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Abstract

A lexicographic maximum of a set X ⊆ Rn
is a vector in X whose smallest component
is as large as possible, and subject to that re-
quirement, whose second smallest component
is as large as possible, and so on for the third
smallest component, etc. Lexicographic maxi-
mization has numerous practical and theoretical
applications, including fair resource allocation,
analyzing the implicit regularization of learn-
ing algorithms, and characterizing refinements
of game-theoretic equilibria. We prove that a
minimizer in X of the exponential loss function
Lc(x) =

∑
i exp(−cxi) converges to a lexico-

graphic maximum of X as c → ∞, provided
that X is stable in the sense that a well-known
iterative method for finding a lexicographic max-
imum of X cannot be made to fail simply by
reducing the required quality of each iterate by
an arbitrarily tiny degree. Our result holds for
both near and exact minimizers of the exponen-
tial loss, while earlier convergence results made
much stronger assumptions about the set X and
only held for the exact minimizer. We are aware
of no previous results showing a connection be-
tween the iterative method for computing a lex-
icographic maximum and exponential loss mini-
mization. We show that every convex polytope is
stable, but that there exist compact, convex sets
that are not stable. We also provide the first anal-
ysis of the convergence rate of an exponential
loss minimizer (near or exact) and discover a cu-
rious dichotomy: While the two smallest compo-
nents of the vector converge to the lexicograph-
ically maximum values very quickly (at roughly
the rate logn

c ), all other components can converge
arbitrarily slowly.
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1 INTRODUCTION

A lexicographic maximum of a setX ⊆ Rn is a vector inX
that is at least as large as any other vector inX when sorting
their components in non-decreasing order and comparing
them lexicographically. For example, if

X =

x1 =

5
2
4

 ,x2 =

2
6
3

 ,x3 =

8
7
1


then the lexicographic maximum of X is x1, since both x1

and x2 have the largest smallest components, and x1 has
a larger second smallest component than x2. Infinite and
unbounded sets can also contain a lexicographic maximum.

One of the first applications of lexicographic maximization
was fair bandwidth allocation in computer networks (Hay-
den, 1981; Mo and Walrand, 1998; Le Boudec, 2000). Lex-
icographic maximimization avoids a ‘rich-get-richer’ allo-
cation of a scarce resource, since a lexicographic maximum
is both Pareto optimal and has the property that no compo-
nent can be increased without decreasing another smaller
component. More recently, Diana et al. (2021) considered
lexicographic maximization as an approach to fair regres-
sion, where the components of the lexicographic maximum
represent the performance of a model on different demo-
graphic groups. Bei et al. (2022) studied the “cake sharing”
problem in mechanism design and showed that assigning
a lexicographically maximum allocation to the agents is a
truthful mechanism.

Rosset et al. (2004) and Nacson et al. (2019) used lexico-
graphic maximization to analyze the implicit regularization
of learning algorithms that are based on minimizing an ob-
jective function. In particular, they showed for certain ob-
jective functions and model classes that the vector of model
predictions converges to a lexicographic maximum.

In game theory, Dresher (1961) described an equilibrium
concept in which each player’s payoff vector is a lexico-
graphic maximum of the set of their possible payoff vec-
tors. Van Damme (1991) showed that in a zero-sum game
this concept is equivalent to a proper equilibrium, a well-
known refinement of a Nash equilibrium. Lexicographic
maximization is also used to define the nucleolus of a co-



operative game (Schmeidler, 1969).

Two methods for computing a lexicographic maximum
have been described in the literature. The first method is
an iterative algorithm that solves n optimization problems,
with the ith iteration computing the ith smallest compo-
nent of the lexicographic maximum, and is guaranteed to
find the lexicographic maximum if one exists. This method
is often called the progressive filling algorithm (Bertsekas
and Gallager, 2021). The second method minimizes the
exponential loss, which is defined

Lc(x) =

n∑
i=1

exp(−cxi), (1)

where x ∈ Rn and c ≥ 0. Previous work has shown that a
minimizer in X of Lc(x) may converge to a lexicographic
maximum of X as c→∞, but the conditions placed on X
to ensure convergence were quite restrictive. Mo and Wal-
rand (1998), Le Boudec (2000) and Rosset et al. (2004) all
assumed that X is a convex polytope, while Nacson et al.
(2019) assumed that X is the image of a simplex under
a continuous, positive-homogeneous mapping. These re-
sults were all based on asymptotic analyses, and did not
establish any bounds on the rate of convergence to a lexi-
cographic maximum. As far as we know, no previous work
has drawn a connection between the two methods for com-
puting a lexicographic maximum.

Our contributions: The iterative algorithm described
above is guaranteed to find a lexicographic maximum of a
set if the optimization problems in each iteration are solved
exactly. But if the optimization problems are solved only
approximately, then the output of the algorithm can be far
from a lexicographic maximum, even if the approximation
error is arbitrarily small (but still non-zero). We define a
property called lexicographic stability, which holds for a
set X ⊆ Rn whenever this pathological situation does not
occur, and prove that it has an additional powerful implica-
tion: Any vector xc ∈ X that is less than exp(−O(c)) from
the minimum value of Lc(x) converges to a lexicographic
maximum of X as c→∞. By proving convergence for all
non-pathological sets, we significantly generalize existing
convergence criteria for exponential loss minimization.

We show that all convex polytopes are stable, thereby sub-
suming most of the previous works mentioned above. On
the other hand, we show that sets that are convex and com-
pact but not polytopes need not be stable, in general. We
also show that our convergence result does not hold gen-
erally when stability is not assumed by constructing a set
X that is not lexicographically stable, and for which xc is
bounded away from a lexicographic maximum of X for all
sufficiently large c, even if xc is an exact minimizer of the
exponential loss.

We also study the rate at which xc approaches a lexico-
graphic maximum, and find a stark discrepancy for differ-

ent components of xc. The smallest and second smallest
components of xc are never more than O

(
logn
c

)
below

their lexicographically maximum values, even if X is not
lexicographically stable. However, all other components of
xc can remain far below their lexicographically maximum
values for arbitrarily large c, even if xc is an exact min-
imizer of the exponential loss and X is lexicographically
stable with a seemingly benign structure (it can be a single
line segment).

Finally, we prove that the multiplicative weights algorithm
(Littlestone and Warmuth, 1994; Freund and Schapire,
1999) is guaranteed to converge to the lexicographic max-
imum of a convex polytope, essentially because it mini-
mizes the exponential loss. While Syed (2010) proved that
the multiplicative weights algorithm diverges from the lex-
icographic maximum when the learning rate is constant,
we guarantee convergence by setting the learning rate to
O(1/t) in each iteration t.

Additional related work: Lexicographic maximization
is often applied to multi-objective optimization problems
where, for a given function f : Θ→ Rn, the goal is to find
θ∗ ∈ Θ such that f(θ∗) is a lexicographic maximum of the
set X = {f(θ) : θ ∈ Θ} (Luss and Smith, 1986). As in
our work, this approach sorts the components of each vec-
tor before performing a lexicographic comparison, which
contrasts with other work in which an ordering of the di-
mensions is fixed in advance (Sherali and Soyster, 1983;
Martı́nez-Legaz and Singer, 1987).

Diana et al. (2021) and Henzinger et al. (2022) critiqued
the lexicographic maximum as a fairness solution concept
because of its potential for instability when subject to small
perturbations. They gave examples demonstrating that in-
stability can occur, but did not relate the instability to the
problem of computing a lexicographic maximum via loss
minimization. The primary objective of our work is to pro-
vide a much fuller characterization of this instability and to
explore its implications.

In the analytical framework used by Rosset et al. (2004)
and Nacson et al. (2019), larger values of c for the exponen-
tial loss Lc(x) correspond to weaker explicit regularization
by a learning algorithm, so understanding the behavior of
the minimizer of Lc(x) as c→∞ helps to characterize the
algorithm’s implicit regularization.

Hartman et al. (2023) appear to contradict one of our key
negative results by showing that if the iterative algorithm
uses an approximate solver in each iteration then its output
will always be close to a lexicographic maximum, provided
that the approximation error is sufficiently small (see their
Theorem 9). However, this apparent discrepancy with our
results is in fact due only to us using a different and in-
compatible definition of “closeness.” See Appendix B for
a discussion.
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2 PRELIMINARIES

For any non-negative integer n let [n] := {1, . . . , n}, and
note that [0] is the empty set. Let R≥0 := {x ∈ R : x ≥ 0}
be the non-negative reals. Let xi be the ith component of
the vector x ∈ Rn. Let ‖X‖∞ := supx∈X maxi |xi| be
the largest `∞ norm of any vector in X ⊆ Rn.

