤ = S ⇔ LB⊤ = ΦA⊤S ⇔ L = ΦA⊤SBΨ ⇔ AL = SBΨ.

It can equally be expressed in term of columns as

[LB⊤]i = L[B⊤]i = Lβi = [ΦA⊤S]i = Sii[ΦA
⊤]i = SiiΦ[A

⊤]i = SiiΦαi,

which matches the docstring formulation of Scipy for the symmetric case (with αi = βi = v, Sii = w, L = a, Φ = b):

https://github.com/scipy/scipy/blob/v1.11.3/scipy/linalg/_decomp.py#L325.

The advantage of using the GSVD rather than the SVD of the system Ψ−1/2LΦ−1/2 is that it requires less flops (although
the big-O complexity will be the same). The GSVD is roughly equivalent to one matrix inversion instead of three if we
choose to first invert Ψ and Φ before performing one SVD (Golub and Reinsch, 1970).

A.4 Proof of Theorem 1

Lemma 2 (Error decomposition). With the (λ̂i, f̂i, ĝi) obtained with Algorithm 1, when L−1(L̂− L)− I/2 is positive, for
any a ∈ [0, 1],∥∥L−1−(

∑
i∈[p]

λ̂if̂i⊗ĝi)−1
∥∥ ≤ ∥∥(I−ΠG)L−1∥+∥L−1(I−ΠF)∥+γ

∥∥∥Ψ1/2L−a
∥∥∥∥∥∥L−aΦ1/2

∥∥∥∥∥∥L−(1−a)(L̂− L)L−(1−a)
∥∥∥ ,

where γ = 1 + 2(∥L∥
∥∥L−1

∥∥)min(a,1−a).

Proof. We start with∥∥L−1 − (
∑
i∈N

λ̂if̂i ⊗ ĝi)−1
∥∥ ≤ ∥∥L−1 − (ΠFLΠG)−1∥+

∥∥(ΠFLΠG)−1 −
∑
i∈N

λ̂−1
i ĝi ⊗ f̂i

∥∥.
The first term is rewritten with∥∥L−1 − (ΠFLΠG)−1∥ =

∥∥L−1 −ΠGL−1ΠF ∥ =
∥∥(I −ΠG)L−1 +ΠGL−1(I −ΠF)∥

≤
∥∥(I −ΠG)L−1∥+ ∥ΠGL−1(I −ΠF)∥

≤
∥∥(I −ΠG)L−1∥+ ∥L−1(I −ΠF)∥.

The second term is rewritten with∥∥(ΠFLΠG)−1 −
∑
i∈N

λ̂−1
i ĝi ⊗ f̂i

∥∥ =
∥∥G(F ∗LG)−1F ∗ −

∑
i∈N

λ̂−1
i ĝi ⊗ f̂i

∥∥ =
∥∥G(L−1 − L̂−1)F ∗∥∥

=
∥∥Ψ1/2(L−1 − L̂−1)Φ1/2

∥∥.

https://github.com/scipy/scipy/blob/v1.11.3/scipy/linalg/_decomp.py#L325

The Galerkin method beats Graph-Based Approaches for Spectral Algorithms

The difference between the inverse can be worked out as,

L−1 − L̂−1 = L−1(L̂− L)L̂−1 = L−1(L̂− L)(L−1 + L̂−1 − L−1)

= L−1(L̂− L)L−1 − L−1(L̂− L)(L−1 − L̂−1)

= (I + L−1(L̂− L))−1L−1(L̂− L)L−1,

where the last equality is true when the matrix I+L−1(L̂−L) is invertible, which is notably implied by L−1(L̂−L) ⪰ −I .
As a consequence,

Ψ1/2(L−1 − L̂−1)Φ1/2 = Ψ1/2L−1(L̂− L)L−1Φ1/2 +Ψ1/2L−1(L̂− L)(L̂−1 − L−1)Φ1/2

= Ψ1/2L−1(L̂− L)L−1Φ1/2 +Ψ1/2L−1(L̂− L)(I + L−1(L̂− L))−1L−1(L̂− L)L−1Φ1/2.

We can translate this last equality in operator norm: for any a, b ∈ [0, 1]∥∥∥Ψ1/2(L−1 − L̂−1)Φ1/2
∥∥∥ ≤ ∥∥∥Ψ1/2L−a

∥∥∥∥∥∥L−bΦ1/2
∥∥∥

×
(∥∥∥L−(1−a)(L̂− L)L−(1−b)

∥∥∥+ ∥∥∥L−(1−a)(L̂− L)(I + L−1(L̂− L))−1L−1(L̂− L)L−(1−b)
∥∥∥) .

The last term can be bounded either with∥∥∥L−(1−a)(L̂− L)(I + L−1(L̂− L))−1L−1(L̂− L)L−(1−b)
∥∥∥

=
∥∥∥LaL−1(L̂− L)(I + L−1(L̂− L))−1L−aL−(−1−a)(L̂− L)L−(1−b)

∥∥∥
≤ ∥La∥

∥∥L−a∥∥ ∥∥∥L−1(L̂− L)(I + L−1(L̂− L))−1
∥∥∥∥∥∥L−(1−a)(L̂− L)L−(1−b)

∥∥∥ ,
or with, ∥∥∥L−(1−a)(L̂− L)(I + L−1(L̂− L))−1L−1(L̂− L)L−(1−b)

∥∥∥
=
∥∥∥L−(1−a)(L̂− L)L−(1−b)L1−b(I + L−1(L̂− L))−1L−1(L̂− L)L−(1−b)

∥∥∥
≤
∥∥∥L(1−b)

∥∥∥∥∥∥L−(1−b)
∥∥∥ ∥∥∥L−1(L̂− L)(I + L−1(L̂− L))−1

∥∥∥∥∥∥L−(1−a)(L̂− L)L−(1−b)
∥∥∥ .

