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Abstract

Active learning parallelization is widely used,
but typically relies on fixing the batch size
throughout experimentation. This fixed ap-
proach is inefficient because of a dynamic
trade-off between cost and speed—larger
batches are more costly, smaller batches lead
to slower wall-clock run-times—and the trade-
off may change over the run (larger batches
are often preferable earlier). To address this
trade-off, we propose a novel Probabilistic
Numerics framework that adaptively changes
batch sizes. By framing batch selection as a
quadrature task, our integration-error-aware
algorithm facilitates the automatic tuning of
batch sizes to meet predefined quadrature pre-
cision objectives, akin to how typical optimiz-
ers terminate based on convergence thresh-
olds. This approach obviates the necessity
for exhaustive searches across all potential
batch sizes. We also extend this to scenar-
ios with constrained active learning and con-
strained optimization, interpreting constraint
violations as reductions in the precision re-
quirement, to subsequently adapt batch con-
struction. Through extensive experiments, we
demonstrate that our approach significantly
enhances learning efficiency and flexibility in
diverse Bayesian batch active learning and
Bayesian optimization applications.
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Figure 1: We fix the quadrature precision instead of
batch size. The batch size changes adaptively to meet
the predefined precision requirement. Our method, Ad-
aBatAL, efficiently determines the optimal number of
batch sizes and their querying positions without requir-
ing a brute-force search of all possible batch sizes. Ad-
aBatAL also offers adaptive batch sizes for constrained
active learning and constrained Bayesian optimization.

1 Introduction

Active Learning (AL) (Settles, 2009) is a machine learn-
ing concept where the algorithm selects its training
data, which enhances accuracy based on fewer labels.
Its use is widespread in deep learning models (Gal
et al., 2017; Ren et al., 2021; Kirsch et al., 2019) and
Gaussian processes (GPs) (Houlsby et al., 2011; Riis
et al., 2022). Bayesian AL intertwines with Proba-
bilistic Numerics (PN) (Hennig et al., 2015, 2022),
that reinterprets numerical tasks as Bayesian machine
learning. This allows uncertainty to interlink with real-
world constraints, improving empirical performance,
and algorithmic flexibility. In PN, AL enables sample-
efficient procedures, with Bayesian optimization (BO)
and Bayesian quadrature (BQ) being key instances,
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applied in fields like drug discovery (Gómez-Bombarelli
et al., 2018), materials (Adachi, 2021), and hyperpa-
rameter tuning (Feurer et al., 2015; Wu et al., 2020).

AL research can be classified into sequential and batch
settings. While the sequential setting selects the next
training data point one by one, the batch setting selects
multiple points at the same time. We have two key met-
rics of performance: the number of iterations and the
number of total queries. The number of iterations cor-
responds to the speed of model training, and the batch
setting is advantageous as it can gain more feedback
per iteration. In contrast, the number of total queries
corresponds to the cost. For instance, labeling the data
may involve expensive human evaluations. This total
query metric is advantageous to the sequential setting
as it can observe feedback for every single query to give
a rational decision, whereas the batch setting needs to
select multiple points without feedback.

However, situations arise where a balance between
speed and cost is desirable. For instance, while train-
ing a model, renting cloud servers is an option, with
charges applied based on the number of nodes (batch
size) and duration (total queries). Another scenario is
crowdsourcing annotation, where a balance is needed
between the number of annotators (batch size) and the
total working time (total queries). We aim to expedite
model training while also saving on cost.

In addition to these situations, constraints often come
into play in real-world applications, and often the con-
straints are also unknown a priori. Unknown con-
straints (Gelbart et al., 2014; Hernández-Lobato et al.,
2016) are the constraints with which we must comply,
but we do not know the constraint function a priori
and are only observable pointwise. Hence, we had to
estimate the true constraint function based on limited
observations, resulting in uncertainty in the constraint
estimation. For example, drug discovery needs to sat-
isfy the safety constraints via animal experiments (Lip-
inski et al., 1997), but we do not know the functional
form. Similarly, active learning with real physical ex-
periments contains unknown constraints such as limita-
tions from experimental apparatus or phase transition
of measuring materials (Khatamsaz et al., 2023; Look-
man et al., 2019). Training models on the cloud server
may be halted due to errors or memory overflow, or
annotators may pause annotation in cases of ambiguity
in annotation guidelines or unclear samples. Avoiding
querying samples that are likely to violate such un-
known constraints is essential for the smooth execution
of active learning. However, research on active learn-
ing under constraints is scarce, and no existing work
considers adaptive batch size under constraints.

