
Multi-Agent Bandit Learning through
Heterogeneous Action Erasure Channels

Osama Hanna∗ Merve Karakas∗ Lin F. Yang Christina Fragouli
UCLA UCLA UCLA UCLA

Abstract

Multi-Armed Bandit (MAB) systems are wit-
nessing an upswing in applications within
multi-agent distributed environments, lead-
ing to the advancement of collaborative MAB
algorithms. In such settings, communication
between agents executing actions and the pri-
mary learner making decisions can hinder
the learning process. A prevalent challenge
in distributed learning is action erasure, of-
ten induced by communication delays and/or
channel noise. This results in agents possibly
not receiving the intended action from the
learner, subsequently leading to misguided
feedback. In this paper, we introduce novel
algorithms that enable learners to interact
concurrently with distributed agents across
heterogeneous action erasure channels with
different action erasure probabilities. We il-
lustrate that, in contrast to existing bandit
algorithms, which experience linear regret,
our algorithms assure sub-linear regret guar-
antees. Our proposed solutions are founded
on a meticulously crafted repetition proto-
col and scheduling of learning across hetero-
geneous channels. To our knowledge, these
are the first algorithms capable of effectively
learning through heterogeneous action era-
sure channels. We substantiate the superior
performance of our algorithm through nu-
merical experiments, emphasizing their prac-
tical significance in addressing issues related
to communication constraints and delays in
multi-agent environments.

* indicates equal contribution. Proceedings of the
27th International Conference on Artificial Intelligence and
Statistics (AISTATS) 2024, Valencia, Spain. PMLR: Vol-
ume 238. Copyright 2024 by the author(s).

1 INTRODUCTION

Multi-armed bandits, a well-established and effective
online learning model, are increasingly finding appli-
cations in multi-agent distributed environments. One
notable use-case involves leveraging a central learner,
with actions (arms) communicated to remote agents to
collect rewards, as discussed in Hanna et al. (2022b,a,
2023b). However, a noteworthy gap in the existing lit-
erature pertains to scenarios where the communicated
actions may be lost due to communication channel is-
sues such as delays or noise interference. This chal-
lenge becomes even more pronounced when various
agents possess communication channels with varying
capabilities, and these channels do not provide feed-
back regarding the receipt of actions. Throughout
this paper, we will refer to “feedback” to denote re-
ceipt acknowledgments from the channel, distinguish-
ing this from the rewards, which represent feedback on
the learned actions.

This challenge has not been well explored in the lit-
erature, as most works assume that agents will ac-
knowledge whether an action request has been re-
ceived or not. Yet the assumption of feedback avail-
ability can have high cost or simply not be possi-
ble. For instance, distributed recommendation sys-
tems may send content (action requests) over wireless
channels that are notoriously subject to delays due
to varying channel conditions and lost packets(Kurose
and Ross, 2012); even wired networks are subject to
significant delay variability due to factors such as net-
work topology, queuing delay and prioritization within
cloud databases (Yeh et al., 2014; Dehghan et al., 2019;
Kurose and Ross, 2012). Meanwhile, even if the con-
tent is delivered and displayed to the agents (e.g., an
app recommending to follow a route, visit a restau-
rant, etc.), we cannot be sure when exactly a human
user sees it, if at all.

Another motivating case is when the agents are de-
vices with very limited communication capabilities.
One such application is fleets of medical micro-robots
(which today can be even of nanometre-scale) that pro-

Multi-Agent Bandit Learning through Heterogeneous Action Erasure Channels

pel themselves through biological media, such as the
veins and the gastrointestinal tract (Liu et al., 2023;
Zou et al., 2022; Amir et al., 2020). Multi-agent MAB
algorithms can facilitate personalizing the robot’s ac-
tions to different patients, for instance, to release tai-
lored amounts of substances or to attack specific par-
ticles. The rewards (capturing action outcomes) are
usually observed through external medical equipment,
such as ultrasound or other imaging; however, convey-
ing what action to play to the robots, can be commu-
nication challenging. A third case is that of military
operations, where a central commander may want to
communicate actions to agents (such as small robots),
who do not wish to communicate back so as not to
reveal their position in a hostile territory, yet their
actions may have impact observable through satellite
imaging or sensors.

In this work, we dispense with the need for feed-
back. We ask, what performance can we achieve if
the learner action requests are delivered according to
a known probabilistic model, but we have no addi-
tional information on whether each specific request is
delivered or not. In particular, we assume operation
over T rounds, where at each round a central learner
sends commands (which action to play) to M agents
through erasure channels with erasure probability ϵi,
i = 1 . . .M , where these probabilities can be arbitrar-
ily different across channels. This induces a Geomet-
ric distribution on the reception time of each action
request, different for each agent1. The agents send no
feedback (thus the learner does not know which ac-
tion request the agents are following); the agents play
at each round the last action command they received.
The learner observes the reward for the (uknown) ac-
tion played through an error-free channel - which can
lead to erroneous action-reward associations. Indeed,
energy and space limitations of micro-robots, secu-
rity constraints in military applications, or simply the
structure of the communication protocol can prevent
transmitting feedback back to the learner; and agents
are required to perform an action at each time, since
even no action (for instance staying still) is also an
action, see Table 1 for a small example.

Our objective is to design multi-agent MAB schemes
that minimize the impact of action erasures on the
regret, while also leveraging the multi-agent setting to
expedite the learning process. Our main contributions
are as follows:

• We propose BatchSP2 , a Successive Arm Elimi-
nation based repetition algorithm with a crafted

1We note that our schemes extend to more general such
probability distributions; see Section 3.1 for a detailed dis-
cussion.

scheduling part for multi-agent MAB setup with
erasures, and prove sub-linear regret guarantees
on the proposed algorithm.

• We provide numerical comparisons with a num-
ber of baseline algorithms, show the superiority
of our algorithm to the benchmarks and that sim-
ply applying existing MAB algorithms in a man-
ner oblivious to action erasures can lead to linear
regret.

Related Work. Various MAB algorithms achiev-
ing optimal or near-optimal regret bounds under
different assumptions have been proposed over the
years (Lattimore and Szepesvári, 2020). Previous
studies designed optimal algorithms for the sim-
ple MAB setting through providing gap dependent
regret of Õ(

∑
a:∆a>0

1
∆a

) and worst-case regret of

O(
√
KT log T) (Thompson, 1933; Auer et al., 2002;

Lai, 1987). However, these algorithms are not re-
silient to action erasures and they are not optimized
for multi-agent settings. Building upon MAB algo-
rithms, there has been a considerable amount of re-
cent work on multi-agent MABs in various settings
(Shahrampour et al., 2017; Dubey et al., 2020; Agar-
wal et al., 2022; Xu and Klabjan, 2023). However,
these works predominantly consider connected agents
with some form of communication between neighbors
or improve the regret bounds through feedback mech-
anisms, primarily involving collision sensing for agents
(Wang et al., 2020; Shi et al., 2021). Consequently,
they fail to effectively handle action erasures, partic-
ularly when connections between agents and feedback
mechanism are missing.

Taking a step back, our work fits within the framework
of heterogeneous distributed agents supporting central
learning. The heterogeneity in our setup comes from
the diversity in the communication channels (different
erasure probabilities). Although as we discuss next
several works have considered heterogeneous setups,
communication channel diversity and how it can affect
MAB learning is we believe a natural setup that has
not been widely explored.

Multi-armed bandits with delayed feedback has been
studied in recent years under different settings due to
its practical applications. For the stochastic setting,
Joulani et al. (2013) shows that bounded unknown
i.i.d. delays cause an additive increase in the regret,
i.e., O(

√
KT log T + KE [D]) where the first term is

the regret of stochastic MAB problem with no delays
at round T , K is the number of actions, and E [D]
is the expected delay. Following the work in Joulani
et al. (2013), Mandel et al. (2015) proposes a queue-
based MAB algorithm to handle delays. Later, Pike-
Burke et al. (2018) achieves the same additive increase

Osama Hanna, Merve Karakas, Lin F. Yang, Christina Fragouli

in regret as in Joulani et al. (2013) under delayed ag-
gregated anonymous feedback. Vernade et al. (2017)
studies Bernoulli bandits with known delay distribu-
tion where some feedback could also be censored, i.e.,
do not reach the learner. Relevant to these works,
Grover et al. (2018) proposes an algorithm for the best
arm identification problem in stochastic MABs with
partial and delayed feedback where the aim is to mini-
mize the number of samples for identifying the best ac-
tion. They extend their methods to the parallel MAB
setting, i.e., multiple actions are pulled at each time;
however, they provide no lower bounds on the sample
complexity of their problem setting. While these works
incorporate delays into the stochastic MAB model, de-
lays are associated with action pulls whereas, in our
setup, delays are associated with agents and are inde-
pendent on the pulled action for the same agent.