Using the fact that
∥∥(I +A)−1A

∥∥ ≤ 2 as soon as A+ I/2 ⪰ 0, we deduce that as soon as L−1(L̂− L) ⪰ −I/2,∥∥∥Ψ1/2(L−1 − L̂−1)Φ1/2
∥∥∥ ≤ ∥∥∥Ψ1/2L−a

∥∥∥∥∥∥L−bΦ1/2
∥∥∥∥∥∥L−(1−a)(L̂− L)L−(1−b)

∥∥∥(1 + 2(∥L∥
∥∥L−1

∥∥)min(a,1−b)
)
.

This explains the decomposition in the lemma.

We continue by bounding the empirical versus population difference
∥∥∥L− L̂∥∥∥. To do so, we will use Bernstein concentration

inequality.

Lemma 3. Let A(x) be a p× p matrix bounded by M and B1 = E[A(X)⊤A(X)], B2 = E[A(X)⊤A(X)]. For t ≥ 0,

P(xk)

∥∥∥∥E[A(X)]− 1

n

∑
k∈[n]

A(xk)

∥∥∥∥ ≥ t
 ≤ 4

TrB1 +B2

max ∥Bi∥
exp

(
−3nt2

6max(∥Bi∥) + 2Mt

)
.

For any t ∈ [0,M],

P(xk)

∥∥∥∥E[A(X)]− 1

n

∑
k∈[n]

A(xk)

∥∥∥∥ ≥ t
 ≤ 2p exp

(
−3nt2

8M2

)
.

Proof. This is Theorem 7.3.1 and Theorem 6.1.1 of Tropp (2015).

Vivien Cabannes, Francis Bach

Lemma 4 (Estimation error). With n data points, our algorithm guarantees, for t < p2H2
∞,

P(
∥∥∥L− L̂∥∥∥ > t) ≤ 2p exp(− 3nt2

8p2H2
∞
),

where H∞ = supi,j,xH(φi, ψj , x). In other terms, for any δ ∈ (0, 1) and n > 3 log(2p/δ), with probability 1− δ

∥L− L̂∥ ≤
√

8p2H2
∞

3n
log(2p/δ).

Proof. We would like to use Bernstein inequality with L and L̂, they are both built from the matrix

A(x)ij = H(φi, ψj , x).

Without specific structure on H , we proceed with the following bound

∥A(x)∥2op ≤ ∥A(x)∥
2
2 ≤

∑
i,j

H(φi, ψj , x)
2 ≤ p2 supH(φi, ψj , x)

2 =: p2H2
∞.

As a consequence, we have the following bound

P(
∥∥∥L− L̂∥∥∥ > t) ≤ 2p exp(− 3nt2

8M2
), with M = p2H2

∞.

To parse the bound more easily, let us invert t, we set

δ = 2p exp(− 3nt2

8M2
), t =

√
8M2

3n
log(2p/δ).

When n is big enough to ensure t < M , i.e., n > 3 log(2p/δ), we have that with probability 1− δ

∥∥∥L− L̂∥∥∥ ≤√8M2

3n
log(2p/δ).

Replacing M by pH∞ ends the proof.

The proof of the theorem follows directly from the previous lemmas.

A.5 Proof of Theorem 2

In order to prove Theorem 2, we need to specify the values taken by ∥L(I −ΠF)∥ and ∥(I −ΠG)L∥. In all the following,
it is useful to introduce

Σ̂ = p−1
∑
i∈[p]

φiφ
∗
i , and Ξ̂ = p−1

∑
i∈[p]

ψiψ
∗
i . (22)

Lemma 5. Let A be some operator in L2(ρ). Assume that the (φi)i∈[p] were chosen independently at random according
to the same distribution µ ∈ ∆L2(ρ), with Σ = Eφ∼µ[φφ∗]. Assume that there exists a ∈ [0, 1] and M > 0 such that∥∥Σ−a/2φ

∥∥
L2(ρ)

≤M1/2 independently of φ. Let Π∗ denotes a κ-dimensional projection on an eigenspace of Σ and Σ∗ the
associated restriction Σ∗ = Π∗Σ. For any δ ∈ (0, 1) for any p > 3 log(2κ/δ), it holds with probability 1− δ,

∥(I −ΠF)A∥ ≤ ∥(I −Π∗)A∥+
∥∥∥Σ−(1−a)

∗ A
∥∥∥
√

8M2

3p
log(2κ/δ).

Here, A−1 denotes the pseudo-inverse of A.

Proof. For simplicity, we denote Π = ΠF in the proof. We split the error with

∥(I −Π)A∥ = ∥(I −Π)(I −Π∗)A+ (I −Π)Π∗A∥ ≤ ∥(I −Π∗)A∥+ ∥(I −Π)Π∗A∥ .

