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Abstract

In several real-world applications (e.g., online
advertising, item recommendations, etc.) it
may not be possible to release and share the
real dataset due to privacy concerns. As a
result, synthetic data generation (SDG) has
emerged as a promising solution for data shar-
ing. While the main goal of private SDG is
to create a dataset that preserves the privacy
of individuals contributing to the dataset, the
use of synthetic data also creates an oppor-
tunity to improve fairness. Since there often
exist historical biases in the datasets, using
the original real data for training can lead
to an unfair model. Using synthetic data,
we can attempt to remove such biases from
the dataset before releasing the data. In this
work, we formalize the definition of fairness in
synthetic data generation and provide a gen-
eral framework to achieve fairness. Then we
consider two notions of counterfactual fairness
and information filtering fairness and show
how our framework can be used for these def-
initions.

1 INTRODUCTION

The availiability of high quality unbiased data has
become a bottleneck for the development of machine
learning methods in several applications. For exam-
ple, in healthcare and finance, privacy concerns and
regulations may not allow data holders to release the
data reducing the availability of data. One form of Syn-
thetic Data Generation (SDG), namely, differentially
private synthetic data generation (DP-SDG) can be a
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promising solution for the data sharing problem (Xie
et al., 2018; Jordon et al., 2018). These models at-
tempt to create a dataset that resembles the real data
while satisfying some level of privacy (Dwork, 2006).
In general, when evaluating SDG models, the crite-
ria for measuring the performance are usually fidelity,
diversity, and privacy. The first two criteria account
for the similarity between the generated data and the
real data, and the third criterion measures the privacy
leakage of the model.

An additional criterion that can be added to these
three criteria is fairness. It has been shown that the
ML models can reflect pre-existing biases in the train-
ing dataset and in some cases exacerbate such biases
(Dressel and Farid, 2018; Harwell, 2018; Dastin, 2018;
Ganev et al., 2021). Several fairness definitions and
methods have been proposed in the literature to at-
tempt to mitigate unfairness and biases (Mehrabi et al.,
2021; Zuo et al., 2024; Khalili et al., 2023; Zhang et al.,
2022; Khalili et al., 2021a; Wang et al., 2022a; Agarwal
et al., 2018). These methods impose an additional con-
straint (depending on the fairness notion of choice) on
the predictor to improve fairness. It is, however, a task
for the user of the data to ensure the fairness constraint
is satisfied. Using synthetic data creates an interesting
opportunity to make sure that the released dataset is
fair, and when it is used in a downstream task, the
resulting model is also fair. The goal of fair synthetic
data generation is to generate a dataset that is as close
as possible to the real data while removing the discrim-
inatory biases existing in the data. Inevitably, using
this method will alter the distribution of the data and
hence decrease the performance of the model trained
on the generated data when measured on the original
biased data. However, we note attempting to train a
fair predictor on real data (rather than synthetic), will
also cause some performance drop compared to the case
where a fairness constraint is not imposed (Hardt et al.,
2016). There are several different notions introduced
for fairness, choosing the right notion depends on the
policy maker’s preference and the task at hand (Binns,
2018). In this work, we propose a general framework for
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fair SDG that can be used for various fairness notions.
To show the performance of our algorithm, we consider
two notions of information filtering (van Breugel et al.,
2021) and counterfactual fairness (CF) (Kusner et al.,
2017) and provide theoretical and empirical analysis
for these two notions.

Contribution: Our contributions can be summarized
as follows: 1) In Section 2.2, We formalized the defini-
tion of fairness for synthetic data. We also provide a
comparison with other existing definitions and point
out a few inaccuracies in the literature. 2) More im-
portantly, we provide three propositions to show why
our definition is meaningful and why fair SDG leads
to a fair predictor in downstream tasks. 3) Finally,
we propose a general architecture based on generative
adversarial network GANs, and implement our frame-
work for two fairness definitions of information filtering
and counterfactual fairness. The former does not need
knowledge of the causal model while the latter does.

Related work: Several early works use synthetic
data to reduce bias in a dataset, especially by creating
additional samples for underrepresented groups (e.g.
see Kamiran and Calders (2012)). Another similar ap-
proach is data augmentation as a pre-processing step,
not for the goal of having additional samples for under-
represented groups, but for achieving a certain fairness
notion e.g., Sharma et al. (2020); Feldman et al. (2015);
Zhang et al. (2016). In this work, however, we are not
attempting to augment or modify the existing dataset
with synthesized samples, but our goal is to generate
a completely new synthetic dataset using a generative
model that is trained on real (and potentially biased)
data. This is different from finding a fair representation
of the data (Zemel et al., 2013), as here we also need
fidelity, i.e., the synthetic data should resemble the
real data. Another relevant line of work studies GANs’
behavior and shows that they may exacerbate unfair-
ness in some scenarios (Ganev et al., 2021), and some
propose methods for improving this effect (Kenfack
et al., 2022; Tan et al., 2020). We refer to following sur-
veys for more extensive discussion Alves et al. (2023);
Pessach and Shmueli (2022); Bourou et al. (2021). The
most relevant works to our setting are Xu et al. (2018);
van Breugel et al. (2021); Xu et al. (2019). In Xu et al.
(2018), FairGAN, a GAN-based method is introduced
to create a dataset that satisfies the demographic parity
notion (see Section 2.1 for a formal definition). Their
problem setting is slightly different from what we con-
sider here. They want to create a dataset, such that
every predictor trained on the dataset satisfies their
fairness notion; whereas we want to align the incen-
tives of a data user and have a synthetic dataset such
that an accurate predictor satisfies the fairness notion
(see Appendix B for a more detailed discussion). In

Xu et al. (2019), CFGAN is proposed to synthesize a
dataset satisfying counterfactual fairness (CF). In Sec-
tion 3, we show that their method is not satisfying CF,
but a relevant notion defined in Definition 6. Finally,
DECAF (van Breugel et al., 2021), is a causally-aware
method that is proposed to generate fair data for a
notion called conditional fairness. We have a discus-
sion on their method and the definition they propose
in Appendix B.

2 FAIRNESS FOR SYNTHETIC
DATA GENERATION (SDG)

In this section, we provide a general definition of fair-
ness in SDG and using Propositions 1 to 3 show that
this definition can reduce unfairness for an accurate
predictor with respect to real data drawn from true
distribution. Let us first review some of the commonly
used fairness notions used for supervised models.

2.1 Algorithmic fairness

Algorithmic fairness is a well-established area, with
several fairness definitions for supervised learning mod-
els (see e.g., Khalili et al. (2021b); Zhang et al. (2019);
Dwork et al. (2012); Hardt et al. (2016)). The appropri-
ate notion may be different for different datasets/tasks.
Let (X,A, Y ) be three random variables where X ∈ X
denotes the feature vector, A ∈ A denotes the sensitive
attribute (e.g., race, gender), and Y ∈ Y denotes the
output/label.1 Here we provide a few fairness defini-
tions that are relevant to our work (several more can
be found in Mehrabi et al. (2021)).

Definition 1. Demographic parity (DP) (Dwork et al.,
2012), also known as statistical parity: A predictor Ŷ
satisfies demographic parity if Pr(Ŷ = y|A = a) =
Pr(Ŷ = y|A = a′),∀a, a′ ∈ A, y ∈ Y. Further, δ-
Approximate Demographic Parity (δ-ADP) can be de-
fined as follows, 1

2

∑
y∈Y |Pr(Ŷ = y|A = a)− Pr(Ŷ =

y|A = a′)| ≤ δ, ∀a, a′ ∈ A, y ∈ Y.

Definition 2. Counterfactual fairness (CF) (Kus-
ner et al., 2017): A predictor Ŷ satisfies counterfac-
tual fairness if for any context A = a and X = x,
Pr(ŶA←a(U) = y|X = x,A = a) = Pr(ŶA←a′(U) =
y|X = x,A = a) holds for all value of y ∈ Y and
a′ ∈ A. Here, U is the set of unobserved variables in
the causal model, and A← a denotes an intervention
on variable A.2

1In this work, we use lower case letters for the realiza-
tions of random variables.

2We refer readers to Kusner et al. (2017) for details
of counterfactual fairness, counterfactual inference, and
intervention using structural equations and a causal model.
For simplicity, sometimes we use Pr(ŶA←a = y|X = x,A =

a) instead of Pr(ŶA←a(U) = y|X = x,A = a).
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Definition 3. Information filtering (IF) or condition
fairness (van Breugel et al., 2021): A predictor Ŷ sat-
isfies IF with respect to Xs ⊆ X, if Ŷ |= A|Xs, i.e.,
I(Ŷ ;A|Xs) = 0.

