
On the Nyström Approximation for Preconditioning
in Kernel Machines

Amirhesam Abedsoltan Parthe Pandit Luis Rademacher Mikhail Belkin
CSE, UCSD C-MInDS, IIT Bombay Mathematics, UC Davis HDSI, UCSD

Abstract

Kernel methods are a popular class of non-
linear predictive models in machine learning.
Scalable algorithms for learning kernel models
need to be iterative in nature, but convergence
can be slow due to poor conditioning. Spec-
tral preconditioning is an important tool to
speed-up the convergence of such iterative al-
gorithms for training kernel models. However
computing and storing a spectral precondi-
tioner can be expensive which can lead to
large computational and storage overheads,
precluding the application of kernel methods
to problems with large datasets.

A Nyström approximation of the spectral pre-
conditioner is often cheaper to compute and
store, and has demonstrated success in prac-
tical applications. In this paper we analyze
the trade-offs of using such an approximated
preconditioner. Specifically, we show that a
sample of logarithmic size (as a function of
the size of the dataset) enables the Nyström-
based approximated preconditioner to accel-
erate gradient descent nearly as well as the
exact preconditioner, while also reducing the
computational and storage overheads.

1 INTRODUCTION

Deep neural networks have consistently delivered re-
markable performance across a wide range of machine
learning tasks, setting unprecedented benchmarks, and
reshaping the landscape of data modelling. Recent
findings have drawn a connection between certain ar-
chitectures of these networks (such as wide neural net-
works) and the more classical kernel methods. In the

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

infinite width limit, neural networks converge to a spe-
cific form of kernels known as Neural Tangent Kernels
(NTKs) [Jacot et al., 2018]. This insight has reignited
enthusiasm for studying and applying kernel methods
for large-scale machine learning problems. Moreover,
emerging research suggests that in certain contexts,
such as problems with limited data, kernel methods
can surpass neural networks in performance [Arora
et al., 2019,Shankar et al., 2020,Bietti and Bach, 2020].
Additionally, kernel methods have been instrumental
in elucidating the complex feature learning dynamics
within deep neural networks [Radhakrishnan et al.,
2022,Beaglehole et al., 2023]. This intersection of clas-
sical kernel methods and deep neural networks offers
a promising direction for further research towards a
deeper understanding of contemporary model architec-
tures.

This motivates the need for scalable approaches for
training kernel models on large datasets. Off-the-shelf
linear system solvers are often not scalable. Conse-
quently, new algorithms and implementations for scal-
able training of kernel models have been proposed
over the last few years. These include [Shalev-Shwartz
et al., 2007, Pegasos], [Camoriano et al., 2016, Nytro],
[Meanti et al., 2020,Rudi et al., 2017, Falkon], [Char-
lier et al., 2021, KeOps], [Gardner et al., 2018, GPy-
Torch], [Matthews et al., 2017, GPFlow], [Ma and
Belkin, 2017, EigenPro], [Ma and Belkin, 2019, Eigen-
Pro2] and [Abedsoltan et al., 2023, EigenPro3]. Some
of these can also take advantage of modern hardware
such as graphical processing units (GPUs) effectively.

Consider a dataset (x1, y1), . . . , (xn, yn) ∈ Rd × R and
a positive definite kernel K : Rd × Rd → R. Let
HK be the reproducing kernel Hilbert space (RKHS)
corresponding to K. We are interested in the follow-
ing model: the minimum HK-norm solution to the
quadratic loss optimization problem

minf∈HK
L(f) =

1

2n

n∑
i=1

(f(xi)− yi)2, (1)

The number of iterations required for an iterative opti-
mization algorithm, such as gradient descent (GD), to

Table 1: Trade-offs of using a Nyström approximation to obtain an approximated preconditioner of level q for the
preconditioned gradient descent algorithm. Here ε is a tunable error parameter of the Nyström approximation,
and {λ∗i } is the non-increasing sequence of eigenvalues of the integral operator (defined in (4)) which depends on
the data distribution and kernel (but not n). The comparison with gradient descent is for illustration and based
on a heuristic calculation provided in Section 3.2 and Equation (16). The speed-up calculation does not include
setup time which is significant for PGD, making it impractical for cold-starts.

Iterative algorithm Speed-up over GD Storage Setup time

PGD (Preconditioned gradient descent)
λ∗1
λ∗q

qn qn2

nPGD (PGD w/ approximated preconditioner)
λ∗1
λ∗q
· 1

(1 + ε)4
q ·O(log

4 n
ε4) q ·O(log

8 n
ε8)

Table 2: Notation

n number of training samples
q level of preconditioner
s number of Nyström samples
κ1 condition number w/o preconditioning
κq condition number w/ preconditioning
κs,q condition number w/ approx. preconditioner

converge depends on the condition number of a specific
operator known as the empirical covariance operator
K : HK → HK . Operator K is the Hessian ∇2

f L of
the optimization problem above (see Section 3). For
our purposes, we define the condition number of an
operator A : H → H by

κ(A) :=
sup∥f∥=1 ∥Af∥

inff∈Null(A)⊥,∥f∥=1 ∥Af∥
, (2)

where Null(·) is the null-space. A higher condition
number means that the iterative algorithm requires
more iterations to converge.

In this work we will generally be interested in the
condition number of finite-rank operators. For a rank-
k operator A our definition can be written as κ(A) =
σ1(A)/σk(A), where σ1(A) ≥ σ2(A) ≥ · · · ≥ σk(A) >
0 are the singular values of A (defined by operator
theory, or matrix theory expressing the operator as a
matrix in terms of orthonormal bases).

