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Abstract

Data preprocessing is a crucial part of any
machine learning pipeline, and it can have a
significant impact on both performance and
training efficiency. This is especially evident
when using deep neural networks for time se-
ries prediction and classification: real-world
time series data often exhibit irregularities
such as multi-modality, skewness and out-
liers, and the model performance can degrade
rapidly if these characteristics are not ad-
equately addressed. In this work, we pro-
pose the EDAIN (Extended Deep Adaptive
Input Normalization) layer, a novel adap-
tive neural layer that learns how to appropri-
ately normalize irregular time series data for
a given task in an end-to-end fashion, instead
of using a fixed normalization scheme. This
is achieved by optimizing its unknown pa-
rameters simultaneously with the deep neu-
ral network using back-propagation. Our ex-
periments, conducted using synthetic data, a
credit default prediction dataset, and a large-
scale limit order book benchmark dataset,
demonstrate the superior performance of the
EDAIN layer when compared to conventional
normalization methods and existing adaptive
time series preprocessing layers.
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1 INTRODUCTION

There are many steps required when applying deep
neural networks or, more generally, any machine learn-
ing model, to a problem. First, data should be gath-
ered, cleaned, and formatted into machine-readable
values. Then, these values need to be preprocessed
to facilitate learning. Next, features are designed from
the processed data, and the model architecture and
its hyperparameters are chosen. This is followed by
parameter optimisation and evaluation using suitable
metrics. These steps may be iterated several times.

A step that is often overlooked in the literature is pre-
processing (see, for example, Koval, 2018), which con-
sists in operations used to transform raw data in a
format that is suitable for further modeling, such as
detecting outliers, handling missing data and normal-
izing features. Applying appropriate preprocessing to
the data can have significant impact on both perfor-
mance and training efficiency (Cao et al., 2018; Nawi
et al., 2013; Passalis et al., 2020; Sola and Sevilla, 1997;
Tran et al., 2021). However, determining the most
suitable preprocessing method usually requires a sub-
stantial amount of time and relies on iterative training
and performance testing. Therefore, the main objec-
tive of this work is to propose a novel efficient au-
tomated data preprocessing method for optimising the
predictive performance of neural networks, with a fo-
cus on normalization of multivariate time series data.

1.1 Preprocessing multivariate time series

Let D =
{
X(i) ∈ Rd×T , i = 1, . . . , N

}
denote a

dataset containing N time series, where each time se-
ries X(i) ∈ Rd×T is composed of T d-dimensional fea-
ture vectors. The integers d and T refer to the fea-
ture and temporal dimensions of the data, respectively.



Extended Deep Adaptive Input Normalization for Preprocessing Time Series Data

Also, we use x
(i)
t ∈ Rd, t = 1, . . . , T to refer to the d

features observed at timestep t in the i-th time series.
Before feeding the data into a model such as a deep
neural network, it is common for practitioners to per-
form z-score normalization (see, for example, Koval,

2018) on x
(i)
t = (x

(i)
t,1, . . . , x

(i)
t,d) ∈ Rd, obtaining

x̃
(i)
t,k =

x
(i)
t,k − µk

σk
, k = 1, . . . , d,

where µk and σk denote the mean and standard de-
viation of the measurements from the k-th predictor
variable. Another commonly used method is min-max
scaling, where the observations for each predictor vari-
able are transformed to fall in the value range [0, 1]
(see, for example, Koval, 2018). Other common pre-
processing methods are winsorization (see, for exam-
ple, Nyitrai and Virág, 2019) and the Yeo-Johnson
power transform (see, for example, Yeo and Johnson,
2000). In this work, we refer to these conventional
methods as static preprocessing methods, as the trans-
formation parameters are fixed statistics that are com-
puted through a single sweep of the training data.
Most of these transformations only change the loca-
tion and scale of the observations, but real-world data
often contains additional irregularities such as skewed
distributions, outliers, extreme values, heavy tails and
multiple modes (Cao et al., 2023; Nawi et al., 2013),
which are not mitigated by transformations such as z-
score and min-max normalization. Employing static
normalization in such cases may lead to sub-optimal
results, as demonstrated in Passalis et al. (2020, 2021);
Tran et al. (2021) and in the experiments on real and
synthetic data in Section 4 of this work.

In contrast, better results are usually obtained by em-
ploying adaptive preprocessing methods (see, for ex-
ample Lubana et al., 2021; Passalis et al., 2020, 2021;
Tran et al., 2021), where the preprocessing is inte-
grated into the deep neural network by augmenting its
architecture with additional layers. Both the transfor-
mation parameters and the neural network model pa-
rameters are then jointly optimised in an end-to-end
fashion as part of the objective function of interest.
The main contribution of this this paper belongs to
this class of methods: we propose a novel adaptive nor-
malization approach, called EDAIN (Extended Deep
Adaptive Input Normalization), which can appropri-
ately handle irregularities in the input data, without
making any assumption on their distribution.

1.2 Contributions

The main contribution of our work is EDAIN, dis-
played in Figure 1, a neural layer that can be added
to any neural network architecture for preprocessing

multivariate time series. This method complements
the shift and scale layers proposed in DAIN (Passalis
et al., 2020, described in details in Section 2) with
an adaptive outlier mitigation sublayer and a power
transform sublayer, used to handle common irregu-
larities observed in real-world data, such as outliers,
heavy tails, extreme values and skewness.

Additionally, our EDAIN method can be implemented
in two versions, named global-aware and local-aware,
suited to unimodal and multi-modal data respec-
tively. Furthermore, we propose a computationally
efficient variation of EDAIN, trained via the Kullback-
Leibler divergence, named EDAIN-KL. Like EDAIN,
this method can normalize skewed data with outliers,
but in an unsupervised fashion, and can be used in
conjunction with non-neural-network models.

EDAIN is described in details in Section 3, after a dis-
cussion on related methods in Section 2. The proposed
methodology is extensively evaluated on synthetic and
real-world data in Section 4, followed by a discussion
on its performance and a conclusion. Also, an open-
source implementation of the EDAIN layer, along with
code for reproducing the experiments, is available in
the GitHub repository marcusGH/edain paper.

2 RELATED WORK

Several works consider adaptive normalization meth-
ods, but they all apply the normalization transforma-
tion to the outputs of the inner layers within the neu-
ral network, known as activations in the literature. A
well-known example of these transformations is batch
normalization (Ioffe and Szegedy, 2015), which applies
z-score normalization to the output of each inner layer,
but several alternatives and extensions exist (see, for
example, Huang et al., 2023; Lubana et al., 2021; Yu
and Spiliopoulos, 2023). To the best of our knowledge,
there are only three other methods where the deep
neural network is augmented by inserting the adap-
tive preprocessing layer as the first step, transforming
the data before it enters the network: the Deep Adap-
tive Input Normalization (DAIN) layer (Passalis et al.,
2020), the Robust Deep Adaptive Input Normalization
(RDAIN) layer (Passalis et al., 2021), and the Bilinear
Input Normalization (BIN) layer (Tran et al., 2021).

The DAIN layer normalizes each time series X(i) using
three sublayers: each time series is first shifted, then
scaled, and finally passed through a gating layer that
can suppress irrelevant features. The unknown param-
eters are the weight matrices Wa, Wb, Wc ∈ Rd×d,
and the bias term d ∈ Rd, and are used for the shift,
scale, and gating sublayer, respectively. The first two

https://github.com/marcusGH/edain_paper
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Figure 1: Architecture of the proposed EDAIN (Extended Deep Adaptive Input Normalization) layer. The
layout and color choices of the diagram are based on Figure 1 from Passalis et al. (2020).

layers together, perform the operation

x̃
(i)
t =

(
x
(i)
t −Waa

(i)
)
⊘Wbb

(i),

where x
(i)
t ∈ Rd is the input feature vector at timestep

t of time series i, ⊘ denotes element-wise division, and
a(i) ∈ Rd and b(i) ∈ Rd are summary statistics that
are computed for the i-th time series as follows:

a(i) =
1

T

T∑
t=1

x
(i)
t , b(i) =

√√√√ 1

T

T∑
t=1

(
x
(i)
t −Waa(i)

)2
.

(1)
In Equation (1), the power operations are applied
element-wise. The third sublayer, the gating layer,
performs the operation

˜̃x
(i)
t = x̃

(i)
t ⊙ S

(
Wcc

(i) + d
)
.

Here, ⊙ is the element-wise multiplication operator,
S : Rd → Rd denotes the logistic function applied
element-wise, and c(i) is the summary statistic

c(i) =
1

T

T∑
t=1

x̃
(i)
t .

The final output of the DAIN layer is thus

˜̃X(i) =
[
˜̃x
(i)
1 , . . . , ˜̃x

(i)
T

]
∈ Rd×T .

In the RDAIN layer proposed by Passalis et al. (2021),
a similar 3-stage normalization pipeline as that of the
DAIN layer is used, but a residual connection across
the shift and scale sublayers is also introduced. The
BIN layer (Tran et al., 2021) has two sets of linear shift
and scale sublayers that work similarly to the DAIN
layer, which are applied across columns and rows of
each time series X(i) ∈ Rd×T . The output of the BIN
layer is a trainable linear combination of the two.