For each i ∈ [n] let σi : Rn → R be the ith sorting
function, such that σi(x) is the ith smallest component of
x ∈ Rn. For example, if x = (2, 1, 2)> then σ1(x) = 1,
σ2(x) = 2 and σ3(x) = 2. We define a total order ≥σ on
vectors in Rn as follows: for any points x,x′ ∈ Rn we say
that x ≥σ x′ if and only if x = x′ or σi(x) > σi(x

′) for
the smallest i ∈ [n] such that σi(x) 6= σi(x

′).

Definition 1. A lexicographic maximum of a set X ⊆ Rn
is a vector x∗ ∈ X for which x∗ ≥σ x for every x ∈ X .
Let lexmaxX be the set of all lexicographic maxima of X .

While lexmaxX can be empty, this can only occur if X is
empty or not compact (see Theorem 1).

For notation, we always write x∗ to denote a lexicographic
maximum of X . Also, for all c, γ ≥ 0 we write xc,γ to
denote an arbitrary vector in X that satisfies

Lc(xc,γ) ≤ inf
x∈X

Lc(x) + γ exp(−c ‖X‖∞).

In other words, xc,γ is a near minimizer in X of the expo-
nential loss if γ is small, and xc,0 is an exact minimizer.
The notation x∗ and xc,γ suppresses the dependence on X ,
which will be clear from context. While x∗ and xc,0 do not
exist in every set X , we are only interested in cases where
they do, and implicitly make this assumption throughout
our analysis. An exception is when we construct a set X
to be a counterexample. In these cases we explicitly prove
that x∗ and xc,0 exist. Also, a set may contain multiple
vectors that satisfy the definitions of x∗ or xc,γ , and our
results apply no matter how they are chosen.

Our goal is to characterize when xc,γ is “close” to x∗,
where we use the following definition of closeness.

Definition 2. The lexicographic distortion between x,x′ ∈
Rn with respect to I ⊆ [n] is

dI(x | x′) , max
k∈I

[max{0, σk(x)− σk(x′)}].

If I = [n] we abbreviate d(x | x′) , dI(x | x′).

Lexicographic distortion is useful for quantifying the close-
ness of xc,γ to x∗ because d(x∗ | xc,γ) = 0 if and only if
xc,γ ∈ lexmaxX . It is important to note, however, that
dI(· | ·) is not a symmetric function, and most typically
dI(x | x′) 6= dI(x

′ | x)

Problem statement: We want to describe conditions on
X ⊆ Rn, I ⊆ [n], c ≥ 0 and γ ≥ 0 which ensure that

dI(x
∗ | xc,γ) is almost equal to zero. We are particularly

interested in cases where I = [n], since this implies that
xc,γ is close to a lexicographic maximum. Also, we want
to identify counterexamples where dI(x∗ | xc,γ) is far from
zero. Since d(x∗ | xc,γ) ≥ dI(x

∗ | xc,γ) for all I ⊆ [n],
this implies that xc,γ is far from a lexicographic maximum.

3 BASIC PROPERTIES

We prove several basic properties of lexicographic max-
ima that will be useful in our subsequent analysis. We first
show that conditions which suffice to ensure that a subset
of R contains a maximum also ensure that a subset of Rn
contains a lexicographic maximum.

Theorem 1. If X ⊆ Rn is non-empty and compact then
lexmaxX is non-empty.

Proof. Define X0, . . . , Xn and Σ1, . . . ,Σn recursively as
follows: Let X0 = X , Σi = {σi(x) : x ∈ Xi−1} and
Xi = {x ∈ Xi−1 : σi(x) ≥ sup Σi}. We will prove by
induction that each Xi is non-empty and compact, which
holds for X0 by assumption. Since Xn = lexmaxX this
will complete the proof.

By Theorem 11 in Appendix A.1, each sorting function σi
is continuous. IfXi−1 is non-empty and compact then Σi is
non-empty and compact, since it is the image of a compact
set under a continuous function. Therefore sup Σi ∈ Σi.
If Xi−1 is non-empty and compact and sup Σi ∈ Σi then
Xi is non-empty and closed, since it is the pre-image of
a compact set under a continuous function. Also, Xi is
bounded, since Xi ⊆ Xi−1, and therefore Xi is compact.

Furthermore, if X is also convex, we are assured that the
lexicographic maximum of X is unique.

Theorem 2. If X ⊆ Rn is non-empty, compact and convex
then | lexmaxX| = 1.

Proof. Suppose X is nonempty, compact and convex. By
Theorem 1, | lexmaxX| ≥ 1, so it only remains to show
that | lexmaxX| ≤ 1. Suppose, towards a contradiction,
there exist distinct points x,y ∈ X that are both lexico-
graphic maxima. We assume without loss of generality that
the coordinates of x are sorted in nondecreasing order and,
further, that on any segment of “ties” on the sorted x, the
corresponding segment in y is nondecreasing. Thus, for
i, j ∈ [n], if i ≤ j then xi ≤ xj , and in addition, if xi = xj
then yi ≤ yj . Since both x and y are lexicographic max-
ima, it follows that σi(y) = σi(x) = xi for i ∈ [n].

Let k be the smallest index on which x and y differ (so that
xi = yi for i < k and xk 6= yk). Let I = [k − 1]. Then
σi(y) = σi(x) = xi = yi for i ∈ I . Therefore, σk(y) is
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the smallest of the remaining components of y, implying

yk ≥ min{yk, . . . , yn} = σk(y) = σk(x) = xk, (2)

and so that yk > xk.

Let z = (x + y)/2, which is in X since X is convex. We
consider the components of z relative to xk. Let i ∈ [n].

If i < k then zi = xi ≤ xk (since xi = yi).

If i = k then zk = (yk + xk)/2 > xk since yk > xk.

Finally, suppose i > k, implying xi ≥ xk. If xi > xk
then zi = (yi + xi)/2 > xk since yi ≥ xk (by Eq. (2)).
Otherwise, xi = xk, implying, by how the components are
sorted, that yi ≥ yk > xk; thus, again, zi = (yi + xi)/2 >
xk.

To summarize, zi = yi = xi ≤ xk if i ∈ I , and zi > xk
if i 6∈ I . It follows that σi(z) = σi(x) = xi for i =
1, . . . , k − 1, and that σk(z) = min{zk, . . . , zn} > xk =
σk(x). However, this contradicts that x is a lexicographic
maximum.

4 COMPUTING A LEXICOGRAPHIC
MAXIMUM

Algorithm 1 below is an iterative procedure for comput-
ing a lexicographic maximum of a set X ⊆ Rn. In each
iteration k, Algorithm 1 finds a vector in X with the (ap-
proximately) largest kth smallest component, subject to the
constraint that its k − 1 smallest components are at least
as large as the k − 1 smallest components of the vector
from the previous iteration. The quality of the approxi-
mation is governed by a tolerance parameter ε. Since the
optimization problem in each iteration can have multiple
solutions, the output of Algorithm 1 should be thought of
as being selected arbitrarily from a set of possible outputs.
We write A(X, ε) for the set of all possible outputs when
Algorithm 1 is run on input (X, ε).

Algorithm 1 and close variants have been described many
times in the literature. In general, the optimization problem
in each iteration can be difficult to solve, especially due to
the presence of sorting functions in the constraints. Con-
sequently, much previous work has focused on tractable
special cases where the optimization problem can be refor-
mulated as an equivalent linear or convex program (Luss,
1999; Miltersen and Sørensen, 2006). Other authors have
used Algorithm 1 with tolerance parameter ε = 0 as
the definition of a lexicographic maximum (Van Damme,
1991; Nacson et al., 2019; Diana et al., 2021). Theorem 3
explains the relationship between Definition 1 and Algo-
rithm 1 when ε = 0.

Theorem 3. Let X ⊆ Rn. A vector x̂ ∈ Rn is a possible
output of Algorithm 1 on input (X, 0) if and only if x̂ ∈
lexmaxX . That is, A(X, 0) = lexmaxX .

Algorithm 1: Compute a lexicographic maximum.
Input: Set X ⊆ Rn, tolerance ε ≥ 0.
for k = 1, . . . , n do

Find an ε-optimal solution x(k) to the optimization
problem:

max
x∈X

σk(x)

subject to σi(x) ≥ σi(x(k−1)) for all i ∈ [k − 1]

end
Return: x(n).