The Galerkin method beats Graph-Based Approaches for Spectral Algorithms

The first term depends on assumptions on the problem, while the second term depends on the empirical approximation of
Π∗ by Π. Using the fact that, with A† denoting the pseudo-inverse,

A† −B† = A†(B −A)B† − (I −ΠA)B
† +A†(I −ΠB),

we have

Π∗ −Π = Σ†
∗Σ− Σ̂†Σ̂ = Σ†

∗(Σ− Σ̂) + (Σ†
∗ − Σ̂†)Σ̂

= Σ†
∗(Σ− Σ̂)− Σ†

∗(Σ− Σ̂)Σ̂†Σ̂− (I −Π∗)Σ̂
†Σ̂ + Σ†

∗(I −Π)Σ̂.

= Σ†
∗(Σ− Σ̂)(I −Π)− (I −Π∗)Π = Σ†

∗(Σ− Σ̂)(I −Π) + (Π∗ −Π)Π.

As a consequence

A∗Π∗(I −Π) = A∗(Π∗ −Π)(I −Π) = A∗Σ†
∗(Σ− Σ̂)(I −Π). = A∗Σ†

∗Π∗(Σ− Σ̂)(I −Π),

which we translate in operator norm with

∥(I −Π)Π∗A∥ ≤
∥∥∥Σ−(1−a)

∗ A
∥∥∥∥∥∥Π∗Σ

−a(Σ− Σ̂)
∥∥∥ .

We now need to bound the difference between Σ and Σ̂. This is a simple application of Bernstein with Π∗Σ
−aφ(X)φ(X)⊤.

In particular, if
∥∥Σ−a/2φ

∥∥
L2(ρ)

≤M1/2, we have for t ∈ [0,M],

P(
∥∥∥Π∗Σ

−a(Σ− Σ̂)
∥∥∥ > t) ≤ 2κ exp(− 3pt2

8M2
).

Once again, let us invert t, we set

δ = 2κ exp(− 3pt2

8M2
), t =

√
8M2

3p
log(2κ/δ).

When p is big enough to ensure t < M , in particular, when p > 3 log(2κ/δ), we have that with probability 1− δ

∥∥∥Π∗Σ
−a(Σ− Σ̂)

∥∥∥ ≤
√

8M2

3p
log(2κ/δ).

This ends the proof of the lemma.

The proof of the theorem follows directly from the previous lemma. In the setting of Theorem 2, it is interesting to specify
the value of

∥∥L−aΨ1/2
∥∥.

Lemma 6. Let ∥ψ∥L2(ρ) ≤ M1/2 and
∥∥Ξ−1/2ψ

∥∥
L2(ρ)

≤ M∞ with M∞ > 1/2. For any a ∈ [0, 1] if L is symmetric, or
for a = 1 and any L, for any δ ∈ (0, 1) and κ ∈ N, when

p ≥ max(11M2
∞ log(2κ/δ), 5M2 log(

2Mµκ+1

∥Ξ∥
)),

it holds with probability at least 1− δ,∥∥∥L−aΨ1/2
∥∥∥ ≤ 2aM (1−a)/2

(∥∥∥Ξ−1/2L−1
∥∥∥+ µ

−1/2
κ+1

)a
,

where µκ is the κ-th eigenvalue of Ξ.

Proof. Note that there exists two isometric mappings U : L2(ρ)→ Rp and V : L2(ρ)→ Rp such that

F = U Σ̂1/2, and G = V Ξ̂1/2,

and UU∗ = V V ∗ = I . As a consequence

L−aΨ1/2 = (F ∗LG)−a(F ∗F)1/2 = V Ξ̂−a/2L−aΣ̂−a/2Σ̂1/2U∗,

Vivien Cabannes, Francis Bach

which we translate in operator norm with∥∥∥L−aΨ1/2
∥∥∥ =

∥∥∥Ξ̂−a/2L−aΣ̂(1−a)/2
∥∥∥ ≤ ∥∥∥Ξ̂−1/2L−1

∥∥∥a ∥∥∥Σ̂∥∥∥(1−a)/2 ,
where we have used the fact that ∥AaBa∥ ≤ ∥AB∥a is A and B are positive (Cordes, 1987). For the last term, we know that∥∥∥Σ̂∥∥∥ ≤ Tr(Σ̂) = n−1

∑
i∈[n]

∥φi∥2 ≤M.

For the first term, considering Π∗ a projection on the top κ eigen functions of Σ, we have∥∥∥Ξ̂−1/2L−1
∥∥∥ ≤ ∥∥∥Ξ̂−1/2Π∗L−1

∥∥∥+ ∥∥∥Ξ̂−1/2(I −Π∗)L−1
∥∥∥ ≤

∥∥∥Ξ̂−1/2Π∗L−1
∥∥∥+ ∥∥∥Ξ̂−1/2(I −Π∗)

∥∥∥ ∥∥L−1
∥∥ .

The first part will concentrate with∥∥∥Ξ̂−1/2Π∗L−1
∥∥∥2 =

∥∥∥L−1Π∗Ξ̂
−1Π∗L−1

∥∥∥ =
∥∥∥L−1Ξ−1/2Ξ1/2Π∗Ξ̂

−1Π∗Ξ
1/2Ξ−1/2L−1

∥∥∥
≤
∥∥∥L−1Ξ−1/2

∥∥∥2 ∥∥∥Π∗Ξ
1/2Ξ̂−1Ξ1/2Π∗

∥∥∥ .
We have already seen how to treat the last term

Ξ1/2Ξ̂−1Ξ1/2 = I + Ξ1/2(Ξ̂−1 − Ξ−1)Ξ1/2 = I + Ξ−1/2(Ξ− Ξ̂)Ξ−1/2Ξ1/2Ξ̂−1Ξ1/2

= (I − Ξ−1/2(Ξ− Ξ̂)Ξ−1/2)−1.