In addition to the described adaptive preprocessing
methods, using a combination of static preprocessing
methods has been proposed. In particular, McCarter
proposes the Kernel Density Integral Transformation
(KDIT). In KDIT, the data distribution is estimated
via a Gaussian kernel density estimate with bandwidth
depending on a parameter α ∈ R+. The estimated
density is then used to construct an estimate of the
cumulative distribution function, which is used in turn
to standardise the data to the range [0, 1] (McCarter,
2023). For α → ∞, KDIT converges to min-max scal-
ing, whereas α → 0 corresponds to a quantile trans-
formation (McCarter, 2023).

In real world applications, data often present addi-
tional irregularities, such as outliers, extreme values,
heavy tails and skewness, which the aforementioned
adaptive preprocessing methods are not designed to
handle. Therefore, this work proposes EDAIN, a layer
which comprises two novel sublayers that can appro-
priately treat skewed and heavy-tailed data with out-
liers and extreme values, resulting in significant im-
provements in performance metrics on real and simu-
lated data. Also, the DAIN, RDAIN and BIN adap-
tive preprocessing methods are only primarily designed
to handle multi-modal and non-stationary time series,
which are common in financial forecasting tasks (Pas-
salis et al., 2020). They do this by making the shift
and scale parameters a parameterised function of each
X(i), allowing a transformation specific to each time
series data point, henceforth referred to as local-aware
preprocessing. However, these normalization schemes
do not necessarily preserve the relative ordering be-
tween time series data points, which can degrade per-
formance on unimodal datasets. As discussed in the
next section, we address this drawback by proposing
a novel global-aware version for our proposed EDAIN
layer, which preserves ordering by learning a mono-
tonic transformation. It must be remarked that the
EDAIN layer can also be fitted in local-aware fashion,
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to address multi-modality when present, providing ad-
ditional flexibility when modelling real-world data.

3 EXTENDED DEEP ADAPTIVE
INPUT NORMALIZATION

In this section, we describe in detail the novel EDAIN
preprocessing layer, which can be added to any deep
learning architecture for time series data. EDAIN
adaptively applies local transformations specific to
each time series, or global transformations across all
the observed time series X(i), i = 1, . . . , N in the
dataset D. These transformations are aimed at appro-
priately preprocessing the data, mitigating the effect
of skewness, outliers, extreme values and heavy-tailed
distributions. This section discusses in details the dif-
ferent sublayers of EDAIN, its global-aware and local-
aware versions, and training strategies via stochastic
gradient descent or Kullback-Leibler divergence mini-
mization.

An overview of the EDAIN layer’s architecture is
shown in Figure 1. Given some input time series

X(i) ∈ Rd×T , each feature vector x
(i)
t ∈ Rd is indepen-

dently transformed sequentially in four stages: an out-
lier mitigation operation h1 : Rd → Rd, a shift opera-
tion: h2 : Rd → Rd, a scale operation: h3 : Rd → Rd,
and a power transformation operation: h4 : Rd → Rd.

Outlier mitigation sublayer. In the literature, it
has been shown that an appropriate treatment of out-
liers and extreme values can increase predictive per-
formance (Yin and Liu, 2022). The two most common
ways of doing this are omission and winsorization (Ny-
itrai and Virág, 2019). The former corresponds to re-
moving the outliers from further analysis, whereas the
latter seeks to replace outliers with a censored value
corresponding to a given percentile of the observations.
In this work we propose the following smoothed win-
sorization operation obtained via the tanh(·) function:

x̆
(i)
t = β ⊙ tanh

{(
x
(i)
t − µ̂

)
⊘ β

}
+ µ̂, (2)

where the parameter β ∈ [βmin,∞)d controls the
range to which the measurements are restricted to,
and µ̂ ∈ Rd is the global mean of the data, consid-
ered as a fixed constant. In this work, we let βmin = 1.
Additionally, we consider a ratio of winsorization to
apply to each predictor variable, controlled by an un-
known parameter vector α ∈ [0, 1]d, combined with
the smoothed winsorization operator (2) via a residual
connection. This gives the following adaptive outlier

mitigation operation for an input time series x
(i)
t ∈ Rd:

h1

(
x
(i)
t

)
= α⊙ x̆

(i)
t + (1d −α)⊙ x

(i)
t ,

where 1d is a d-dimensional vector of ones. Both α and
β are considered as unknown parameters as part of the
full objective function optimised during training.

Shift and scale sublayers. The adaptive shift and
scale layer, combined, perform the operation

h3

{
h2

(
x
(i)
t

)}
= (x

(i)
t −m)⊘ s,

where the unknown parameters are m ∈ Rd and
s ∈ (0,∞)d. Note that the EDAIN scale and shift sub-
layers generalise z-score scaling, which does not treat
m and s as unknown parameters, but it sets them to
the mean and standard deviation instead:

m =
1

NT

N∑
i=1

T∑
t=1

x
(i)
t ,

and

s =

√√√√ 1

NT

N∑
i=1

T∑
t=1

(
x
(i)
t −m

)2
,

where the power operations are applied element-wise.

Power transform sublayer. Many real-world
datasets exhibit significant skewness, which is often
corrected using power transformations (Schroth and
Muma, 2021), such as the commonly used Box-Cox
transformation (Box and Cox, 1964). One of the main
limitations of the Box-Cox transformation is that it
is only valid for positive values. A more general al-
ternative which is more widely applicable is the Yeo-
Johnson (YJ) transform (Yeo and Johnson, 2000):

fλ
YJ(x) =


(x+1)λ−1

λ if λ ̸= 0, x ≥ 0,
log(x+ 1) if λ = 0, x ≥ 0,
(1−x)2−λ−1

λ−2 if λ ̸= 2, x < 0,

− log(1− x) if λ = 2, x < 0.

(3)

The transformation fλ
YJ only has one unknown param-

eter, λ ∈ R, and it can be applied to any x ∈ R, not
just positive values (Yeo and Johnson, 2000). The
power transform sublayer of EDAIN simply applies
the transformation in Equation (3) along each dimen-
sion of the input time series X(i). That is, for each
i = 1, . . . , N and t = 1, . . . , T , the sublayer outputs

h4

(
x
(i)
t

)
=
[
fλ1

YJ

(
x
(i)
t,1

)
, . . . , fλd

YJ

(
x
(i)
t,d

)]
,

where the unknown quantities to be optimised are the
power parameters λ = (λ1, . . . , λd) ∈ Rd.

3.1 Global- and local-aware normalization

For highly multi-modal and non-stationary time se-
ries data, Passalis et al. (2020, 2021) and Tran et al.
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Figure 2: Visual comparison of the local- and global-
aware versions of adaptive preprocessing schemes.

(2021) observed significant performance improvements
when using local-aware preprocessing methods, as
these allow forming a unimodal representation space
from predictor variables with multi-modal distribu-
tions. Therefore, we also propose a local-aware version
of the EDAIN layer in addition to the global-aware ver-
sion we presented earlier. In the local-aware version of
EDAIN, the shift and scale operations also depend on
a summary representation of the current time series
X(i) to be preprocessed:

h3

{
h2

(
x
(i)
t

)}
=
{
x
(i)
t −

(
m⊙ µ(i)

x

)}
⊘
(
s⊙ σ(i)

x

)
.

The summary representations µ
(i)
x ,σ

(i)
x ∈ Rd, are com-

puted through a reduction along the temporal dimen-
sion of each time series X(i) (cf. Figure 2):

µ(i)
x =

1

T

T∑
t=1

x
(i)
t , σ(i)

x =

√√√√ 1

T

T∑
t=1

(
x
(i)
t − µ

(i)
x

)2
, (4)

where the power operations are applied element-wise
in (4). The outlier mitigation and power transform
sublayers remain the same for the local-aware version,
except the µ̂ statistic in Equation (2) is no longer fixed,
but rather the mean of the input time series:

µ̂(i) =
1

T

T∑
t=1

x
(i)
t .

Order preservation. Adaptive local-aware prepro-
cessing methods work well on multi-modal data such
as financial forecasting datasets (Passalis et al., 2020,
2021; Tran et al., 2021). However, as we will experi-
mentally demonstrate in the next section, local-aware
preprocessing methods might perform worse than con-
ventional methods such as z-score normalization when
applied to unimodal data. This is because local-aware
methods are not order preserving, since the shift and

scale amount is different for each time series. In many
applications in which the features have a natural and
meaningful ordering, it would be desirable to have

x̃
(i)
t,k < x̃

(j)
t,k if x

(i)
t,k < x

(j)
t,k, (5)

for all i, j ∈ {1, . . . , N}, t = 1, . . . , T and k = 1, . . . , d,
where X̃(i) denotes the output of a transformation
with X(i) as input. This property does not necessar-
ily hold for the local-aware methods (DAIN, RDAIN,
BIN, and local-aware EDAIN). For unimodal features,
the qualitative interpretation of the predictor variables
might dictate that property (5) should be maintained
(for example, consider the case of credit scores for a
default prediction application, cf. Section 4.2).

As a solution, the proposed global-aware version of
the proposed EDAIN layer does not use any time
series specific summary statistics, which makes each
of the four sublayers monotonically non-decreasing.
This ensures that property (5) is maintained by the
global-aware EDAIN transformation, providing addi-
tional flexibility for applications on real world data
where ordering within features should be preserved.