A recent work considers the single agent action era-
sure channel (Hanna et al., 2023a) and they provide
a generic repetition scheme that works on top of any
MAB algorithm and gets regret at most O(1/

√
1− ϵ)

away, and a specific algorithm that gets O(
√
KT +

K/
√
1− ϵ) regret that is near optimal; our model ac-

cepts their work as a special case; however, extending
their methods to our case is highly non-trivial, as the
main challenge being the variability between erasure
probabilities of each channel, that induces a need for
careful scheduling across agents.

Paper Organization In Section 2, we introduce the
notation and system model; we explain the proposed
algorithm in Section 3; analyze it in Section 4 and pro-
vide upper bounds; evaluate and compare with possi-
ble baselines in Section 5; and conclude in Section 6.

2 PROBLEM FORMULATION

2.1 Multi-armed Bandits

We consider a stochastic multi-armed bandit problem
in which a learner plays an action at ∈ A at each round
t from the set of possible actions A and receives a re-
ward rt associated with the played action. This inter-
action is repeated over a horizon T , i.e., t ∈ {1, 2, ..., T}
and the learner aims to maximize the cumulative re-
ward at the end of T rounds. The set of possible ac-
tions A are the same throughout the horizon and have
K elements, i.e., |A| = K. The decision of the learner
on which action to play may depend on the history
Ht = {a1, r1, a2, r2, ..., at−1, rt−1}. Additionally, in a
stochastic setting, the reward for each action a is gen-
erated from an unknown reward distribution with an
unknown mean µa. In our analysis, we assume that the
rewards are in the interval [0, 1]; however, our results
directly extend to sub-Gaussian distributions. The ob-

jective of the learner is minimize the regret over a time
horizon T defined as

RT = T max
a∈A

µa − E

[
T∑

t=1

rt

]

2.2 Multi-Agent Multi-Armed Bandits with
Action Erasures

Consider a central learner connected to M distributed
agents, indexed by [M], over heterogeneous erasure
channels. The learner faces a stochastic K-armed ban-
dit problem, i.e., |A| = K. At each round t during a

time horizon T , the learner selects an action a
(m)
t ∈ A

for each agent m ∈ [M] to play. That is, M actions
are played per round (unlike the traditional setting
described above). When an action is chosen for agent
m, it is communicated through an i.i.d. action era-
sure channel characterized by erasure probability ϵm,
and may or may not be received. That is, indepen-
dently from other rounds and agents, each agent m

receives a
(m)
t with probability 1− ϵm and does not re-

ceive an action with probability ϵm. The learner does
not know which action requests get erased, but has
knowledge of upper bounds on the erasure probabil-
ities. The agents, on the other hand, perceive their
own erasures but they do not have a feedback mech-
anism to inform the learner, i.e., there is no uplink
between the agents and the learner. Furthermore, as
motivated from applications discussed in Section 1, we
assume that the agents cannot (or do not wish to) run
the algorithm themselves and and continues to play
the same action (last successfully received action), de-

noted as ã
(m)
t ∈ A to play in the case of an erasure.

ã
(m)
0 ∈ A denotes the action performed by the agent

m if the action in first round is erased, it is chosen uni-
formly at random. An example of multi-agent multi-
armed bandit learning with action erasures is provided
in Table 1.

Observation. Although we focus on channels with
erasures, our model can also apply over action delays:
an agent receives an action not at the timeslot sent,
but at a later time, based on a (known) delay prob-
ability distribution, and only changes the action she
plays once she receives a new action. Our algorithms
naturally extend and apply to this setting as well.

Design Objective. Our objective is to formulate a
distributed learning policy composed of two key ele-
ments: a decision strategy that directs the selection of

actions a
(m)
t for each agent m at each time t, and a

coping mechanism for the possible mismatch between
the selected actions and received rewards due to era-
sures. The performance metric we want to optimize is

Multi-Agent Bandit Learning through Heterogeneous Action Erasure Channels

Table 1: Example of a MA-MAB Learning Over Action Erasure Channels. At each time t the
learner sends action requests to each agent; an agent that does not receive the request, simply
continues to play the last received action.

t=1 t=2 t=3 t=4 t=5 ...

Learner {a(m)
1 }Mm=1 {a(m)

2 }Mm=1 {a(m)
3 }Mm=1 {a(m)

4 }Mm=1 {a(m)
5 }Mm=1 · · ·

Erasure (ϵ1 = 0.1) X · · ·
Agent 1 (ã

(1)
t) a

(1)
1 a

(1)
2 a

(1)
3 a

(1)
3 a

(1)
5 · · ·

...
...

...
...

...
...

...

Erasure (ϵM = 0.9) X X X X · · ·
Agent M (ã

(M)
t) ã

(M)
0 ã

(M)
0 a

(M)
3 a

(M)
3 a

(M)
3 · · ·

X denotes the erasure of the action for the given round and agent.

the total cumulative regret incurred by the policy over
time T and over all M agents:

RT =

M∑
m=1

(
T max

a∈A
µa − E

[
T∑

t=1

r
(m)
t

])

We note that the cumulative regret in a perfect
communication setting (no action erasures) is lower
bounded by Ω(

√
KMT). This bound corresponds to

the optimal regret order in a centralizedK-armed ban-
dit setup, where a total ofMT reward observations are
centrally accessible for learning.

3 PROPOSED ALGORITHM

In this section, we introduce Batched Scheduled Per-
sistent Pulls (BatchSP2), a Successive Arm Elimina-
tion (SAE) based multi-agent multi-armed bandit al-
gorithm with a crafted scheduling part. The pseu-
docode can be found in Algorithm 1.

For the problem we consider, misinformation (associ-
ating rewards with the wrong action) can create shifts
in the action means. For instance, in the erasures ex-
ample in Table 1, at time t = 3 the learner observes the
reward of the action agent M plays, but does not know

whether this reward is associated with action ã
(M)
0 ,

a
(M)
1 , a

(M)
2 , or a

(M)
3 . Intuitively, to minimize this shift,

it is meaningful to study an algorithm where the same
action pulls are repeated several times; in the example

in Table 1, if we had selected a
(M)
1 = a

(M)
2 = a

(M)
3 = a,

then, we could correctly associate reward at time t = 3
with action a. Moreover, the fact that we need to play
in parallel across M agents, implies that we need to
use a batched algorithm. Accordingly, we base our
proposed algorithm on SAE (Auer and Ortner, 2010),
described next, with modifications that enable robust-
ness to misinformation.

SAE is a batched algorithm, i.e., it divides the hori-

zon into batches of exponentially increasing length and
eliminates actions based on a shrinking confidence re-
gion defined by the number of pulls (Auer and Ortner,
2010). In each batch i, all remaining actions, included
in a set Ai, are pulled 4i times, and after all pulls of
the batch are completed, actions are retained if:

Ai+1 ← {a ∈ Ai|max
ā∈Ai

µ̂
(i)
ā − µ̂(i)

a ≤ 4
√

log (KT)/2 · 4i}

where µ̂
(i)
a indicates the empirical mean of the reward

of action a in batch i.

Note that applying SAE directly in our setup does not
perform well, due to two issues that need attention: (1)
it may eliminate the best arm in early batches due to
wrong feedback resulting in linear regret, (2) allocate
an unnecessary amount of resource to bad channels.
We have to modify SAE to address these two issues,
as otherwise, as Examples 1 and 2 later in this section
illustrate, we may accrue large regret.

Addressing the first issue is straightforward: the
learner simply repeats each action2 until the probabil-
ity the correct action has been successfully received by
the agent is sufficiently high. Only after this point the
learner starts associating rewards with actions, thus
minimizing the probability of misinformation. More
specifically, if the learner decides to receive p num-
ber of rewards for an action a through agent m, the
learner first asks the agent m to repeat the action
αm = ⌈4 log T/ log (1/ϵm)⌉ − 1 additional times to en-
sure a success probability of at least 1− 1/poly(T). A
total of αm + p rewards are generated in the environ-
ment, but only the last p are taken into account by
the learner to update the mean estimate of action a.
This ensures with high probability that the rewards
considered (effective rewards) are generated from the
distribution associated with the selected action. We

2A similar scheme was proposed in Hanna et al. (2023a)
for the case of a single agent system.