In practice, condition number κ1 := κ(K) is often
large. A common approach to overcome this challenge
is to use a preconditioner operator, P : HK → HK .
This enables solving the same problem with a modified
condition number κ(PK) instead of κ(K), for example
in preconditioned gradient descent (PGD). Many types
of preconditioners have been studied in the literature
on numerical methods for learning kernel models (see
[Cutajar et al., 2016] for a comparison). Approximated

preconditioners have also been studied, see for example
[Avron et al., 2017] and [Rudi et al., 2017].

Spectral preconditioning. In this paper we focus
on a specific type of preconditioner. For the operator K,
we say Pq is a spectral preconditioner if the top-q eigen-
values of PqK are equal to the qth largest eigenvalue of
K (and the rest of the eigenvalues stay unchanged), and
we refer to q as the level of the preconditioner. The
resulting condition number is κq := κ(PqK). This pre-
conditioner works well in practice as shown in [Ma and
Belkin, 2017], which introduced EigenPro — a state-
of-the-art method for learning kernel models based on
stochastic gradient descent (SGD).

Nyström approximation. However, computing and
storing a spectral preconditioner Pq is challenging. It re-
quires an additional O(qn2) time [Williams and Seeger,
2000] and O(qn) memory [Ma and Belkin, 2017]. See
the discussion following Proposition 1 in Section 3.2 of
our paper for details.

The Nyström extension is a technique used to approx-
imate K with a smaller number of samples, denoted
by s, where s≪ n. Subsequently, we can approximate
spectral preconditioner Pq using these s samples and
denote it as Ps,q. This method requires time O(qs2)
and storage O(qs).

Just like PGD we can use this approximated precon-
ditioner to accelerate GD. We refer to this version of
PGD with a Nyström approximated preconditioner as
(nPGD). The convergence of nPGD depends on

κs,q := κ(P
1
2
s,qKP

1
2
s,q), (3)

as shown later in Section 3. In fact, EigenPro2.0 [Ma
and Belkin, 2019] applies Ps,q to improve the scalability
of EigenPro, which used Pq, the exact preconditioner.

Prior to our work, there was no rigorous way to choose
s, the size of the Nyström sample, so that one can

guarantee a speed-up when using the approximated
preconditioner.

1.1 Main contribution

We show that nPGD can achieve nearly the same speed-
up as PGD does over GD, while only requiring a poly-
logarithmic storage overhead and setup-cost. See Table
1 for the trade-off of using a Nyström approximated
preconditioner.

In order to show this, we analyze how many Nyström
samples are sufficient to achieve a particular approxima-
tion quality of approximated preconditioner. Our main
result (Theorem 2) shows that for a given ε > 0, we
can achieve κs,q ≤ (1+ ε)4κq if the number of Nyström
samples satisfies s = Ω

(
log4 n
ε4

)
.

While we only provide explicit speed-up computations
for versions of preconditioned GD, our main result can
be applied to guarantee speed-ups for other spectrally
preconditioned algorithms such as conjugate gradient
and Nesterov’s accelerated gradient methods.

Organization: In Section 2 we discuss preliminaries
needed to state our main result. Section 3 details
the problem formulation, and Section 4 provide the
statement of the main result in Theorem 2, followed by
its proof in Section 5. The intermediate lemmas needed
in the proof of Theorem 2 are detailed in Section 6.

2 PRELIMINARIES

Notation: We denote by H a separable Hilbert space,
and by HK a reproducing kernel Hilbert space (RKHS)
associated with a symmetric positive definite kernel
K : Rd × Rd → R. We assume that K is continuous
and bounded. For any point x ∈ Rd, the function
K(x, ·) : Rd → R belongs to HK . Let L(H) denote
the set of bounded linear operators from H to H. For
operators and when defined, we will denote the Hilbert-
Schmidt norm by ∥·∥HS and the operator norm by ∥·∥OP.
Without any subscript, ∥ · ∥ denotes the norm of H or
HK when there is no confusion.

Square-root operator: For a self-adjoint positive
semidefinite operator A, we denote by A 1

2 the unique
self-adjoint square-root of A, such that A 1

2A 1
2 = A.

Thus if A has an eigen-decomposition A =
∑

i σiϕi⊗ϕi
(with σi ≥ 0), we define

A 1
2 :=

∑
i

√
σi ϕi ⊗ ϕi.

Eigenvalue thresholding: We will need the follow-
ing elementary version of functional calculus. It will be

convenient to represent preconditioner operators as the
result of modifications to the eigenvalues of a covari-
ance operator. We will need an operation that replaces
every eigenvalue below a threshold by the threshold.

For self-adjoint finite rank A ∈ L(H) with eigendecom-
position A =

∑
i∈I µiϕi ⊗ ϕi, µi ̸= 0 and for a contin-

uous function h : R→ R, the corresponding operator
function is h(A) =

∑
i∈I h(λi)ϕi ⊗ ϕi + h(0)πNull(A).

We will need the following thresholding function:
hα(x) = max{x, α}. When H is finite dimensional
(and more generally, but this is all we need), we have
hα(A) = h0(A− αI) + αI.

3 PROBLEM SETUP

Let ρ be a probability measure on Rd. Let Xn =
{xi}ni=1 be the training samples drawn i.i.d. from ρ.
Let (i1, i2, . . . , is) be a random tuple of s ≤ n distinct
indices 1 ≤ ik ≤ n chosen independently of Xn, and
define Xs = {xik}

s
k=1 as the Nyström samples. Namely,

for our results to hold the distribution of the tuple can
be arbitrary as long as it is independent of Xn and the
indices are all distinct with probability 1. Two natural
choices of this distribution are uniform sampling in [n]
without replacement and any fixed tuple, e.g. ik = k.

Consider n targets y1, y2, . . . , yn ∈ R. Assume that if
xi = xj , then yi = yj . Our model is the unique mini-
mum HK -norm solution f∗ to problem (1). Assume K
is a bounded, continuous, symmetric positive definite
kernel. Note that under our assumptions on K we have
that f∗ interpolates the data, namely the optimal value
of problem (1) is 0.