Note that the above notions are all defined to assess the
fairness of a given predictor. However, in this work, we
want to have a “fair dataset”, and consequently there is
no predictor immediately in the picture. Thus, there
will be no variable Ŷ in a fair dataset.

2.2 Fairness in SDG setting

Consider a dataset D = {(Xi, Ai, Yi)}ni=1 where
(Xi, Ai, Yi) follows distribution P . The goal of fair
synthetic data generation is to create a dataset D′ =
{(X ′i, A′i, Y ′i )}n

′

i=1 such that when D′ is used in a down-
stream task as the training dataset, the resulting pre-
dictor satisfies some fairness notions of choice. Here
(X ′i, A

′
i, Y
′
i ) is drawn from another distribution P ′ and

is denoted by (X ′i, A
′
i, Y
′
i ) ∼ P ′. Note that no matter

what the training data is, an end user can always cre-
ate an unfair predictor (e.g., by only accepting men
regardless of the rest of the features). Thus, the goal
of fair SDG should be aligning incentives of the down-
stream user, such that maximizing the accuracy results
in a fair predictor. Therefore, in fair synthetic data
we argue that we should impose the fairness constraint
on the labels of the generated data distribution P ′

instead of the predicted label of a predictor. For ex-
ample, for demographic parity, we can impose that
P ′(Y = y|A = a) = P ′(Y = y|A = a′),∀a, a′ ∈ A.
Our definition of fair SDG can be formulated as a
constrained optimization, where the goal is to find a
distribution P ′(X,A, Y ) such that it satisfies a certain
fairness notion (adopting the notation in van Breugel
et al. (2021), we denote it by φ((X,Y,A), P ′)-fairness),
while minimizing the distance P ′ from the real data
distribution P . That is,

min
P ′

d(P, P ′) s.t. φ((X,Y,A), P ′)− fairness, (1)

where d is any distributional distance of choice. To
show that this definition is helpful, we prove that when
an accurate predictor is trained on the fair dataset
(following P ′), then this predictor will satisfy some
level of fairness (Proposition 1). Further, we will be
using this predictor on the real data which will be drawn
from P . Therefore, we show that the trained predictor
will have a reasonable accuracy on P too (Proposition
2), and it will satisfy some level of fairness w.r.t P
(Proposition 3). We prove the following propositions
for demographic parity (DP) definition. We also show
in Appendix A that the results can be extended to the
Information filtering notion. We have also provided
relevant propositions in Appendix E for extending the

results to counterfactual fairness. In the results below,
for simplicity, we assume that X is a countable set and
A ∈ {0, 1}. The proofs of these propositions are given
in Appendix A. Let us first define the total variation
distance.

Definition 4 (Total Variation Distance). The total
variation distance for two discrete probability distri-
butions P and Q, defined on a countable space Ω, is
defined as

TV(P,Q) =
1

2

∑
x∈Ω
|P (x)−Q(x)|. (2)

Note that, when A is binary, δ-ADP (given in Definition
1) can be represented as TV(P (f(X)|A = 0), P (Y |A =
0)) ≤ δ.

Proposition 1. If a distribution P ′ satisfies δ-ADP,
and a prediction algorithm f : X → {0, 1} has an error
probability of ϵ w.r.t P ′, i.e., Pr{f(X) ̸= Y } ≤ ϵ, then
we have:

TV(P ′(f(X)|A = 0), P ′(f(X)|A = 1)) ≤
ϵ(1/P ′(A = 0) + 1/P ′(A = 1)) + δ. (3)

Proposition 2. If a randomized classifier f has an
error probability less than ϵ with respect to distribu-
tion P ′, i.e., EX,Y∼P ′(1{f(X) ̸= Y }) ≤ ϵ,3 and
TV(P (X,Y ), P ′(X,Y )) ≤ δ, then the error probability
of f with respect to the distribution P can be bounded
as follows: EX,Y∼P (1{f(X) ̸= Y }) ≤ ϵ+ 2δ.

Proposition 3. If a prediction algorithm f :
X → {0, 1} satisfies δ1-ADP w.r.t P ′, that is
TV(P ′(f(X)|A = 0), P ′(f(X)|A = 1)) ≤ δ1, and we
have TV(P, P ′) ≤ δ2, then we have:

TV(P (f(X)|A = 0), P (f(X)|A = 1)) ≤ δ2h(p0, p1) + δ1,
(4)

where p0 = min{P (A = 0), P ′(A = 0)} and p1 =
min{P (A = 1), P ′(A = 1)}, and h is a bounded func-
tion that we introduce in the proof.

The above propositions show that if a generated dis-
tribution P ′ is close to P and satisfies δ-ADP, and we
have a predictor with an arbitrarily small error, then
the predictor will satisfy the fairness notion w.r.t real
data with a small error.

3 METHOD

In this section, we provide a GAN implementation
method for two fairness notions. First the Information
Filtering notion (known as conditional fairness) which is

31(.) denotes an indicator function.
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a generalization of fairness through unawareness (FTU)
notion (Grgic-Hlaca et al., 2016) and demographic par-
ity. The second is the counterfactual fairness notion
(Kusner et al., 2017) which was defined in Definition 2
for the supervised learning setting. The GAN formula-
tion with its flexible loss structure grants us the ability
to match the formulation we proposed in equation (1)
for different notions of fairness. To be explicit, we can
take into account the fairness constraint by adding an
additional loss to the generator loss which encourages
the fairness notion of choice. We can then trade off
the accuracy of reconstruction and fairness by varying
relevant hyperparameters as we will see in the next few
sections.

3.1 Information filtering fairness (conditional
fairness)

Recall that the goal of fair SDG is to align the moti-
vation of the data user for obtaining good accuracy,
with satisfying the fairness constraint. For informa-
tion filtering, we propose to impose the constraint
I(Y ;A|Xs) = 0 on the generated synthetic data distri-
bution P ′, where Xs is a subset of features. This means
that there is no information between Y and A given Xs,
i.e., A may influence Y only via Xs. Assuming that
Xs is the set of non-sensitive and useful attributes, this
constraint ensures that the sensitive attribute does not
influence the output from any other potential routes
not included in Xs. For example, in the Berkeley al-
leged sex bias case, the reason that female applicants
were rejected more often than male applicants was that
they were applying to departments with lower admis-
sion rates more often compared to men. This should
not be considered “unfair” (Chiappa, 2019). Hence, for
example, enforcing I(Y ;A) = 0 is not ideal. Instead,
we can enforce I(A;Y |Xs) = 0 where here Xs is the
department that the applicant has applied to. Note
that if we wish to satisfy I(Y ;A) = 0, we can accom-
modate this by setting Xs = ∅. IF is also related to
the path-specific fairness notion introduced by Chiappa
(2019) where some paths affecting output are deemed
to be fair and some are unfair. In contrast to the path-
specific fairness notion, the IF notion does not need
any information on the underlying causal graph.

Connection to fairness through unawareness
(FTU) and demographic parity (DP): FTU for
a predictor holds when it does not explicitly use the
sensitive attribute, i.e., when the output of a predictor
f is only a function of X, not A. Note that in this
case, I(f(X);A|X) = 0 holds. Therefore, FTU is con-
nected to the IF notion when we choose Xs = X. Also,
choosing Xs = ∅ means enforcing I(Y ;A) = 0 which is
equivalent to the demographic parity notion.

Implementation: To implement the information fil-

GZ
X ′, Y ′, A′

X ′s, A
′ D1

D1(X
′
s, A

′)

D2
X ′s

D2(X
′
s)

D

X,Y,A
Real/Fake

Figure 1: Information Filtering Fairness

tering notion, we use a GAN with an additional penalty
term in the generator loss, as can be seen in equation
(7). Note, this is in line with equation (1),where the
first term ensures that P and P ′ are close and the
second enforces the fairness constraint.

To derive the functional form, we note that when
I(Y ;A|Xs) = 0 holds, then using A in addition to
Xs will not help for the task of predicting Y . Hence,
if we compare the two scenarios where in one, Xs is
given as the input to an ideal decoder for predicting
Y (referred to as D2), and in the other scenario, both
Xs and A are given to the decoder (which we will re-
fer to as D1), we expect both of the decoders to have
equal performance in predicting Y . This observation
encourages us to use the penalty term in equation (7).
See Figure 1 for a graphical structure of the proposed
method.