Osama Hanna, Merve Karakas, Lin F. Yang, Christina Fragouli

note however that all αm + p rewards generated are
counted in our regret, and thus, large αm values can
affect the regret values we get, as we will also see in
Section 4.

Addressing the second issue, scheduling how action
pulls are allocated across agents, is significantly more
challenging. One issue is that, we need to wait for
all pulls of batch i to finish (agents that finish their
tasks earlier will simply play random actions, poten-
tially accumulating regret) before starting the next
batch. Thus, the total regret we will accrue at batch
i, is mainly determined3 by T (i), the time at which all
4i pulls of the actions in Ai are completed; and T (i)

highly depends on the schedule, as simple examples
can illustrate.

The following examples illustrate that two (natural
to consider) scheduling algorithms (one playing all 4i

pulls of an action at only one agent, and the other
splitting the pulls of each action across all agents) can
lead to larger than needed T (i) and thus suboptimal
regret.

Example 1 Assume that we order the agents so that
α1 ≤ α2 ≤ . . . αM (where αm is the number of repeti-
tions in each channel to ensure high probability action
delivery). One intuitive schedule could be, to assign
⌊K(i)/M⌋ actions to each agent and place the remain-
ing K̂ = K −⌊K(i)/M⌋M actions to the first (fastest)
K̂ agents, whereK(i) is the number of active actions in
batch i, i.e., |Ai| = K(i) . This scheduling has end time

T (i) = max
(
⌊K

(i)

M ⌋(αM + 4i), (⌊K
(i)

M ⌋+ 1)(αK̂ + 4i)
)

- and although for some αi values it can perform
well, it also fails in many scenarios. For instance,
if ϵm = 0 ∀m ∈ [M], the end time becomes 4iK(i)

whereas the optimal end time is ⌈4iK(i)/M⌉ (which is
smaller by a factor of M).

Example 2 Another straightforward approach is to
first complete 4i pulls for one action by distributing
the pulls across all agents, and then move onto the
next. That is, for each action, the learner sends it
to all agents, and waits until 4i effective pulls (i.e.,
not counting repetitions) are received back. Note that
even if an agent m needs to play one pull, we still need
to wait first for αm rounds before collecting this effec-
tive reward. This scheduling has an end time T (i) =

K(i) min
M̃∈[M]

(
∑M̃

m=1 αm+4i

M̃
), where K(i) = |Ai|. This can

be suboptimal, e.g., if αm = α ∀m ∈ [M], then the

end time of this scheduling is T (i) = K(i)α+K(i)⌈ 4
i

M ⌉,
whereas an end time of ⌈K

(i)

M ⌉(α+4i) can be achieved

3Recall that all actions in the set Ai are expected to
have mean values within a bounded distance from the op-
timal; thus the suboptimal actions in Ai are expected to
accumulate similar regret.

using the scheduling explained in Example 1.

Algorithm 1 BatchSP2 (K, M , α)

1: Input: number of actions K, number of agents
M , repetitions α ∈ ZM

+

2: Initialize batch index i = 1, set of active actions
A1 = [K]

3: for batch i do
4: S, T (i) = Schedule(Ai,α, i) (see Algorithm 2)
5: for t in [T (i)] do
6: send action Smt to agent m ∀m ∈ [M]
7: receive reward rmt ∀m ∈ [M]

8: Update means of the actions

µ(i)
a =

∑
m∈M(i)

a

e(i)am∑
t=b

(i)
am

rmt/4
i ∀a ∈ Ai

9: (M(i)
a : set of agents that pulls action a in batch

i, b
(i)
am and e

(i)
am: start and end time of the effec-

tive pulls, respectively, of a in agent m in batch i,

b
(i)
am, e

(i)
am ∈ [T (i)])

10: Update active action set: Ai+1 ← {a ∈
Ai|max

j∈Ai

µ
(i)
j − µ

(i)
a ≤ 4

√
log (KMT)/2 · 4i}

11: i← i+ 1

Our scheduling goal is, given α1 ≤ α2 ≤ . . . ≤ αM , to
find a schedule that minimizes T (i). As the previous
examples illustrate, neither distributing actions across
all agents, nor restricting each action to be played in
one agent, is optimal. One natural approach is to ex-
press the schedule through an Integer Linear Program
(provided in appendix 7). The associated LP relax-
ation, as also discussed in the appendix, essentially
associates a cost am

4i with each action pull at agent
m, and solves a cost-minimization resource allocation
problem. The resulting LP solution gives us a lower
bound τ on T (i), where:

τ := 4iK(i)/

M∑
m=1

1/(
αm

4i
+ 1). (1)

Unfortunately, the LP solution cannot always be eas-
ily translated to an integral solution (where each agent
m actually plays am pulls even if she needs to collect
reward for an action only once) while avoiding subop-
timal regrets (as compared to the ILP solution).

Instead, we develop a scheduling algorithm that is
polynomial time, and carefully balances how to split
the 4i pulls of each action across agents, so as to de-
crease the number of required repetitions αi, while still
taking advantage as needed from the fact that we have
multiple agents. The pseudocode can be found in Al-
gorithm 2.

Multi-Agent Bandit Learning through Heterogeneous Action Erasure Channels

The algorithm works in two stages: We first round the
LP solution to an integer solution, which can schedule
at least (K−M)+ actions. In this stage, each action is
assigned to at most one agent. In the second stage, we
schedule the remaining unscheduled actions by split-
ting each action among multiple agents. In particular,
we assign to the first stage (where we do not split ac-
tion pulls) a duration τ as in (1): since the LP relax-
ation manages to allocate the 4i pulls for all actions
before τ , keeping all pulls of an action together before
that time can only decrease the total number of rep-
etitions required by each allocated action. We prove
in Section 4 that at least (K −M)+4 actions will be
successfully allocated at this stage, leaving K̂ remain-
ing actions. In the second stage, we partition the pulls
of the remaining K̂ actions into smaller parts of size
max (1, ⌊M/2K̂⌋) and use the first ⌊M/2⌋ agents to do
the scheduling. Utilizing only the first ⌊M/2⌋ agents
allows to find an end time on the scheduling in terms
of c

∑M
m=1 αm where c > 0 is some constant instead

of a term that depends on K or M , as will become
apparent in Section 4.

Algorithm 2 Schedule (A, α, i)

1: Input: set of actions A with |A| = K, repetitions
α ∈ ZM

+ , batch index i

2: Initialize k = 0, T (i) = τ (see Eq. 1)
3: Shuffle the set A randomly
4: for agent m ∈ [M] do
5: Initialize tend = 0, p = αm + 4i

6: while tend + p ≤ T (i) do
7: Assign next action to agent
8: k ← k + 1
9: tend ← tend + p

10: for K̂ = K − k unassigned actions do
11: Divide pulls into max (1, ⌊M/2K̂⌋) equal parts
12: Assign each part to first ⌊M/2⌋ agents one by one
13: Imitate assignments of first ⌊M/2⌋ agents for re-

maining M − ⌊M/2⌋ agents (with their own repe-
titions)

14: Update T (i), the end time of the batch, to agent
finishing last in first ⌊M/2⌋ agents

15: Fill remaining slots of the agents randomly

16: Output: S ∈ RM×T (i)

the schedule of actions to
agents, T (i) end time

3.1 Connecting to Channels with Delays

We note that our algorithm BatchSP2 (and its anal-
ysis, in the next section), directly applies to channels
with delays, where an action sent by the learner to an
agent m is received after t rounds with some proba-

4x+ = max (x, 0) ∀x ∈ R

bility p
(m)
t . Indeed, although we used erasure chan-

nels for our narrative in this paper, and motivated use
of repetitions over such channels, the only fact that
BatchSP2 essentially hinges on is that, agent m will
receive a sent action with probability at least 1

T after
αm rounds, where αm is known. It implies that any
known (or estimated) delay/probability of successful
reception can be used with our algorithms. In our case
αm was dictated from the repetition protocol, in other
setups it could be dictated from delivery delay or de-
livery uncertainty. Datasets and models in literature,
e.g., (Sagatov et al., 2020) or (Dahmouni et al., 2012),
can provide empirical values for delay/probability in
such setups.