Using Bernstein inequality, we deduce that, if M∞ > 1/2,

P(
∥∥∥Π∗Ξ

−1/2(Ξ− Ξ̂)Ξ−1/2
∥∥∥ > 1/2) ≤ 2κ exp(− 3p

32M2
∞
).

Let us invert the relation, we want

δ ≤ 2κ exp(− 3p

32M2
∞
), p ≥ 32M2

∞
3

log(2κ/δ).

For the second part, we proceed with∥∥∥Ξ̂−1/2(I −Π∗)
∥∥∥2 =

∥∥∥(I −Π∗)Ξ̂
−1(I −Π∗)

∥∥∥ ≤ ∥∥(I −Π∗)Ξ
−1(I −Π∗)

∥∥+ ∥∥∥(I −Π∗)(Ξ̂
−1 − Ξ−1(I −Π∗)

∥∥∥
≤
∥∥∥(I −Π∗)Ξ

−1/2
∥∥∥2 + ∥∥(I −Π∗)Ξ

−1
∥∥∥∥∥Ξ− Ξ̂

∥∥∥∥∥Ξ−1(I −Π∗)
∥∥ ,

which can be rewritten as∥∥∥Ξ̂−1/2(I −Π∗)
∥∥∥2 ≤ ∥∥∥(I −Π∗)Ξ

−1/2
∥∥∥2(1 + ∥∥∥Ξ− Ξ̂

∥∥∥∥∥∥Ξ−1/2(I −Π∗)
∥∥∥2) ≤ µ−1

κ+1

1− µ−1
κ+1

∥∥∥Ξ− Ξ̂
∥∥∥ .

Using Bernstein inequality in Hilbert space (Minsker, 2017), we have

P(
∥∥∥Ξ− Ξ̂

∥∥∥ > t) ≤ 2
TrΞ

∥Ξ∥
exp(− 3pt2

8M2
) ≤ 2M

∥Ξ∥
exp(− 3pt2

8M2
).

In particular, when
2M

∥Ξ∥
exp(− 27p

128M2
) ≤ µ−1

κ+1 ⇔ 128M2

27
log(

2Mµκ+1

∥Ξ∥
) ≤ p

we have that
∥∥∥Ξ̂−1/2(I −Π∗)

∥∥∥ ≤ 2µ
−1/2
κ+1 . Collecting the different pieces proves the lemma.

The Galerkin method beats Graph-Based Approaches for Spectral Algorithms

A.6 Proof of Theorem 3

To prove Theorem 3, we start by reworking the estimation error between L̂ and L.
Lemma 7 (Estimation error for L0). When L = L0 and φi = ψi = kxi

with kx(y) = ((1 + x⊤y)/(1 +M))s for M an
almost sure upper bound on ∥X∥, with n data points, our algorithm guarantees, for t < s2,

P(
∥∥∥L− L̂∥∥∥ > t) ≤ 2κ exp(−3nt2

8s2
), with κ =

(
d+ s

s

)
.

As a consequence, for any δ ∈ (0, 1) and n > 3 log(2κ/δ), it holds with probability 1− δ∥∥L−1
∥∥

1− ∥L−1∥ ∥L− L̂∥
∥Φ∥−1/2∥Ψ∥−1/2∥L−1∥∥L− L̂∥ ≤ 2

∥∥L−1
∥∥2√8s2

3n
log(2κ/δ).

Proof. The proof follows the one of Lemma 3 with

A(x)ij = H(φi, ψj , x).

Without specific structure on H , we proceeded with ∥A(x)∥ ≤ pH∞. In the specific case of L0, with F = G = H, we get

∥A(x)∥ = sup
∥c∥=1

c⊤A(x)c = sup
∥c∥=1

∑
ij

ci
〈
∇kxi

(x),∇kxj
(x)
〉
cj

= sup
∥c∥=1

∥
∑
i

ci∇kxi
(x)∥2 ≤ sup

∥c∥=1

∑
i

c2i ∥∇kxi
(x)∥2 ≤ sup ∥∇kx(y)∥2 .

WhenH is defined from the kernel

kx(y) =

(
1 + x⊤y

1 +M

)s
≤ 1,

this becomes

∥A(x)∥ ≤ sup ∥∇kx(y)∥2 = sup s2
(
1 + x⊤y

1 +M

)2(s−1)

∥x/(1 +M)∥2 ≤ s2.

Similarly, this choice of k guarantees ∥∥∥Φ1/2
∥∥∥2 = ∥Φ∥ ≤ sup ∥kx(y)∥ ≤ 1.

As a consequence, we have the following bound

P(
∥∥∥L− L̂∥∥∥ > t) ≤ 2κ exp(−3nt2

8s4
),

where we have replaced p by κ since we rank(F) ≤ κ. The end of the proof is similar to the proof of Lemma 3.

We continue by reworking the approximation error.
Lemma 8. When Lp =

∑
i∈[p] λifig

∗
i is diagonalized by all the κ =

(
d+s
d

)
polynomials of degree less or equal than s,

∥x∥ < M almost surely and kx(y) = ((1 + x⊤y)/(1 +M))s, then if the φi are almost surely linearly independent,∥∥(I −ΠG)L−1
∥∥ ≤ λ−1

κ+1, and
∥∥ΠGL−1(I −ΠF)

∥∥ = 0.