3.2 Optimising the EDAIN layer

The output of the proposed EDAIN layer is obtained
by feeding the input time series X(i) through the four
sublayers in a feed-forward fashion, as shown in Fig-
ure 1. The output is then fed to the deep neural net-
work used for the task at hand. Letting W denote the
weights of the deep neural network model, the weights
of both the deep model and the EDAIN layer are si-
multanously optimised in an end-to-end manner using
stochastic gradient descent, with the update equation:

∆ (α,β,m, s,λ,W) =

− η

(
η1

∂L
∂α

, η1
∂L
∂β

, η2
∂L
∂m

, η3
∂L
∂s

, η4
∂L
∂λ

,
∂L
∂W

)
,

where η ∈ R+ is the base learning rate, whereas
η1, . . . , η4 ∈ R+ correspond to sublayer-specific correc-
tions to the global learning rate η. As Passalis et al.
(2020) observed when training their DAIN layer, the
gradients of the unknown parameters for the differ-
ent sublayers might have vastly different magnitudes,
which prevents a smooth convergence of the prepro-
cessing layer. Therefore, they proposed using separate
learning rates for the different sublayers. We there-
fore introduce corrections ηℓ, ℓ = {1, 2, 3, 4} as addi-
tional hyperparameters that modify the learning rates
for each of the four different EDAIN sublayers.

Furthermore, note that computing the fixed constant
µ̂ in the outlier mitigation sublayer (2) would re-
quire a sweep on the entire dataset before training the
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EDAIN-augmented neural network architecture, which
could be computationally extremely expensive. As a
solution to circumvent this issue, we propose to calcu-
late µ̂ iteratively during training, updating it using a
cumulative moving average estimate at each forward
pass of the sublayer. We provide more details on this
in Appendix A.

3.3 EDAIN-KL

In addition to the EDAIN layer, we also propose an-
other novel preprocessing method, named EDAIN-KL
(Extended Deep Adaptive Input Normalization, op-
timised with Kullback-Leibler divergence). This ap-
proach uses a similar neural layer architecture as the
EDAIN method, but modifies it to ensure the transfor-
mation is invertible. Its unknown parameters are then
optimised with an approach inspired by normalizing
flows (see, for example, Kobyzev et al., 2021).

The EDAIN-KL layer is used to transform a Gaus-
sian base distribution Z ∼ N (0, IdT ) via a composite
function gθ = h−1

1 ◦ h−1
2 ◦ h−1

3 ◦ h−1
4 comprised of the

inverses of the operations in the EDAIN sublayers, ap-
plied sequentially with parameter θ = (α,β,m, s,λ).
The parameter θ is chosen to minimize the KL-
divergence between the resulting distribution gθ(Z)
and the empirical distribution of the dataset D:

θ̂ = argmin
θ

KL {D || gθ(Z)} .

Note that we apply all the operations in reverse order,
compared to the EDAIN layer, because we use gθ to
transform a base distribution Z into a distribution that
resembles the training dataset D. To normalize the
dataset after fitting the EDAIN-KL layer, we apply

g−1

θ̂
= h4 ◦ h3 ◦ h2 ◦ h1

to each X(i) ∈ Rd×T , similarly to the EDAIN layer.
The main advantage of the EDAIN-KL approach over
standard EDAIN is that it allows training in an unsu-
pervised fashion, separate from the deep model. This
enables its usage for preprocessing data in a wider set
of tasks, including non-deep-neural-network models.
An exhaustive description of the EDAIN-KL method
is provided in Appendix B.

4 EXPERIMENTAL EVALUATION

For evaluating the proposed EDAIN layer we con-
sider a synthetic dataset, a large-scale default pre-
diction dataset, and a large-scale financial forecasting
dataset. We compare the two versions of the EDAIN
layer (global-aware and local-aware) and the EDAIN-
KL layer to the DAIN (Passalis et al., 2020) layer,
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Figure 3: Histogram across timesteps t = 1, . . . , T of
the d = 3 predictor variables from the synthetic data.

to the BIN (Tran et al., 2021) layer and to the KDIT
method. We also consider a statistical baseline consist-
ing of different combinations of z-score scaling, win-
sorization and a Yeo-Johnson power transformation.
For all experiments, we use a recurrent neural net-
work (RNN) model composed of gated recurrent unit
(GRU) layers, followed by a classifier head with fully
connected layers. Categorical features, when present,
are passed through an embedding layer, whose out-
put is combined with the output of the GRU layers
and then fed to the classifier head. Full details on the
model architectures, optimization procedures, includ-
ing learning rates and number of epochs, can be found
in Appendix C and in the code repository associated
with this work.

4.1 Synthetic Datasets

Before considering real-world data, we evaluate our
method on synthetic data, where we have full control
over the data generating process. To do this, we de-
velop a synthetic time series data generation algorithm
which allows specifying arbitrary unnormalized prob-
ability density functions (PDFs) for each of the d pre-
dictor variables. It then generates N time series of the
form X(i) ∈ Rd×T , along with N binary response vari-
ables y(i) ∈ {0, 1}. We present a detailed description
of the algorithm in Appendix D.

For our experiments, we generated ND = 100 datasets,
each with N = 50 000 time series of length T = 10 and
dimensionality d = 3. The three predictor variables
were configured to be distributed as follows:

f1(x) = 10 · ΦN {10 (x+ 4)} · pN (x+ 4)

+ I(8,9.5)(x) · ex−8/10, (6)

f2(x) =

{
20 · pN (x− 20), if x > π,
ex/6 · {10 sin(x) + 10} , if x ≤ π,

(7)

f3(x) = 2 · ΦN {−4(x− 4)} · pN (x− 4), (8)

where pN (·) and ΦN (·) denote the PDF and cumula-
tive distribution function (CDF) of the standard nor-
mal distribution, and IA(·) is the indicator function
on the set A. Samples from the dataset are visualised
in Figure 3. We train and evaluate a RNN model
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with the architecture described earlier on each of the
ND datasets using a 80%-20% train-validation split.
Our results are presented in Table 1, where the binary
cross-entropy (BCE) loss and the accuracy on the val-
idation set are used as evaluation metrics.

From our experiments on the synthetic datasets, we
observe that the model performance is more unsta-
ble when no preprocessing is applied, as seen from
the increased variance in Table 1. We also observe
that z-score normalization only gives minor perfor-
mance improvements when compared to no prepro-
cessing, aside from reducing the variance. As we have
perfect information about the underlying data gen-
eration mechanism from Equations (6), (7) and (8),
we also compared our methods to what we refer to
as CDF inversion, where each observation is trans-
formed by the CDF of its corresponding distribution,
and then transformed via Φ−1

N (·), giving predictor vari-
ables with standard normal distributions. We also
apply this method to the real-world datasets in Sec-
tion 4.2 and Section 4.3, but since the true PDFs are
unknown in those settings, we estimate the CDFs us-
ing quantiles from the distribution of the training data.
The CDF inversion method resembles KDIT for low α,
since KDIT becomes a quantile transformation in the
limiting case α → 0 (McCarter, 2023). The main dif-
ference is that the KDIT method does not involve the
Gaussianization step, implying that the preprocessing
matches the data generation mechanism, representing
a gold-standard for this example. As discussed in more
details in Appendix D, the synthetic responses are gen-
erated from a linear combination of uniform random
variables, so the KDIT gives the model a stronger sig-
nal than that of the CDF inversion method. Out of all
the methods not exploiting the mechanics of the un-
derlying data generation mechanism, the global-aware
version of EDAIN demonstrates superior performance.
It also almost performs as well as CDF inversion, which
is able to perfectly normalize each predictor variable
via its data generation mechanism. Finally, we observe
that the local-aware methods perform even worse than
no preprocessing: this might be due to the ordering not
being preserved, as discussed in Section 3.1.

4.2 Default Prediction Dataset

The first real-world dataset we consider is the pub-
licly available default prediction dataset published by
American Express (Howard et al., 2022), which con-
tains data from N = 458 913 credit card customers.
For each customer, a vector of d = 188 aggregated
profile features has been recorded at T = 13 different
credit card statement dates, producing a multivariate
time series of the form X(i) ∈ Rd×T , i = 1, 2, . . . , N .
Given X(i), the task is to predict a binary label

Preprocessing method BCE loss Binary accuracy (%)

No preprocessing 0.1900± 0.0036 0.9168± 0.0017
z-score 0.1871± 0.0011 0.9176± 0.0007
z-score + YJ 0.1789± 0.0009 0.9211± 0.0006
Winsorize + z-score 0.1876± 0.0010 0.9172± 0.0006
Winsorize + z-score + YJ 0.1788± 0.0009 0.9211± 0.0006
CDF inversion 0.1627± 0.0009 0.9289± 0.0006
BIN 0.2191± 0.0010 0.9036± 0.0006
DAIN 0.2153± 0.0015 0.9048± 0.0008
EDAIN (local-ware) 0.2099± 0.0010 0.9071± 0.0006
EDAIN (global-aware) 0.1636± 0.0009 0.9283± 0.0005
EDAIN-KL 0.1760± 0.0009 0.9224± 0.0006
KDIT (α = 0.1) 0.1532± 0.0011 0.9329± 0.0006

Table 1: Experimental results on synthetic data, with
95% normal confidence intervals µ ± 1.96σ/

√
K cal-

culated across K = 100 datasets. The gold-standard
CDF-based transformations are underlined.