Define the following operators in L(HK):

T :=

∫
Rd

K(x, ·)⊗K(x, ·)ρ(dx) (4)

K :=
1

n

n∑
i=1

K(xi, ·)⊗K(xi, ·) (5)

K′ :=
1

s

s∑
i=1

K(x′i, ·)⊗K(x′i, ·). (6)

For f ∈ HK , due to the reproducing property of ker-
nel K, the above operators act as follows: T f(x) =∫
K(x, z)f(z)ρ(dz), Kf(x) = 1

n

∑n
i=1K(x, xi)f(xi),

and K′f(x) = 1
s

∑s
i=1K(x, x′i)f(x

′
i).

By the linearity of the trace we can show that

trace(T) ≤ β(K), and trace(K) ≤ β(K), (7)

where we define

β(K) := max
x∈Rd

K(x, x). (8)

In (7) we have used the fact that trace(K(x, ·) ⊗
K(x, ·)) = ⟨K(x, ·),K(x, ·)⟩HK

= K(x, x).

Next, let ψ∗
i be an eigenfunction of T with eigenvalue

λi, i.e., T ψ∗
i = λiψ

∗
i . Similarly denote by (λi, ψi) the

eigenpairs of K and by (λ′i, ψ
′
i) the eigenpairs for K′.

Note that T is a compact operator whereas K and
K′ are empirical approximations of T . Furthermore,
T ,K, and K′ have non-negative eigenvalues which we
assume are ordered as λ∗1 ≥ λ∗2 ≥ · · · ≥ 0, and similarly
λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, and λ′1 ≥ λ′2 ≥ · · · ≥ λ′s ≥ 0.
Hence we have eigen-decompositions for these operators
as written below.

T =

∞∑
i=1

λ∗i ·ψ∗
i ⊗ ψ∗

i , K =

n∑
i=1

λi · ψi ⊗ ψi,

K′ =

s∑
i=1

λ′i · ψ′
i ⊗ ψ′

i.

For a fixed q ≤ s, we define the following precondition-
ers with the assumption that λq, λ′q > 0 as below,

Pq := I −
q−1∑
i=1

(
1− λq

λi

)
ψi ⊗ ψi (9)

Ps,q := I −
q−1∑
i=1

(
1−

λ′q
λ′i

)
ψ′
i ⊗ ψ′

i. (10)

With the above definition, one can verify that

P
1
2
s,q = I −

q−1∑
i=1

(
1−

√
λ′q
λ′i

)
ψ′
i ⊗ ψ′

i. (11)

3.1 Gradient Descent and preconditioning

Define b := 1
n

∑n
i=1K(·, xi)yi ∈ HK , and note that

b = Kf∗.

Due to the reproducing property of the RKHS, we
have f(x) = ⟨f,K(x, ·)⟩HK

for all f ∈ HK and for all
x ∈ Rd, whereby the Fréchet derivative ∇ff(x) equals
K(·, x) for all f ∈ HK and x ∈ Rd. Using a similar
argument, observe that ∇fL(f) = Kf − b = K(f − f∗),
and K = ∇2

f L(f) is the Hessian of the optimization
problem (1).

One step of Gradient Descent (GD) with learning rate
η is given by:

f t = f t−1 − η∇fL(f
t−1) (GD)

= (I − ηK)f t−1 + ηb.

where we have used the fact that ∇fL(f) =∑n
i=1(f(xi)− yi)K(xi, ·) = Kf − b.

Then, for the purpose of convergence analysis, one can
add and subtract f∗ and verify that the above equation

can be rewritten as,

f t − f∗ = (I − ηK)(f t−1 − f∗)

where we have used the fact that b = Kf∗.

The convergence rate of this iteration is governed by
the condition number of the operator K. Standard
proof techniques for gradient descent, e.g. [Garrigos
and Gower, 2023, Theorem 3.6] allow us to show that
with the choice η = 1/κ(K) = 1/κ1 we can find f t such
that ∥∥f t − f∗∥∥2HK

≤ τ
∥∥f0 − f∗∥∥2HK

in t = κ1 log
(
1
τ

)
iterations.

Preconditioned gradient descent: Using the pre-
conditioner Pq with level q, the update equations for
preconditioned gradient descent with step size ηq are

f t = f t−1 − ηqPq∇fL(f
t−1) (PGD)

= (I − ηqPqK)f t−1 + ηPqb.

whose convergence rate is determined by the condition
number of PqK (since Pq and K commute and therefore
PqK is self-adjoint). A similar argument as for GD
shows that PGD is equivalent to

f t − f∗ = (I − ηqPqK)(f t−1 − f∗).

With the choice ηq = 1/κ(PqK) = 1/κq, the iteration
converges within κq log

(
1
τ

)
steps.

Approximated preconditioner: Preconditioning
with an approximated preconditioner Ps,q modifies the
update rule to:

f t = f t−1 − ηs,qPs,q∇fL(f
t−1) (nPGD)

= (I − ηs,qPs,qK)f t−1 + ηs,qPs,qb.

which can similarly be shown to be equivalent to

f t − f∗ = (I − ηs,qPs,qK)(f t−1 − f∗).

Observe that P
1
2
s,q is invertible, whereby introducing a

change of variables, gt = P− 1
2

s,q f t, and g∗ = P− 1
2

s,q f∗, we
can show nPGD is equivalent to

gt − g∗ = (I − ηs,qP
1
2
s,qKP

1
2
s,q)(g

t−1 − g∗)

whose convergence rate is determined by the condi-
tion number of the self-adjoint operator P

1
2
s,qKP

1
2
s,q.