Proof. In this case, the φi’s span all the polynomials of degree less or equal than s, hence (I −ΠF)Lp = 0.

We continue by working out the terms
∥∥Φ1/2L−1

∥∥,
∥∥L−1Ψ

∥∥ and
∥∥L−1

∥∥ appearing in Theorem 1.

Lemma 9. When φi = ψi and
∥∥Σ−1/2φ

∥∥
L2(ρ)

≤M∞ with M∞ > 1/2, and κ = rank(Ξ). For any δ ∈ (0, 1)

p ≥ 11M2
∞ log(2κ/δ),

it holds with probability at least 1− δ,

max(
∥∥∥Ψ1/2L−1

∥∥∥ ,∥∥∥L−1Φ1/2
∥∥∥) ≤ 2

∥∥∥Σ−1/2L−1
∥∥∥ , and

∥∥L−1
∥∥ ≤ 4

∥∥∥Σ−1/2L−1Σ−1/2
∥∥∥ .

Vivien Cabannes, Francis Bach

Proof. As detailed in the proof of Lemma 6,∥∥∥L−1Ψ1/2
∥∥∥2 =

∥∥∥Ξ̂−1/2L−1
∥∥∥2 =

∥∥∥L−1Ξ̂−1L−1
∥∥∥ =

∥∥∥L−1Ξ−1/2Ξ1/2Ξ̂−1Ξ1/2Ξ−1/2L−1
∥∥∥

≤
∥∥∥L−1Ξ−1/2

∥∥∥2 ∥∥∥Ξ1/2Ξ̂−1Ξ1/2
∥∥∥ =

∥∥∥L−1Ξ−1/2
∥∥∥2 ∥∥∥(I − Ξ−1/2(Ξ− Ξ̂)Ξ−1/2)−1

∥∥∥ .
Using Bernstein inequality, we deduce that, if M∞ > 1/2,

P(
∥∥∥Ξ−1/2(Ξ− Ξ̂)Ξ−1/2

∥∥∥ > 1/2) ≤ 2κ exp(− 3p

32M2
∞
).

We invert the relation with

δ ≤ 2κ exp(− 3p

32M2
∞
), p ≥ 32M2

∞
3

log(2κ/δ).

Similarly, under the same event∥∥L−1
∥∥ =

∥∥∥Σ̂−1/2L−1Σ̂−1/2
∥∥∥ ≤ ∥∥∥Σ̂−1/2Σ1/2

∥∥∥2 ∥∥∥Σ−1/2L−1Σ−1/2
∥∥∥ ≤ 4

∥∥∥Σ−1/2L−1Σ−1/2
∥∥∥ .

This explains the results of the lemma.

Proof of Theorem 3. Combining the previous lemmas, we have refinement of Theorems 1 and 2 that when

n ≥ 6max(s2
∥∥L−1

∥∥−2
, 1) log(2κ/δ), p ≥ 11 ess sup

φ

〈
φ,Σ−1φ

〉
L2(ρ)

log(2κ/δ),

it holds with probability 1− 2δ,

∥∥L−1 −GL̂−1F ∗∥∥ ≤ λ−1
κ+1 + 12∥Σ−1/2L−1∥2

√
8s2

3n
log(

2p

δ
).

To end the proof of the theorem, notice that when L−1 is compact, the λ−1
i are summable hence they are bounded by ci−τ

for some constant c and τ ≥ 1. Moreover, choosing

κ =

(
s+ d

s

)
=

(
d+ s

d

)
=
∏
i∈[s]

(d+ s− i+ 1)

s− i+ 1)
,

because for all k ∈ [s],
d+ s

s
≤ d+ k

k
≤ d,

leads to
(s/d)d ≤ (1 + s/d)d ≤ max((1 + d/s)s, (1 + s/d)d) ≤ p ≤ min(ds, sd) ≤ sd.

Hence our bound becomes

∥∥L−1 −GL̂−1F ∗∥∥ ≤ λ−1
κ+1 + 12∥Σ−1/2L−1∥2

√
8s2

3n
log(

2p

δ
) ≤ cdτds−τd +

20s
∥∥Σ−1/2L−1

∥∥2
n1/2

√
log
(p
δ

)
.

Choosing s = n1/2(τd+1) leads to a bound O(n−τd/2(τd+1) log(n)), which holds as long as

n ≥ 6max(n1/(τd+1)
∥∥L−2

∥∥ , 1)(d

2(τd+ 1)
log(n) + log(2/δ)

)
,

and using that
∥∥K−1φ

∥∥ ≤ µ−1
κ+1 ∥φ∥,

n ≥ p ≥ 11cnτd/2(τd+1)M

(
d

2(τd+ 1)
log(n) + log(2/δ)

)
.

Both conditions can hold true for p = n1/2 and n > N for some N ∈ N. The theorem in the main text considers the worst
case where τ = 1.

The Galerkin method beats Graph-Based Approaches for Spectral Algorithms

Graph-Laplacian Kernel-Laplacian
Time complexity n2d+ p2n pnd+ p2n

Memory complexity n2 pn

Table 1: Computational complexity of graph-Laplacian and kernel-Laplacian. Not only kernel-Laplacian does not suffer from
the curse of dimension, which contrasts with graph-Laplacian, but it does so without requiring extra computations (recall that p ≤ n
is taken as a small integer).