Preprocessing method BCE loss AMEX metric

No preprocessing 0.3242± 0.0066 0.6430± 0.0087
z-score 0.2213± 0.0017 0.7872± 0.0030
Winsorize + z-score 0.2217± 0.0018 0.7867± 0.0025
z-score + YJ 0.2224± 0.0014 0.7846± 0.0022
Winsorize + z-score + YJ 0.2926± 0.1229 0.6321± 0.2679
CDF inversion 0.2215± 0.0018 0.7861± 0.0032
EDAIN-KL 0.2218± 0.0018 0.7858± 0.0027
EDAIN (local-aware) 0.2245± 0.0015 0.7813± 0.0025
EDAIN (global-aware) 0.2199± 0.0015 0.7890± 0.0035
DAIN 0.2224± 0.0016 0.7847± 0.0024
BIN 0.2237± 0.0017 0.7829± 0.0029
KDIT (α = 1) 0.2258± 0.0014 0.7791± 0.0024

Table 2: Experimental results on the default predic-
tion dataset, with 95% normal asymptotic confidence
intervals µ±1.96σ/

√
K calculated across K = 5 folds.

y(i) ∈ {0, 1} indicating whether the i-th customer de-
faulted at any point within 18 months after the last
observed data point in the time series. A default event
is defined as not paying back the credit card balance
amount within 120 days after the latest statement date
(Howard et al., 2022). Out of the d = 188 features,
only the 177 numerical variables are preprocessed.

To evaluate the different preprocessing methods, we
perform 5-fold cross validation, which produces eval-
uation metrics for five different 20% validation splits.
The evaluation metrics we consider are the validation
BCE loss and a metric that was proposed by Howard
et al. (2022) for use with this dataset, and we refer
to it as the Amex metric. This metric is calculated
as M = 0.5 · (G + D), where D is the default rate
captured at 4% (corresponding to the proportion of
positive labels captured within the highest-ranked 4%
of the model predictions) and G is the normalized Gini
coefficient (see Appendix E and, for example, Lerman
and Yitzhaki, 1989).

Our results are reported in Table 2. From the table, it
can be inferred that neglecting the preprocessing step
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Figure 4: BCE cross-validation loss across different
folds in the Amex default prediction dataset.

deteriorates the performance significantly. Moreover,
we observe that the local-aware methods (local-aware
EDAIN, BIN, and DAIN) all perform worse than z-
score normalization. This might be because the data
in the dafault prediction dataset is mostly distributed
around one central mode, and the local-aware methods
discard this information in favour of forming a com-
mon representation space. Another possible reason is
that the local-aware methods do not preserve the rel-
ative ordering between data points X(i) as per Equa-
tion (5), which might be detrimental for these types of
datasets. As discussed in the previous section, predic-
tor variables such as credit scores may be present in the
dataset, which should only be preprocessed via mono-
tonic transformations. From the results presented in
Table 2, we can also conclude that the proposed global-
aware version of the EDAIN layer shows superior av-
erage performance when compared to all alternative
preprocessing methods. Additionally, it must be re-
marked that most of the variance in the methods’ per-
formance arise from the folds themselves, as seen in
Figure 4, and the global-aware EDAIN method con-
sistently shows superior performance across all cross-
validation folds when compared to the other methods.
This was further confirmed via a paired sign test be-
tween EDAIN and BIN (the second best performing
method), which returned p-value 0.015, indicating a
significant difference in the performance of the two
preprocessing methods.

4.3 Financial Forecasting Dataset

For evaluating the proposed methods, we also con-
sidered a limit order book (LOB) time series dataset
(FI-2010 LOB Ntakaris et al., 2018), used as a bench-
mark dataset in Passalis et al. (2020) and Tran et al.

Preprocessing method Cohen’s κ Macro-F1-score

No preprocessing 0.0035± 0.0016 0.2859± 0.0076
z-score 0.2777± 0.0185 0.5052± 0.0137
Winsorize + z-score 0.2928± 0.0205 0.5166± 0.0168
CDF inversion 0.3618± 0.0199 0.5798± 0.0124
BIN 0.3670± 0.0213 0.5889± 0.0160
DAIN 0.3588± 0.0169 0.5776± 0.0114
EDAIN (local-aware) 0.3836± 0.0185 0.5946± 0.0144
EDAIN (global-aware) 0.2820± 0.0235 0.5111± 0.0216
EDAIN-KL 0.2870± 0.0214 0.5104± 0.0173
KDIT (α = 0.1) 0.2974± 0.0225 0.5260± 0.0170

Table 3: Experimental results on the FI-2010 LOB
dataset, with 95% normal asymptotic confidence inter-
vals µ± 1.96σ/

√
K calculated across K = 9 anchored

folds.

(2021). The data was collected across 10 business days
in June 2010 from five Finnish companies (Ntakaris
et al., 2018), and it was cleaned and features were ex-
tracted based on the pipeline of Kercheval and Zhang
(2015). This resulted in N = 453 975 vectors of dimen-
sionality d = 144. The task is predicting whether the
mid price will increase, decrease or remain stationary
with a prediction horizon ofH = 10 timesteps, where a
stock is labelled as stationary if the mid price changes
by less than 0.01%. More details on the FI-2010 bench-
mark dataset can be found in Ntakaris et al. (2018).

For training, we use the anchored cross-validation
scheme of Ntakaris et al. (2018). We sequentially in-
crease the size of the training set, starting with a single
day and extending it to nine days, while reserving the
subsequent day for evaluation in each iteration, ob-
taining nine different evaluation folds. For evaluating
the model performance, we look at the Cohen’s κ (Art-
stein and Poesio, 2008) and macro-F1 score, obtained
by averaging class-specific F1 scores across the three
possible outcomes (increase, decrease or stationary).

We can draw several conclusions from the results re-
ported in Table 3. Firstly, employing some form of
preprocessing is essential, as not applying any prepro-
cessing gives κ values close to 0, which is what is ex-
pected to occur by random guessing. Secondly, apply-
ing a local-aware normalization scheme (local-aware
EDAIN, BIN and DAIN) greatly improves perfor-
mance when compared to conventional preprocessing
methods such as z-score scaling. Our third observa-
tion is that the proposed local-aware EDAIN method
outperforms both BIN and DAIN on average. Finally,
we note that most of the variability in the evaluation
metrics arises from the folds themselves, similarly to
the default prediction example (cf. Figure 4). Again,
this was further assessed via a paired sign test between
EDAIN and the second best performing method, re-
sulting in a p-value 0.00097, which confirms the signif-
icance of our results.
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Preprocessing method BCE loss AMEX metric

z-score 0.2214± 0.0018 0.7873± 0.0029
scale 0.2214± 0.0016 0.7863± 0.0029
shift 0.2213± 0.0016 0.7871± 0.0035
shift+scale 0.2212± 0.0018 0.7872± 0.0035
shift+scale+PT 0.2207± 0.0016 0.7885± 0.0026
OM+shift+scale 0.2203± 0.0015 0.7884± 0.0031
OM+shift+scale+PT 0.2199± 0.0015 0.7889± 0.0031

Table 4: Ablation study on the default prediction,
with 95% normal asymptotic confidence intervals µ±
1.96σ/

√
K calculated across K = 5 folds. In all but

the first row, the global-aware EDAIN layer is used
with the corresponding subset of its sublayers enabled.

4.4 Ablation Study

To identify the effect of each of the four sublayers
on the final predictive performance, we conducted an
ablation study. The results are reported in Table 4,
where OM and PT refer to the outlier mitigation and
power transform sublayers, respectively. These ex-
periments were conducted on the default prediction
dataset using the same model architecture and evalu-
ation procedure as described in Section 4.2. We ob-
serve that just using adaptive shift and scale sublay-
ers provides marginal gains over the z-score scaling
baseline. Meanwhile, introducing either the adaptive
power transform or the outlier mitigation sublayers re-
duces the loss to a greater extent, with the outlier mit-
igation sublayer proving most effective.

5 CONCLUSION

In this work, we proposed EDAIN, an adaptive data
preprocessing layer which can be used to augment any
deep neural network architecture that takes multivari-
ate time series as input. EDAIN has four adaptive
sublayers (outlier mitigation, shift, scale, and power
transform). It also has two versions (local-aware and
global-aware), which apply local or global transforma-
tions to each time series. Also, we proposed a compu-
tationally efficient variant of EDAIN, optimised via the
Kullback-Leibler divergence, named EDAIN-KL. The
EDAIN layer’s ability to increase the predictive per-
formance of the deep neural network was evaluated on
a synthetic dataset, a default prediction dataset, and
a financial forecasting dataset. On all datasets consid-
ered, either the local-aware or global-aware version of
the proposed EDAIN layer consistently demonstrated
superior performance.

In Section 4.3, we observed that the local-aware pre-
processing methods gave significantly better perfor-
mance than the global-aware version of EDAIN and z-
score normalization. However, in Section 4.1 and Sec-

tion 4.2 the opposite is observed, with the global-aware
version of EDAIN demonstrating superior performance
and the local-aware methods being outperformed by
z-score normalization. We hypothesize these differ-
ences occur because local-aware methods do not pre-
serve the relative ordering between observations, while
the global-aware EDAIN method does. In the finan-
cial forecasting dataset, which is highly multi-modal,
it appears that the observations’ feature values relative
to their mode are more important than their absolute
ordering. Such considerations should be taken into
account when deciding what adaptive preprocessing
method is most suitable for application on new data.