Putting this all together, mathematically, we have four
networks/losses including the discriminator D, two
decoders D1 and D2, and generator G. Two decoders
D1 and D2 are trained to predict the synthetically
generated Y ′, from (X ′, A′), and X ′, respectively. Here,
we use the cross-entropy (CE) loss to measure the
performance of both decoders D1 and D2. The input
of generator G is Gaussian noise denoted by random
variable Z.

LD =Ex,y,a∼P(X,A,Y )
logD(x, y, a) (5)

+ Ez∼P (Z)[log(1−D(G(z))]

LD1
=CE(Y ′,D1(A

′, X ′s)), LD2
= CE(Y ′,D2(X

′
s))
(6)

LG =− Ez∼P (Z)[log(1−D(G(z))] (7)

+ λ
(
Ez∼P (Z)[|LD1

− LD2
|]
)

Further, for the special case where Xs = ∅, we note
that LD2 = C > LD1 , and therefore |LD1 − LD2 | ≈
C − LD1

, and therefore the generator loss simplifies to
LG = −Ez∼P (Z)[log(1−D(G(z))]− λEz∼P (Z)[LD1

].

Remark. An additional benefit of using synthetic
data for fairness is that it allows us to impose multiple
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fairness constraints on the released dataset simultane-
ously. For example, consider a scenario where there
are two potential outputs of interest Y1 and Y2 in the
dataset, and two sensitive attributes A1 and A2. Then,
we can impose two constraints I(Y1;A1|X) = 0 and
I(Y2;A2|X) = 0 by adding two penalty terms in equa-
tion (7).

3.2 Counterfactual fairness

In this section, we provide a method to create a dataset
that is counterfactually fair. The definition of counter-
factual fairness for a predictor was given in Section 2,
which can be modified as follows for a SDG:
Definition 5. A generator producing samples
(X,A, Y ) with distribution P ′ is counterfactually fair
if:

P ′(YA←a = y|X = x,A = a) = P ′(YA←a′ = y|X = x,A = a),

for all y ∈ Y, x ∈ X , a, a′ ∈ A.

Here we note that a SDG method is proposed in Xu et al.
(2019) to satisfy counterfactual fairness. Although they
consider the counterfactual fairness condition in Kus-
ner et al. (2017), and claim that they are attempting
to satisfy this condition, they are actually consider-
ing interventions, not counterfactuals, and thus their
method should be considered as an attempt to satisfy
the following fairness constraint proposed in Kilbertus
et al. (2017):
Definition 6. (Discrimination avoiding through causal
reasoning): A generator said to be fair if the following
holds:

P (Y = y|X = x, do(A = a)) = P (Y = y|X = x, do(A = a′)).

This definition is based on the do operator (interven-
tion) and thus is different from Definition 2, which
considers counterfactuals. For more details about the
differences between these two regimes see supplemen-
tary material of Kusner et al. (2017) and Glymour et al.
(2016)[Chapter 4].

Consider the causal structure in Figure 3 (we refer to
Pearl (2009) for an introduction to causal structures).
Here we assume that we have the observed features X,
sensitive attribute A, label Y , and an unobserved vari-
able U . Following the example in Kusner et al. (2017),
we can consider the law school admission problem,
where X is a three-dimensional feature vector. The
features include GPA, entrance exam score (LSAT),
and gender. A is race and Y is the first-year average
grade (the output). Here U , the unobserved variable, is
considered as the true knowledge of law of the student.
The proposed method is presented in Figure 2. We
are using a conditional GAN structure, where A is fed
to the generator as the condition and the generator

GU

A ∼ P (A)

X ′, A, Y ′

G
¬A Ỹ

Y ′

|Y ′ − Ỹ | Counterfactual
loss

D

X,A, Y

Real/Fake

Figure 2: Counterfactual Fairness

X

A

Y

U

Figure 3: Underlying Causal Model

produces X ′ and Y ′, given the sensitive attribute, and
random variable U . We are assuming here, that U is
the unobserved variable. This architecture is consis-
tent with the causal model. Our goal is to force G to
produce the same output for the same individual (i.e.,
when U is fixed) in the counterfactual world. Note that
this is a stronger condition comparing to the Definition
5 (in Proposition 4, we show that this is a sufficient
condition). Hence, we add an additional penalty term
to the generator loss to enforce CF constraint. Let us
denote the output of the generator by G(u, a) where u
is an instance of random variable U and a is a sample of
A. Also, we denote by GY (u, a) the generated output
Y ′. Using a vanilla GAN our modified loss functions
for the generator and discriminator are as follows:

LD =Ex,a,y∼P (X,A,Y ) logD(x, a, y) (8)
+ Eu,a∼P (U)P (A)[log(1−D(G(u, a))]

LG =− Eu,a∼P (U)P (A)[log(1−D(G(u, a)) (9)

− λ(GY (u, a)−GY (u,¬a))2]

Again, the parameter λ controls the trade-off between
closeness to the true distribution and satisfying the fair-
ness notion. Comparing equation (9) with equation (1),
the first term of equation (9) attempts to minimize the
distance between P ′ and P (when using vanilla GAN
this will be Jensen-Shannon distance (Goodfellow et al.,
2014), note that in experiments we use Wasserstein dis-
tance which is known to be more stable (Arjovsky et al.,
2017)). The second term in equation (9) encourages
the model to satisfy fairness constraint in equation
(1). For achieving counterfactual fairness, one sufficient
condition that is proposed in Kusner et al. (2017) is
to only use variables that are non-descendent of A in



Imposing Fairness Constraints in Synthetic Data Generation

the causal graph, i.e. U in our setting, to produce Y .
Thus, the fact that we are using A in our structure
to create Y might seem counter-intuitive. However,
note that not using descendent of sensitive attributes is
only a sufficient condition, and it is possible to achieve
counterfactual fairness, while using these variables if
the model cancels out their effect, and this is exactly
what the counterfactual loss does. If the counterfactual
loss is zero, then we have the following proposition.

Proposition 4. If the generator G has zero counterfac-
tual loss, i.e., GY (u, a) = GY (u, a

′) for all u ∈ U and
a, a′ ∈ A, then the produced distribution P ′(X,A, Y )
satisfies the counterfactual fairness constraint given in
equation (8).

Proof. See the appendix for the proof.

3.2.1 Generalizing the causal model

Up to this point, we introduced our method for a spe-
cific causal model. Here we want to show that using
a technique similar to what is proposed (van Breugel
et al., 2021)[Section 5.1], our method can be generalized
to any given causal model represented by a directed
acyclic graph (DAG). Following Pearl’s notation (Pearl
et al., 2000), consider a triple of (U, V, F ), where V
is all of the observed variables (in our setting X, A,
and Y ), U represents all unobserved variables, and
F is the set of functions {f1, · · · , fn}, that are corre-
sponding to each Vi ∈ V , such that Vi = fi(pai, Upai

),
where pai ⊆ V \ {Vi} and Upai

are observable and
unobservable parents of Vi, these are called structural
equations. Now each of these equations can be mod-
eled by a separate generator Gi : R|pai|+|Upai

| → R.
Features are generated sequentially following the order
imposed by the underlying causal graph. Assuming
that parents of Vi are already generated, we generate
V̂i = Gi(p̂ai, Upai), where p̂ai are generated parents
of Vi. The fact that the underlying graph is acyclic,
enables this ordering. We refer to (van Breugel et al.,
2021)[Section 5.1] for a detailed explanation of this
method. For imposing CF, we can penalize the genera-
tor similar to equation (9). The value of A should first
be flipped, while all unobserved values are fixed. Then
we update the value of all descendants of A including
potentially Y , and compute the counterfactual loss.
Note that if Y is not a descendent of A then counter-
factual fairness will hold by definition. A more detailed
discussion and an example are given in supplementary
material for the general causal model.

Remark. In our setting, the case where A is not a
binary variable can also be handled. Instead of flipping
A we can choose uniformly at random a value from
A \ {A} and compute the loss. Alternatively, we can
compute Y for all a′ ∈ A \ {A} and define the penalty

to be the average of counterfactual loss for all a′.

Remark. Note that it is possible to make our proposed
models differentially private by using DP-SGD (Abadi
et al., 2016). This is true for all discussed GAN-based
methods e.g. FairGAN (Xu et al., 2018), DECAF (van
Breugel et al., 2021), and CFGAN (Xu et al., 2019).