Specifically with ηs,q = 1/κ(P
1
2
s,qKP

1
2
s,q) = 1/κs,q, the

iteration converges in κs,q log
(
1
τ

)
steps.

Remark 1. We consider P
1
2
s,qKP

1
2
s,q to deal with the

fact that Ps,qK is not self-adjoint. This issue does not
occur for PqK, since Pq and K commute whereby PqK
is self-adjoint.

Our main result in the next section provides sufficient
conditions on s, under which we can obtain a multi-
plicative approximation of κ(P

1
2
s,qKP

1
2
s,q) in terms of

κ(PqK).

3.2 Speed-up of PGD over GD

Here we provide a summary of the computational and
storage costs of three algorithms — gradient descent
(GD), preconditioned gradient descent (PGD), and pre-
conditioned gradient descent with a Nyström approxi-
mated preconditioner (nPGD).

The time for running GD is

TGD = κ1n
2 log

(
1
τ

)
(12)

where n2 is the time per iteration for calculating
∇fL(f t) and κ1 log

(
1
τ

)
is the number of iterations re-

quired to achieve error τ. Note the n2 complexity arises
since we need to compute ∇fL(f

t) = Kf t. If we use
the basis expansion f t =

∑n
i=1K(xi, ·)αi, we have

Kf t =
∑n

i=1

∑n
j=1K(xj , ·)K(xi, xj)αi, which requires

n2 steps. One can argue that the quadratic complexity
is optimal under our assumptions.

Similarly, the time taken for preconditioned gradient
descent is

TPGD = κq
(
n2 + 2qn

)
log
(
1
τ

)
, (13)

where 2nq is the per iteration overhead to apply the
preconditioner, i.e. calculating ∇fL(f t) 7→ Pq∇fL(f t).
Thus the speed-up of PGD over GD is

TGD
TPGD

=
κ1

κq + q/n
≈ κ1
κq

=
λ1
λq
≈ λ∗1

3λ∗q
(14)

when q = O(1), and the last approximation holds
because of a concentration argument that allows us to
control |λi − λ∗i | for large enough n, see equation (27).

Representing the spectral preconditioner Pq ≡ {ψi}qi=1

requires storing q vectors of length n as explained in
the following lemma.
Proposition 1. Let e = (ej) ∈ Rn be an eigenvector
of the matrix (K(xj , xk))1≤i,j≤n , with eigenvalue nλ,
then ψ =

∑n
j=1 ejK(·, xj) is an eigenfunction of K,

with eigenvalue λ.

Proof. Observe that if ψ is defined as above, nKψ =
n
∑n

j=1 ejKK(·, xj) =
∑n

j,k=1 ejK(xk, xj)K(·, xk) =∑n
k=1K(·, xk)

(∑n
j=1K(xk, xj)ej

)
. The term in the

parenthesis equals nλek, since e is an eigenvector.

Thus storing the preconditioner Pq requires storing
qn floats. Additionally, the cost of calculating the q
eigenvectors needed to represent {ψi}qi=1 is O(qn2).

Similar to (13), for nPGD we have

TnPGD = κs,q
(
n2 + 2sn+ 2sq

)
log
(
1
τ

)
, (15)

where 2ns+ 2nq is the per iteration overhead in calcu-
lating ∇fL(f t) 7→ Ps,q∇fL(f t). Hence we get that

TGD
TnPGD

=
κ1

κs,q + s/n+ sq/n2
≈ κ1
κs,q + s/n

(16)

when q = O(1).

An argument similar to the one following Proposi-
tion 1 for PGD shows that representing Ps,q ≡ {ψ′

i}
q
i=1

requires storing eigenvectors of the s × s matrix(
K(x′j , x

′
k)
)
1≤j,k≤s

, which requires storing qs floats,
while computing q eigenvectors requires time O(qs2).

4 MAIN RESULT

The main result of the paper provides a multiplicative
bound on the condition number for the nPGD iterations
in terms of the condition number for PGD. To that
end, recall the definitions of β(K) from (8), and the
condition number κ of an operator from (2).

We are ready to state the main result of this paper.

Theorem 2. Assume that kernel K : Rd × Rd → R is
symmetric positive definite, continuous and bounded.
Consider the operators K, Pq, and Ps,q defined in equa-
tions (5),(9), and (10), respectively. Let q ≥ 1 be such
that λ∗q > 0. For any ε > 0 and δ ∈ (0, 1), we have

κ(P
1
2
s,qKP

1
2
s,q) ≤ (1 + ε)4 κ(PqK)

with probability at least 1− δ (over the randomness of
Xn and Xs) when

s ≥ max

{
c1C

2
K,q,

c2C
4
K,q log

4(n+ 1)

ε4

}
log
(
4
δ

)
, (17)

where CK,q := β(K)
λ∗
q

, and c1, c2 are universal constants.

4.1 Speed-up of nPGD over GD

Consider the fact that the per iteration complexity
of all 3 algorithms GD, PGD and nPGD are O(n2).
Consequently the speed-up in PGD and nPGD over GD
arises due to fewer number of iterations.

The level of the preconditioner q is implicitly con-
strained due to (17). For simplicity, we will provide
the analysis for q = O(1), i.e., it cannot depend on

n. However, λis also depend on n. To keep the de-
pendence on n straightforward we can use the bounds
λ∗
i

2 ≤ λi ≤ 3λ∗
i

2 (see (27)), which hold under the as-
sumptions of Theorem 2. This helps because λ∗i s are
independent of n.

Theorem 2 allows δ to depend on n, but we will assume
δ = O(1) for simplicity. We also have CK,q = O(1)

since we assume q = O(1). Consequently s = Ω(log
4 n

ε4)
is optimal. Hence, following (16), we can write

TGD
TnPGD

=
κ1

κs,q + s/n
≈ κ1
κs,q

≈ κ1
κq(1 + ε)4

≈ λ∗1
3λ∗q(1 + ε)4

following a concentration argument similar to (14) that
controls |λ′i − λ∗i | under the assumptions on s, see (27).
We omit the constant 3 in the denominator since it
becomes arbitrarily close to 1 for large n.