There are several directions for future work. Passalis
et al. (2021) observed that the performance improve-
ments from DAIN differed greatly between different
deep neural network architectures. Therefore, the ef-
fectiveness of EDAIN with other architectures could
be further explored as only GRU-based RNNs were
considered in this work. Additionally, with the pro-
posed EDAIN method, one has to manually decide
whether to apply local-aware or global-aware prepro-
cessing. This drawback could be eliminated by extend-
ing the proposed neural layer to apply both schemes
to each feature and adaptively learning which version
is most suitable. Another common irregularity in real-
world data is missing values (Nawi et al., 2013; Cao
et al., 2018). A possible direction would be to extend
EDAIN with an adaptive method for treating missing
values that makes minimal assumptions on the data
generation mechanism (for example, Cao et al., 2018).
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Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.

Yes: a clear description of the proposed neu-
ral layer is provided in Section 3, and the
setting in which it is to be used is described
in Section 2.

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
Not applicable: the proposed EDAIN and
EDAIN-KL methods are not algorithms, but
rather neural layers.

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries.

Yes: this is linked at the end of Section 1.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results.

Not applicable.

(b) Complete proofs of all theoretical results.

Not applicable.

(c) Clear explanations of any assumptions.

Not applicable.

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL).

Yes: the code, along with instructions on
how to acquire the data and reproduce the
results, is provided in the code repository hy-
perlinked at the end of Section 1.

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen).

Yes: these details are provided in Ap-
pendix C.

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to

the random seed after running experiments
multiple times).

Yes: a clear description of the confidence in-
tervals presented in Tables 1, 2 and 3 are
given in the captions.

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider).

Yes: this is described in Appendix C.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets.

Yes: the existing assets used (DAIN, BIN,
default prediction dataset, and FI-2010 LOB
dataset) are all cited when introduced.

(b) The license information of the assets, if ap-
plicable.

Yes: license information about the assets
used (datasets for experimental evaluation) is
provided in the code repository hyperlinked
at the end of Section 1.

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable.

Yes: the new assets (implementations of
EDAIN, EDAIN-KL, and the synthetic data
generation algorithm) is contained in the
code repository hyperlinked at the start of
Section 1.

(d) Information about consent from data
providers/curators.

Yes: additional consent from data providers
is reported in the code repository hyperlinked
at the end of Section 1.

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content.

Not applicable.

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots.

Not applicable.

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable.

Not applicable.

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation.

Not applicable.
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A MEAN ESTIMATION IN THE OUTLIER MITIGATION LAYER

The µ̂ ∈ Rd vector in Equation (2) is an estimate of the mean of the data, and it is used to ensure the smoothed
winsorization operation is centered. When using the local-aware version of the EDAIN layer, it is the mean of
the input time series data point:

µ̂(i) =
1

T

T∑
t=1

x
(i)
t .

In the global-aware version of EDAIN, we consider µ̂ ∈ Rd a fixed quantity, estimating the global mean of the
data. As mentioned in the main paper, the µ̂ estimate is iteratively computed during training using a cumulative
moving average estimate at each forward pass of the sublayer. To do this, we keep track of the current estimated
average at forward pass n = 1, 2, 3, . . . , denoted µ̂(n), and when we process an input time series X(i), we apply
the update:

µ̂(n+1) =
nT · µ̂(n) +

∑T
t=1 x

(i)
t

(n+ 1)T
.

We also initialise µ̂(0) = 0.

B EDAIN-KL

The EDAIN-KL layer has a very similar architecture to the EDAIN layer (cf. Section 3 in the main paper),
but the unknown parameters are learned via a different optimization procedure. Unlike the EDAIN layer, the
EDAIN-KL layer is not attached to the deep neural network during training, but rather training in isolation
before training the neural network. This is done by establishing an invertible mapping to transform a standard
normal distribution into a distribution that resembles that of our training dataset. Then, after the EDAIN-KL
weights have been optimized, we use the layer in reverse to normalize the time series from the training dataset
before passing them to the neural network.

B.1 Architecture

Aside from the outlier mitigation sublayer, the EDAIN-KL layer has an identical architecture to the global-
aware EDAIN layer. The outlier mitigation transformation has been simplified to ensure its inverse is analytic.
Additionally, the layer no longer supports local-aware mode, as this would make the inverse intractable. The
EDAIN-KL transformations are:

(outlier mitigation) h1

(
x
(i)
t

)
= β ⊙ tanh

{
(x

(i)
t − µ̂)⊘ β

}
+ µ̂ (9)

(shift) h2

(
x
(i)
t

)
= x

(i)
t −m (10)

(scale) h3

(
x
(i)
t

)
= x

(i)
t ⊘ s (11)

(power transform) h4

(
x
(i)
t

)
=
[
fλ1

YJ

(
x
(i)
t,1

)
, · · · , fλd

YJ

(
x
(i)
t,d

)]
, (12)

where fλi

YJ(·) is defined in the main paper in Equation (3).
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B.2 Optimisation through Kullback-Leibler divergence

The optimisation approach used to train the EDAIN-KL method is inspired by normalizing flows (see, for
example, Kobyzev et al., 2021). Before describing the approach, we provide a brief overview of related notation
and some background on the concept behind normalizing flows. After this, we describe how the EDAIN-KL layer
itself can be treated as an invertible bijector to fit into the normalizing flow framework. In doing so, we derive
analytic and differentiable expressions for certain terms related to the EDAIN-KL layer.

B.2.1 Brief background on normalizing flow

The idea behind normalizing flows is taking a simple random variable, such as a standard Gaussian, and trans-
forming it into a more complicated distribution, for example, one that resembles the distribution of a given
real-world dataset. Consider a random variable Z ∈ Rd with a known and analytic expression for its PDF
pz : Rd → R. We refer to Z as the base distribution. We then define a parametrised invertible function
gθ : Rd → Rd, also known as a bijector, and use this to transform the base distribution into a new probability
distribution: Y = gθ(Z). By increasing the complexity of the bijector gθ (for example, by using a deep neural
network), the transformed distribution Y can grow arbitrarily complex as well. The PDF of the transformed
distribution can then be computed using the change of variable formula (Kobyzev et al., 2021), where

pY(y) = pZ(g
−1
θ (y)) · |detJY→Z (y)| = pZ(g

−1
θ (y)) ·

∣∣detJZ→Y

(
g−1
θ (y)

)∣∣−1
, (13)

and where JZ→Y is the Jacobian matrix for the forward mapping gθ : z 7→ y. Taking logs on both sides of
Equation (13), it follows that

log pY(y) = log pZ(g
−1
θ (y))− log

∣∣detJZ→Y

(
g−1
θ (y)

)∣∣ . (14)

One common application of normalizing flows is density estimation (Kobyzev et al., 2021). Given a dataset
D = {y(i)}Ni=1 with samples from some unknown, complicated distribution, we want to estimate its PDF. This
can be done with likelihood-based estimation, where we assume the data points y(1),y(2), . . . ,y(N) come from,
say, the parametrised distribution Y = gθ(Z) and we optimise θ to maximise the data log-likelihood,

log p(D|θ) =
N∑
i=1

log pY(y(i)|θ) (14)
=

N∑
i=1

log pZ

(
g−1
θ

(
y(i)
))

− log
∣∣∣detJZ→Y

(
g−1
θ

(
y(i)
))∣∣∣ . (15)

It can be shown that this is equivalent to minimising the KL-divergence between the empirical distribution D
and the transformed distribution Y = gθ(Z) (see, for example, Kobyzev et al., 2021):

argmax
θ

log p(D|θ) = argmax
θ

N∑
i=1

log pY

(
y(i)
∣∣θ) = argmin

θ
KL {D || gθ(Z)} .

When training a normalizing flow model, we want to find the parameter values θ that minimize the above KL-
divergence. This is done using back-propagation, where the criterion L is set to be the negation of Equation (15).
That is, the loss becomes the negative log likelihood of a batch of samples from the training dataset. To perform
optimisation with this criterion, we need to compute all the terms in Equation (15), and this expression needs to
be differentiable because the back-propagation algorithm uses the gradient of the loss with respect to the input
data. We therefore need to find

(i) an analytic and differentiable expression for the inverse transformation g−1
θ (·),

(ii) an analytic and differentiable expression for the PDF of the base distribution pZ(·), and

(iii) an analytic and differentiable expression for the log determinant of the Jacobian matrix for gθ, that is,
log |detJZ→Y|.

We will derive these three components for our EDAIN-KL layer in the next section, where we extensively use
the following proposition (Kobyzev et al., 2021, see, for example,):
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Proposition B.1. Let g1, . . . ,gn : Rd → Rd all be bijective functions, and consider the composition of these
functions, g = gn ◦ gn−1 · · · ◦ g1. Then, g is a bijective function with inverse

g−1 = g−1
1 ◦ · · · ◦ g−1

n−1 ◦ g−1
n ,

and the log of the absolute value of the determinant of the Jacobian is given by

log
∣∣detJg−1(·)

∣∣ = N∑
i=1

log
∣∣∣detJg−1

i
(·)
∣∣∣ .