4 EXPERIMENTS

4.1 Information filtering notion

For the Information filtering notion, we replicate a
benchmark from (van Breugel et al., 2021) which ex-
plores the fairness, and utility of classifiers trained
on fair (and not fair) synthetic data using the Adult
dataset (Dua and Graff, 2017). To do so we leverage
the software implementation from Wang et al. (2022b),
a replication study of the original paper.

The output in the dataset is a binary label that deter-
mines whether the individual’s income is over 50k. It is
known that bias between gender and income exists in
this dataset (Feldman et al., 2015; Zhang et al., 2016).
Thus, here we consider A to be the gender of the indi-
vidual, Y is the binary label, and X is the rest of the
features. We split the real dataset into training and
test datasets with 2000 elements in the test set. We
use the training dataset to train a generative model for
synthetic data generation.

We briefly detail the benchmark (for full details see (van
Breugel et al., 2021; Wang et al., 2022b)). We create
the synthetic data using different baselines (see Ta-
ble 1), and measure the quality and fairness of the
generated samples (we also have the real data, named
original as one of the baselines). For each row of the
Table 1, similar to (Sajjadi et al., 2018; Kynkäänniemi
et al., 2019), we evaluate the quality of the data via
calculating the precision/recall/AUROC of the trained
classifiers.

To evaluate fairness in the generated synthetic data,
we consider FTU and DP fairness notions (as we dis-
cussed in Section 3.1, FTU and DP are two special
cases of information filtering.) FTU is measured by
computing the difference in the predictions when all
features are the same and we only change A. In other
words, if g(x, a) is a classifier, the FTU is evaluated
by | 1n

∑
i g(xi, 0)− 1

n

∑
i g(xi, 1)| (smaller value implies

that g is better aligned with FTU notion). The DP
is measured by computing the total variation distance.
That is, 1

n |
∑
{i:ai=0} g(xi, ai)−

∑
{i:ai=1} g(xi, ai)|.

We repeat our experiment 10 times with a different
(random) training test split and calculate the mean
and standard deviation. In our experiment, we use
a Logistic Regression (LR) classifier trained by the
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Table 1: SDG Performance in Terms of Quality and Fairness on Adult Dataset (Dua and Graff, 2017) we use the same
procedure as van Breugel et al. (2021); Wang et al. (2022b) using a Logistic Regression

Method Precision Recall AUROC FTU DP
Original 0.862 ± 0.005 0.933 ± 0.007 0.885 ± 0.007 0.065 ± 0.005 0.187 ± 0.015
GAN 0.781 ± 0.019 0.975 ± 0.034 0.796 ± 0.041 0.040 ± 0.048 0.052 ± 0.055

WGAN-GP 0.795 ± 0.046 0.315 ± 0.135 0.547 ± 0.042 0.051 ± 0.038 0.065 ± 0.032
FairGAN 0.771 ± 0.006 0.993 ± 0.006 0.774 ± 0.056 0.017 ± 0.011 0.029 ± 0.013

DECAF-ND 0.881 ± 0.022 0.783 ± 0.043 0.802 ± 0.008 0.149 ± 0.072 0.347 ± 0.065
DECAF-FTU 0.884 ± 0.027 0.778 ± 0.050 0.801 ± 0.006 0.019 ± 0.014 0.294 ± 0.074
DECAF-CF 0.779 ± 0.012 0.930 ± 0.024 0.745 ± 0.012 0.005 ± 0.003 0.039 ± 0.029
DECAF-DP 0.753 ± 0.003 0.957 ± 0.028 0.687 ± 0.018 0.003 ± 0.003 0.011 ± 0.010

IF Xs = ∅ (λ = 0.001) 0.829 ± 0.006 0.936 ± 0.008 0.846 ± 0.014 0.021 ± 0.016 0.098 ± 0.026
IF Xs = ∅ (λ = 0.003) 0.822 ± 0.008 0.937 ± 0.006 0.836 ± 0.011 0.092 ± 0.016 0.049 ± 0.028
IF Xs = ∅ (λ = 0.005) 0.823 ± 0.006 0.93 ± 0.0108 0.833 ± 0.0124 0.153 ± 0.046 0.022 ± 0.016
IF Xs = ∅ (λ = 0.007) 0.82 ± 0.0068 0.928 ± 0.012 0.827 ± 0.012 0.170 ± 0.034 0.027 ± 0.020
IF Xs = ∅ (λ = 0.009) 0.824 ± 0.0046 0.924 ± 0.010 0.827 ± 0.011 0.217 ± 0.043 0.025 ± 0.015
IF Xs = X (λ = 10−3) 0.849 ± 0.012 0.912 ± 0.010 0.833 ± 0.011 0.071 ± 0.02 0.192 ± 0.021
IF Xs = X (λ = 10−2) 0.881 ± 0.0125 0.854 ± 0.046 0.85 ± 0.0118 0.074 ± 0.028 0.277 ± 0.051
IF Xs = X (λ = 10−1) 0.872 ± 0.011 0.88 ± 0.022 0.856 ± 0.00812 0.041 ± 0.026 0.231 ± 0.044
IF Xs = X (λ = 100.0) 0.873 ± 0.012 0.879 ± 0.014 0.860 ± 0.008 0.037 ± 0.023 0.235 ± 0.033

Sklearn library (Pedregosa et al., 2011). The results
are shown in Table 1. Again, similar to (van Breugel
et al., 2021; Wang et al., 2022b), we compare against
a GAN, a WGAN (Gulrajani et al., 2017), FairGAN
(Xu et al., 2018), and several variations of DECAF
(van Breugel et al., 2021) including DECAF-ND (No
Debiasing), DECAF-FTU (Fairness Through Unaware-
ness), DECAF-CF (Conditional Fairness), DECAF-DP
(Demographic Parity).

To satisfy DP, we set Xs = ∅. In Table 1, we observe a
reasonable classifier performance and a reduction in DP
as we increase λ as we would expect with a wider range
of values of λ presented in Appendix D. Comparing
with other methods, in Table 1, we can see that our
method with λ = 0.009 has a similar mean DP level
as FairGAN, DECAF-CF, and DECAF-DP. However,
our algorithms can achieve better AUROC compared
to the baselines. This implies that our algorithm can
improve the fairness-accuracy trade-off.

For the case where Xs = X, the key fairness metric
is FTU. Again, we observe reasonable classifier perfor-
mance with high precision, recall, and AUROC, and a
reduction in FTU as we increase λ as we would expect.
We note that on average our algorithm with Xs = X
and λ = 1 has the highest AUROC while its FTU level
is similar to FairGAN, DECAF-FTU, DECAF-CF, and
DECAF-DP. This observation implies that our algo-
rithm with Xs = X improves the trade-off between
FTU and accuracy.

In addition to the wider range of λs for the logistic
regression case, we provide a variant of this experi-
ment with a Multi-Layer Perceptron (MLP) model and
related discussion in Appendix D due to space con-
straints) which highlight the importance of appropriate
choice of λ. Full results can be found in Appendix Ta-

ble 4. We want to point out that a reasonable variation
in some of the statistics has noted due to variation in
the GAN model used in the synthetic methods, and
also in the classifiers, especially in the MLP case.

4.2 Comparison with in-processing fairness

The goal of this section is to compare the performance
of a logistic regression model trained on synthetic data
and a “fair” logistic regression model trained on real
data by FairBatch (Roh et al., 2020). We investigate
the performance of these two models in terms of accu-
racy and fairness level (Figure 4 left panel). Note that
FairBatch is an in-processing algorithm for fair model
training. This algorithm measures the rate of positive
labels predicted by the model for each group in each
epoch, and it changes the mini-batch sampling distri-
bution in favor of the group that is disadvantaged. The
figure shows that FairBatch has better accuracy. How-
ever, using synthetic data has the advantage that we
can be sure that the fairness level of choice is observed
by the user.

4.3 Law school experiment for counterfactual
fairness

Similar to Kusner et al. (2017), here we use the law
school admission example to evaluate our counterfactu-
ally fair generator. The dataset is constructed via a sur-
vey conducted by The Law School Admission Council
across 163 law schools in the United States (Wightman,
1998). It contains information about 21,790 students.
We have access to the following features: the entrance
exam scores (LSAT), the grade-point average (GPA),
the first-year average grade (FYA), along with race
and gender of students. Now the goal is to predict
FYA as a proxy for the student’s success using other
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Figure 4: Additional results for our GAN based approach. (Left) Comparison of accuracy vs DP for a Logistic Regression
(LR) model trained on real data (Adult dataset) using FairBatch method and a LR trained on a fair synthetic version of
data. (Right) The distribution of estimated FYA for three models. For the fair model, we chose λ = 0.004. The factual
curve is representing the White race, and the counterfactual curve is Black, and Asian in rows one and two respectively.

features in the dataset. Here we only consider race as
the sensitive attribute, as Kusner et al. (2017) found
that the data is counterfactually fair w.r.t gender. Our
goal is to train a counterfactually fair regression model
to predict FYA.