4 REGRET ANALYSIS

This section provides our theoretical analysis: we first
calculate an upper bound on the end time of each batch
in Lemma 1, then use this to derive an upper bound
on the expected regret that depends on suboptimality
gaps on Theorem 1, and provide a gap-independent
regret upper bound on Theorem 2.

Lemma 1 If the scheduling algorithm outlined in Al-
gorithm 2 is run for batch i, then the end time T (i) of
the batch can be bounded as

T (i) ≤ K4iτ + 6

(
M∑

m=1

αm

M
+ 2

K4i

M

)

where τ = 1
M∑

m=1
1/(αm/4i+1)

, αm = ⌈4 log T
log (1/ϵm)⌉ − 1,

K is the number of actions, and M is the number of
agents.

Proof Sketch of Lemma 1. The upper bound on the
scheduling end time, hence, total number of pulled
actions in a batch, is obtained in two steps. First,
because αm + 4i rounds are sufficient to schedule 4i

effective pulls for a single arm at agent m, we prove
that Algorithm 2 schedules at least (K −M)+ agents
in time K4iτ . This implies that at step 10 of Algo-
rithm 2, the number of remaining arms to be sched-
uled is bounded by M . As the algorithm schedules
these arms among the best M/2 agents, each agent
will be assigned a constant number of arms. The final
end time is bounded by noticing that from the averag-
ing principle, the delay of all agents in the best half is
bounded by the average delay

∑
m αm/M .

The complete proof is provided in Appendix 8.1.

Osama Hanna, Merve Karakas, Lin F. Yang, Christina Fragouli

Theorem 1 Consider a distributed multi-armed ban-
dit setting with K actions and M agents connected
through heterogeneous erasure channels with erasure
probabilities {ϵi}Mi=1. If BatchSP2 is run with horizon
T , then the expected regret is,

E[RT] ≤ c

(∑
a:∆a>0

(log (KMT)

∆a

+
M log (MT)

M∑
m=1

1/(αm + log (KMT)
∆a

)

)

+

M∑
m=1

αm log (MT) + log (MT)

)

where αm = ⌈4 log T/ log (1/ϵm)⌉ − 1 is the number of
repetitions at agent m, ∆a is the suboptimality gap for
action a, and c > 0 a constant.

Proof Sketch of Theorem 1. The regret bound is
achieved by decomposing the regret of each batch as

E[R(i)
T] =

∑
a Tia∆a and bounding the expected num-

ber of times E[Tia] that arm a is pulled in batch i. To
that end, we condition on a good event entailing that
for each agent m and each consecutive αm + x pulls
from action a, the last x rewards are samples from the
distribution of action a. This provides a concentra-
tion of the empirical means used in Algorithm 1 with
high probability. As a result, we get an upper bound
on the number of batches a suboptimal arm can sur-
vive. Having this, to bound Tia, it only remains to
bound the number of times an active action is pulled
in batch i, which is highly sensitive to the scheduling
of action pulls. This is proved by utilizing the upper
bound on the number of pulls in Lemma 1 and lever-
aging the symmetry imposed by the randomization in
Algorithm 2 to show that each action has an equal con-
tribution in the total number of pulls. The final regret
bound is obtained by showing that the good event has
high probability.

Bounding the excess regret from the rewards not used
by the algorithm is a challenging part of the regret
analysis. If the schedule is designed naively, these re-
wards may come from the action with the largest gap
in the batch. However, as we show in the proof of The-
orem 1, the randomization and shuffling performed in
Algorithm 2 make the contributions of the different
arms in the excess regret uniform in expectation.

The complete proof is provided in Appendix 8.2.

The three components of the regret bound in The-
orem 1 originate from distinct aspects of the algo-
rithm. The initial term,

∑
a:∆a>0 log (KMT)/∆a,

is inevitable, representing the order optimal regret
achievable under perfect channels (no delay, no era-

sure). The second and third terms are due to the rep-
etition and scheduling of actions (Algorithm 2). It is
noteworthy that, the second term matches the regret
of an optimal scheduling algorithm (see App. 7). Ad-
ditionally, under perfect channels, this term simplifies
to the a lower bound on the regret up to logarithmic
factors. The third term,

∑M
m=1 αm log (MT), emerges

at the outset of the learning process, reflecting that
each agent m will repeat the first pulled (suboptimal)
action for αm iterations on average.

The regret bound in Theorem 1 is nearly constant for
constant gaps and erasure probabilities. However, for
small gaps, the regret bound can be large. It is im-
portant to note that this will not be the actual re-
gret suffered when the gaps are small, as for small ∆,
the regret is bounded by TM∆. The following theo-
rem provides an instance-dependent regret bound that
works for all values of the suboptimality gaps.

Theorem 2 Consider the distributed multi-armed
bandit setting with K actions and M agents connected
through heterogeneous erasure channels {ϵi}Mi=1. If
BatchSP2 is run for horizon T , then the expected re-
gret is

RT ≤ c

(
M

√
KT log (MT)∑M

m=1 1/(αm∆⋆ + log (KMT))

+

M∑
m=1

αm log (KMT)

)

where ∆⋆ is the value satisfying

∆⋆ =
c′K log (MT)

T
M∑

m=1
1/(αm + log (KMT)

∆⋆
)

,

which can be efficiently approximated using the bisec-
tion method, αm = ⌈4 log T/ log (1/ϵm)⌉−1 number of
repetitions and c, c′ > 0 constants.

Proof Sketch of Theorem 2. The regret bound is proved
by bounding the regret bound for arms with small
gap (less than ∆⋆, which will be determined later) by
TM∆⋆ and using the bound in Theorem 1 for the re-
maining arms with large gap (greater than ∆⋆). The
value of ∆⋆ is chosen to minimize the bound by bal-
ancing the regret resulting from arms with small gaps
and the regret from arms with large gaps.

The complete proof is provided in Appendix 8.3.

It is worth noting that for αm = 0 ∀m (no erasures),
the regret bound in Theorem 2 reduces to Õ(

√
KTM),

nearly matching the lower bound on the regret for
the model considered in Lattimore and Szepesvári
(2020). More importantly, our bound shows that if

Multi-Agent Bandit Learning through Heterogeneous Action Erasure Channels

αm = Õ(1/∆max) ∀m, where ∆max is the maximum
gap, then the regret bound is still Õ(

√
KTM), hence,

we (nearly) suffer no extra regret beyond the no era-
sure case.

For the single agent case M = 1, the regret bound in
Theorem 2 reduces to Õ(

√
KT +Kα) which is shown

to be nearly optimal in Hanna et al. (2023a).

5 EXPERIMENTS

In this section, we empirically evaluate the regret per-
formance of our proposed algorithm, BatchSP2, and
compare against the following methods:

• MA-SAE: This is an extension of SAE (Auer and
Ortner, 2010) to multi-agent setting. It utilizes
the agents without repeating any actions and con-
siders all the rewards generated in the environ-
ment.

• MA-LSAE-V: This is an extension of SAE to
multi-agent setting, that restricts all pulls of an
action to be played at the same agent, as described
in Example 1 in Section 3.

• MA-LSAE-H: This is another extension of SAE
to multi-agent setting, that distributes the pulls
of an action across all agents, as described in Ex-
ample 2 in Section 3.

• MA-UCB: This is an extension of Upper Confi-
dence Bound (UCB) (Auer et al., 2002; Lai, 1987)
algorithm to multi-agent setting. UCB is an op-
timal algorithm for a simple MAB setting. Com-
pared to SAE, it makes the decision on which ac-
tion to pull at each round instead of at each batch.

We have explored a number of experimental setups (in
terms of number of actions, channel quality, horizons,
etc)5; we here show results for two experiments that
we believe are representative:

• Experiment 1, shown in Figure 1, uses K = 10
actions, with Gaussian reward distributions that have
variance 1 and means [0.8, 1, 0, · · · , 0]. The time hori-
zon is T = 5 × 104 and the regret in each plot is av-
eraged over 100 experiments with arms shuffled. The
channels have erasure probabilities 0.2, 0.7, 0.9, and
0.99, and there is an equal number of M/4 channels
for each erasure probability.

• Experiment 2, shown in Figure 2, has all parame-
ters the same as Experiment 1, with the difference that
we have now channels with similar erasure probabili-
ties of 0.9, 0.93, 0.95, and 0.99 (as before, there is an
equal number of channels for each erasure probability).