B.2.2 Application to EDAIN-KL

Like with the EDAIN layer, we want to compose the outlier mitigation, shift, scale and power transform trans-
formations into one operation, which we do by defining

gθ = h−1
1 ◦ h−1

2 ◦ h−1
3 ◦ h−1

4 , (16)

where θ = (β,m, s,λ) are the unknown parameters and h1, . . . ,h4 are defined in Equations (9), (10), (11) and
(12), respectively. Notice how we apply all the operations in reverse order, compared to the EDAIN layer. This
is because we will use gθ to transform our base distribution Z into a distribution that resembles the training
dataset, D, not the other way around. Then, to normalize the dataset after fitting the EDAIN-KL layer, we
apply

g−1
θ = h4 ◦ h3 ◦ h2 ◦ h1 (17)

to each time series data point, similar to the EDAIN layer. It can be shown that all the transformations defined
in Equations (9), (10), (11) and (12) are invertible, of which a proof is given in the next subsection. Using Lemma
B.1, it thus follows that gθ, as defined in Equation (16), is bijective and that its inverse is given by Equation (17).
Since we already have analytic and differentiable expressions for h1, h2, h3 and h4 from Equations (9), (10),
(11) and (12), it follows that g−1

θ , as defined in Equation (17), is an analytic and differentiable expression, so
part (i) is satisfied.

We now move onto deciding what our base distribution should be. As we validated experimentally in Section 4.1 of
the main paper, Gaussianizing the input data could increase the performance of deep neural networks (depending
on the data generating process). Therefore, we let the base distribution be the standard multivariate Gaussian
distribution

Z ∼ N (0d, Id),

whose PDF pZ(·) has an analytic and differentiable expression, so part (ii) is satisfied.

In the next subsection, we will derive part (iii): an analytic and differentiable expression for the log of the
determinant of the Jacobian matrix of gθ, log |detJZ→Y|. Once that is done, parts (i), (ii) and (iii) are satisfied,
so θ can be optimised using back-propagation using the negation of Equation (15) as the objective. In other
words, we can optimise θ to maximise the likelihood of the training data under the assumption that it comes
from the distribution Y = gθ(Z). This is desirable, as if we can achieve a high data likelihood, the samples
D = {y(i)}i=1,2,...,N will more closely resemble a standard normal distribution after being transformed by g−1

θ .
Also recall that multivariate time series data are considered in this work, so the “y”-samples will be of the form
X(i) ∈ Rd×T .

B.2.3 Derivation of the inverse log determinant of the Jacobian

Recall that the EDAIN-KL architecture is a bijector composed of four other bijective functions. Using the result
in Equation (B.1), we get

log |detJZ→Y(·)| =
4∑

i=1

log
∣∣∣detJh−1

i
(·)
∣∣∣ .

Considering the transformations in Equations (9), (10), (11) and (12), we notice that all the transformations

happen element-wise, so for i ∈ {1, 2, 3, 4}, we have
[
∂h−1

i (x)

∂xk

]
j
= 0 for k ̸= j. Therefore, the Jacobians are
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diagonal matrices, implying that the determinant is the product of the diagonal entries, giving

log |detJZ→Y(x)| =
4∑

i=1

log

∣∣∣∣∣∣
d∏

j=1

[
∂h−1

i (x)

∂xj

]
j

∣∣∣∣∣∣ =
4∑

i=1

d∑
j=1

log

∣∣∣∣∣∣
∂h−1

i

(
xj ; θ

(i)
j

)
∂xj

∣∣∣∣∣∣ , (18)

where in the last step we used the fact that h1, h2, h3 and h4 are applied element-wise to introduce the notation

hi(xj ; θ
(i)
j ). This means, applying hi to some vector where the jth element is xj , and the corresponding jth

transformation parameter takes the value θ
(i)
j . For example, for the scale function h3(x) = x ⊘ s, we have

h3(xj ;λj) =
xj

sj
. From Equation (18), we know that we only need to derive the derivatives for the element-wise

inverses, which we will now do for each of the four transformations, also demonstrating that each transformation
is bijective.

Shift. We first consider h2(xj ;mj) = xj −mj . Its inverse is h−1
2 (zj ;mj) = zj +mj , and it follows that

log

∣∣∣∣∂h−1
2 (zj ;mj)

∂zj

∣∣∣∣ = log 1 = 0.

Scale. We now consider h3(xj ; sj) =
xj

sj
, whose inverse is h−1

3 (xj ; sj) = zjsj . It follows that

log

∣∣∣∣∂h−1
3 (zj ; sj)

∂zj

∣∣∣∣ = log |sj | .

Outlier mitigation. We now consider h1(xj ;βj) = βj tanh
{

(xj−µ̂j)
βj

}
+ µ̂j . Its inverse is

h−1
1 (zj ;βj) = β tanh−1

{
zj − µ̂j

βj

}
+ µ̂j .

It follows that

log

∣∣∣∣∂h−1
1 (zj ;βj)

∂zj

∣∣∣∣ = log

∣∣∣∣∣∣∣
1

1−
(

zj−µ̂j

βj

)2
∣∣∣∣∣∣∣ = − log

∣∣∣∣∣1−
(
zj − µ̂j

βj

)2
∣∣∣∣∣ .

Power transform. By considering Equation (12), it can be shown that for fixed λ, negative inputs are always
mapped to negative values and vice versa, which makes the Yeo-Johnson transformation invertible. Additionally,
in h4(·) the Yeo-Johnson transformation is applied element-wise, so we get

h−1
4 (z) =

[[
fλ1

YJ

]−1
(
z1

)
,
[
fλ2

YJ

]−1
(
z2

)
, · · · ,

[
fλd

YJ

]−1
(
zd

)]
,

where it can be shown that the inverse Yeo-Johnson transformation for a single element is given by

[
fλ
YJ

]−1
(
z

)
=


(zλ+ 1)1/λ − 1, if λ ̸= 0, z ≥ 0;
ez − 1, if λ = 0, z ≥ 0;

1− {1− z(2− λ)}1/(2−λ)
, if λ ̸= 2, z < 0;

1− e−z, if λ = 2, z < 0.

The derivative with respect to z then becomes

∂
[
fλ
YJ

]−1
(z)

∂z
=


(zλ+ 1)(1−λ)/λ, if λ ̸= 0, z ≥ 0;
ez, if λ = 0, z ≥ 0;

{1− z(2− λ)}(λ−1)/(2−λ)
, if λ ̸= 2, z < 0;

e−z, if λ = 2, z < 0.
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It follows that

log

∣∣∣∣∣∂
[
fλ
YJ

]−1
(z)

∂z

∣∣∣∣∣ =


1−λ
λ log(zλ+ 1), if λ ̸= 0, z ≥ 0;

z, if λ = 0, z ≥ 0;
λ−1
2−λ log {1− z(2− λ)} , if λ ̸= 2, z < 0;

−z, if λ = 2, z < 0,

which we use as the expression for log
∣∣∣∂h−1

4 (zj ;λj)
∂zj

∣∣∣ for z = z1, . . . , zd.

Combining these expressions, we get an analytical and differentiable form for log |detJZ→Y(x)|, as required.

C EXPERIMENTAL EVALUATION DETAILS ON MODELS AND TRAINING

In this section, we provide details on the specific RNN model architectures used for evaluation in Section 4 of
the main paper. We then cover the optimization procedures used for the three datasets, including details such
as number of training epochs, learning rates and choice of optimizers. Then, we list the learning rate modifiers
used for the different adaptive preprocessing layers, and explain how these were selected.

C.1 Deep Neural Network Model Architectures

Synthetic dataset. The GRU RNN architecture consisted of two GRU cells with a dimensionality of 32 and
dropout layer with dropout probability p = 1

5 between these cells. This was followed by a linear feed-forward
neural network with 3 fully-connected layers, separated by ReLU activation functions, of 64, 32 and 1 units,
respectively. The output was then passed through a sigmoid layer to produce a probability p ∈ (0, 1).

Default prediction dataset. We use a RNN sequence model, with a classifier head, for all our experiments
with the default prediction dataset. It consists of two stacked GRU RNN cells, both with a hidden dimension-
ality of 128. Between these cells, there is a dropout layer with the dropout probability of p = 20%. For the 11
categorical features present in the dataset, we pass these through separate embedding layers, each with a dimen-
sionality of 4. The outputs of the embedding layers are then combined with the output of the last GRU cell,
after it has processed the numeric columns, and the result is passed to the linear classifier head. The classifier
head is a conventional linear neural network consisting of 2 linear layers with 128 and 64 units each, respectively,
and separated by ReLU activation functions. The output is then fed through a linear layer with a single output
neuron, followed by a sigmoid activation function to constrain the output to be a probability in the range (0, 1).
The described architecture was chosen because it worked well in our initial experiments.

Financial forecasting dataset. For the FI-2010 LOB dataset, we use a similar GRU RNN model as with
the Amex dataset, but change the architecture slightly to match the RNN model used by Passalis et al. (2020).
This was done to make the comparison between the proposed EDAIN method and their DAIN method more fair,
seeing as they also used the LOB dataset to evaluate DAIN. Instead of using two stacked GRU cells, we use one
with 256 units. We also do not need any embedding layers because all the predictor variables are numeric. The
classifier head that follows the GRU cells consists of one linear layer with 512 units, followed by a ReLU layer
and a dropout layer with a dropout probability of p = 0.5. The output layer is a linear layer with 3 units, as we
are classifying the multivariate time series into one of three classes, C = {decrease, stationary, increase}. These
outputs are then passed to a softmax activation function such that the output is a probability distribution over
the three classes and sums to 1: [softmax(y)]j = eyj/

∑k
i=1 e

yi , j = 1, 2, . . . , k. In our case, we have k = 3.