We denote the real dataset by D and split this dataset
80/20 into Dtrain/Dtest subsets. First, we use Dtrain
to train the generative model proposed in Section
3.2 Counterfactual fairness Section and produce fair
dataset D′ of the same size as Dtrain. Now we train
a linear regression model4 on D′, the fair dataset, to
estimate FYA using the rest of the features (i.e., LSAT,
GPA, race, and gender). Denote this regression model
with ffair. We also train two baseline models using the
real data D. ffull is a linear regression model trained on
Dtrain using all features (we expect this model to have
the best accuracy and to be the most unfair model).
Secondly, funaware is another linear regression model
using only GPA and LSAT (thus is unaware of sensitive
attributes). The accuracy of these models in terms of
RMSE on the test data (Dtest) is reported in Table
2. We can see that there is a slight reduction in the
accuracy when we use synthetic data instead of real
data. Also, as we increase λ the accuracy decreases.

For assessing whether the learned algorithm ffair is
counterfactually fair, the distribution of estimated FYA
for both factual and counterfactual samples are re-
quired. To produce counterfactual samples, similar to
Kusner et al. (2017), we fit the following linear model
described in equation (10) as a counterfactual simulator
on the data. Note that we are interested in satisfying
the CF notion for the real data, thus we use D to train
the simulator. This model follows the causal graph
in Figure 3. In this example, R represents race, S is
gender, and U is the unobserved variable representing

4Using the default model of sklearn (Pedregosa et al.,
2011)

the true knowledge of the law. Similar to Kusner et al.
(2017) we use an MCMC model to estimate coefficients
in equation (10) and also to estimate the value of U
for each sample in the test data.

GPA ∼ N (bG + wU
GU + wR

GR+ wS
GS, σG),

FYA ∼ N (wU
FU + wR

FR+ wS
FS, 1)

LSAT ∼ Poisson(exp(bL + wU
LU + wR

LR+ wS
LS)),

U ∼ N (0, 1)

(10)

For a given sample in the test data, we use the model
simulator to get the counterfactual samples and then
feed both of these samples to ffair and also two baseline
methods. The distribution of estimated FYA for the
factual and counterfactual samples are shown in Fig-
ure 4 (right panel). We expect these two distributions
to align if CF holds. In the right panel of Figure 4, we
consider two scenarios. In the first row, we compare
white vs black (white is factual, and black is counter-
factual), and it can be observed that the full model is
not fair. Unaware model improves the fairness, and
the fair model is the fairest of the three. In the second
row, we compare white and Asian and can see that
both unaware and fair models seem to satisfy the CF
constraint for this pair of sensitive attributes. We also
want to report that we observe some instability in our
GAN model (even without the fairness penalty) which
could be because of small dataset, and therefore it is
important to check the resultant distributions.

5 CONCLUSION AND FUTURE
WORK

In this paper, we formalized a definition of fairness for
a synthetic data generator and showed why this defini-
tion is useful. We also considered two fairness notions
of information filtering and counterfactual fairness and
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Table 2: RMSE of Fair and Baseline Models.

RMSE
ffull 0.2486± 0.0011

funaware 0.2539± 0.0009
ffair (λ = 0.002) 0.2608± 0.0015
ffair (λ = 0.004) 0.2680± 0.0083
ffair (λ = 0.006) 0.2708± 0.0113

proposed a new method for implementing these notions
using GANs. However, our framework is more general
and in fact any notion (group or individual) can be
potentially enforced as long as the constraint can be
represented as a regularization term. In Section 2, we
considered an estimator with a good accuracy to state
our three propositions. Due to insufficient information
in inputs, finding an accurate estimator may not be
possible. Thus, it is useful to find similar propositions
for the Bayes estimator instead of the accurate esti-
mator. Also, here we proved our results for notions
that we considered, finding a more generic proposition
is another direction for future work. In Section 3, we
mentioned the possibility of using synthetic data for
enforcing multiple fairness constraints together, explo-
ration of this idea is another research direction.
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A Proofs

Proof of Proposition 1: Since TV satisfies triangle inequality, we have

TV(P ′(f(X)|A = 0), P ′(f(X)|A = 1)) ≤ TV(P ′(f(X)|A = 0), P ′(Y |A = 0))

+ TV(P ′(Y |A = 0), P ′(Y |A = 1))

+ TV(P ′(Y |A = 1), P ′(f(X)|A = 1)).

(11)

The second term above is bounded by δ since P ′ satisfies δ-ADP. Note that, when A is binary, the definition
of δ-ADP (given in Definition 1) can be represented as TV(P (f(X)|A = 0), P (Y |A = 0)) ≤ δ. Now for the first
term of RHS we have:

TV(P ′(f(X)|A = 0), P ′(Y |A = 0))

=
1

2

∑
y∈{0,1}

|P ′(f(X) = y|A = 0)− P ′(Y = y|A = 0)|

=
1

2

∑
y∈{0,1}

|P ′(f(X) = y, Y = y|A = 0) + P ′(f(X) = y, Y = 1− y|A = 0)− P ′(Y = y|A = 0)|

=
1

2

∑
y∈{0,1}

|P ′(f(X) = y, Y = y|A = 0) + P ′(f(X) = 1− y, Y = y|A = 0)

− P ′(f(X) = 1− y, Y = y|A = 0) + P ′(f(X) = y, Y = 1− y|A = 0)− P ′(Y = y|A = 0)|

=
1

2

∑
y∈{0,1}

|P ′(Y = y|A = 0)− P ′(f(X) = 1− y, Y = y|A = 0)

+ P ′(f(X) = y, Y = 1− y|A = 0)− P ′(Y = y|A = 0)|

=
1

2

∑
y∈{0,1}

|P ′(f(X) = y, Y = 1− y|A = 0)− P ′(f(X) = 1− y, Y = y|A = 0)|

≤ 1

2

∑
y∈{0,1}

|P ′(f(X) = y, Y = 1− y|A = 0)|

≤ 1

2

∑
y∈{0,1}

P ′(f(X) = y, Y = 1− y)

P ′(A = 0)

≤ ϵ/2P ′(A = 0)

Similarly for the third term of RHS of (1) we have:

TV(P ′(Y |A = 1), P ′(f(X)|A = 1)) ≤ ϵ/2P ′(A = 1).

This completes the proof.

Proof of Proposition 2: The error probability of f on P ′ is less than ϵ , that is

Pr{f(X) ̸= Y } = EX,Y∼P ′(X,Y ) 1[f(X) ̸= Y ] ≤ ϵ. (12)

Now, the error probability of f on distribution P can be upper bounded as follows:

EX,Y∼P (X,Y ) 1[f(X) ̸= Y ] =
∑
x,y

p(x, y)1[f(x) ̸= y]

≤
∑
x,y

p′(x, y)1[f(x) ̸= y] +
∑
x,y

|p(x, y)− p′(x, y)|1[f(x) ̸= y]

≤ ϵ+
∑
x,y

|p(x, y)− p′(x, y)|

≤ ϵ+ 2δ
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Proof of Proposition 3: Similar to Proposition 1, using triangle inequality for TV, we have

TV(P (f(X)|A = 0), P (f(X)|A = 1)) ≤ TV(P (f(X)|A = 0), P ′(f(X)|A = 0))

+ TV(P ′(f(X)|A = 0), P ′(f(X)|A = 1))

+ TV(P ′(f(X)|A = 1), P (f(X)|A = 1)).