5 PROOF OF MAIN RESULT

Recall the definitions of the operators T ,K,K′,Pq and
Ps,q in equations (4–10).

The proof proceeds in three key steps: (i) We start by
stating (in Proposition 5) that ∥K 1

2 −K′ 12 ∥OP can be
made arbitrarily small if s and n are large enough. This
follows from a concentration result in [Rosasco et al.,
2010] that we state for our case in Corollary 4. (ii) Next,
in Proposition 6 we show why ∥P

1
2
q f∥/∥P

1
2
s,qf∥ being

close to 1 for all f is sufficient to prove the claim in
Theorem 2. (iii) Finally we show that in fact ∥K 1

2 −
K′ 12 ∥OP being small is sufficient for ∥P

1
2
q f∥/∥P

1
2
s,qf∥ to

be close to 1.

We first start by showing that Xs, just like Xn, is an
i.i.d. sample from ρ, whereby we can apply the same
concentration arguments for both.
Lemma 3. Let x1, . . . , xn be i.i.d. random variables
drawn from ρ, a probability distribution over measurable
space (Rd, β). Let i1, . . . , is ∈ [n] be random according
to some joint probability distribution such that i1, . . . , is
are all distinct almost surely, and such that i1, . . . , is is
independent of all xi. Then xi1 , . . . , xis are i.i.d., each
distributed as ρ.

Proof. Let ρs denote the product measure on (Rd)s.
Let A ∈ (Rd)s and measurable. Conditioning on
i1, . . . , is:

P
(
(xi1 , . . . , xis) ∈ A

)
= E

(
P((xi1 , . . . , xis) ∈ A | i1, . . . , is)

)
(a)
= E

(
ρs(A)

)
= ρs(A),

where (a) holds because i1, . . . , is are distinct and in-
dependent of x1, . . . , xn.

We can now apply a concentration inequality to bound
error between K and T , and between K′ and T .
Corollary 4 (of [Rosasco et al., 2010, Theorem 7]).
With probability at least 1 − δ

2 , with respect to the
randomness of Xn, we have

∥K − T ∥OP ≤ 2β(K)

√
2

n
log
(
4
δ

)
. (18)

Similarly, with probability at least 1− δ
2 , with respect

to the randomness of Xs, we have

∥K′ − T ∥OP ≤ 2β(K)

√
2

s
log
(
4
δ

)
. (19)

The result in [Rosasco et al., 2010, Theorem 7] was
stated in terms of ∥·∥HS. The above corollary follows
by using the fact that ∥·∥OP ≤ ∥·∥HS . Additionally, we
substitute their τ for log

(
4
δ

)
for the sake of readability.

Proposition 5. With probability at least 1− δ (with
respect to the randomness in Xs and Xn),

∥∥∥K 1
2 −K′ 12

∥∥∥
OP
≤ 2

√
β(K)

√
2

s
log
(
4
δ

)
.

Proof. Observe that we have the bound,∥∥∥K 1
2 −K′ 12

∥∥∥
OP
≤
√
∥K − K′∥OP (20)

following [Bhatia, 2013, Theorem X.1, page 290]. Next,
by triangle inequality, we get that with probability
1− δ (since we use a union bound on neither inequality
failing, each with failure probability δ

2),

∥K − K′∥OP ≤ ∥T − K
′∥OP + ∥K − T ∥OP

(a)

≤ 2β(K)
√
2 log

(
4
δ

) (
1√
s
+ 1√

n

)
≤ 4β(K)

√
2
s log

(
4
δ

)
.

where (a) is because of Corollary 4 and the last inequal-
ity holds since s ≤ n.

Recall definition of κ in equation (2).
Proposition 6. Suppose there exists γ > 0 such that
for all f ∈ HK we have

(1 + γ)−1∥P
1
2
q f∥ ≤ ∥P

1
2
s,qf∥ ≤ (1 + γ)∥P

1
2
q f∥. (21)

Then κ(P
1
2
s,qKP

1
2
s,q) ≤ (1 + γ)4κ(PqK).

Proof. We start by establishing

κ(P
1
2
s,qKP

1
2
s,q) = κ(P

1
2
s,qK

1
2)2. (22)

This follows from the following observation: For a finite
rank operator A ∈ L(HK) we have

κ(AA∗) = κ(A)2 (23)

(which can be seen by expressing κ(·) in terms of singu-
lar values as κ(A) = σ1(A)/σrank(A)(A) and standard
matrix arguments, see discussion after Equation (2)).
Then set A = P

1
2
s,qK

1
2 in (23) to get (22).

A direct application of (21) and the observation that
Null(P

1
2
s,qK

1
2) = Null(P

1
2
q K

1
2) (using the fact that P

1
2
s,q

and P
1
2
q are invertible) in the definition of κ(·) (Equa-

tion (2)) gives

κ(P
1
2
s,qK

1
2) ≤ (1 + γ)2κ(P

1
2
q K

1
2). (24)

To conclude, notice that P
1
2
q and K 1

2 commute. Thus,
κ(PqK) = κ(P

1
2
q P

1
2
q K

1
2K 1

2) = κ(P
1
2
q K

1
2K 1

2P
1
2
q) =

κ(P
1
2
q K

1
2)2 (using (23) again). The claim follows from

this and Equations (22) and (24).

We are now ready to complete the proof of Theorem 2.