5The code to our experiments is available here.

From Figure 1, it can be seen that extensions of UCB
and SAE may result in linear regret under action era-
sures even when the suboptimality gap is large (0.2
for the instance used in this experiment). Compar-
ing Figure 1 (a) to (c) for MA-LSAE-V, we can ob-
serve how waiting for a bad channel to finish pulling
actions slows down the learning: when the number
of agents with erasure probability 0.2 increases from
left to right, MA-LSAE-V starts assigning actions to
agents with small number of repetitions, and cumu-
lative regret gets smaller. This supports the splitting
idea behind our algorithm.

From Figure 2, it can be seen that while trends of al-
gorithms are similar to Figure 1 (b) in terms of learn-
ing (linear versus logarithmic cumulative regret); when
the channel quality gets worse, the gap between MA-
LSAE-H and our algorithm widens. This indicates
that while repetitions ensure learning with high prob-
ability, if we assign action pulls to agents without con-
sidering how many additional repetitions are evoked,
it can significantly slow down the learning process. In
some cases, it might even result in UCB or SAE to
having lower regret for an extended period of time,
despite their linear regret behavior.

6 CONCLUSION

In this work, we consider the case of a learner con-
nected to multiple distributed agents through hetero-
geneous channels, that are subject to action erasures
without action feedback (the same setup can also cap-
ture delays and uncertainty on action reception). If re-
wards can be externally observed, we may have misin-
formation, a mismatch between the action the learner
requests and the agent plays. Because of this, tra-
ditional algorithms can easily fail; instead, we intro-
duce BatchSP2, an efficient algorithm that uses rep-
etition to achieve robustness over erasures and care-
ful allocation of action pulls to agents to minimize
regret. We provide a theoretical regret analysis of
BatchSP2, which allows to recover as special cases ex-
isting bounds, as well as numerical evaluations that
show Batch2SP can achieve superior performance over
baseline schemes.

Acknowledgements

We thank the anonymous reviewers and the meta-
reviewer for their insightful suggestions and com-
ments. This work is supported in part by NSF grants
#2007714 and #2221871, by Army Research Labora-
tory grant under Cooperative Agreement W911NF-17-
2-0196, and by the Amazon Faculty Award.

https://github.com/mervekarakas/mamab_erasures/

Osama Hanna, Merve Karakas, Lin F. Yang, Christina Fragouli

Figure 1: Comparison Results For Different Numbers Of Agents. From Left To Right, The Plots Show Cumulative
Regret As A Function Of Rounds t For (a) 4 Agents, (b) 20 Agents, and (c) 40 Agents, Respectively.

Figure 2: Same Scenario As In Figure 1 (b) With
Worse Channel Quality.

References

Mridul Agarwal, Vaneet Aggarwal, and Kamyar Aziz-
zadenesheli. Multi-agent multi-armed bandits with
limited communication. J. Mach. Learn. Res., 23
(1), jan 2022. ISSN 1532-4435.

Idan Amir, Idan Attias, Tomer Koren, Yishay Man-
sour, and Roi Livni. Prediction with corrupted ex-
pert advice. Advances in Neural Information Pro-
cessing Systems, 33:14315–14325, 2020.

Peter Auer and Ronald Ortner. Ucb revisited: Im-
proved regret bounds for the stochastic multi-armed
bandit problem. Periodica Mathematica Hungarica,
61(1-2):55–65, 2010.

Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and
Robert E. Schapire. The nonstochastic multiarmed
bandit problem. SIAM Journal on Computing, 32
(1):48–77, 2002. doi: 10.1137/S0097539701398375.

Hamza Dahmouni, André Girard, and Brunilde
Sansò. An analytical model for jitter in ip net-

works. annals of telecommunications-annales des
télécommunications, 67:81–90, 2012.

Mostafa Dehghan, Weibo Chu, Philippe Nain, Don
Towsley, and Zhi-Li Zhang. Sharing cache re-
sources among content providers: A utility-based
approach. IEEE/ACM Transactions on Network-
ing, 27(2):477–490, 2019.

Abhimanyu Dubey et al. Cooperative multi-agent ban-
dits with heavy tails. In International conference on
machine learning, pages 2730–2739. PMLR, 2020.

Aditya Grover, Todor Markov, Peter Attia, Norman
Jin, Nicolas Perkins, Bryan Cheong, Michael Chen,
Zi Yang, Stephen Harris, William Chueh, and Ste-
fano Ermon. Best arm identification in multi-armed
bandits with delayed feedback. In Amos Storkey
and Fernando Perez-Cruz, editors, Proceedings of
the Twenty-First International Conference on Ar-
tificial Intelligence and Statistics, volume 84 of Pro-
ceedings of Machine Learning Research, pages 833–
842. PMLR, 4 2018.

Osama Hanna, Lin Yang, and Christina Fragouli.
Learning from distributed users in contextual linear
bandits without sharing the context. Advances in
Neural Information Processing Systems, 35:11049–
11062, 2022a.

Osama A Hanna, Lin Yang, and Christina Fragouli.
Solving multi-arm bandit using a few bits of com-
munication. In International Conference on Artifi-
cial Intelligence and Statistics, pages 11215–11236.
PMLR, 2022b.

Osama A Hanna, Merve Karakas, Lin F Yang, and
Christina Fragouli. Multi-arm bandits over action
erasure channels. In 2023 IEEE International Sym-
posium on Information Theory (ISIT), pages 1312–
1317. IEEE, 2023a.

Osama A Hanna, Lin F Yang, and Christina Fragouli.

Multi-Agent Bandit Learning through Heterogeneous Action Erasure Channels

Compression for multi-arm bandits. IEEE Journal
on Selected Areas in Information Theory, 2023b.

Pooria Joulani, Andras Gyorgy, and Csaba Szepesvari.
Online learning under delayed feedback. In Sanjoy
Dasgupta and David McAllester, editors, Proceed-
ings of the 30th International Conference on Ma-
chine Learning, volume 28 of Proceedings of Ma-
chine Learning Research, pages 1453–1461, Atlanta,
Georgia, USA, 6 2013. PMLR.

James F. Kurose and Keith W. Ross. Computer Net-
working: A Top-Down Approach. Pearson, 6th edi-
tion edition, 2012. ISBN 978-0132856201.

Tze Leung Lai. Adaptive treatment allocation and the
multi-armed bandit problem. Annals of Statistics,
15:1091–1114, 1987.

Tor Lattimore and Csaba Szepesvári. Bandit algo-
rithms. Cambridge University Press, 2020.

Yangzhe Liu, Zonghao Zou, On Shun Pak, and Alan
C. H. Tsang. Learning to cooperate for low-
reynolds-number swimming: a model problem for
gait coordination. Scientific Reports, 13, 2023.

Travis Mandel, Yun-En Liu, Emma Brunskill, and Zo-
ran Popović. The queue method: Handling delay,
heuristics, prior data, and evaluation in bandits.
Proceedings of the AAAI Conference on Artificial
Intelligence, 29(1), 2 2015. doi: 10.1609/aaai.v29i1.
9604.

Ciara Pike-Burke, Shipra Agrawal, Csaba Szepesvari,
and Steffen Grunewalder. Bandits with delayed,
aggregated anonymous feedback. In International
Conference on Machine Learning, pages 4105–4113.
PMLR, 2018.

Evgeny Sagatov, Samara Mayhoub, Andrei Sukhov,
and Dmitrii Chernysh. Dataset of one-way delay
in local and global networks, 2020. URL https:

//dx.doi.org/10.21227/0dmg-3r29.

Shahin Shahrampour, Alexander Rakhlin, and Ali
Jadbabaie. Multi-armed bandits in multi-agent net-
works. In 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pages 2786–2790, 2017. doi: 10.1109/ICASSP.2017.
7952664.

Chengshuai Shi, Wei Xiong, Cong Shen, and Jing
Yang. Heterogeneous multi-player multi-armed ban-
dits: Closing the gap and generalization. Advances
in neural information processing systems, 34:22392–
22404, 2021.

William R. Thompson. On the likelihood that one
unknown probability exceeds another in view of the
evidence of two samples. Biometrika, 25:285–294,
1933.

Claire Vernade, Olivier Cappé, and Vianney Perchet.
Stochastic bandit models for delayed conversions.
arXiv preprint arXiv:1706.09186, 2017.