(13)

The second term above is bounded by δ1 (since f satisfies ADP for P ′), thus the RHS is upper bounded by

TV
(
P (f(X), A = 0)

P (A = 0)
,
P ′(f(X), A = 0)

P ′(A = 0)

)
+ TV

(
P ′(f(X), A = 1)

P (A = 1)
,
P (f(X), A = 1)

P (A = 1)

)
+ δ1. (14)

For the first term we have:

TV
(
P (f(X), A = 0)

P (A = 0)
,
P ′(f(X), A = 0)

P ′(A = 0)

)
=

∑
y∈{0,1}

∣∣∣∣ 1

P (A = 0)
P (f(X) = y,A = 0)− 1

P ′(A = 0)
P ′(f(X) = y,A = 0)

∣∣∣∣ (15)

Now for y = 0 if the first term in (15) is larger than the second term then we have:

1

P (A = 0)
P (f(X) = 0, A = 0)− 1

P ′(A = 0)
P ′(f(X) = 0, A = 0)

≤ 1

P (A = 0)
P (f(X) = 0, A = 0)− 1

P (A = 0) + δ2
P ′(f(X) = 0, A = 0) (16)

≤ z + δ2
P (A = 0)

− z

P (A = 0) + δ2
(17)

≤ δ2(1 + P (A = 0)) + δ22
P (A = 0)2

(18)

In the above equations, we used the general definition of total variation (TV(P,Q) = supA |P (A)−Q(A)|). Now if
we consider the other case that the second term in (15) is larger than the first term for y = 0 we get the following
upper bound:

δ2(1 + P ′(A = 0)) + δ22
P ′(A = 0)2

(19)

Since g(p) =
δ2(1+p)+δ22

p2 is a decreasing function in p (for p > 0) if we define p0 = min{P (A = 0), P ′(A = 0)} we
can bound the (15) with

2δ2(1 + p0) + 2δ22
p20

. (20)

Similarly if we define p1 = min{P (A = 1), P ′(A = 1)}, then the second term in (14) can be upper bounded with

2δ2(1 + p1) + 2δ22
p21

. (21)

Defining h(p0, p1) = 2(2+p0

p2
0

+ 2+p1

p2
1

) completes the proof.

Proof of Proposition 4: We want to prove the following equation, assuming that P ′ is the distribution induced
from G which satisfies GY (u, a) = GY (u, a

′):

P ′(YA←a = y|X = x,A = a) = P ′(YA←a′ = y|X = x,A = a). (22)

Let us denote with Q the posterior distribution of U condtioned on A and X. Then the LHS can be written as
follows (we assume that U is a countable set):

P ′(YA←a = y|X = x,A = a) =
∑
u

P ′(YA←a = y|X = x,A = a, U = u)Q(U = u|X = x,A = a) (23)

=
∑
u

P ′(Y = y|A = a, U = u)Q(U = u|X = x,A = a) (24)
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Similarly we have:

P ′(YA←a′ = y|X = x,A = a) =
∑
u

P ′(YA←a′ = y|X = x,A = a, U = u)Q(U = u|X = x,A = a) (25)

=
∑
u

P ′(Y = y|A = a′, U = u)Q(U = u|X = x,A = a) (26)

Now comparing (24) and (26) and noting that GY (u, a) = GY (u, a
′) completes the proof.

B Comparison to previous SDG fairness definitions

Our proposed definition is similar to the definition in FairGAN Xu et al. (2018) and CFGAN Xu et al. (2019).
These two works also impose a fairness constraint on the generated samples, i.e., generate P ′ such that it satisfies a
fairness constraint (note that there is no formal definition in these two works). There is however a subtle difference
between what FairGAN attempts to achieve and our definition. FairGAN’s fairness of choice is demographic parity,
which can be satisfied when Y and A are independent, that is I(Y ;A) = 0, where I is the mutual information
between the two random variables. However, in the FairGAN implementation, another condition is enforced:
I(X̂, Ŷ ; Â) = 0. The rationale for this could be to impose demographic parity for any predictor that is trained
on the data. Note that, if I(X;A) = 0 and f is a predictor, then I(f(X);A) = 0 also holds. This is different
from our definition, which imposes fairness only for accurate predictors. Making X and A independent seems
very restrictive as there might be important information between X and A that we do not want to lose. This
is also relevant to the Information filtering notion discussed in Section 2.1 and a comparison might be helpful.
I(X,Y ;A) can be expressed as follows

I(X,Y ;A) = I(Y ;A) + I(X;A|Y ). (27)

When I(X,Y ;A) = 0 is enforced, then we have also I(Y ;A) = 0, which is what we are actually interested in.
However, we are also enforcing I(X;A|Y ) = 0 which does not have a natural motivation. Now expanding the
above mutual information starting with I(X;Y ), we get

I(X,Y ;A) = I(X;A) + I(Y ;A|X). (28)

I(X;Y ) part of the above expansion contain useful information that we want to keep (and thus this suggests
maybe enforcing I(X,Y ;A) = 0 is not ideal). In information filtering notion we attempt to enforce I(Y ;A|X) = 0
on the synthetic data.

B.1 Comparison with DECAF definition:

First, let us review the definition of fair synthetic data given in van Breugel et al. (2021): “A probability
distribution P ′(X) is (I (A, Y ), P )-fair, if and only if the optimal predictor Ŷ = f∗(X) of Y trained on P ′(X)
satisfies I (A, Y ) when evaluated on P (X).” This definition is ideal from the fairness point of view. The
distribution P ′ here when used for training a model, will result in a predictor that is fair not on the synthetic
training data but on the unseen real data (drawn from P ). However, this definition does not guarantee any
resemblance of the synthetic data (P ′) with the actual data (P ). Note that the closeness of two distributions
(fidelity) is usually a necessity in synthetic data. However, in DECAF work, there is no guarantee that P ′ and P
will be close. In fact, DECAF may produce two distributions P ′ and P that have an arbitrarily large KL distance.
For example, consider a dataset where we have A −→ X −→ Y . Assume that A is a Bernoulli binary random
variable (P (A = 0) = P (A = 1)). When A = 0, then X = 0 and when A = 1 then X = m. Also assume that
Y = N (X, 1). Now, considering DECAF method, (e.g., for satisfying SP) we need to remove both edges from
A to X and then from X to Y , then Y will be either constant or a distribution independent from X and so m
(depending on which strategy one chooses as explained in Section 5.2). Thus, it is clear that by increasing m we
can have arbitrarily large KL-distance between P and P ′.

Proof of Proposition 1 in DECAF van Breugel et al. (2021): The proof of Proposition 1 (main result in
DECAF) seems to be incomplete. Firstly, there seems to be a typo in the proof. They consider f∗(X) is the
ideal classifier trained on P ′ (not P ), thus we cannot assume that f∗(X) = P (Y |X), we should assume that
f∗(X) = P ′(Y |X) and then for P ′ we have the next equation P ′(Y |X) = P ′(Y |∂G′Y ). The missing step is that
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Figure 5: Example of a more complicated causal graph

Figure 6: The GAN structure corresponding to Causal Graph in Figure 1

why P ′(Y |∂G′Y ) = P (Y |∂G′Y ) holds. For instance, using the method suggested in the paper, this equation does
not hold in general. Assume that there is only one edge that is removed we have:

P ′(Y |∂G′Y ) = P (Y |∂G′Y, do(Xi = x̃ij)) ̸= P (Y |∂G′Y ). (29)

C Generalization of counterfactual fairness

In this section by an example we explain in more details how to generalize our proposed method for a given
causal graph. Consider the causal graph in Figure 5. Here we have two unobserved variables U1 and U2, X
represents features, A is the sensitive attribute, and Y is the output. Considering this graph, U1 and U2 will
be the noise for the generators (note that their underlying distribution is known, and also we assumed that
unobserved variables are independent). Then we will have two generators G1 and G2 to produce X and A given
U1 and U1, U2 respectively. Now all variables to generate Y are available. G3 will have A, X, and U2 as input
and will produce Y as the output. The generator architecture is represented in Figure 5.

The generated samples X,A, Y will be fed to a discriminator. Also, for each sample we can alternate the value of A
while the values of U1 and U2 and X is fixed to get the counterfactual output and then we can add counterfactual
loss to the loss function of the generator.
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D Additional results for Information filtering

In the main body we presented the results from a benchmark from van Breugel et al. (2021) which explores the
fairness, and utility of classifiers trained on fair (and not fair) synthetic data. using the Adult dataset Dua and
Graff (2017).

This section contains additional results on this experiment. Table 3, presents additional values of λ using the
same set up as the main paper, demonstrating the performance of the model over these values. Additionally,
Table 4 presents the results using an MLP rather than a logistic regression, matching the experiment in Wang
et al. (2022b), abet with more variance.

In the MLP case, we note similar performance than LR, although with slightly lower classifier performance. For
DP (i.e. when Xs = ∅) for we see a reduction in DP with increasing λ as we would expect, although with a
reversion for high λ - see latter discussion. Although, with large standard deviations in some of the metrics across
many of the methods, we have to be careful about interpretation.