Proof. Let x∗ ∈ lexmaxX . We prove by induction that in
each iteration k of Algorithm 1 we have σi(x(k)) = σi(x

∗)
for all i ∈ [k]. Setting k = n proves the theorem. For the
base case k = 1, observe that the algorithm assigns x(1) ∈
arg maxx∈X σ1(x). Therefore σ1(x(1)) = σ1(x∗), by the
definition of x∗. In each iteration k > 1 the algorithm
assigns

x(k) ∈ arg max
x∈X

σk(x)

subject to σi(x) ≥ σi(x∗) for all i ∈ [k − 1],

where the constraints are implied by the inductive hypoth-
esis. Therefore σi(x(k)) = σi(x

∗) for all i ∈ [k], again by
the definition of x∗.

While Algorithm 1 can only find a lexicographic maximum
if one exists inX , we recall from Theorem 1 that this holds
whenever X is non-empty and compact.

Diana et al. (2021) and Henzinger et al. (2022) proposed
A(X, ε) (or minor variants thereof) as the definition of the
ε-approximate lexicographic maxima of X . However, they
observed thatA(X, ε) may nonetheless contain vectors that
are far from any lexicographic maximum, even if ε is very
small (but still non-zero). In the next section we formally
characterize this phenomenon, and in the rest of the paper
we explore its implications.

5 LEXICOGRAPHIC STABILITY

Theorem 3 states that Algorithm 1 outputs a lexicographic
maximum (assuming one exists) if the optimization prob-
lem in each iteration of the algorithm is solved exactly.
In practice, the optimization problems will be solved by
a numerical method up to some tolerance ε > 0, with
smaller values of ε typically requiring longer running
times. Ideally, we would like the quality of the output of
Algorithm 1 to vary smoothly with ε, and if this happens
for a set X then we say that X is lexicographically stable.
Definition 3. A set X ⊆ Rn is lexicographically stable
if for all δ > 0 there exists ε > 0 such that for all x̂ ∈
A(X, ε) and x∗ ∈ lexmaxX we have d(x∗ | x̂) < δ.
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Definition 3 says that if a set X is lexicographically stable,
then in order to find an arbitrarily good approximation of
its lexicographic maximum, it suffices to run Algorithm 1
with a sufficiently small tolerance parameter ε > 0. On
the other hand, if X is not lexicographically stable, then no
matter how small we make ε > 0 the output of Algorithm 1
can be far from a lexicographic maximum.

A sufficient (but not necessary) condition for a setX ⊆ Rn
to be lexicographically stable is thatX is a convex polytope
(i.e., the convex hull of finitely many points in Rn).

Theorem 4. If X ⊆ Rn is a convex polytope then X is
lexicographically stable.

Proof sketch. We outline the main steps of the proof. De-
tailed justification for these steps is given in Appendix A.2.
We suppose X is a convex polytope and that x∗ is its
unique lexicographic maximum.

On each round k, Algorithm 1 approximately solves an op-
timization problem whose value is given by some func-
tion Hk(x(k−1)) so that x(k) must satisfy σk(x(k)) ≥
Hk(x(k−1)) − ε. In fact, we show that a point x is a pos-
sible output on (X, ε) if and only if it satisfies σk(x) ≥
Hk(x)− ε for all k ∈ [n]. This function Hk can be lower-
bounded by another function GI , which, if X is a convex
polytope, is concave and lower semicontinuous.

If X is not lexicographically stable, then there exists se-
quences xt and εt > 0 with εt → 0 and xt ∈ A(X, εt)
such that xt → x̂ for some x̂ ∈ X but x̂ 6= x∗. We can re-
index points in X so that the components of x̂ are sorted,
and furthermore, that when there are ties, they are addition-
ally sorted according to the components of x∗. Let k be the
first component for which x̂k 6= x∗k. We show this implies
GI(x̂) > x̂k. Combining facts, we then have

x̂k < GI(x̂) ≤ lim inf
t→∞

GI(xt)

≤ lim inf
t→∞

Hk(xt) ≤ lim inf
t→∞

[σk(xt) + εt] = x̂k,

a contradiction.

Combining Theorem 4 with Theorem 5 below recovers re-
sults due to Mo and Walrand (1998), Le Boudec (2000) and
Rosset et al. (2004) which show that an exponential loss
minimizer in X converges to a lexicographic maximum of
X when X is a convex polytope.

Fairly simple non-convex sets that contain a lexicographic
maximum but are not lexicographically stable exist. We
provide an example in Theorem 6, one that also shows how,
in such cases, minimizing exponential loss might not lead
to a lexicographic maximum.

Theorem 4 shows that a nonempty set X is lexicographi-
cally stable if it is a convex polytope, a condition that im-
plies that X is also convex and compact. The theorem still

holds, by the same proof, with the weaker requirement that
X is convex, compact and locally simplicial, a property de-
fined in Rockafellar (1970, page 84). However, the theorem
is false, in general, if we only require that X be convex and
compact.

As an example, in R3, let Z = [−1, 0]× [0, 1]× [0, 1], and
let

X =
{
x ∈ Z : x1(x3 − 1) ≥ x2

2

}
. (3)

This set is compact and convex, and has a unique lexi-
cographic maximum, namely, x∗ = (0, 0, 1)

>. For ε ∈
(0, 1), let xε =

(
−ε2, ε/2, 3/4

)>
. It can be shown that

xε ∈ A(X, ε). It follows that X is not lexicographically
stable since σ3(xε) = 3/4 for all ε > 0 while σ3(x∗) = 1.
(Details are given in Appendix A.3.)

6 CONVERGENCE ANALYSIS OF
EXPONENTIAL LOSS MINIMIZATION

In this section we study conditions under which a near or
exact minimizer xc,γ ∈ X of the exponential loss Lc(x)
converges to a lexicographic maximum x∗ ∈ lexmaxX
as c → ∞. To see why convergence should be expected,
note that when c is large, the dominant term ofLc(x) corre-
sponds to the smallest component of x, since the function
x 7→ exp(−cx) decreases very quickly. Therefore mini-
mizing Lc(x) will tend to make this term as large as possi-
ble. Further, among vectors x that maximize their smallest
component, the dominant term in Lc(x) corresponds to the
second smallest component of x, if we ignore terms that are
equal for all vectors. In general, when c is large, the magni-
tudes of the terms in Lc(x) decrease sharply when they are
sorted in increasing order of the components of x, and this
situation tends to favor a minimizer of Lc(x) that is also
a lexicographic maximum. Although such reasoning is in-
tuitive, proving convergence to a lexicographic maximum
can be challenging; indeed, convergence need not hold for
every set X , as will be seen shortly.

6.1 Asymptotic results

Theorem 5 states our main convergence result: IfX is lexi-
cographically stable then xc,γ converges to a lexicographic
maximum x∗ as c → ∞, provided that γ ∈ [0, 1). In
other words, in the contrapositive, if a near minimizer in
X of Lc(x) fails to converge to a lexicographic maximum
as c → ∞, then Algorithm 1 can fail to find a good ap-
proximation of a lexicographic maximum for any tolerance
ε > 0.

Theorem 5. Let X ⊆ Rn and γ ∈ [0, 1). If X is lexico-
graphically stable then for all x∗ ∈ lexmaxX

lim
c→∞

d(x∗ | xc,γ) = 0.
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Theorem 5’s requirement that γ ∈ [0, 1) ensures that xc,γ
is less than exp(−c ‖X‖∞) from the minimum value of
Lc(x). To see why this condition aids convergence to a
lexicographic maximum, consider that the smallest possi-
ble value of any term in Lc(x) is exp(−c ‖X‖∞). So if
the minimization error were larger than this value then xc,γ
may not make every term of Lc(xc,γ) small, which in turn
could cause xc,γ to be far from a lexicographic maximum.

Before proving Theorem 5, we introduce some additional
notation and a key lemma. For any X ⊆ Rn, x ∈ Rn and
k ∈ {0} ∪ [n] let

Xk(x) = {x′ ∈ X : σi(x
′) ≥ σi(x) for all i ∈ [k]} (4)

be the set of all vectors in X whose k smallest components
are at least as large as the k smallest components of x. Note
that X0(x) = X . Also, if x(k−1) is the vector selected
in iteration k − 1 of Algorithm 1, then Xk−1(x(k−1)) is
the set of feasible solutions to the optimization problem in
iteration k of the algorithm. Lemma 1 below, which is key
to our convergence results and proved in Appendix A.4,
states that if xc,γ is selected in any iteration of Algorithm 1
then it is a good solution for the next iteration when c is
large.