C.2 Optimization Procedures

Synthetic dataset. For the synthetic dataset, all the ND generated datasets were separated into 80%-20%
train-validation splits, and the metrics reported in Table 1 of the main paper are based on metrics computed
for model performance on the validation splits. The training was done using the Adam optimizer proposed by
Kingma and Ba (2015) using a base learning rate of η = 10−3 and the model was trained for 30 epochs. We also
used a multi-step learning rate scheduler with decay γ = 1

10 at the 4th and 7th epoch. Additionally, an early
stopper was used on the validation loss with a patience of 5. The model was trained using binary cross-entropy
loss, and the batch size was 128.



September, Sanna Passino, Goldmann and Hinel

Default prediction dataset. To evaluate the different preprocessing methods on this dataset, we perform
5-fold cross validation, which gives evaluation metrics for five different 20% validation splits. For training,
we used a batch size of 1024. This was chosen to give a good trade-off between the time required to train
the model and predictive performance. This model was also optimised with the Adam optimizer proposed by
Kingma and Ba (2015). The learning rate was also set to η = 10−3 after testing what learning rate from the set
H = {10−1, 10−2, 10−3, 10−4} gave the most stable convergence. The momentum parameters β1 and β2 were set
to their default values according to the PyTorch implementation of the optimizer (Paszke et al., 2019). We also
used a multi-step learning rate scheduler, with the step size set to γ = 1

10 . For the milestones (corresponding
to the epoch indices at which the learning rate changes), we first tuned the first step based on observing the
learning rate curve during training; then, we set the step epoch to ensure the performance did not change too
rapidly. This was done until we got milestones at 4 and 7. We also used an early stopper based on the validation
loss, with the patience set to ppatience = 5 as this worked well in our initial experiments. The maximum number
of training epochs was set to 40.

Financial forecasting dataset. As discussed in the main paper, we use an anchored cross-validation scheme
for training, which gives 9 different train-validation splits based on the 10 days of training data available. The
targets are ternary labels y1, y2, . . . , yN ∈ {0, 1, 2}, denoting whether the mid-price decreased, remained station-
ary, or increased, and the output of the model is probability vectors p1,p2, . . . ,pN ∈ (0, 1)3. For optimising the
model parameters, we use the cross-entropy loss function, defined as

L(pi, yi) = −
2∑

c=0

I{yi=c} log (pi,c) ,

where pi,c denotes the predicted probability of class c for the ith input sample. We used a batch size of 128, and
used the RMSProp optimizer proposed by Hinton and Tieleman (2012) to be consistent with the experiments by
Passalis et al. (2020). The base learning rate was set to η = 10−4. No learning rate scheduler nor early stoppers
were used: this was done to best reproduce the methodology used by Passalis et al. (2020). Despite not using
any early stoppers, all the metrics were computed based on the model state at the epoch where the validation
loss was lowest. This was because the generalization performance started to decline in the middle of training in
most cases. At each training fold, the model was trained for 20 epochs.

C.3 Sublayer Learning Rate Modifiers

C.3.1 Synthetic dataset

For the synthetic data, we use the learning rate modifier η′ = 10−1 for all sublayers of all adaptive preprocessing
layers (BIN, DAIN, and EDAIN), while as mentioned in Section C.2, the base learning rate is η = 10−3.

C.3.2 Default prediction dataset

The BIN method proposed by Tran et al. (2021) and the DAIN method proposed by Passalis et al. (2020) have
both never been applied to the American Express default prediction dataset before, so their hyperparameters are
tuned for this dataset. We also tune the two versions of EDAIN. For all these experiments, we run a grid-search
with different combinations of the hyperparameters, specifically the learning rate modifiers, using the validation
loss from training a single model for 10 epochs on a 80%-20% split of the training dataset. We then pick the
combination giving the lowest validation loss. We now provide details on the grids used for each of the different
preprocessing layers, and what learning rate modifiers gave the best performance.

BIN. We used the grids:

Hβ = {10, 1, 10−1, 10−2, 10−6},

Hγ = {10, 1, 10−1, 10−2, 10−6}, and

Hλ = {10, 1, 10−1, 10−2, 10−6}.

The combination giving the lowest average cross-validation loss was found to be ηβ = 10, ηγ = 1, and ηλ = 10−6,
giving 0.2234.
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DAIN. We used the grids:

Hshift = {10, 1, 10−1, 10−2, 10−3, 10−4} and

Hscale = {10, 1, 10−1, 10−2, 10−3, 10−4}.

The combination giving the lowest average cross-validation loss was found to be ηshift = 1 and ηscale = 1, giving
0.2216.

Global-aware EDAIN. We used the grids:

Hscale = Hshift = Houtlier = Hpow = {100, 10, 1, 10−1, 10−2, 10−3}.

The combination giving the lowest average cross-validation loss was found to be ηshift = 10−2, ηscale = 10−2,
ηoutlier = 102, and ηpow = 10, giving 0.2190.

Local-aware EDAIN. We used the grids:

Hscale = Hshift = {1, 10−1, 10−2} and Houtlier = Hpow = {10, 1, 10−1, 10−2, 10−3}.

The combination giving the lowest average cross-validation loss was found to be ηshift = 1, ηscale = 1, ηoutlier = 10,
and ηpow = 10, giving 0.2243.

EDAIN-KL. Note that due to numerical gradient errors in the power transform layers occurring for some
choices of power transform learning rates, the values considered are all low to avoid these errors. We used the
grids

Houtlier = {100, 10, 1, 10−1, 10−2, 10−3},

Hscale = {100, 10, 1, 10−1, 10−2, 10−3},

Hshift = {100, 10, 1, 10−1, 10−2, 10−3}, and

Hpow = {10−7}

The combination giving the lowest average cross-validation loss was found to be ηshift = 10, ηscale = 10, ηoutlier =
102, and ηpow = 10−7, giving 0.2208.

C.3.3 Financial forecasting dataset

The BIN method proposed by Tran et al. (2021) and the DAIN method proposed by Passalis et al. (2020) have
already been applied to the LOB dataset before, but only DAIN has been applied with the specific GRU RNN
architecture we are using. Therefore, the learning rate modifiers found by Passalis et al. (2020) will be used
as-is (ηshift = 10−2, ηscale = 10−8), and the learning rate modifiers for the remaining methods will be tuned. The
details of this are presented here. For all the learning rate tuning experiments, we used the first day of data from
the FI-2010 LOB for training and the data from the second day for validation. We then pick the combination
giving the highest validation Cohen’s κ-metric.

BIN. We used the grids:

Hβ = {10, 1, 10−1, 10−2, 10−6, 10−8},

Hγ = {10, 1, 10−1, 10−2, 10−6, 10−8}, and

Hλ = {10, 1, 10−1, 10−2, 10−6, 10−8}.

The combination giving the highest κ was found to be ηβ = 1, ηγ = 10−8, and ηλ = 10−1, giving κ = 0.3287.

Global-aware EDAIN. We used the grids:

Hscale = Hshift = Houtlier = Hpow = {10, 10−1, 10−3, 10−6}.

The combination giving the highest κ was found to be ηshift = 10, ηscale = 10, ηoutlier = 10−6, and ηpow = 10−3,
giving κ = 0.2788.
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Local-aware EDAIN. We used the grids:

Hscale = {10−1, 10−4, 10−8},

Hshift = {10−1, 10−2},

Houtlier = {10, 1, 10−1, 10−2, 10−3, 10−5, 10−7}, and

Hpow = {10, 1, 10−1, 10−2, 10−3, 10−5, 10−7}.

The combination giving the highest κ was found to be ηshift = 10−2, ηscale = 10−4, ηoutlier = 10, and ηpow = 10,
giving κ = 0.3859.

EDAIN-KL. Hscale = {10−1, 10−4, 10−7},

Hshift = {10−1, 10−2},

Houtlier = {10, 1, 10−1, 10−2, 10−3, 10−5, 10−7}, and

Hpow = {10−2, 10−3, 10−5, 10−7}.

The combination giving the highest κ was found to be ηshift = 10−2, ηscale = 10−4, ηoutlier = 10, and ηpow = 10−3,
giving κ = 0.2757.

C.4 Other Hyperparameters

For selecting the α parameter in the KDIT method, we tried all α ∈ {0.1, 1, 10, 100} and selected the value that
gave the lowest average validation loss.

C.5 Description of Computing Infrastructure

All experiments were run on a Asus ESC8000 G4 server with the following specifications:

• two 16-core CPUs of model Intel(R) Xeon(R) Gold 6242 CPU @ 2.80GHz,

• 896 GiB of system memory,

• eight GPUs of model NVIDIA GeForce RTX 3090, each with 24 576 MiB of video memory (VRAM).

D SYNTHETIC DATA GENERATION ALGORITHM

To help with designing preprocessing methods that can increase the predictive performance as much as possible,
we propose a synthetic data generation algorithm that gives full control over how the variables are distributed,
through only needing to specify an unnormalized PDF function for each variable. This allows synthesizing data
with distributions having the same irregularities as that seen in real-world data. Additionally, the covariance
structure of the generated data can be configured to resemble that of real-world multivariate time series, which
most often have significant correlation between the predictor variables. Along with each time series generated,
we also create a response y ∈ {0, 1} that is based on the covariates, allowing for supervised classification tasks.