Po-An Wang, Alexandre Proutiere, Kaito Ariu, Yas-
sir Jedra, and Alessio Russo. Optimal algorithms
for multiplayer multi-armed bandits. In Silvia Chi-
appa and Roberto Calandra, editors, Proceedings of
the Twenty Third International Conference on Arti-
ficial Intelligence and Statistics, volume 108 of Pro-
ceedings of Machine Learning Research, pages 4120–
4129. PMLR, 26–28 Aug 2020.

Mengfan Xu and Diego Klabjan. Decentralized ran-
domly distributed multi-agent multi-armed bandit
with heterogeneous rewards. In Thirty-seventh Con-
ference on Neural Information Processing Systems,
2023.

Edmund Yeh, Tracey Ho, Ying Cui, Michael Burd,
Ran Liu, and Derek Leong. Vip: A framework for
joint dynamic forwarding and caching in named data
networks. In Proceedings of the 1st ACM Conference
on Information-Centric Networking, pages 117–126,
2014.

Z. Zou, Y. Liu, Y. N. Young, and et al. Gait switching
and targeted navigation of microswimmers via deep
reinforcement learning. Communications Physics, 5:
158, 2022.

https://dx.doi.org/10.21227/0dmg-3r29
https://dx.doi.org/10.21227/0dmg-3r29

Osama Hanna, Merve Karakas, Lin F. Yang, Christina Fragouli

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes] Section 2, Section 3

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes] Section 3, Section 4

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes] Section 5

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [No]
Error bars are not as it disrupted the figures’
interpretability due to high variance towards
the end for some algorithms.

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Not Applicable]
Simple experiments that can run on CPU or
Google Colaboratory.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Not Applicable]

(b) The license information of the assets, if ap-
plicable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]

Multi-Agent Bandit Learning through Heterogeneous Action Erasure Channels

Multi-Agent Bandit Learning through
Heterogeneous Action Erasure Channels:

Supplementary Materials

7 LINEAR PROGRAM FORMULATION

We first formulate a (nonlinear integer) program that minimizes the end time to schedule action pulls in batch
i with K actions across M agents as follows:

min
X∈RM×K

max
m∈[M]

K∑
k=1

(αm1[Xmk > 0] +Xmk)

s.t.

M∑
m=1

Xmk = 4i ∀k ∈ [K]

Xmk ∈ {0, 1, 2, · · · , 4i} ∀m ∈ [M], ∀k ∈ [K],

(2a)

(2b)

(2c)

where X ∈ RM×K captures the variables of the program, with Xmk indicating the number of effective pulls of
action k performed by agent m. The objective function (2a) is to minimize the latest end time among agents.
Constraint (2b) ensures that the total number of effective pulls for each action is 4i; and constraint (2c) forces
effective pulls assigned to each agent per action to be an integral value in [0, 4i]. It is easy to see that the progam
in (2) is equivalent to the following integer linear program (ILP):

min
X,W∈RM×K

t∈R

t

s.t.

K∑
k=1

(αmWmk +Xmk) ≤ t, ∀m ∈ [M]

Xmk ≤ 4iWmk ∀m ∈ [M], ∀k ∈ [K]

M∑
m=1

Xmk = 4i ∀k ∈ [K]

Xmk ∈ {0, 1, 2, · · · , 4i} ∀m ∈ [M], ∀k ∈ [K]

Wmk ∈ {0, 1} ∀m ∈ [M], ∀k ∈ [K],

(3a)

(3b)

(3c)

(3d)

(3e)

(3f)

where the variable t ∈ R replaces the max in objective equation 2a and the variable W ∈ RM×K replaces the
indicator function. Notice that for any feasible solution X, if Xmk > 0, Wmk = 1. The relaxed version of the
ILP in (3) can be written as

Osama Hanna, Merve Karakas, Lin F. Yang, Christina Fragouli

min
X,W∈RM×K

t∈R

t

s.t.

K∑
k=1

(αmWmk +Xmk) ≤ t, ∀m ∈ [M]

Xmk ≤ 4iWmk ∀m ∈ [M], ∀k ∈ [K]

M∑
m=1

Xmk = 4i ∀k ∈ [K]

0 ≤ Xmk ≤ 4i ∀m ∈ [M], ∀k ∈ [K]

0 ≤Wmk ≤ 1 ∀m ∈ [M], ∀k ∈ [K],

(4a)

(4b)

(4c)

(4d)

(4e)

(4f)

Notice that the minimum value Wmk can take is Xmk/4
i due to (4c); hence, by replacing Wmk with its minimum

value, we get the following linear program which gives a lower bound on the ILP (3):

min
X∈RM×K

t∈R

t

s.t.

K∑
k=1

Xmk

(αm

4i
+ 1
)
≤ t ∀m ∈ [M]

M∑
m=1

Xmk = 4i ∀k ∈ [K]

0 ≤ Xmk ∀m ∈ [M], ∀k ∈ [K],

(5a)

(5b)

(5c)

(5d)

In the linear program (5), Xmk is the variable that indicates how many effective pulls are assigned to agent m
for action k. (5c) forces each action to be pulled 4i effective times; however, instead of an integer number of
pulls, each agent is allowed to perform nonnegative fractional pulls. Furthermore, (5b) indicates that for each
agent m, one effective pull has a cost of αm

4i + 1.

Claim 1 The optimal objective value of (5) satisfies, t⋆ =
∑K

k=1 X
⋆
mk(αm/4i + 1) ∀m ∈ M , where (t⋆,X⋆) is

the optimal solution of 5.

Proof of Claim 1. First, we observe that at least one of the inequalities in (5b) holds with equality, otherwise
the value of t⋆ can be decreased leading to a better objective. Define the set of indices Ei := {m ∈ [M] :∑K

k=1 X
⋆
mk(αm/4i + 1) = t⋆}.

Now, assume Claim 1 is not correct. And let ms be such that

K∑
k=1

X⋆
msk(αms/4

i + 1) < t⋆.

Then ∀m ∈ Ei ∃{βmk}Kk=1 ≥ 0 :
∑

k βmk > 0 small enough such that

X ′
mk =

X⋆

mk − βmk, m ∈ Ei, ∀k ∈ [K]

X⋆
mk +

∑K
k=1 βmk, ms = m

X⋆
mk otherwise

t′ = max
m
{

K∑
k=1

X
′

mk(αm/4i + 1)} < t⋆

forms a feasible solution in (5) with a smaller objective value t′ < t⋆; hence, (t⋆,X⋆) cannot be optimal. Then

at the optimal solution (t⋆,X⋆), t⋆ =
∑K

k=1 X
⋆
mk(αm/4i + 1) ∀m ∈M .

Multi-Agent Bandit Learning through Heterogeneous Action Erasure Channels

Using Claim 1 and the constraint (5c);

4iK =

M∑
m=1

K∑
k=1

X⋆
mk =

M∑
m=1

t⋆

(αm/4i + 1)
= t⋆

M∑
m=1

1

(αm/4i + 1)
⇒ t⋆ =

4iK∑M
m=1 1/(αm/4i + 1)

(6)

which justifies equation 1.

Observation Note that the solution of the relaxed LP (5) can be directly used for scheduling of actions by
adding max (2αM−1, αm) to the end time t⋆. Since the relaxation in general does not give a feasible solution
for the ILP, we add max (2αM−1, αM) to the end time of the relaxed ILP to guarantee a feasible solution for
the ILP. As the additional time slots accumulate regret across all agents, this can result in Ω(MαM) additional
regret which can be large for large M . Our algorithm improves the M factor in MαM .

8 MISSING PROOFS

Table 2: Notation

4i : Number of effective pulls in batch i for each active action
A : Set of actions, |A| = K
Ai : Set of active actions in batch i, |Ai| = K(i)

αm : = ⌈4 log T/ log (1/ϵm)⌉ − 1, number of repetitions for agent m
∆a : = maxa′∈A µa′ − µa, suboptimality gap for action a
G : The event that at least one instruction among the times t, t+ 1, · · · , t+ αm − 1 will not be

erased for all agents m and all times t

G′
i : =

{
|µ(j)

a − µa| ≤ 2
√

log (KMT)
2·4j ∀a ∈ Aj , j ∈ [i− 1]

}
, the event that empirical means of

active actions in batch j (∀a ∈ Aj) is in confidence region for all batches until batch i
M : Number of agents
µa : Reward mean of action a

µ
(i)
a : The empirical mean calculated for action a at batch i (as defined in step 8 in Algorithm 1)

N
(i)
1 : = M

M∑
m=1

1/(αm+4i)

, a term that appears in regret

N
(i)
2 : = 12 · 4i, a term that appears in regret

RT : Regret of K arm bandit over M channels with horizon T

R
(i)
T : Regret of batch i for K arm bandit over M channels with horizon T

T (i) : Length of the scheduling outputted by Algorithm 2 for batch i
Ti : The total number of instructions played by all agents due to instructions sent in batch i
Tia : Number of times action a is played by agents due to an instruction sent in batch i

K̂ : Number of actions unassigned in the first part of the scheduling (as described in Algorithm 2 line 10)

8.1 Proof of Lemma 1

In this section, we present the detailed proof of Lemma 1.