Lemma 1. For all X ⊆ Rn, γ ∈ [0, 1), c > 0 and k ∈ [n]

σk(xc,γ) ≥ sup
x∈Xk−1(xc,γ)

σk(x)− 1

c
log

(
n− k + 1

1− γ

)
.

We are now ready to prove Theorem 5.

Proof of Theorem 5. Say that a vector x ∈ Rn is (X, ε)-
valid if it is a solution to all of the optimization problems
in Algorithm 1 when run on input (X, ε). In other words, if
Algorithm 1 is run on input (X, ε), then the algorithm can
let x(1) = x,x(2) = x, . . . ,x(n) = x. For all c > 0 let
ε(c) = 1

c log n
1−γ . By Lemma 1 we have

σk(xc,γ) ≥ sup
x∈Xk−1(xc,γ)

σk(x)− ε(c)

for all k ∈ [n], which immediately implies that xc,γ
is (X, ε(c))-valid. Let {δt} be a positive sequence with
limt→∞ δt = 0. Since ε(c) is a continuous function with
range (0,∞), by Definition 3 for each δt there exists ct > 0
such that for all x̂ ∈ A(X, ε(ct)) and k ∈ [n] we have

δt ≥ σk(x∗)− σk(x̂).

Also, sinceA(X, ε) ⊆ A(X, ε′) if ε < ε′, and ε(c) is a de-
creasing function, we can arrange {ct} to be an increasing
sequence with limt→∞ ct =∞.

Since xc,γ is (X, ε(c))-valid we have for all k ∈ [n]

δt ≥ σk(x∗)− σk(xct,γ).

By taking the limit superior of both sides we have for all
k ∈ [n]

0 ≥ lim sup
t→∞

[σk(x∗)− σk(xct,γ)] ,

and therefore

lim
t→∞

max
k∈[n]

[max{0, σk(x∗)− σk(xct,γ)}] = 0,

which proves the theorem.

The lexicographic stability requirement in Theorem 5 can-
not be relaxed without risking non-convergence. Theo-
rem 6 below constructs a lexicographically unstable set
for which the exact exponential loss minimizer is bounded
away from the lexicographic maximum. The set is a piece-
wise linear path consisting of two adjoining line segments
that is bounded, closed and connected, but not convex.

Theorem 6. For all n ≥ 8 there exists a set X ⊆ Rn
consisting of two line segments with a shared endpoint and
satisfying ‖X‖∞ = 1 such that for all x∗ ∈ lexmaxX and
c ≥ 2

d(x∗ | xc,0) ≥ d{n}(x∗ | xc,0) ≥ 1

2
.

Proof sketch. The full construction and proof are given in
Appendix A.5. Briefly, the lexicographic maximum x∗ in
X is a vector consisting of 0 in the first n− 1 components
and 1 in the nth component. For all ε > 0, X also in-
cludes a vector x(ε) whose first component is − ε2 , next
n − 2 components are ε

4 , and nth component is 1
2 . We

prove that for all n ≥ 8 and c ≥ 2 there exists ε > 0
such that Lc(x(ε)) < Lc(x

∗), essentially because when n
is sufficiently large the lower loss on the middle n−2 com-
ponents compensates for the higher loss on the first and last
components. Observing that σn(x(ε)) = σn(x∗)− 1

2 com-
pletes the proof.

From Theorem 5 it immediately follows that the set con-
structed in Theorem 6 is not lexicographically stable. We
can also give more direct intuition for why the set is un-
stable. The set X in Theorem 6 consists of a “good” and
a “bad” line segment, and the unique lexicographic maxi-
mum is a point on the “good” line segment. If the optimiza-
tion problem in the first iteration of Algorithm 1 is solved
exactly, then the smallest component of the solution will be
equal to 0. In this case, every iteration of the algorithm will
output a solution on the “good” line segment, since only
points on that segment have a smallest component that is
at least 0. However, if the optimization problem in the first
iteration is solved with a tolerance ε > 0, then the small-
est component of the solution can be as small as −ε. In
this case, every iteration of the algorithm will output a so-
lution on the “bad” line segment, since the 2nd, 3rd, . . . ,
(n−1)th smallest components of the points on that segment
are larger than the corresponding components of the points
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on the “good” line segment. However, the largest compo-
nent of each point on the “good” line segment is equal to 1,
while the largest component of each point on the “bad” line
segment is equal to 1

2 . As a result, the algorithm outputs a
vector whose largest component has a value that is far from
its lexicographic maximum.

Theorem 6 provides a much stronger example of instability
than the construction of Diana et al. (2021), who showed
that for all ε > 0 there exists a setX such thatA(X, ε), the
set of possible outputs on input (X, ε), contains an element
that is far from the lexicographic maximum x∗ of X . By
contrast, Theorem 6 reverses the order of the quantifiers,
and shows that there exists a set X such that for all ε > 0
the set A(X, ε) contains an element that is far from x∗.

6.2 Convergence rates

Theorems 7 and 8 below give bounds on the rate at which
a near or exact minimizer xc,γ ∈ X of the exponential
loss function Lc(x) converges to a lexicographic maximum
x∗ ∈ lexmaxX as c → ∞. Theorem 7 states that the
smallest and second smallest components of xc,γ are never
more than O(1/c) below their lexicographically maximum
values, provided that γ ∈ [0, 1), so that an arbitrarily good
approximation is possible by making c large. Note that the
theorem makes no assumptions about X , not even that it
is lexicographically stable. While the rate of convergence
for the smallest component of xc,γ has been studied previ-
ously (Rosset et al., 2004), we believe that we are the first
to prove unconditional convergence, even asymptotically,
for the second smallest component.
Theorem 7. For all n ≥ 2, X ⊆ Rn,x∗ ∈ lexmaxX, c >
0 and γ ∈ [0, 1)

d{1,2}(x
∗ | xc,γ) ≤ 1

c
log

(
n− k + 1

1− γ

)
.

Proof. By Lemma 1 we only need to show

sup
x∈Xk−1(xc,γ)

σk(x) ≥ σk(x∗)

for k ∈ {1, 2}. By the definition of x∗ we have
supx∈X σ1(x) = σ1(x∗), and since X0(xc,γ) = X this
implies supx∈X0(xc,γ) σ1(x) = σ1(x∗). We also have

σ2(x∗) = sup
x∈X:σ1(x)≥σ1(x∗)

σ2(x) ∵ Definition of x∗

≤ sup
x∈X:σ1(x)≥σ1(xc,γ)

σ2(x) ∵ σ1(x∗) ≥ σ1(xc,γ)

= sup
x∈X1(xc,γ)

σ2(x) ∵ Eq. (4)

In contrast to Theorem 7, the situation is very different for
the kth smallest component of xc,γ for all k ≥ 3. Theo-
rem 8 states that this component can remain far below its

lexicographically maximum value for arbitrarily large val-
ues of c, even if X is a bounded line segment (and thus is
lexicographically stable) and γ = 0 (i.e., the minimization
is exact).

Theorem 8. For all n ≥ k ≥ 3 and a ≥ 1 there exists a
line segment X ⊆ Rn satisfying ‖X‖∞ = 1 such that for
all x∗ ∈ lexmaxX and c > 0

d(x∗ | xc,0) ≥ d{k}(x∗ | xc,0) ≥ 1

3
min

{
1,
a

c

}
.

Proof sketch. We consider only the case n = 3 here, as the
general case n ≥ 3 proceeds very similarly. The complete
proof is provided in Appendix A.6.

If n = 3 then we define X to be the line segment joining
the following two points:

x∗ = (ε, ε, 1)
> and x′ =

(
0,

2

3
,

2

3

)>
where ε > 0. Clearly x∗ is the lexicographic maximum
of X . As discussed earlier, if c is large then the dominant
term in Lc(x) corresponds to the smallest component of
x. However if c is small then several of the largest terms
in Lc(x) can have similar magnitude. We show that if
c ≤ a = Ω(log 1

ε ) then at least the two largest terms in
Lc(x), which correspond to the two smallest components
of x, have roughly the same magnitude. In this case the
minimizer of Lc(x) will be much closer to x′ than to x∗,
because the second smallest component of x′ is roughly 2

3
larger than the second smallest component of x∗, while the
smallest component of x∗ is only ε larger than the smallest
component of x′.