For the FTU case (XS = X) We do not observe an optimal scaling of FTU with λ possibly because of the higher
variance of MLP. However, we do obtain similar FTU to the comparative methods, and outperform some. Note
that the high variance for MLP case is observed even on the original data, but we have also observed reasonable
variation in the output of IF, and sensitivity to the values of λ with counter-intuitive effects which we suspect is
a consequence of the training process balancing each of the losses. Additional future work will look at improving
this, potentially in this case, by exploring the complexity of the decoder architecture as this would allow us to
model more complex relationships.

We additionally considering comparing to CFGAN both in the logistic regression and MLP cases however the
results from the we obtained we not comparable to the results from the replication experiment from Wang et al.
(2022b) (which we followed thoroughly) makes a different choices due to a different discretization in future work
we will further explore this comparison
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Table 3: Additional results on the performance of the Generative Models in Terms of Quality of Produced Samples and
Fairness on Adult Dataset Dua and Graff (2017) we use the same procedure as van Breugel et al. (2021); Wang et al.
(2022b) however with a Logistic Regression classifier.

Data Quality Fairness

Method Precision Recall AUROC FTU DP

Original 0.862 ± 0.005 0.933 ± 0.007 0.885 ± 0.007 0.065 ± 0.005 0.187 ± 0.015
GAN 0.781 ± 0.019 0.975 ± 0.034 0.796 ± 0.041 0.04 ± 0.048 0.052 ± 0.055

WGAN-GP 0.795 ± 0.046 0.315 ± 0.135 0.547 ± 0.042 0.051 ± 0.038 0.065 ± 0.032
FairGAN 0.771 ± 0.006 0.993 ± 0.006 0.774 ± 0.056 0.017 ± 0.011 0.029 ± 0.013

DECAF-ND 0.881 ± 0.022 0.783 ± 0.043 0.802 ± 0.008 0.149 ± 0.0722 0.347 ± 0.065
DECAF-FTU 0.884 ± 0.027 0.778 ± 0.05 0.801 ± 0.006 0.019 ± 0.014 0.294 ± 0.074
DECAF-CF 0.779 ± 0.012 0.93 ± 0.024 0.745 ± 0.012 0.005 ± 0.003 0.039 ± 0.029
DECAF-DP 0.753 ± 0.003 0.957 ± 0.028 0.687 ± 0.018 0.003 ± 0.003 0.011 ± 0.010

IF Xs = ∅ (λ = 0.0 ) 0.843 ± 0.015 0.918 ± 0.018 0.848 ± 0.007 0.076 ± 0.028 0.182 ± 0.035
IF Xs = ∅ (λ = 0.001) 0.829 ± 0.006 0.936 ± 0.008 0.846 ± 0.014 0.021 ± 0.016 0.098 ± 0.026
IF Xs = ∅ (λ = 0.002) 0.828 ± 0.007 0.932 ± 0.009 0.84 ± 0.01 0.075 ± 0.026 0.07 ± 0.018
IF Xs = ∅ (λ = 0.003) 0.822 ± 0.008 0.937 ± 0.006 0.836 ± 0.011 0.092 ± 0.016 0.049 ± 0.028
IF Xs = ∅ (λ = 0.004) 0.823 ± 0.006 0.934 ± 0.008 0.836 ± 0.016 0.097 ± 0.027 0.044 ± 0.019
IF Xs = ∅ (λ = 0.005) 0.823 ± 0.006 0.93 ± 0.011 0.833 ± 0.012 0.153 ± 0.046 0.022 ± 0.016
IF Xs = ∅ (λ = 0.006) 0.823 ± 0.008 0.932 ± 0.006 0.828 ± 0.013 0.148 ± 0.033 0.028 ± 0.008
IF Xs = ∅ (λ = 0.007) 0.82 ± 0.007 0.928 ± 0.012 0.827 ± 0.012 0.17 ± 0.034 0.027 ± 0.020
IF Xs = ∅ (λ = 0.008) 0.822 ± 0.007 0.929 ± 0.01 0.831 ± 0.009 0.154 ± 0.031 0.018 ± 0.014
IF Xs = ∅ (λ = 0.009) 0.824 ± 0.005 0.924 ± 0.010 0.827 ± 0.011 0.217 ± 0.043 0.025 ± 0.015
IF Xs = ∅ (λ = 0.100) 0.894 ± 0.019 0.564 ± 0.016 0.687 ± 0.018 0.056 ± 0.033 0.261 ± 0.028

IF Xs = X (λ = 0) 0.839 ± 0.007 0.923 ± 0.013 0.846 ± 0.011 0.064 ± 0.014 0.17 ± 0.019
IF Xs = X (λ = 10−4) 0.843 ± 0.011 0.918 ± 0.013 0.845 ± 0.008 0.073 ± 0.012 0.179 ± 0.028
IF Xs = X (λ = 10−3) 0.849 ± 0.012 0.912 ± 0.010 0.833 ± 0.011 0.071 ± 0.02 0.192 ± 0.021
IF Xs = X (λ = 10−2) 0.881 ± 0.013 0.854 ± 0.046 0.85 ± 0.012 0.074 ± 0.028 0.277 ± 0.051
IF Xs = X (λ = 10−1) 0.872 ± 0.011 0.88 ± 0.022 0.856 ± 0.008 0.0408 ± 0.026 0.231 ± 0.044
IF Xs = X (λ = 10−0) 0.873 ± 0.012 0.879 ± 0.014 0.86 ± 0.008 0.037 ± 0.023 0.235 ± 0.033
IF Xs = X (λ = 10+1) 0.839 ± 0.026 0.889 ± 0.043 0.828 ± 0.016 0.161 ± 0.075 0.238 ± 0.105
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Table 4: Performance of the Generative Models in Terms of Quality of Produced Samples and Fairness on Adult Dataset
Dua and Graff (2017) we use the same procedure as van Breugel et al. (2021); Wang et al. (2022b) using a MLP classifier.

Data Quality Fairness

Method Precision Recall AUROC FTU DP

Original 0.878 ± 0.006 0.928 ± 0.007 0.908 ± 0.006 0.019 ± 0.01 0.185 ± 0.019
GAN 0.811 ± 0.06 0.921 ± 0.138 0.805 ± 0.071 0.099 ± 0.169 0.13 ± 0.206

WGAN-GP 0.729 ± 0.045 0.375 ± 0.125 0.472 ± 0.072 0.199 ± 0.108 0.194 ± 0.095
FairGAN 0.81 ± 0.046 0.892 ± 0.182 0.799 ± 0.053 0.139 ± 0.244 0.157 ± 0.244

DECAF-ND 0.877 ± 0.031 0.779 ± 0.054 0.797 ± 0.013 0.126 ± 0.060 0.356 ± 0.080
DECAF-FTU 0.882 ± 0.028 0.776 ± 0.056 0.797 ± 0.005 0.0211 ± 0.011 0.291 ± 0.069
DECAF-CF 0.78 ± 0.0158 0.923 ± 0.031 0.737 ± 0.02 0.0195 ± 0.019 0.034 ± 0.039
DECAF-DP 0.76 ± 0.001 0.954 ± 0.034 0.674 ± 0.029 0.020 ± 0.019 0.024 ± 0.029

IF Xs = ∅ (λ = 0.0) 0.799 ± 0.009 0.932 ± 0.023 0.755 ± 0.0198 0.012 ± 0.009 0.083 ± 0.028
IF Xs = ∅ (λ = 0.001) 0.797 ± 0.007 0.929 ± 0.013 0.717 ± 0.039 0.036 ± 0.029 0.058 ± 0.024
IF Xs = ∅ (λ = 0.002) 0.8 ± 0.011 0.918 ± 0.012 0.721 ± 0.034 0.089 ± 0.031 0.034 ± 0.023
IF Xs = ∅ (λ = 0.003) 0.801 ± 0.010 0.923 ± 0.011 0.722 ± 0.039 0.1 ± 0.080 0.042 ± 0.022
IF Xs = ∅ (λ = 0.004) 0.799 ± 0.008 0.917 ± 0.018 0.713 ± 0.030 0.104 ± 0.051 0.02 ± 0.018
IF Xs = ∅ (λ = 0.005) 0.801 ± 0.009 0.914 ± 0.02 0.721 ± 0.0381 0.149 ± 0.076 0.030 ± 0.022
IF Xs = ∅ (λ = 0.006) 0.8 ± 0.009 0.919 ± 0.015 0.713 ± 0.030 0.143 ± 0.046 0.016 ± 0.011
IF Xs = ∅ (λ = 0.007) 0.804 ± 0.009 0.912 ± 0.020 0.711 ± 0.042 0.174 ± 0.043 0.028 ± 0.015
IF Xs = ∅ (λ = 0.008) 0.801 ± 0.009 0.918 ± 0.017 0.704 ± 0.042 0.135 ± 0.044 0.019 ± 0.012
IF Xs = ∅ (λ = 0.009) 0.804 ± 0.009 0.905 ± 0.011 0.72 ± 0.034 0.243 ± 0.069 0.033 ± 0.025
IF Xs = ∅ (λ = 0.100) 0.895 ± 0.027 0.566 ± 0.029 0.712 ± 0.025 0.063 ± 0.051 0.242 ± 0.062
IF Xs = X (λ = 0.0) 0.8 ± 0.008 0.926 ± 0.019 0.744 ± 0.030 0.017 ± 0.018 0.090 ± 0.028