Proof. (of Theorem 2). In Section 6 we provide a gen-
eral framework that bounds ∥P

1
2
q f∥/∥P

1
2
s,qf∥ close to

1, via a bound on ∥K − K′∥OP. In the special case,
in Lemma 7 if we set V as K 1

2 , and V ′ as K′ 12 , and
the observation that P

1
2
q =

√
λqh√λq

(K 1
2)−1, and

P
1
2
s,q =

√
λ′qh
√

λ′
q
(K′ 12)−1, we get the following,

(1 + ζ)−1∥P
1
2
q f∥ ≤ ∥P

1
2
s,qf∥ ≤ (1 + ζ) ∥P

1
2
q f∥, (25)

ζ := 2C log(n+ 1) · ∥K
1
2 −K′ 1

2 ∥OP√
λq

(
1 + ∥K

1
2 ∥OP√
λ′
q

)
(26)

for some universal constant C. Note that we used the
fact that C log(rank(K) + rank(K′) + 1) ≤ C log(2n+
1) ≤ 2C log(n+ 1).

Observe that Proposition 6 says if we can find a suitable
upper bound for ζ, we are done. Indeed, we will show
that choosing s as in equation (17) leads to ζ ≤ ε.

First, we assert that for sufficiently large values of n
and s, we can eliminate the dependence on samples
and relate everything to the operator T . Note that by
Weyl’s inequality we have

∣∣λq − λ∗q∣∣ ≤ ∥K − T ∥OP (and
similarly for λ′q). Hence via equation (18) we have,

λq ≥ λ∗q − ∥K − T ∥OP ≥ λ
∗
q − 2β(K)

√
2
n log

(
4
δ

)
.

and similarly via equation (19) we have, λ′q ≥ λ∗q −

2β(K)
√

2
s log

(
4
δ

)
. Using n ≥ s ≥ c1C

2
K,q log

(
4
δ

)
,

where c1 := 32 and CK,q = β(K)/λ∗q , we can write,

λ∗q
2
≤ λ′q ≤

3λ∗q
2
, and

λ∗q
2
≤ λq ≤

3λ∗q
2
. (27)

which hold together with probability at least 1− δ, (via
a union bound on the two events in Corollary 4).

We find an upper bound for ζ from (26) as following,

ζ
2C log(1+n)

(a)

≤

√
4β(K)

λq

√
2

s
log
(
4
δ

)(
1 +
∥K 1

2 ∥OP√
λ′q

)
(b)

≤

√
4β(K)

λq

√
2

s
log
(
4
δ

)(
1 +

√
β(K)

λ′q

)
(c)

≤

√
4β(K)

λq

√
2

s
log
(
4
δ

)(
1 +
√
2

√
β(K)

λ∗q

)
(d)

≤

√
4β(K)

λq

√
2

s
log
(
4
δ

)(
2

√
β(K)

λ∗q

)
(e)

≤ 4
√
2β(K)

λ∗q

(
2 log

(
4
δ

)
s

) 1
4 (f)

≤ ε

2C log(1 + n)

where (a) is due to Proposition 5, (c) and (e) apply
inequalities (27), and (b) is justified by the following,

∥K 1
2 ∥OP = ∥K∥

1
2

OP ≤ ∥K∥
1
2

HS ≤ trace(K) 1
2 ≤

√
β(K),

where in we have used the monotonicity of the Schatten
norm, and inequality (7). Similarly, inequality (d)
holds because λ∗q ≤ trace(T) ≤ β(K), again following
(7). Finally, (f) holds because for c2 := 216C4, we
have assumed s ≥ c2C

4
K,q

log4 n
ε4 log

(
4
δ

)
, whereby we

can conclude ζ ≤ ε.

In conclusion, we have established that with probability
at least 1− δ, under the assumptions in the statement
of Theorem 2, equation (25) holds. Proposition 6 (with
γ ← ζ), along with ζ ≤ ε, proves the claim.

6 FROM ADDITIVE TO
MULTIPLICATIVE
APPROXIMATION

In this section, we show that when two finite rank
operators V and V ′ are close in the operator norm,
their corresponding preconditioners are similarly close
in a multiplicative sense. The results in this section do
not use properties of RKHS and hold for any separable
Hilbert space H.

We will prove the following general lemma.
Lemma 7. Suppose V,V ′ ∈ L(H) are finite rank, self-
adjoint positive semidefinite operators. Eigenvalues
of V are ordered as ν1 ≥ ν2 ≥ · · · and those of V ′

are ν′1 ≥ ν′2 ≥ · · · . Further assume that q ∈ N is
such that νq, ν′q > 0. Define C, C′ ∈ L(H) given by
C = νqhνq

(V)−1 and C′ = ν′qhν′
q
(V ′)−1. Then

(∀f ̸= 0)
∥Cf∥
∥C′f∥

∈ [(1 + ε′)−1, 1 + ε′]

where ε′ = C log (rank(V) + rank(V ′) + 1)
∥V−V′∥

OP

νq
(1+

∥V′∥
OP

ν′
q

) for some universal constant C.

The first step, Lemma 8, states that it suffices to find
an upper bound for ∥V − V ′∥OP and a lower bound for
the eigenvalues of C and C′.
Lemma 8. Let A,B ∈ L(H) be such that for all f ∈
H, ∥Af∥ ≥ λ ∥f∥ and ∥Bf∥ ≥ λ ∥f∥. Additionally,
assume ∥A − B∥OP ≤ ε. Then for all f ∈ H we have
(1 + ε

λ)
−1 ∥Bf∥ ≤ ∥Af∥ ≤ (1 + ε

λ) ∥Bf∥.

Proof. By symmetry it is enough to prove the right
hand side inequality: ∥Af∥ = ∥Af − Bf + Bf∥ ≤
∥Bf∥+ ε ∥f∥ ≤ ∥Bf∥ (1 + ε

λ).