6.3 A related algorithm using multiplicative weights

Next, we discuss a related approach for finding a lexico-
graphic maximum using no-regret strategies to solve an as-
sociated zero-sum game, as was considered in great detail
by Syed (2010). This is another natural approach for find-
ing lexicographic maxima since, at least when X is a con-
vex polytope, we can view the lexicographic maximization
computational task through the lens of solving a zero-sum
game, a problem where no-regret algorithms have found a
great deal of use.

In the game theory perspective, we are trying to solve the
following minimax problem:

min
p∈∆m

max
q∈∆n

p>Mq

where M ∈ Rm×n and ∆m,∆n are the probability sim-
plices on m,n items, respectively. An equilibrium pair of
this minimax problem is a pair of distributions p̂ ∈ ∆m

and q̂ ∈ ∆n satisfying

p>Mq̂ ≥ p̂>Mq̂ ≥ p̂>Mq
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for all p ∈ ∆m and q ∈ ∆n. Von Neumann (1928)
showed that such a “minimax-optimal” pair, commonly
known as a Nash equilibrium in a zero-sum game, al-
ways exists for every M. There has been considerable
work on how to compute such a pair, including through
the use of no-regret online learning algorithms for se-
quentially updating p and q. For example, Multiplica-
tive Weights (Algorithm 2) is known to compute an ε-
approximate equilibrium of the game given by M, with ε =

O
(√

log(m)/T +
√

log(n)/T
)

(Freund and Schapire,
1999).

Algorithm 2: Multiplicative weights method for com-
puting a Nash equilibrium
Input: M ∈ Rm×n, num. iter. T
Input: η1, η2, . . . > 0 learning parameters
p1 ←

(
1
n , . . . ,

1
n

)>
for t = 1, . . . , T do

qt ← any element in arg maxq∈∆n
p>t Mq

pt+1 ← 1
Zt+1

exp
(
−ηtM

∑t
s=1 qs

)
where exp is applied coordinate wise,
and Zt+1 is the normalizer.

end
Return: p̄T := 1

T

∑T
t=1 pt, q̄T := 1

T

∑T
t=1 qt

In this paper, we study how to compute lexmaxX for some
X ⊆ Rm. Let us suppose X is a convex polytope, that
is, the convex hull of a finite set of points S ⊆ Rm. Let
M be a matrix whose columns are the points in S, so that
X = {Mq : q ∈ ∆n}. We can then define a lexmax equi-
librium strategy for the column player as any q∗ for which
Mq∗ ∈ lexmaxX . A “lexmin” equilibrium strategy for
the row player can be defined similarly. Thus, a lexmin and
lexmax equilibrium pair p∗,q∗ is a “special” Nash equi-
librium which satisfies the additional constraints of being
lexicographically optimal. In this work, we focus only on
computing a lexmax solution q∗ for the column player.

The use of no-regret algorithms (such as Multiplicative
Weights) has been very helpful for finding Nash equilib-
ria in zero-sum games, among many other applications, and
the exponentiation used in the update in Algorithm 2 has an
attractive similarity to the minimization of the exponential
loss (Eq. (1)) considered primarily in this work. A natu-
ral question is whether Algorithm 2 is suitable for finding
not just any equilibrium strategy, but a lexmax equlibrium
strategy p∗ as defined above. Unfortunately, prior work
suggests this is not the case when the learning parameter ηt
is fixed to a constant:
Theorem 9 (Informal summary of (Syed, 2010, Theo-
rem 3.7)). There is a family of game matrices M ∈ R3×4

such that if Algorithm 2 is run with a constant learning
parameter ηt = η, the output q̄T will not converge to a
lexmax equilibrium strategy for the row player as T →∞.

On the positive side, Syed (2010) also gives a result for
when Algorithm 2 computes a lexocographically optimal
solution, but only in a very specific case where the solution
has distinct values.

We now aim to rehabilitate Algorithm 2, the work of Syed
(2010) notwithstanding. As we will see, the choice of
learning parameters ηt is indeed quite important. First, let
us define the function Hc : ∆n → R as

Hc(q) :=
1

c
log

(
m∑
i=1

exp(−ce>i Mq)

)
, (5)

where ei is the ith basis vector. This function is strongly
related to Lc(·) as in Eq. (1), except that we have 1

c log(·)
operating on the outside. Notice, however, that the log
transformation is monotonically increasing, so any mini-
mizer of the exponential loss also minimizes Hc(·). Sec-
ond, we observe that Hc is c-smooth — that is, it satisfies
‖∇Hc(q)−∇Hc(q

′)‖ ≤ c‖q− q′‖ for any q,q′ ∈ ∆n.

To give our main result in this section, we emphasize that
the following leans on a primal-dual perspective on opti-
mization that uses aforementioned tools on game playing.
See Wang et al. (2023) for a complete description.

Theorem 10. If Algorithm 2 is run with parameter ηt = c
t

then

Hc(q̄T )− min
q∈∆n

Hc(q) = O

(
c log T

T

)
.

Proof. This proof proceeds in three parts. First, we re-
call the well-known Frank-Wolfe procedure for minimiz-
ing smooth convex functions on constrained sets, applied
here to Hc(q). Second, we show that, with the appropri-
ate choice of update parameters, Frank-Wolfe applied to
Hc(q) is identical Algorithm 2. Finally, we appeal to stan-
dard convergence guarantees for Frank-Wolfe to obtain the
desired convergence rate.

The Frank-Wolfe algorithm, applied to Hc(·), is as fol-
lows. Let q̄0 ∈ ∆n be an arbitrary initial point, and let
γ1, γ2, . . . > 0 be a step-size schedule. On each iteration
t = 1, . . . , T , we perform the following:

∇t ← ∇Hc(q̄t−1) (6)
qt ← arg min

q∈∆n

〈q,∇t〉 (7)

q̄t ← (1− γt)q̄t−1 + γtqt. (8)

Ultimately, the algorithm returns q̄T .

We now show that this implementation of Frank-Wolfe is
identical to Algorithm 2, as long as we have γt = 1

t . To
see this, we need to observe that the gradients ∇t can be
written as

∇t = ∇Hc(q̄t−1) ∝ − exp(−cMq̄t−1)
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= − exp

(
− c

t− 1
M

t−1∑
s=1

qs

)
.

In other words, on every round we have that pt = −∇t.
Furthermore, the vectors qt are chosen in exactly the same
way, as the difference in sign is accounted for by the fact
that qt is chosen as an arg max in Algorithm 2 as opposed
to an arg min in Frank-Wolfe.

Let us finally recall a result that can be found in Abernethy
and Wang (2017), that the Frank-Wolfe algorithm run with
parameters γt = 1

t , for any function which is α-smooth on
its domain, converges at a rate of O(α log(T )/T ). We can
now appeal to a well-known result on the convergence of
Frank-Wolfe.1

This observation emphasizes that the popular multiplica-
tive update method (Algorithm 2), that appears to fail to
solve the desired problem according to the work of Syed
(2010), actually succeeds in finding a lexicographic maxi-
mum insofar as the exponential loss minimization scheme
succeeds. The critical “patch” that fixes the algorithm is
the modified learning rate of ct in place of fixed η.

7 CONCLUSION

We proved a close connection between the two primary
methods for computing a lexicographic maximum of a set,
and used this connection to show that the method based on
exponential loss minimization converges to a correct solu-
tion for sets that are lexicographically stable. We believe
our results represent the most general convergence criteria
for exponential loss minimization that are known. We also
undertook the first analysis of the convergence rate of expo-
nential loss minimization, and found that even when con-
vergence is guaranteed, the components of the minimizing
vector can converge at vastly different rates. Finally, we
showed that the well-known Multiplicative Weights algo-
rithm can find a lexicographic maximum of a lexicograph-
ically stable set if the learning rate is suitably chosen.
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A SUPPLEMENTARY MATERIAL

A.1 Lipschitz continuity of sorting functions

Theorem 11. For all k ∈ [n] and x,x′ ∈ Rn we have |σk(x)− σk(x′)| ≤ 3 ‖x− x′‖∞. Therefore, σk is continuous.

Proof. Let ε = ‖x− x′‖∞ and assume without loss of generality that σk(x) ≤ σk(x′). It suffices to show that σk(x′) ≤
σk(x) + 3ε. Choose i, j ∈ [n] such that σk(x) = xi and σk(x′) = x′j . If xi ≥ xj − 2ε then

σk(x′) = x′j ≤ xj + ε ≤ xi + 3ε = σk(x) + 3ε.