A.7 Variance of a gradient estimate through Jacobian vector products

Consider the estimator
∥∇f(X)∥2 = EU [c ⟨∇f(X), U⟩2],

for U uniform on the sphere. The proportionality constant is given by

c = EU [⟨e1, U⟩2]−1 = EU [U2
1]

−1 =

∫ 1

0

u21

√
1− u21 Vol(Sd−2) du1 =

π

16
Vol(Sd−2),

which grows exponentially fast with respect to the input dimension d. The estimator G = c ⟨∇f(X), U⟩2 has a second
moment, which assuming without restriction that ∥∇f(X)∥2 = 1 is equal to

E[G2] = c2EU [⟨e1, U⟩4]−1 ≥ c2

16
P(|U1| > 1/2) =

c2

8Vol(Sd−1)

∫ 1

1/2

√
1− u21 Vol(Sd−2) du1

=
c2 Vol(Sd−2)

8Vol(Sd−1)

(
π

6
−
√
3

8

)
,

while its mean is equal to one, hence its variance will grow exponentially fast as the dimension d increases. This explains the
usefulness to restrict the loss (19) to a few tangent directions, allowing to lower the variance of stochastic gradient descent
and to accelerate its convergence (Bubeck, 2015).

B Additional Experiments and Details

B.1 Graph-Laplacian Implementation

Many studies of graph-Laplacian are set in transductive settings, restricting X to a finite number of points (Belkin and
Niyogi, 2003; Zhu et al., 2003). In this study, we consider graph-Laplacian as a proxy to estimate EL empirically as per (16).
As such, we can use Galerkin method with graph-Laplacian, only solving a eigenvalues problem associated with a p× p
matrix, instead of the n × n Laplacian matrix, hence cutting cost from O(n3) flops to O(p3). A additional cost of the
method lies in the building of the graph-Laplacian matrix, which requires O(n2p) flops, leading to a method scaling in
O(n2p+ p3 + np2) (the last O(np2) being due to the building of Φ). Beside being statistically inferior and computationally
more expensive, note that graph-Laplacian also introduces an extra hyperparameter, which is the function (and its scale) to
compute the weight matrix W .

Another drawback of graph-Laplacian is that its convergence to the real Laplacian is known up to a constant (Hein et al.,
2007), which rescales all eigenvalues. To deal with this scaling constant, we assume C =

∑
i∈[k] λi known for λi the true

eigenvalues of L and k = 25 used to evaluate eigenvalues retrieval as per Figure 3, and we scale the graph Laplacian to
ensure

∑
i∈[k] λ̂i = C. This can only improve the performance of graph-Laplacian, and only reinforce our findings on the

superiority of Galerkin method, for which we do not employ this trick.

B.2 Additional Figures

To support empirically the claim made in Section 6.2, Figure 5 illustrates the learning of spherical harmonics with a neural
network. Finally, Figure 6 shows Hermite polynomials in two dimensions, corresponding to the eigenfunctions of L0 with
ρ = N (0, I), which could have served as a different basis to study our method. However, in high-dimension, N (0, I) tends
to concentrate on the sphere and we do not expect many different behaviors in comparison to our study with spherical
harmonics.

Vivien Cabannes, Francis Bach

Constant 1st kind 2nd kind 2nd kind 3rd kind 3rd kind

Figure 5: Cherry-picked learned spherical harmonics with a neural network. The network is a multi-layer perceptron with 200,
200, 2000, 200 hidden neurons in the four hidden layers, and m = 16 outputs optimized over 5000 batches of size 1000 with the
contrastive version of the orthogonal regularizer. The optimizer is stochastic gradient descent with momentum (m = 1/2) initialized
with a learning rate γ = 10−3, with a scheduler to decrease the learning rate after one third and two third of the learning by a factor
1/3. Principal component analysis was used to disentangle the learned representation and retrieve the different learned eigenspaces
and eigenfunctions.

Figure 6: (Left) Level lines of the learned hermite polynomials in 2d thanks to the operator L with X = R2 and ρ = N (0, I), with
polynomial kernel of degree 3. Compared to the ground truth on the right, notice how the learned polynomials are “random” basis of
the different eigenspace of L. (Right) Canonical Hermite polynomials, acting as a ground truth for the left part. The title indicates
the eigenspace number that the eigenfunctions belong to. Any orthogonal transformation U(fi) for (fi) the k eigenfunctions of the
k-th eigenspace, and U an orthogonal matrix in Rk×k is a valid basis of eigenfunctions of this eigenspace, which is what is found in
practice.

The Galerkin method beats Graph-Based Approaches for Spectral Algorithms

d=3 d=5 d=11 d=19

102 103 104

number of samples

102

103

B
es

t
p

Galerkin

102 103 104

number of samples

102

103

Graph Laplacian

102 103 104

number of samples

10−3

10−1

101

C
om

p
u

ta
ti

on
ti

m
e Galerkin

102 103 104

number of samples

10−3

10−1

101
Graph Laplacian

Figure 7: (Left) Value of p achieving the best results reported on Figure 3. (Right) Computation time corresponding to the best
results.