The next step, Lemma 9, is the observation that
the quality of the multiplicative approximation in
Lemma 8 is invariant under taking inverses of the op-
erators. It turns out that it will be easier to bound∥∥C−1 − C′−1

∥∥
OP

and apply Lemma 8 to C−1 and C′−1.
As a bonus, in that case we can take λ = 1.

Lemma 9. Let A,B ∈ L(H) be self-adjoint and in-
vertible. Let c ≥ 1. The following statements are
equivalent:

1. (∀f ̸= 0)∥Af∥
∥Bf∥ ∈ [c−1, c].

2.
∥∥AB−1

∥∥
OP
,
∥∥BA−1

∥∥
OP
∈ [c−1, c].

3.
∥∥B−1A

∥∥
OP
,
∥∥A−1B

∥∥
OP
∈ [c−1, c].

4. (∀f ̸= 0)
∥A−1f∥
∥B−1f∥ ∈ [c−1, c].

Proof. (1 ⇔ 2) In 1, use substitution f = B−1(g) to

get (∀g ≠ 0)
∥AB−1(g)∥

∥g∥ ∈ [c−1, c]. Taking sup we get∥∥AB−1
∥∥
OP
∈ [c−1, c]. Similarly, in 1 use substitution

f = A−1g and take inf to get
∥∥B−1A

∥∥
OP
∈ [c−1, c].

The same argument in reverse shows the equivalence.

(2 ⇔ 3) Follows immediately from the fact that the
operator norm is invariant under taking adjoint.

(3⇔ 4) This follows from 1⇔ 2 with A−1 in the role
of A and B−1 in the role of B.

Proposition 10. For any two operators S, T ∈ L(H)
where H is an k-dimensional Hilbert space we have

∥h0(S)− h0(T)∥OP ≤ C log(k + 1) ∥S − T ∥OP .

where C > 0 is a universal constant.

Proof. For an operator S, denote by |S| the op-
erator (S∗S) 1

2 . [Bhatia, 2010, Theorem 4.2] states

that ∥|S| − |T |∥OP ≤ O(log k) ∥S − T ∥OP ≤ c log(k +
1) ∥S − T ∥OP for some universal constant c > 0. Thus
we have h0(S) = (S + |S|)/2 whereby,

∥h0(S)− h0(T)∥OP = ∥(S + |S|)/2− (T + |T |)/2∥OP

≤ 1

2
(∥S − T ∥OP + ∥|S| − |T |∥OP)

≤ C log(k + 1) ∥S − T ∥OP .

Instead of [Bhatia, 2010, Theorem 4.2], it may be pos-
sible to obtain a result similar to Proposition 10 by
using [Kato, 1973, result I], which gives a bound where
the dependence on k is replaced by a dependence on
the operator norms of S and T .

Proof. (of Lemma 7) Let V = im(V)+im(V ′), i.e., V is
the subspaces generated by taking the linear combina-
tion of these two subspaces of H. Below, if A ∈ L(H) is
such that A|V has image in V , then (by a slight abuse
of notation) we consider A|V as an element of L(V)
(even though in general A|V : V → H). We have∥∥C−1 − C′−1

∥∥
OP

=
∥∥∥ν−1

q hνq
(V)− ν′−1

q hν′
q
(V ′)

∥∥∥
OP

=
∥∥∥ν−1

q hνq
(V|V)− ν′−1

q hν′
q
(V ′|V)

∥∥∥
OP

=
∥∥ν−1

q h0
(
(V − νqI)|V

)
− ν′−1

q h0
(
(V ′ − ν′qI)|V

)∥∥
OP

=
∥∥h0((ν−1

q V − I)|V
)
− h0

(
(ν′−1

q V ′ − I)|V
)∥∥

OP

(a)

≤ C log(dim(V) + 1)
∥∥ν−1

q V − ν′−1
q V ′∥∥

OP

(b)

≤ C log(dim(V) + 1)

(∥∥∥∥V − V ′

νq

∥∥∥∥
OP

+

∥∥∥∥ν′q − νqνqν′q
V ′
∥∥∥∥
OP

)
≤ C

νq
log(dim(V) + 1)

(
∥V − V ′∥OP +

∣∣ν′q − νq∣∣ ∥V ′∥OP

ν′q

)
≤ C

νq
log(dim(V) + 1) ∥V − V ′∥OP

(
1 + 1

ν′
q
∥V ′∥OP

)
.

Note that (a) holds because of Proposition 10, and
(b) follows from a triangle inequality. From Lemma 8
(with λ = 1) we get

(∀f ̸= 0)

∥∥C−1f
∥∥

∥C′−1f∥
∈ [(1 + ε′)−1, 1 + ε′].

Lemma 9 and the observation that dim(V) ≤ rank(V)+
rank(V ′) complete the proof.

7 CONCLUSION

In this paper we analyzed the trade-offs of an approxi-
mation method for preconditioning used in fast algo-
rithms for training kernel models. Our analysis provides
sufficient conditions on the approximation properties of
the approximated preconditioner. This analysis guides

the design of practical preconditioners using in imple-
mentations such as EigenPro2 [Ma and Belkin, 2019]
and EigenPro3 [Abedsoltan et al., 2023] based on pre-
conditioned gradient descent.

Acknowledgements

A.A. and M.B. are supported by the National Science
Foundation (NSF) and the Simons Foundation for the
Collaboration on the Theoretical Foundations of Deep
Learning (https://deepfoundations.ai/) through
awards DMS-2031883 and #814639 and the TILOS
institute (NSF CCF-2112665). P.P. was supported by
a Simons Postdoctoral Fellowship via HDSI at UCSD.
L.R. is supported by the National Science Foundation
under Grant CCF-2006994 and acknowledges support
by HDSI, UCSD.

References

[Abedsoltan et al., 2023] Abedsoltan, A., Belkin, M.,
and Pandit, P. (2023). Toward large kernel models.
In Proceedings of the 40th International Conference
on Machine Learning, ICML’23. JMLR.org.