It remains to show that xi < xj − 2ε cannot be true. Suppose it is. Since σk(x) = xi, we have

k ≤ |{` ∈ [n] : x` ≤ xi}| ≤ |{` ∈ [n] : x` < xj − 2ε}|.

Since max`∈[n] |x` − x′`| ≤ ε, this implies
k ≤ |{` ∈ [n] : x′` < x′j}|

which implies σk(x′) < x′j , a contradiction.

A.2 Proof of Theorem 4

In this section, we prove Theorem 4. We first sketch an outline.

As preliminary steps, we begin by introducing a function Hk that, in a sense, summarizes the optimization problem being
solved (approximately) on each round of Algorithm 1. Since this function is somewhat difficult to work with, we next
introduce another function with much more favorable properties, denoted GI , where I ⊆ [n]. We show that, if |I| = k− 1
then Hk ≥ GI . Moreover, if X is a convex polytope, then GI is concave and lower semicontinuous.

With these definitions and preliminaries, we then proceed below with the proof of Theorem 4. By way of contradiction,
we suppose that X is a convex polytope but nevertheless is not lexicographically stable. This implies the existence of a
sequence εt > 0 with εt → 0, and another sequence xt ∈ A(X, εt) converging to a point x̂ ∈ X that is different than X’s
lexicographic maximum x∗. With some re-indexing, we then identify an index k ∈ [n] such that Hk(xt) is asymptotically
upper-bounded by x̂k, while, on the other hand GI(x̂) strictly exceeds x̂k, for some I ⊆ [n] with |I| = k− 1. Combining,
these facts lead to the contradiction:

x̂k < GI(x̂) ≤ lim inf
t→∞

GI(xt) ≤ lim inf
t→∞

Hk(xt) ≤ x̂k.

We now provide details. Let R = R ∪ {−∞,+∞}. For k ∈ [n], we define the function Hk : Rn → R by

Hk(x) = sup {σk(z) : z ∈ X,σi(z) ≥ σi(x) for i = 1, . . . , k − 1} . (9)

Then Algorithm 1 operates exactly by choosing, on each round k, x(k) so that

σk(x(k)) ≥ Hk(x(k−1))− ε (10)

(and also so that σi(x(k)) ≥ σi(x(k−1)) for i ∈ [k − 1]).

In fact, this condition can be simplified: As we show next, a point x is a possible output of Algorithm 1 if and only if it
satisfies Eq. (10) with both x(k−1) and x(k) replaced by x. Said differently, x is valid in the sense of the proof of Theorem 5
if and only if it is a possible output.

Proposition 1. Let x ∈ X , and let ε ≥ 0. Then x ∈ A(X, ε) if and only if

σk(x) ≥ Hk(x)− ε (11)

for all k ∈ [n].
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Proof. If Eq. (11) holds for all k ∈ [n], then, in running Algorithm 1, we can choose x(k) = x on every iteration, proving
that x ∈ A(X, ε).

Conversely, suppose x ∈ A(X, ε). Let x(k), for k ∈ [n], be the sequence of iterates computed by Algorithm 1 resulting
in the final output x(n) = x. Then, by the manner in which these are computed, σi(x) = σi(x

(n)) ≥ · · · ≥ σi(x
(i)) for

i ∈ [n]. This implies, for k ∈ [n], that Hk(x) ≤ Hk(x(k−1)) since if σi(z) ≥ σi(x) then σi(z) ≥ σi(x
(k−1)) for i < k.

Thus,
σk(x) ≥ σk(x(k)) ≥ Hk(x(k−1))− ε ≥ Hk(x)− ε,

proving Eq. (11).

Next, let I ( [n] be a set of indices (other than [n]), and let us define the functions fI : Rn → R and GI : Rn → R by

fI(x) = min
i∈[n]\I

xi

and
GI(x) = sup {fI(z) : z ∈ X, zi = xi for i ∈ I} (12)

for x ∈ Rn. Thus, fI(x) is equal to the minimum value of the components not in I , and GI(x) is the maximum value of
fI(z) over all points z ∈ X that agree with x on all components in I . The function GI bears some resemblence to Hk, but,
as we will see, is easier to work with since, with the set I fixed, we avoid the sorting functions σi. The next proposition
establishes that connection:

Proposition 2. Let k ∈ [n] and let I ⊆ [n] with |I| = k − 1. Then Hk(x) ≥ GI(x) for all x ∈ Rn.

Proof. Let x ∈ Rn, and let z ∈ X be such that zi = xi for i ∈ I . We show, in cases, that fI(z) ≤ Hk(x). From GI ’s
definition (Eq. (12)), this will prove the proposition.

Suppose, in the first case, that σi(z) < σi(x) for some i ∈ I . There must exist a set of indices J ⊆ [n] such that |J | = i
and

σi(z) = max{zj : j ∈ J}. (13)

We claim J 6⊆ I . Otherwise, if J ⊆ I , then we must have

σi(z) = max{xj : j ∈ J} ≥ σi(x).

The equality is by Eq. (13) and since zj = xj for j ∈ I . The inequality is because σi(x) is the i-th smallest component of
x and |J | = i. This contradicts that σi(z) < σi(x).

Thus, there must exist j ∈ J \ I , implying

fI(z) ≤ zj ≤ σi(z) < σi(x) ≤ σk(x) ≤ Hk(x).

The first inequality is because j 6∈ I; the second is by Eq. (13) and since j ∈ J ; the third is by assumption; the fourth is
because i < k; and the last is by Hk’s definition (Eq. (9)).

In the alternative case, σi(z) ≥ σi(x) for all i ∈ I , implying that z satisfies the conditions appearing in Hk’s definition.
Then, similar to the preceding arguments, there must exist a set J ⊆ [n] with |J | = k and such that σk(z) = max{zj : j ∈
J}. Since |I| = k − 1, this implies that there must exist j ∈ J \ I . Thus, fI(z) ≤ zj ≤ σk(z) ≤ Hk(x) where the last
inequality follows from Hk’s definition.

A function f : Rn → R is lower semicontinuous relative to a set S ⊆ Rn if for all x ∈ S and for every sequence xt in S
with xt → x, we have

lim inf
t→∞

f(xt) ≥ f(x).

Similarly, the function is upper semicontinuous relative to S if instead lim supt→∞ f(xt) ≤ f(x) whenever xt → x (with
xt ∈ S).

We next prove useful properties of GI when X is a convex polytope:

Lemma 2. Let I ( [n], and assume X is convex and nonempty. Then GI is concave. If, in addition, X is a convex
polytope, then GI is lower semicontinuous relative to X .
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Proof. Let k = |I| and suppose I = {i1, . . . , ik}. Let P : Rn → Rk be the linear mapping that projects a point x onto
just the coordinates in I (so that [P (x)]j = xij for x ∈ Rn and j ∈ [k]). Let δX be the indicator function for X so that
δX(x) is 0 if x ∈ X and is +∞ otherwise. Let g : Rk → R be defined by

g(y) = inf {−fI(z) + δX(z) : z ∈ Rn, P (z) = y}

for y ∈ Rk. Note that −fI is convex, being the pointwise maximum of linear (and so convex) functions, and δX is also
convex sinceX is. Therefore−fI +δX is convex. It follows that g is convex, being the so-called image of−fI +δX under
P . Note further that −GI(x) = g(P (x)) for x ∈ Rn, so −GI is convex as well, proving GI is concave. (In showing g
and −GI are convex, we applied general facts given in Rockafellar (1970, Theorem 5.7).)

If x ∈ X , then, from GI ’s definition, −GI(x) ≤ −fI(x) < +∞; thus, X is included in −GI ’s effective domain (set
of points where it is not +∞). If X is a convex polytope, then it is also locally simplicial, and, being included in −GI ’s
effective domain, it then follows that −GI is upper semicontinuous relative to X (Rockafellar, 1970, Theorems 10.2
and 20.5). Therefore, GI is lower semicontinuous relative to X .

Proof of Theorem 4. Let X ⊆ Rn be a convex polytope. Let x∗ be the unique lexicographic maximum (which exists by
Theorem 2). Suppose by way of contradiction that X is not lexicographically stable. Then there exists δ > 0 such that for
all ε > 0 there exists x̂ ∈ A(X, ε) with d(x∗ | x̂) ≥ δ, implying that σk(x̂) ≤ σk(x∗) − δ for some k ∈ [n]. Since there
are only finitely many values in [n], this in turn implies that there exists k0 ∈ [n], δ > 0, a sequence εt > 0 with εt → 0,
and a sequence xt ∈ A(X, εt) such that σk0(xt) ≤ σk0(x∗) − δ for infinitely many t. By discarding all other elements
from the sequence, we assume henceforth that this holds for all t.