IF Xs = X (λ = 10−4) 0.812 ± 0.008 0.918 ± 0.012 0.786 ± 0.015 0.015 ± 0.015 0.099 ± 0.025
IF Xs = X (λ = 10−3) 0.813 ± 0.009 0.919 ± 0.016 0.776 ± 0.019 0.013 ± 0.010 0.108 ± 0.029
IF Xs = X (λ = 10−2) 0.867 ± 0.024 0.855 ± 0.071 0.829 ± 0.024 0.049 ± 0.019 0.247 ± 0.075
IF Xs = X (λ = 10−1) 0.877 ± 0.014 0.871 ± 0.031 0.842 ± 0.012 0.015 ± 0.014 0.241 ± 0.054
IF Xs = X (λ = 100.0) 0.899 ± 0.016 0.825 ± 0.042 0.847 ± 0.013 0.018 ± 0.012 0.318 ± 0.058
IF Xs = X (λ = 10+1) 0.879 ± 0.042 0.823 ± 0.074 0.825 ± 0.022 0.040 ± 0.035 0.254 ± 0.131
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The following figures show how the difference between the losses of the two decoders (in IF model) changes with
batch size for different values of λ. Here we show the figure for λ = 10−1, 10−2, 10−3.
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Figure 7: λ = 10−1
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Figure 8: λ = 10−2
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Figure 9: λ = 10−3

E Extending Propositions 1 and 3 to Counterfactual Fairness

Proposition 5. Let f : X → {0, 1} be a prediction algorithm and Ŷ = f(X). If a distribution P ′ approximately
satisfies counterfactual fairness, that is TV(P ′(YA←0(U)|X = x,A = a), P ′(YA←1(U)|X = x,A = a)) ≤ δ, ∀x, a,
and prediction algorithm f : X → {0, 1} satisfies the following w.r.t P ′, P ′{ŶA←a(U) ̸= YA←a(U)} ≤ ϵ,∀a, then
we have:

TV(P ′(ŶA←0(U)|X = x,A = a)), P ′(ŶA←1(U)|X = x,A = a)) ≤ 2ϵ+ δ. (30)

Proof. Note that TV satisfies triangle inequality. Therefore, we have,

TV(P ′(ŶA←0(U)|X = x,A = a), P ′(ŶA←1(U)|X = x,A = a))

≤ TV(P ′(ŶA←0(U)|X = x,A = a), P ′(YA←0(U)|X = x,A = a))

+ TV(P ′(YA←0(U)|X = x,A = a), P ′(YA←1(U)|X = x,A = a))

+ TV(P ′(YA←1(U)|X = x,A = a), P ′(ŶA←1(U)|X = x,A = a)).

(31)
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Note that based on our assumption P ′ satisfies counterfactual fairness, and the second term above is bounded by
δ . Now for the first term of RHS we have:

TV(P ′(ŶA←0(U)|X = x,A = a), P ′(YA←0(U)|X = x,A = a))

=
1

2

∑
y∈{0,1}

|P ′(ŶA←0(U) = y|X = x,A = a)− P ′(YA←0(U) = y|X = x,A = a)|

=
1

2

∑
y∈{0,1}

|P ′(ŶA←0(U) = y, YA←0(U) = y|X = x,A = a)

+ P ′(ŶA←0(U) = y, YA←0(U) = 1− y|X = x,A = a)− P ′(YA←0(U) = y|X = x,A = a)|

=
1

2

∑
y∈{0,1}

|P ′(ŶA←0(U) = y, YA←0(U) = y|X = x,A = a)

+ P ′(ŶA←0(U) = 1− y, YA←0(U) = y|X = x,A = a)− P ′(ŶA←0(U) = 1− y, YA←0(U) = y|X = x,A = a)

+ P ′(ŶA←0(U) = y, YA←0(U) = 1− y|X = x,A = a)− P ′(YA←0(U) = y|X = x,A = a)|

=
1

2

∑
y∈{0,1}

|P ′(YA←0(U) = y|X = x,A = a)− P ′(ŶA←0(U) = 1− y, YA←0(U) = y|X = x,A = a)

+ P ′(ŶA←0(U) = y, YA←0(U) = 1− y|X = x,A = a)− P ′(YA←0(U) = y|X = x,A = a)|

=
1

2

∑
y∈{0,1}

|P ′(ŶA←0(U) = y, YA←0(U) = 1− y|X = x,A = a)

− P ′(ŶA←0(U) = 1− y, YA←0(U) = y|X = x,A = a)|

≤
∑

y∈{0,1}

|P ′(ŶA←0(U) = y, YA←0(U) = 1− y|X = x,A = a)|

≤ ϵ

Similarly for the third term of RHS of (31) we have:

TV(P ′(ŶA←0(U)|X = x,A = a), P ′(YA←0(U)|X = x,A = a)) ≤ ϵ.

This completes the proof.

Proposition 6. Assume TV(P (XA←a(U)|X = x,A = a), P ′(XA←a(U)|X = x,A = a) ≤ ϵ∀x, a.5 If a
prediction algorithm f : X → {0, 1} approximately satisfies CF w.r.t P ′, that is TV(P ′(ŶA←0(U)|X = x,A =
a), P ′(ŶA←1(U)|X = x,A = a)) ≤ δ, ∀x, a, then we have,

TV(P (ŶA←0|X = x,A = a), (P (ŶA←1|X = x,A = a)) ≤ 2ϵ+ δ. (32)

Proof. Similar to Proposition 1, using triangle inequality for TV, we have

TV(P (ŶA←0(U)|X = x,A = a), P (ŶA←1(U)|X = a,A = a)) ≤
TV(P (ŶA←0(U)|X = x,A = a), P ′(ŶA←0(U)|X = x,A = a))+

TV(P ′(ŶA←0(U)|X = x,A = a), P ′(ŶA←1(U)|X = x,A = a))+

TV(P ′(ŶA←1(U)|X = x,A = a), P (ŶA←1(U)|X = x,A = a)).

(33)

5Note that P (XA←a(U) = x′|X = x,A = a) =
∑

u P (XA←a(u) = x′)P (U = u|X = x,A = a). This condition implies
that not only the factual data have similar distribution under P and P ′, but also the counterfactual data follow similar
distribution under P and P ′
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The second term above is bounded by δ1 (since Ŷ approximately satisfies CF with respect to P ′).For the first
term of (33), we have:

TV(P (ŶA←0(U)|X = x,A = a), P ′(ŶA←0(U)|X = x,A = a))

=
∑

y∈{0,1}

TV(P (f(XA←0(U))|X = x,A = a), P ′(f(XA←0(U))|X = x,A = a)) ≤ ϵ (34)

For the third term of (33), we have:

TV(P (ŶA←1(U)|X = x,A = a), P ′(ŶA←1(U)|X = x,A = a))

=
∑

y∈{0,1}

TV(P (f(XA←1(U))|X = x,A = a), P ′(f(XA←1(U))|X = x,A = a)) ≤ ϵ (35)

This completes the proof.


	INTRODUCTION
	FAIRNESS FOR SYNTHETIC DATA GENERATION (SDG)
	Algorithmic fairness
	Fairness in SDG setting

	METHOD
	Information filtering fairness (conditional fairness)
	Counterfactual fairness
	Generalizing the causal model


	EXPERIMENTS
	Information filtering notion
	Comparison with in-processing fairness
	Law school experiment for counterfactual fairness

	CONCLUSION AND FUTURE WORK
	Proofs
	Comparison to previous SDG fairness definitions
	Comparison with DECAF definition:

	Generalization of counterfactual fairness
	Additional results for Information filtering
	Extending Propositions 1 and 3 to Counterfactual Fairness