Lemma 1 If the scheduling algorithm outlined in Algorithm 2 is run for batch i, then the end time T (i) of the
batch can be bounded as

T (i) ≤ K4iτ + 6

(
M∑

m=1

αm

M
+ 2

K4i

M

)

where τ = 1
M∑

m=1
1/(αm/4i+1)

, αm = ⌈4 log T
log (1/ϵm)⌉ − 1, K is the number of actions, and M is the number of agents.

Osama Hanna, Merve Karakas, Lin F. Yang, Christina Fragouli

We prove the upper bound on the end time in two steps.
Step A. First, we claim that the algorithm uses the first 4iKτ rounds to schedule all 4i pulls of at least (K−M)+

actions:
Each agent m takes αm + 4i to complete all pulls of an action; hence, it can play all pulls of at least⌊

4iKτ

αm + 4i

⌋
actions. Hence, the total number of actions scheduled across all channels during the first 4iKτ rounds is

M∑
m=1

⌊
4iKτ

αm + 4i

⌋
≥

M∑
m=1

(
4iKτ

αm + 4i
− 1

)
= Kτ

M∑
m=1

1

αm/4i + 1
−M = K −M.

A lower bound of (K −M)+ follows by the non-negativity of the number of scheduled pulls.
Step B. The second step is to show that the remaining number of actions K̂ ≤ K − (K −M)+ = min (K,M)
can be scheduled using an additional time of

6

(∑M
m=1 αm

M
+ 2

4iK

M

)
.

Recall that Algorithm 2 divides the 4i pulls of each of the remaining actions into max (1, ⌊M/2K̂⌋)equal parts
and assign each part to an agent. Hence, each part will have number of pulls

4i

max (1, ⌊M/2K̂⌋)

(a)

≤ min (4i,
4K̂

M
4i) (7)

and there will be at most M such parts. The first ⌊M/2⌋ agents can be used for scheduling these parts in
a way such that each agent is assigned at most three parts. It follows that each agent m needs at most

3αm + 3min (4i, 4K̂
M 4i) time to perform the scheduled pulls. Thus the total number of rounds required to

schedule the remaining pulls can be bounded by

3 max
m∈{1,··· ,⌊M/2⌋}

αm + 3min (4i,
4K̂

M
4i)

(i)
= 3α⌊M/2⌋ + 3min (4i,

4K̂

M
4i)

(ii)

≤ 6

∑M
m=1 αm

M
+ 3min (4i,

4K̂

M
4i) (8)

where (i), (ii) follow from the fact that αm’s are ordered, i.e., α1 ≤ α2 ≤ · · · ≤ αM . Combining this with the
result from Step A, we get that the end time needed to send all actions in batch i.

8.2 Proof of Theorem 1

Theorem 1 Consider a distributed multi-armed bandit setting with K actions and M agents connected through
heterogeneous erasure channels with erasure probabilities {ϵi}Mi=1. If BatchSP2 is run with horizon T , then the
expected regret is,

E[RT] ≤ c

(∑
a:∆a>0

(log (KMT)

∆a
+

M log (MT)
M∑

m=1
1/(αm + log (KMT)

∆a
)

)
+

M∑
m=1

αm log (MT) + log (MT)

)

where αm = ⌈4 log T/ log (1/ϵm)⌉ − 1 is the number of repetitions at agent m, ∆a is the suboptimality gap for
action a, and c > 0 a constant.

The regret bound is reached by bounding the number of batches a suboptimal arm can survive as a function of
the suboptimality gap, conditioned on a good event that we specify later. This gives a bound on the maximum
sub-optimality gap at each batch which in turn gives a bound on the regret using the bound on the batch length
given in Lemma 1.

Let G be the event that for all agents m and for all times t, at least one instruction among the times t, t +
1, · · · , t + αm − 1 will not be erased. Hence, the event G means that for any agent m, we cannot have αm or

Multi-Agent Bandit Learning through Heterogeneous Action Erasure Channels

more consecutive erasures. This implies that, conditioned on G, when an action a is sent αm + 4i consecutive
times by the learner to agent m, each of the last 4i pulls will generate a reward from the distribution of action
a. We call these last 4i pulls, the effective pulls. The probability of the compliment of G can be bounded as

P[Gc]
(i)

≤
M∑

m=1

T∑
t=1

ϵm
αm

(ii)

≤
M∑

m=1

T∑
t=1

1

T 4

(iii)

≤ 1

MT
, (9)

where (i) follows by the union bound over all agents m and times t, (ii) uses αm = ⌈4 log T/ log (1/ϵm)⌉− 1, and
(iii) follows from M ≤ T .

Define an event G′
i as

G′
i =

{
|µ(j)

a − µa| ≤ 2

√
log (KMT)

2 · 4j
∀a ∈ Aj , j ∈ [i− 1]

}
,

where µ
(j)
a is the empirical mean calculated for action a at batch j, as defined in step 8 in Algorithm 1. By

Hoeffding’s inequality and the fact that rewards lie in [0, 1] almost surely, we have that P[G′
i|G] ≥ 1−0.25/(MT).

Consequently, events G and G′
i happening together have a probability

P[G′
i ∩G] ≥ (1− 0.25/(MT))2 ≥ 1− 2/(MT). (10)

We first bound the number of batches, a suboptimal arm can survive as a function of the suboptimality gap.
Conditioned on G∩G′

i+1 and the elimination criterion in Algorithm 1, a sub-optimal action a can survive getting

eliminated in batch i only if 4
√

log (KMT)
2·4i ≥ ∆a/2. This implies that a can be in Ai+1 only when

i ≤
⌈
log4

(
32 log (KMT)

∆2
a

)⌉
, (11)

i.e., whenever the batch number i is greater than the bound provided in equation 11, a ̸∈ Ai.

Using the result of Lemma 1, we know the number of sent instructions in each batch i is upper bounded as

MT (i) ≤ K(i)M · 4iτ + 6

M∑
m=1

αm + 12K(i)4i, (12)

where K(i) = |Ai| is the number of actions at the start of batch i and T (i) is the length of batch i. Conditioned
on the event G (we cannot have αm consecutive erasures for any agent m), the last action played by agent m in
batch i will be played at most αm times in batch i + 1 (due to potential erasures). This implies that the total
number of instructions, Ti, played by all agents due to instructions sent in batch i, can be bounded as

Ti ≤
M∑

m=1

(T (i) + αm) ≤ K(i)M · 4iτ + 7

M∑
m=1

αm + 12K(i)4i. (13)

We utilize the following proposition, restated and proved at the end of section 8.2, to bound the expected number
of times a certain action is played due to an instruction sent in batch i.

Proposition 1 Conditioned on (G∩G′
i,Ai), the expected number of times arm a is played due to an instruction

sent in batch i is the same for all a ∈ Ai. In particular, E[Tia|G ∩G′
i,Ai] = E[Tia′ |G ∩G′

i,Ai], ∀a, a′ ∈ Ai.

Conditioning on Ai in the previous proposition and in the following abbreviates conditioning on the event that
the random set of surving actions in batch i takes the value Ai.