Since X is a convex polytope, it is also compact. Therefore, the sequence xt must have a subsequence converging to some
point x̂ ∈ X . By discarding all other elements, we can assume the entire sequence converges so that xt → x̂. Further, by
continuity (Theorem 11), σk0(x̂) ≤ σk0(x∗)− δ. In particular, this shows that x̂ 6= x∗.

By possibly permuting the components of points inX , we assume without loss of generality that the components are sorted
according to the components of x̂, and, when there are ties, according to the components of x∗. That is, we assume the
indices have been permuted in such a way that for all i, j ∈ [n], if i ≤ j then x̂i ≤ x̂j , and in addition, if x̂i = x̂j then
x∗i ≤ x∗j . In particular, this implies x̂1 ≤ · · · ≤ x̂n, and σi(x̂) = x̂i for i ∈ [n].

Let k be the smallest index on which x̂ and x∗ differ (so that x̂i = x∗i for i < k and x̂k 6= x∗k). Let I = [k − 1].

Claim 1. σi(x∗) = σi(x̂) for i ∈ I .

Proof of claim. We prove, by induction on m = 0, 1, . . . , k − 1, that σi(x∗) = σi(x̂) for i ≤ m. This holds vacuously in
the base case that m = 0. Suppose m ∈ [k − 1] and that the claim holds for m− 1. Then σi(x∗) = σi(x̂) for i ≤ m− 1.
Therefore, σm(x∗) ≥ σm(x̂) since x∗ is lexicographically optimal. On the other hand, since σm(x∗) is the m-th smallest
component of x∗, σm(x∗) ≤ max{x∗1, . . . , x∗m} = max{x̂1, . . . , x̂m} = x̂m = σm(x̂). This completes the induction. ♦

By Claim 1, σi(x∗) = σi(x̂) = x̂i = x∗i for i ∈ I . Therefore, σk(x∗) is the smallest of the remaining components of x∗.
Thus,

x∗k ≥ fI(x∗) = σk(x∗) ≥ σk(x̂) = x̂k (14)

where the second inequality follows from Claim 1 since x∗ is lexicographically maximal. Since we assumed x∗k 6= x̂k, we
must have x∗k > x̂k.

Claim 2. fI(x∗) > x̂k.

Proof of claim. The proof is very similar to the proof of Theorem 2. Suppose by way of contradiction that the claim is
false. Then, in light of Eq. (14), we must have σk(x∗) = fI(x

∗) = x̂k. Let y = (x∗ + x̂)/2, which is in X since X is
convex. We compare the components of y to x̂k. Let i ∈ [n].

If i < k then yi = x̂i ≤ x̂k (since x̂i = x∗i ).

If i = k then yk = (x∗k + x̂k)/2 > x̂k since x∗k > x̂k.

Finally, suppose i > k, implying x̂i ≥ x̂k. If x̂i > x̂k then yi = (x∗i + x̂i)/2 > x̂k since x∗i ≥ x̂k (by Eq. (14)). Otherwise,
x̂i = x̂k, implying, by how the components are sorted, that x∗i ≥ x∗k > x̂k; thus, again, yi = (x∗i + x̂i)/2 > x̂k.

To summarize, yi = x∗i ≤ x̂k if i ∈ I , and yi > x̂k if i 6∈ I . It follows that σi(y) = σi(x
∗) = x∗i for i = 1, . . . , k− 1, and

that σk(y) = fI(y) > x̂k = σk(x∗). However, this contradicts that x∗ is lexicographically maximal. ♦
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Combining, we now have

x̂k < fI(x
∗) ≤ GI(x̂) ≤ lim inf

t→∞
GI(xt) ≤ lim inf

t→∞
Hk(xt) ≤ lim inf

t→∞
[σk(xt) + εt] = x̂k.

The first inequality is by Claim 2. The second is from GI ’s definition (Eq. (12)). The third is because GI is lower
semicontinuous relative toX (Lemma 2). The fourth is by Proposition 2. The fifth is by Proposition 1, since xt ∈ A(X, εt).
The equality is because εt → 0 and xt → x̂, implying σk(xt)→ σk(x̂) = x̂k (using Theorem 11).

Having reached a contradiction, we conclude that X is lexicographically stable.

A.3 A compact, convex set that is not lexicographically stable

Let X be as in Eq. (3), which is convex and compact. We show that X is not lexicographically stable.

By Theorem 2, X has a unique lexicographic maximum x∗. We first argue that x∗ = (0, 0, 1)
>. Note first that for all

x ∈ X , x1 ≤ 0 ≤ min{x2, x3}, implying σ1(x) = x1. In particular, since σ1(x∗) maximizes σ1(x) over x ∈ X , this
means we must have x∗1 = 0. By X’s definition, this implies x∗2 = 0. We can then choose x∗3 = 1, since this is that
component’s largest possible value.

Next, we argue that, for ε ∈ (0, 1), xε =
(
−ε2, ε/2, 3/4

)> ∈ A(X, ε), and more specifically that xε can be chosen for
x(k) on each round k of Algorithm 1.

On round 1, as noted already, if x ∈ X then σ1(x) = x1 ≤ 0. Therefore, σ1(xε) = −ε2 is within ε of maximizing σ1(x)
over x ∈ X , so we can choose x(1) = xε.

For round 2, suppose x ∈ X1(xε), where Xk(x) is as defined in Eq. (4). That is, x1 = σ1(x) ≥ −ε2. Then x2
2 ≤

(1− x3)(−x1) ≤ ε2, so σ2(x) ≤ x2 ≤ ε. Therefore, σ2(xε) = ε/2 is within ε of maximizing σ2(x) over x ∈ X1(ε), so
we can choose x(2) = xε.

Finally, for round 3, suppose x ∈ X2(xε), implying x1 = σ1(x) ≥ −ε2 and x2 ≥ σ2(x) ≥ ε/2. These imply

ε2(1− x3) ≥ (−x1)(1− x3) ≥ x2
2 ≥ (ε/2)2,

and consequently that x3 ≤ 3/4. Thus, σ3(xε) = 3/4 maximizes σ3(x) over x ∈ X2(xε).

We conclude that xε ∈ A(X, ε). Since σ3(xε) = 3/4 for all ε ∈ (0, 1) but σ3(x∗) = 1 (implying d(x∗ | xε) ≥ 1/4), X
is not lexicographically stable.

A.4 Proof of Lemma 1

Proof. Fix k ∈ [n] and choose any x ∈ Xk−1(xc,γ). By the definition of xc,γ , the definition of Lc, and rearranging terms

− γ exp(−c ‖X‖∞) ≤ Lc(x)− Lc(xc,γ)

=

n∑
i=1

exp(−cσi(x))− exp(−cσi(xc,γ)). (15)

Since x ∈ Xk−1(xc,γ) and the function x 7→ exp(−x) is decreasing

n∑
i=1

exp(−cσi(x))− exp(−cσi(xc,γ))

≤
n∑
i=k

exp(−cσi(x))− exp(−cσi(xc,γ)). (16)

Since the function x 7→ exp(−x) is decreasing and positive

n∑
i=k

exp(−cσi(x))− exp(−cσi(xc,γ))

≤(n− k + 1) exp(−cσk(x))− exp(−cσk(xc,γ)). (17)
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Combining (15), (16), and (17) and dividing through by exp(−cσk(xc,γ)) yields

−γ exp(−c ‖X‖∞)

exp(−cσk(xc,γ))

≤(n− k + 1) exp(−c(σk(x)− σk(xc,γ)))− 1.

Since σk(xc,γ) ≤ ‖X‖∞ we have exp(−c ‖X‖∞) ≤ exp(−cσk(xc,γ)) and therefore

−γ ≤ (n− k + 1) exp(−c(σk(x)− σk(xc,γ)))− 1.

By rearranging we have

σk(xc,γ) ≥ σk(x)− 1

c
log

(
n− k + 1

1− γ

)
.

Because x ∈ Xk−1(xc,γ) was chosen arbitrarily this implies

σk(xc,γ) ≥ sup
x∈Xk−1(xc,γ)

σk(x)− 1

c
log

(
n− k + 1

1− γ

)
.