The main input to the data generation procedure is the time series length, T ∈ N, and the number of features,
d ∈ N. For each predictor variable j = 1, 2, . . . , d, we also specify an unnormalized PDF, fj : R → R+. The
data generation procedure then generates a multivariate time series covariate X ∈ Rd×T and a corresponding
response y ∈ {0, 1} in three steps. Note that this procedure is repeated N times to, say, generate a dataset of N
time series. An overview of the the three steps of the data generation algorithm is shown in Figure 5. Each row
in the three matrices corresponds to one predictor variable and the column specifies the timestep.

In the first step in Equation (19), we generate Gaussian random variables that have a similar covariance structure
to a multivariate time series. This ensures the covariates’ covariance more closely resemble that of real-world
sequence data. In the second step, shown in Equation (20), we convert the Gaussian random variables into
uniform random variables using the inverse normal CDF, after standardizing each variable. In this step, we also
form the response through a linear combination of unknown parameters β and the uniform random variables.
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(21)

Figure 5: High-level overview of the proposed synthetic data generation algorithm.

This ensures there is some mutual information between the response and the covariates that are generated in the
final step. In step 3, shown in Equation (21), we form the final covariates using the provided PDFs f1, f2, . . . , fd.
This is done by estimating each PDF’s inverse CDF using numerical methods, and transforming the uniform
random variables with these. This makes the samples come from a distribution matching that of the provided
PDFs. Moreover, in Equations (19), (20), and (21) we use random variable notation for each of the steps, but
in practice, all the transformations are applied on samples from these.

D.1 Step 1: Generating random variables with a time series covariance structure

One approach to reproducing the covariance structure of a multivariate time series is to assume that each of
the d individual time series follow a moving average model, which is a common type of theoretical time series
(Hyndman and Athanasopoulos, 2018). With this model, the covariate at timestep t takes the form

Xt = c−
q∑

j=0

θjϵt−j , (22)

where c ∈ R is a constant, ϵ0, ϵ1, . . . are uncorrelated random variables with zero mean and finite variance
σϵ ∈ R. Also, θ0 = −1 and θ1, . . . , θq ∈ (−1, 1) are the unknown parameters. Under this model, Hyndman and
Athanasopoulos (2018) state that the covariance between a sample from timestep t and a sample from τ ∈ Z
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timesteps into the future is

sτ = cov{Xt, Xt+τ} = σ2
ϵ

q−τ∑
j=0

θjθj+τ . (23)

We will not be generating our covariates using the model in Equation (22) as this would make it infeasible to
get samples that are distributed according to arbitrary PDFs. However, we can use the covariance formula from
Equation (23) to set the covariance between each pair of variables generated. To do this, we first specify the
parameters q, σϵ, and θ0, . . . , θq for each of the d predictor variables. Then, we stack the Gaussian random
variables N1,1, N1,2, . . . , N2,1, N2,2, . . . , Nd,T in Equation (19) row-wise so that they form a dT -long vector. Let
Σ ∈ RdT×dT denote the covariance matrix of this dT -long Gaussian multivariate random variable. While still
thinking of each T -length row as its own univariate time series, we fill out the entries in Σ based on Equation (23),
using the parameters specified for each of the d time series. The remaining entries of Σ are randomly initialised
with samples from N (µ = 0, σ = σcor), where σcor is a hyperparameter for the data synthesis, with the motivation
being to create some cross-dependence between each time series. In order to use Σ as a valid covariance matrix
for sampling from the dT -dimensional multivariate normal distribution, it needs to be symmetric positive semi-
definite. The Σ matrix we have constructed so far has no guarantee of satisfying this. Therefore, we use the
algorithm proposed by Higham (1988) to find the symmetric positive semi-definite matrix Σ′ ∈ RdT×dT that is
closest to Σ according to the Frobenius norm. More details on this procedure can be found in Higham (1988).
After this, we generate a dT -dimensional sample N ∼ N (0,Σ′) and imagine “unrolling” this into a d×T matrix
where we have a T -timestep-long time series in each row, just as in Equation (19).

D.2 Step 2: Forming the response

Before forming the response y, we need to convert the Gaussian random variables generated in step 1 into
uniform random variables. By the probability integral transform, if a normal random variable is passed through
its inverse CDF-function, a uniform random variable is obtained. Therefore, we do this for each of the normal
random variables, as shown in the transition between Equation (19) and Equation (20), giving d time series of
uniform random variables, each of length T .

To form the response, we randomly sample a noise term ζ ∼ N (0, σ2
ζ ) and set

Y = I

 d∑
j=1

T∑
t=1

βj,tUj,t + ζ >
1

2

 .

The idea behind this is to make sure each variable contributes to the response, but the contribution of each
variable might differ and some might be completely irrelevant, just like in real-world data. Note that the noise
term ζ is regenerated for each multivariate time series X ∈ Rd×T we generate, while the parameters β ∈ Rd×T

are held fixed for each time series generated as part of a synthetic dataset. When synthesizing a new dataset of

say N samples, we first generate one set of β ∈ Rd×T unknown parameters with β1,1, . . . , βd,T
iid∼ N

(
1
dT , σ

2
β

)
,

where σβ is another hyperparameter for the dataset synthesis. The mean 1
dT was set to ensure the dataset

generated is balanced, that is, the ratio between true and false labels is equal.

D.3 Step 3: Transforming the variables based on provided PDFs

The third step of the data generation procedure involves taking samples from uniformly distributed random
variables Uj,t ∼ U[0, 1] and transforming them using the inverse CDF of the corresponding specified PDF, fj ,
which results in a sample from the distribution specified by fj . To do this, we need to estimate the inverse

CDF function F̂−1
j (·) using only fj . This is done by evaluating fj on a fine-grid of values X = {Aj , Aj + δ, Aj +

2δ, . . . , Bj}, where Aj , Bj , and δ are additional hyperparameters specified in conjunction with the PDF fj . Then

we use trapezoidal numerical integration (see, for example, Atkinson, 1989) to estimate F̂j(x) =
∫ x

−∞ fj(x
′)dx′

for all x ∈ X . Since the provided PDFs are unnormalized, we normalize the CDF estimates by dividing them

by F̂j(Bj). To get F̂−1
j (·), we create an inverse look-up table that maps the F̂j(x)-values to the corresponding

x-values. When implementing this procedure, the look-up table is cached to ensure the integration only needs

to be done once for each x ∈ X . Then, to evaluate F̂−1
j (u) for some u ∈ (0, 1), we perform a binary search (see,
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for example, Cormen et al., 2001) on the look-up table to find the smallest x ∈ X such that F̂j(x) ≥ u, which
can efficiently be done since the values are already in sorted order because CDFs are monotonically increasing.

D.4 Hyperparameters for Synthetic Dataset Generation

Here we present the hyperparameters used when synthesizing the irregular data we used for the experiments
in Section 4.1 of the main paper. We used the following bounds for the three PDFs: (A1, B1) = (−8, 10),
(A2, B2) = (−30, 30), and (A3, B3) = (−1, 7). The θs were all configured with q = 3, and we used

Θ =

θ1θ2
θ3

 =

−1 1
2 − 1

5
4
5

−1 3
10

9
10 0

−1 4
5

3
10 − 9

10

 .

The standard deviations were set to σcov = 1.4, ση = 1
2 , and σβ = 2.

E THE AMEX METRIC

Here we explain how to compute the Amex metric introduced in Section 4.2 of the main paper, which is calculated
as the mean of the default rate captured at 4%, denoted D, and the normalized Gini coefficient, referred to as
G. Assume we have made predictions p1, p2, . . . , pN for each of the N customers, and assume these predicted
default probabilities have been sorted in non-increasing order. Also assume they have associated normalized
weights w1, w2, . . . , wN such that

∑N
i=1 wi = 1. To compute D, we take the predictions p1, p2, . . . , pω captured

within the highest-ranked 4% of our predictions considering the weights w1, w2, . . . , wN . Then, we look at the
default rate within these predictions, normalized by the overall default rate. In other words,

D =

∑ω
i=1 yi∑N
i=1 yi

, where ω is the highest integer such that

ω∑
i=1

wi ≤ 0.04.

We now describe how to compute G, which requires computing the Gini coefficient in two ways for k ∈ {0, 1}.
From Lerman and Yitzhaki (1989), we know the Gini coefficient can be computed as

Gk = 2

N∑
j=1

w
i
(k)
j

(
p
i
(k)
j

− p

p

)(
F̂
i
(k)
j

− F
)
, (24)

where F̂
i
(k)
j

= w
i
(k)
j

/
2 +

∑j+1
ℓ=1 wi

(k)
ℓ

and p =
∑N

j=1 wi
(0)
j
p
i
(0)
j

=
∑N

j=1 wi
(1)
j
p
i
(1)
j

and F =
∑N

j=1 wi
(0)
j
F̂
i
(0)
j

=∑N
j=1 wi

(1)
j
F̂
i
(1)
j
. To compute the normalized Gini coefficient, we first sort the predictions in non-decreasing

order by the true labels y1, y2, . . . , yN , and denote this ordering i
(0)
1 , i

(0)
2 , . . . , i

(0)
N . Let G0 denote the result of

computing equation (24) with this sorting. Then we sort the values by the predicted probabilities p1, p2, . . . , pN
in non-decreasing order, denoting this ordering as i

(1)
1 , i

(1)
2 , . . . , i

(1)
N . Let the value of equation (24) computed

with this ordering be denoted G1. The normalized Gini coefficient is then G = G1/G0, which is what we use in
the final metric

Amex metric =
1

2
(G+D) =

1

2

(
G1

G0
+D

)
.
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