Then, we have that

E[Tia|G ∩G′
i,Ai] =

E[Ti|G ∩G′
i,Ai]

K(i)
≤ M · 4iτ + 7

∑M
m=1 αm

K(i)
+ 12 · 4i ∀a ∈ Ai. (14)

Osama Hanna, Merve Karakas, Lin F. Yang, Christina Fragouli

Let R
(i)
T be the regret of batch i. The regret of the algorithm can be bounded as

E[RT] =

log (MT)∑
i=1

E[R(i)
T] ≤

log (MT)∑
i=1

(
E[R(i)

T |G ∩G′
i] +MT (1− P[G ∩G′

i])
)

(a)

≤
log (MT)∑

i=1

(E[E[R(i)
T |G ∩G′

i,Ai]] + 1) =

log (MT)∑
i=1

E[
∑
a

E[Tia|G ∩G′
i,Ai]∆a] + log (MT)

(b)

≤
log (MT)∑

i=1

(
E[
∑
a

(N
(i)
1 +N

(i)
2)E[1[a ∈ Ai]|G ∩G′

i]∆a]

+E[
∑
a

7

M∑
m=1

αm

K(i)
E[1[a ∈ Ai]|G ∩G′

i,Ai]∆a]

)
+ log (MT)

≤
log (MT)∑

i=1

∑
a

(N
(i)
1 +N

(i)
2)E[1[a ∈ Ai]|G ∩G′

i]∆a + E[7
M∑

m=1

αm] + log (MT)

≤
log (MT)∑

i=1

∑
a

(N
(i)
1 +N

(i)
2)E[1[a ∈ Ai]|G ∩G′

i]∆a + c′′ log (MT)

M∑
m=1

αm + log (MT), (15)

where (a) follows from law of total expectation and equation 10, (b) follows from equation 14 and we use

N
(i)
1 = M

M∑
m=1

1/(αm+4i)

and N
(i)
2 = 12 · 4i for these quantities that do not depend on Ai. We will bound each term

in equation 15 separately to get the final regret bound.

We start by bounding the effect of the first term in equation 15, N
(i)
1 = M

M∑
m=1

1/(αm+4i)

, on the final regret bound.

We have that

log (MT)∑
i=1

∑
a

N
(i)
1 E[1[a ∈ Ai]|G ∩G′

i]∆a =
∑
a

log (MT)∑
i=1

∆a
ME[1[a ∈ Ai]|G ∩G′

i]
M∑

m=1
1/(αm + 4i)

(a)

≤ c
∑

a:∆a>0

M log (MT)
M∑

m=1
1/(αm + log (KMT)

∆a
)

(16)

where c is a universal constant, and (a) follows from equation 11 and the bound being an increasing function of
i.

The effect of the second term in equation 15, N
(i)
2 = 12 · 4i,

∑
a

log (MT)∑
i=1

N
(i)
2 E[1[a ∈ Ai]|G ∩G′

i]∆a = 12
∑
a

⌈
log4

(
32 log (KMT)

∆2
a

)⌉∑
i=1

4i∆a

(a)

≤ c′
∑

a:∆a>0

log (KMT)

∆a
, (17)

where (a) follows from equation 11, and c′ is a universal constant. The final result follows by summing the
bounds in equation 16 and equation 17.

Proposition 1 Conditioned on (G∩G′
i,Ai), the expected number of times arm a is played due to an instruction

sent in batch i is the same for all a ∈ Ai. In particular, E[Tia|G ∩G′
i,Ai] = E[Tia′ |G ∩G′

i,Ai], ∀a, a′ ∈ Ai.

Proof. Recall that Tia is the number of times an agent plays arm a due to an instruction sent in batch i. We

represent the schedule by the set S = {{Smt}Mm=1}T
(i)

t=1 , where Smt is the action the learner sends to agent m
at time t. Let S(a ↔ a′) represents the schedule where actions a, a′ are exchanged in the schedule S, i.e.,
S(a ↔ a′)mt = a whenever Smt = a′, S(a ↔ a′)mt = a′ whenever Smt = a, otherwise S(a ↔ a′)mt = Smt. We

Multi-Agent Bandit Learning through Heterogeneous Action Erasure Channels

notice that conditioned on the schedule S in batch i, whether an action is played in slot t due to an instruction
sent in batch i is only a function of the erasures in batches i, i+ 1, ... Hence, we have that

E[Tia|G ∩G′
i,Ai] =

∑
S∈S

P[S|G ∩G′
i,Ai]E[Tia|G ∩G′

i,Ai, S] =
∑
S∈S

P[S|Ai]E[Tia|G,S]

(a)
=
∑
S∈S

1

|S|
E[Tia|G,S] =

∑
S∈S

1

|S|
E[Tia′ |G,S(a↔ a′)] =

∑
S∈S

1

|S|
E[Tia′ |G,S] = E[Tia′ |G ∩G′

i,Ai],

(18)

where S is the set of all (non-zero probability) possible schedules for batch i, and (a) follows since the random-
ization in Algorithm 2 makes all the schedules in S equally probable.

8.3 Proof of Theorem 2

Theorem 2 Consider the distributed multi-armed bandit setting with K actions and M agents connected through
heterogeneous erasure channels {ϵi}Mi=1. If BatchSP2 is run for horizon T , then the expected regret is

RT ≤ c

(
M

√
KT log (MT)∑M

m=1 1/(αm∆⋆ + log (KMT))
+

M∑
m=1

αm log (KMT)

)

where ∆⋆ is the value satisfying

∆⋆ =
c′K log (MT)

T
M∑

m=1
1/(αm + log (KMT)

∆⋆
)

,

which can be efficiently approximated using the bisection method, αm = ⌈4 log T/ log (1/ϵm)⌉ − 1 number of
repetitions and c, c′ > 0 constants.

Proof of Theorem 2. From equation 15, the expected regret can be bounded as

E[RT] ≤
log (MT)∑

i=1

∑
a

E[Tia|G ∩G′
i]∆a + log (MT)

≤ MT∆+

log (MT)∑
i=1

∑
a:∆a>∆

E[Tia|G ∩G′
i]∆a + log (MT)

(a)

≤ MT∆+

log (MT)∑
i=1

∑
a:∆a>∆

(N
(i)
1 +N

(i)
2)1[a ∈ Ai]∆a + c′′′ log (MT)

M∑
m=1

αm + log (MT)

(b)

≤ MT∆+ c
∑

a:∆a>∆

 M log (MT)
M∑

m=1
1/(αm + log (KMT)

∆a
)

+
log (KMT)

∆a

+ c′′′ log (MT)

M∑
m=1

αm + log (MT)

(c)

≤ MT∆+ c
∑

a:∆a>∆

2M log (MT)
M∑

m=1
1/(αm + log (KMT)

∆a
)

+ c′′′ log (MT)

M∑
m=1

αm + log (MT)

(d)
= MT∆+

c′KM log (MT)
M∑

m=1
1/(αm + log (KMT)

∆)

+ c′′′ log (MT)

M∑
m=1

αm + log (MT)

≤ 2max

TM∆,
c′KM log (MT)

M∑
m=1

1/(αm + log (KMT)
∆)

+ c′′′ log (MT)

M∑
m=1

αm + log (MT) ∀∆ > 0 (19)

Osama Hanna, Merve Karakas, Lin F. Yang, Christina Fragouli

where c, c′, c′′′ > 0 some constants. (a) follows from equation 14 where N
(i)
1 = M/(

∑M
m=1 1/(αm + 4i)) and

N
(i)
2 = 12 · 4i. (b) follows from directly substituting equation 16 and equation 17 for the terms; and (c) follows

from the fact that the first term is an increasing function of αm’s; therefore,

M log (MT)
M∑

m=1
1/(αm + log (KMT)

∆a
)

≥ M log (MT)
M∑

m=1
1/ log (KMT)

∆a

≥ log (KMT)

∆a
∀{αm}Mm=1 ≥ 0.

(d) follows from the term inside the summation being a decreasing function of ∆a.

We choose ∆ to be the value that minimizes the bound. Hence the optimal value ∆⋆ satisfies:

TM∆⋆ =
c′KM log (MT)

M∑
m=1

1/(αm + log (KMT)
∆⋆

)

(20)

Substituting equation 20 to the bound in equation 19, we get that

E[RT] ≤ 2M

√√√√√ c′KT log (MT)
M∑

m=1
1/(αm∆⋆ + log (KMT))

+ c′′′ log (MT)

M∑
m=1

αm + log (MT). (21)

	INTRODUCTION
	PROBLEM FORMULATION
	Multi-armed Bandits
	Multi-Agent Multi-Armed Bandits with Action Erasures

	PROPOSED ALGORITHM
	Connecting to Channels with Delays

	REGRET ANALYSIS
	EXPERIMENTS
	CONCLUSION
	LINEAR PROGRAM FORMULATION
	MISSING PROOFS
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Theorem 2