A.5 Proof of Theorem 6

Define x∗,x′,x′′ ∈ Rn as

x∗ = (0, . . . , 0, 1)
>
,

x′ =

(
0, . . . , 0,

1

2

)>
,

x′′ =

(
−1

2
,

1

4
, . . . ,

1

4
,

1

2

)>
and let X = conv({x∗,x′}) ∪ conv({x′,x′′}), where conv(S) denotes the convex hull of S ⊆ Rn. Clearly ‖X‖∞ = 1.
For all λ ∈ [0, 1] let

x(λ) = λx∗ + (1− λ)x′,

x′(λ) = λx′ + (1− λ)x′′

Since for all λ ∈ [0, 1)

σk(x∗) = σk(x(λ)) for k ∈ [n− 1] and σn(x∗) > σn(x(λ)),

σ1(x∗) > σ1(x′(λ)).

we have lexmaxX = {x∗}. We also know that xc,0 must exist, as it is defined to be the minimum of a continuous function
on a compact set. Since for all λ ∈ [0, 1]

Lc(x
∗) ≤ Lc(x(λ))

σn(x′(λ)) = σn(x∗)− 1

2

it remains to show that for all c ≥ 2 there exists λc ∈ [0, 1] such that Lc(x′(λc)) < Lc(x
∗). Let λc = 1− 2

c . We have

Lc(x
′(λc))− Lc(x∗) =

n∑
k=1

exp(−cσk(x′(λc)))− exp(−cσk(x∗))

= exp(1)− 1

+ (n− 2) exp

(
−1

2

)
− (n− 2)
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+ exp
(
− c

2

)
− exp(−c)

≤ exp(1)− 1

+ (n− 2) exp

(
−1

2

)
− (n− 2)

+ exp (−1) ∵ c ≥ 2 and exp(−c) ≥ 0

< 0 ∵ n ≥ 8

A.6 Proof of Theorem 8

Let β = 2
3 . Choose ε ∈ (0, 1

8 ] such that a = 1
β log 2β−1−ε

ε . This is feasible because the function f(ε) = 1
β log 2β−1−ε

ε is
decreasing and continuous on the interval (0, 1

8 ], limε→0 f(ε) =∞, f( 1
8 ) < 1 and a ≥ 1. Note that ε < 2β − 1 < β. Let

x∗ =

(
ε, . . . , ε,

kth term
↓
1, . . . , 1

)>
∈ Rn,

x′ =

0, ε, . . . , ε, β,β
↑

kth term

, 1, . . . , 1

> ∈ Rn

and X = conv({x∗,x′}), where conv(S) denotes the convex hull of S ⊆ Rn. Clearly ‖X‖∞ = 1. Let x(λ) =
λx∗ + (1− λ)x′ for λ ∈ [0, 1]. Observe that for λ ∈ [0, 1)

σ1(x∗) = σ1(x(1)) = ε > λε = σ1(x(λ))

and thus lexmaxX = {x∗}. We also know that xc,0 must exist and is unique, as it is defined to be the minimum of a
strictly convex function on a line segment.

We have

σ1(x(λ)) = λε,

σk−1(x(λ)) = λε+ (1− λ)β,

σk(x(λ)) = λ+ (1− λ)β.

Therefore

Lc(x(λ)) =

n∑
i=1

exp(−cσi(x(λ)))

= exp(−cλε) + (k − 3) exp(−cε) + exp (−cλε− c(1− λ)β)

+ exp (−cλ− c(1− λ)β) + (n− k) exp(−c).

Let `(λ) = Lc(x(λ)) for λ ∈ [0, 1]. We have

`′(λ) = − exp(−cλε)cε− exp (−cλε− c(1− λ)β) (cε− cβ)

− exp (−cλ− c(1− λ)β) (c− cβ)

and

`′′(λ) = exp(−cλε)(cε)2 + exp (−cλε− c(1− λ)β) (cε− cβ)
2

+ exp (−cλ− c(1− λ)β) (c− cβ)
2
.

We now divide into two cases, c ≤ a and c > a. First suppose c ≤ a. Since `′′(λ) ≥ 0 for all λ ∈ [0, 1], we know that
`′(λ) is minimized at λ = 0. We have

`′(0) ≥ 0⇔ −cε− exp (−cβ) (cε− cβ)− exp(−cβ)(c− cβ) ≥ 0

⇔ exp (−cβ) (2cβ − c− cε) ≥ cε
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⇔ exp (−cβ) ≥ ε

2β − 1− ε

⇔ c ≤ 1

β
log

2β − 1− ε
ε

⇔ c ≤ a.

Thus if c ≤ a then `′(λ) ≥ 0 for all λ ∈ [0, 1], which implies that `(λ) is minimized at λ = 0. In other words, xc,0 = x′,
and therefore

σk(xc,0)− σk(x∗) = σk(x′)− σk(x∗) = β − 1. (18)

Now suppose c > a, which by the above derivation implies that `′(0) < 0. We also have `′(1) > 0, since

`′(1) > 0⇔ − exp(−cε)cε− exp(−cε)(cε− cβ)− exp(−c)(c− cβ) > 0

⇔ −cε− (cε− cβ)− exp(−c(1− ε))(c− cβ) > 0 (19)

⇔ β − 2ε

1− β
> exp(−c(1− ε))

⇔ c >
1

1− ε
log

1− β
β − 2ε

and
1

1− ε
log

1− β
β − 2ε

≤ 8

7
log

1
3

2
3 −

1
4

< 0 < a < c (20)

where in Eq. (19) we divided through by exp(−cε) and in Eq. (20) we used β = 2
3 and ε ≤ 1

8 . Therefore `′(λ) = 0 for
some λ ∈ (0, 1), which must also be the minimizer of `(λ). We have

`′(λ) = 0⇔ − exp(−cλε)cε− exp (−cλε− c(1− λ)β) (cε− cβ)

− exp (−cλ− c(1− λ)β) (c− cβ) = 0

⇔ −cε− exp (−c(1− λ)β) (cε− cβ)− exp (−c(1− λ)β) (c− cβ) z = 0 (21)

⇔ exp(−c(1− λ)β)
(
cβ − cε− (c− cβ)z

)
= cε

⇔ exp(−c(1− λ)β) =
ε

β − ε− (1− β)z

⇔ λ = 1− 1

cβ
log

β − ε− (1− β)z

ε
. (22)

where in Eq. (21) we divided through by exp(−cλε) and let z = exp(−cλ(1 − ε)). Thus xc,0 = x(λc), where λc is the
value of λ that satisfies Eq. (22). We have

σk(xc,0)− σk(x∗) = σk(x(λc))− σk(x∗)

= λc + β(1− λc)− 1

= 1− 1

cβ
log

β − ε− (1− β)z

ε
+

1

c
log

β − ε− (1− β)z

ε
− 1

= −
(

1

β
− 1

)
1

c
log

β − ε− (1− β)z

ε

≤ −
(

1

β
− 1

)
1

c
log

2β − 1− ε
ε

(23)

= (β − 1)
1

cβ
log

2β − 1− ε
ε

= (β − 1)
a

c
(24)

where in Eq. (23) we used z ≤ 1. Combining Eq. (18) and (24) we have

σk(xc,0) ≤ σk(x∗) + max
{
β − 1, (β − 1)

a

c

}
= σk(x∗)− 1

3
min

{
1,
a

c

}
where we used β = 2

3 .
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B Comparison to Hartman et al. (2023)

In this paper we consider x ∈ X to be ε-close to a lexicographic maximum of X if σi(x) ≥ σi(x∗)− ε for all i ∈ [n] and
x∗ ∈ lexmaxX (see Definition 2). However, Hartman et al. take a different approach. For any x,y ∈ X they say that
y �ε x if there exists k ∈ [n] such that

σi(y) ≥ σi(x) for all i < k

σk(y) > σk(x) + ε

and go on to define x ∈ X to be ε-close to a lexicographic maximum of X if there is no y ∈ X such that y �ε x (see their
Section 3.2, and in that section let α = 1). These definitions are incompatible. Consider

X =

x1 =

10
1
1

 ,x2 =

10− ε
1− ε
1− ε

 ,x3 =

 5
5

1− ε


Note that x1 is the only lexicographic maximum of X . So only x1 and x2 are ε-close to a lexicographic maximum by our
definition, and only x1 and x3 are ε-close to a lexicographic maximum by their definition.
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