[Arora et al., 2019] Arora, S., Du, S. S., Li, Z.,
Salakhutdinov, R., Wang, R., and Yu, D. (2019).
Harnessing the power of infinitely wide deep nets on
small-data tasks. arXiv preprint arXiv:1910.01663.

[Avron et al., 2017] Avron, H., Clarkson, K. L., and
Woodruff, D. P. (2017). Faster kernel ridge regression
using sketching and preconditioning. SIAM Journal
on Matrix Analysis and Applications, 38(4):1116–
1138.

[Beaglehole et al., 2023] Beaglehole, D., Radhakrish-
nan, A., Pandit, P., and Belkin, M. (2023). Mech-
anism of feature learning in convolutional neural
networks. arXiv preprint arXiv:2309.00570.

[Bhatia, 2010] Bhatia, R. (2010). Modulus of continu-
ity of the matrix absolute value. Indian Journal of
Pure and Applied Mathematics, 41:99–111.

[Bhatia, 2013] Bhatia, R. (2013). Matrix analysis, vol-
ume 169. Springer Science & Business Media.

[Bietti and Bach, 2020] Bietti, A. and Bach, F. (2020).
Deep equals shallow for relu networks in kernel
regimes. arXiv preprint arXiv:2009.14397.

[Camoriano et al., 2016] Camoriano, R., Angles, T.,
Rudi, A., and Rosasco, L. (2016). Nytro: When
subsampling meets early stopping. In Artificial In-
telligence and Statistics, pages 1403–1411. PMLR.

[Charlier et al., 2021] Charlier, B., Feydy, J., Glaunes,
J. A., Collin, F.-D., and Durif, G. (2021). Kernel

operations on the gpu, with autodiff, without mem-
ory overflows. The Journal of Machine Learning
Research, 22(1):3457–3462.

[Cutajar et al., 2016] Cutajar, K., Osborne, M., Cun-
ningham, J., and Filippone, M. (2016). Precondi-
tioning kernel matrices. In International conference
on machine learning, pages 2529–2538. PMLR.

[Gardner et al., 2018] Gardner, J., Pleiss, G., Wein-
berger, K. Q., Bindel, D., and Wilson, A. G. (2018).
Gpytorch: Blackbox matrix-matrix gaussian process
inference with gpu acceleration. Advances in neural
information processing systems, 31.

[Garrigos and Gower, 2023] Garrigos, G. and Gower,
R. M. (2023). Handbook of convergence theorems
for (stochastic) gradient methods. arXiv preprint
arXiv:2301.11235.

[Jacot et al., 2018] Jacot, A., Gabriel, F., and Hongler,
C. (2018). Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural
information processing systems, 31.

[Kato, 1973] Kato, T. (1973). Continuity of the map
S → |S| for linear operators. Proceedings of the
Japan Academy, 49(3):157 – 160.

[Ma and Belkin, 2017] Ma, S. and Belkin, M. (2017).
Diving into the shallows: a computational perspec-
tive on large-scale shallow learning. Advances in
neural information processing systems, 30.

[Ma and Belkin, 2019] Ma, S. and Belkin, M. (2019).
Kernel machines that adapt to gpus for effective large
batch training. Proceedings of Machine Learning and
Systems, 1:360–373.

[Matthews et al., 2017] Matthews, A. G. d. G., Van
Der Wilk, M., Nickson, T., Fujii, K., Boukouvalas,
A., León-Villagrá, P., Ghahramani, Z., and Hensman,
J. (2017). Gpflow: A gaussian process library using
tensorflow. J. Mach. Learn. Res., 18(40):1–6.

[Meanti et al., 2020] Meanti, G., Carratino, L.,
Rosasco, L., and Rudi, A. (2020). Kernel methods
through the roof: handling billions of points effi-
ciently. Advances in Neural Information Processing
Systems, 33:14410–14422.

[Radhakrishnan et al., 2022] Radhakrishnan, A., Bea-
glehole, D., Pandit, P., and Belkin, M. (2022). Fea-
ture learning in neural networks and kernel ma-
chines that recursively learn features. arXiv preprint
arXiv:2212.13881.

[Rosasco et al., 2010] Rosasco, L., Belkin, M., and
De Vito, E. (2010). On learning with integral opera-
tors. Journal of Machine Learning Research, 11(2).

https://deepfoundations.ai/

[Rudi et al., 2017] Rudi, A., Carratino, L., and
Rosasco, L. (2017). Falkon: An optimal large scale
kernel method. Advances in neural information pro-
cessing systems, 30.

[Shalev-Shwartz et al., 2007] Shalev-Shwartz, S.,
Singer, Y., and Srebro, N. (2007). Pegasos: Primal
estimated sub-gradient solver for svm. In Proceedings
of the 24th international conference on Machine
learning, pages 807–814.

[Shankar et al., 2020] Shankar, V., Fang, A., Guo, W.,
Fridovich-Keil, S., Ragan-Kelley, J., Schmidt, L., and
Recht, B. (2020). Neural kernels without tangents. In
International conference on machine learning, pages
8614–8623. PMLR.

[Williams and Seeger, 2000] Williams, C. and Seeger,
M. (2000). Using the nyström method to speed up
kernel machines. In Leen, T., Dietterich, T., and
Tresp, V., editors, Advances in Neural Information
Processing Systems, volume 13. MIT Press.

	INTRODUCTION
	Main contribution

	PRELIMINARIES
	PROBLEM SETUP
	Gradient Descent and preconditioning
	Speed-up of PGD over GD

	MAIN RESULT
	Speed-up of nPGD over GD

	PROOF OF MAIN RESULT
	FROM ADDITIVE TO MULTIPLICATIVE APPROXIMATION
	CONCLUSION