B.3 Empirical Observations

While Figure 3 illustrates our take-home messages, i.e., “Galerkin beats graph-Laplacian, and its does not cost much in
terms of implementation (scaling linearly with respect to n and being almost indifferent to the dimension)”, much more
could be said when digging into the one hundred runs with all the different hyperparameters.

Parameter grid. We consider the following values for the different experimental setups with spherical harmonics.

• n: ten values equally spaced in log space between 100 and 10000.
• d ∈ {3, 5, 7, . . . , 19}
• p five values equally spaced in log space between 30 and 1000.

We try three kernels for the Galerkin functions, together with five hyperparameters for each.

• The polynomial kernel kx(y) = (1 + x⊤y)s with hyperparameter s ∈ {2, 3, 4, 5, 6}.
• The exponential kernel kx(y) = exp(−∥x− y∥ /σ) with hyperparameters σ ∈ {.1, 1, 10, 100, 1000}.
• The Gaussian kernel kx(y) = exp(−∥x− y∥2 /2σ2) with hyperparameter σ ∈ {.01, .1, 1, 10, 100}

For the Graph-Laplacian, we equally consider six different options for the weighting scheme in (16).

• Either wij = kxi
(xj) with the same kernel as the Galerkin functions.

• Or wij = exp(−∥xi − xj)∥2 /2σ2) with hyperparameters σ ∈ {.01, .1, 1, 10, 100}.

The result of Figure 3 were taken as the best over both p and each kernel and hyperparameters, leading to the best pick out
of 5× 3× 5 = 75 options for Galerkin, and out of 6× 75 = 450 for graph-Laplacian. We ran one hundred trials for each
configuration, and used Slurm to parallelize runs on a cluster of CPUs, together with the SeedSequence generator of
Numpy to ensure a minimum correlation between pseudo-random runs (Harris et al., 2020).

Best results. First of all, we start by looking at the best results. The left of Figure 7 shows that the best values of p are
not always the biggest ones. This is understandable, a bigger number of “Galerkin” functions leads to a bigger risk of
overfitting, in particular in high-dimensions, which explains why the red curves are below the other ones. The right of
Figure 7 showcases the corresponding computation time, they are highly correlated with the value of p, and they are of
similar order for graph-Laplacian and the Galerkin method. Finally, Figure 8 makes sure that the best hyperparameter values
were not obtained for extreme values of our parameter grid, removing confounders due to bad hyperparameters calibration.

Effect of the different parameters at play. Figure 9 explores the effect of the dimension on our estimator quality. Figure 10
explores the effect of the kernel used for the Galerkin method. We notice that although the eigenfunctions are polynomials,
the polynomial kernel does not necessarily lead to the best result, this is due to the fact that there are many polynomials
in dimension d, and the polynomial kernel does favor the learning of simple polynomials over more complex ones. We
again notice the regularizing effect of not choosing the biggest p possible (e.g., choosing p = 1000 as soon as n ≥ 1291
according to our grid values).

Vivien Cabannes, Francis Bach

d=3 d=5 d=11 d=19

102 103 104

number of samples

100

101

102

B
es

t
p

ar
am

et
er

Galerkin

102 103 104

number of samples

100

101

102

Graph Laplacian

102 103 104

number of samples

10−1

101

B
es

t
sc

al
e

Graph Laplacian

Figure 8: (Left) Best parameters for Galerkin functions, they are strictly inside our grid of parameters (for graph-Laplacian, the best
results are obtained with the exponential kernel for which our grid stops at 103). (Right) Best parameters for the weights wij in (16).
Once again, the best values are obtained strictly inside the grid.

3 5 11 19

Input dimension d

10−1

E
rr

or

Galerkin

3 5 11 19

Input dimension d

10−1

Graph Laplacian

n=100

n=464

n=2154

n=10000

ES(1)

Figure 9: Effect of the dimension. Scaling of the error (21) as a function of the input dimension d for the best set of hyperparameters
for both the Galerkin method and graph-Laplacian. Note that the problem changes as the dimension augments, and that we are
rescaling the error so that ES(0) = 1 regardless of the dimension. The graph-Laplacian seems to reach a default error as d increases
which should be put in comparison with the error reached by λ̂i = 1/

∑
i∈[k] λi plotted in black (recall that we artificially rescaled

the graph-Laplacian to ensure
∑

i∈[k] λ̂i =
∑

i∈[k] λi).

The Galerkin method beats Graph-Based Approaches for Spectral Algorithms

d=3 d=5 d=11 d=19

102 103 104

number of samples

10−1

100

E
rr

or

Exponential

102 103 104

number of samples

10−1

100
Gaussian

102 103 104

number of samples

10−1

100
Polynomial

102 103 104

number of samples

102

103

B
es

t
p

Exponential

102 103 104

number of samples

102

103

Gaussian

102 103 104

number of samples

102

103

Polynomial

102 103 104

number of samples

100

101

102

B
es

t
p

ar
am

et
er

Exponential

102 103 104

number of samples

100

101

Gaussian

102 103 104

number of samples

2× 100

3× 100

4× 100

6× 100

Polynomial

Figure 10: Influence on the kernel for Galerkin method.

Vivien Cabannes, Francis Bach

B.4 Hermite Regression

Consider the Hermite interpolation problem, where for (xi)i∈[n] n data point in X = Rd, (vi) n scalar values, and (ti) n

vectors in Rd, we try to solve
argmin
f∈F

∑
k∈[n]

∥f(xk)− vk∥2 + ∥∇f(xk)− tk∥2 ,

for some space of functions F . In our case, we consider

F = Span {φi | i ∈ [p]} ,

which will not ensure interpolation when p < n(d+ 1), hence our denomination of “Hermite regression”. With α ∈ Rp and
f = Fα =

∑
i∈[n] αiφi, this leads to

argmin
α∈Rp

∑
k∈[n]

∥∥∑
i∈[p]

αiφi(xk)− vk
∥∥2 + ∥∥∑

i∈[p]

αi∇φi(xk)− tk
∥∥2

= argmin
α∈Rp

∑
k∈[n]

∑
i,j∈[p]

αiαj

φi(xk)φj(xk) + ∑
l∈[d]

∂lφi(xk)∂lφj(xk)

− 2
∑
i∈[p]

αi

φi(xk)vk + ∑
l∈[d]

∂lφi(xk)tkl

= argmin

α∈Rp

α⊤Aα− 2b⊤α = A−1b,

where A ∈ Rp×p and b ∈ Rp are defined as

Aij =
∑
k∈[n]

φi(xk)φj(xk) + ⟨∇φi(xk),∇φj(xk)⟩ , bi =
∑
k∈[n]

φi(xk)vk + ⟨∇φi(xk), tk⟩ .

A naive implementation leads to O(np2d+npd) flops and O(p2) bits to build those matrices, and O(p3) to solve α = A−1b.
In the case where φi = kxi

with k a dot-product or an invariant kernel, Proposition 1 shows how to reduce the time
complexity to O(np2 + npd) flops at the expense of a memory complexity in O(p2 + np) bits. Note that similarly to
Proposition 1 the term b can also be written in a simple form for structured kernels, although this does not reduce the overall
complexity of building b.

Proposition 10. Assume that X is endowed with a scalar product. Given a kernel kx(y) = q(∥x− y∥) defined from
q : R→ R, for x, y, t ∈ X , it holds

⟨∇ky(x), t⟩ =
q′(∥x− y∥)
∥x− y∥

(x− y)⊤t. (23)

Similarly for dot-product kernel kx(y) = q(x⊤y),

⟨∇ky(x), t⟩ = q′(x⊤y) y⊤t. (24)

Proof. Once again, the proof follows from the application of the chain rule.

Propositions 1 and 10 explain our Hermite regression algorithms with dot-product kernel, Algorithm 4, and translation-
invariant kernel, Algorithm 5.

The Galerkin method beats Graph-Based Approaches for Spectral Algorithms

Algorithm 4: Hermite regression with dot-product kernel

Data: Data (xi) ∈ Rn×p, V = (vi) ∈ Rn, (ti) ∈ Rn×p, kernel kx(y) = q(x⊤y).
Compute X = (x⊤i xj) ∈ Rp×n with p ≤ n;
Compute Ψ = q(X)q(X)⊤ ∈ Rp×p elementwise;
Compute L = (q′(X)q′(X)⊤);
Update Lij ← XijLij for all i, j ∈ [p];
Set A = L+Ψ;
Compute T = (x⊤i tj) ∈ Rp×n;
Update T ← q′(X)⊙ T with elementwise (Hadamard) product;
Compute b = q(X)V + T1n ∈ Rp where 1n = (1)i∈[n] ∈ Rn;
Solve α = A−1b;
Set f̂(x) :=

∑
i∈[p] αikxi(x).

Result: Hermite estimator f̂

Algorithm 5: Hermite regression with distance kernel
Data: Data (xi) ∈ Rn×p, V = (vi) ∈ Rn, (ti) ∈ Rn×p, kernel kx(y) = q(∥x− y∥).
Compute X = (x⊤i xj),∈ Rp×n, D = (x⊤i xi) ∈ Rn;
Deduce N = (∥xi − xj∥) ∈ Rp×n and T = q′(N)/N ;
Initialize L = 0 ∈ Rp×p; Ψ = q(N)q(N)⊤ ∈ Rp×p;
for k ∈ [n] do

Set γ(k)ij := (Dk −Xik −Xjk +Xij);

Update Lij ← Lij + γ
(k)
ij TikTjk;

Set A = L+Ψ;
Compute T = −(x⊤i tj) ∈ Rp×n;
Update Tij ← Tij + x⊤j tj for all i ∈ [p], j ∈ [n];
Update T ← T ⊙ (q′(N)/N) with elementwise (Hadamard) product;
Compute b = q(N)V + T1n ∈ Rp where 1n = (1)i∈[n] ∈ Rn;
Solve α = A−1b;
Set f̂(x) :=

∑
i∈[p] αikxi

(x).

Result: Hermite estimator f̂

	INTRODUCTION
	SETUP
	GALERKIN METHOD
	Algorithm
	Statistical Efficiency

	DIFFERENTIAL OPERATORS, INVARIANT KERNELS
	THE LAPLACIAN EXAMPLE
	RELATED APPROACHES
	Graph Laplacians
	Methods based on Loss Optimization
	Modeling of Self-Supervised Learning

	EXPERIMENTS
	Spherical Harmonics
	Hermite Regression

	CONCLUSION
	Proofs
	Characterization of the Laplacian
	Operator Details
	Generalized Singular Value Decomposition
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Variance of a gradient estimate through Jacobian vector products

	Additional Experiments and Details
	Graph-Laplacian Implementation
	Additional Figures
	Empirical Observations
	Hermite Regression