To address the said challenges, we propose a PN frame-

work that adaptively adjusts the batch size. Figure 1
illustrates the concept. We hypothesize that an adap-
tive batch size can balance the trade-off between cost
and speed. Fixed batch sizes might be ineffective be-
cause, as the shape of the acquisition function changes
dynamically, the effectiveness of batch acquisition also
shifts. In Figure 1, the left side displays four distinct
peaks, indicating that four batch sizes would be suitable.
Conversely, the right side exhibits only two prominent
peaks, suggesting that two batch sizes would be more
appropriate.

Given this intuition, we define batch construction as
an approximation of a continuous target distribution
(e.g., an acquisition function) using a discrete distri-
bution (batch samples)—a process known as quantiza-
tion applied in diverse machine learning fields (Graf &
Luschgy, 2007; Karvonen, 2019; Teymur et al., 2021).
The error in this approximation can be measured by
the divergence between the target and the ‘quantized’
distribution. With this perspective, instead of fixing
the batch size, we propose to fix the precision of the
approximation. We reframe batch construction as a
quantization task, assessing precision through diver-
gence. We fix the precision requirement for iterations,
allowing the batch size and locations to be adaptively
adjusted. In essence, our approach quantifies numerical
errors stemming from an insufficient batch sizes, strate-
gically harnesses this computational uncertainty for
decision-making, and embodies the essence of PN prin-
ciples. Specifically, for GP models, this quantization
links seamlessly to kernel quadrature (KQ), enabling
the use of advanced KQ methods for efficient solutions.
As such, we further re-cast the quantization task as a
KQ task, using the worst-case integration error as our
divergence metric. Our method, adaptive batch active
learning (AdaBatAL), efficiently determines the opti-
mal number of batch sizes and their querying positions
without requiring a brute-force search of all possible
batch sizes.

AdaBatAL also seamlessly handles AL in the presence
of unknown constraints. We view the risk associated
with these constraints as a ’varying precision require-
ment.’ If querying points violate the constraints, we
remove them from the valid dataset, thereby reducing
precision. We interpret a high risk of constraint vio-
lation as a lower precision requirement and vice versa.
Therefore, the constrained case serves as a ’preprocess-
ing’ step to determine the appropriate precision for
AdaBatAL, with the constraint model estimating the
precision requirement. The versatility of AdaBatAL
provides a plug-and-play framework for AL, BQ, and
BO, whether constraints are involved or not.
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Contributions

1. Adaptive batch size We fixed quadrature pre-
cision via re-casting batch construction as a KQ,
allowing batch size adaptively changing according
to the acquisition function efficiently.

2. Unknown constraints We reinterpret the batch
AL under unknown constraints as varying precision
requirement. This allows adaptively changing the
batch size and locations in accordance with the
risks of constraint violation.

3. Generality Our adaptive batch construction
scheme applies to AL, BO, and BQ by changing
the target distribution of quantization with KQ.
Moreover, it applies to non-continuous domains
(e.g. combinatorial, mixed feature spaces).

4. Significant improvement is shown in both batch
AL and batch BO tasks, outperforming 17 base-
lines over 6 synthetic and 7 real-world tasks.

5. Open-source we open-source the software on
GitHub https://github.com/ma921/AdaBatAL.

2 Background

We start by providing the background on quantization
and KQ. We then demonstrate the connection between
GP, KQ, and BQ, leading to pure batch uncertainty
sampling. We defer the background of GP and fully
Bayesian GP (FBGP) in Supplementary B.1.

Quantization. Let µ be a probability distribution
defined on a set X . The quantization task is to find
the discrete distribution ν := 1

n

∑n
i=1 δxi

, which best
approximates µ with n representative points xi. Here,
δx denotes a point mass (delta distribution) located
at x ∈ X . To solve the quantization task, one first
identifies an optimality criterion, typically a notion of
discrepancy between µ and ν, and then develops an
algorithm to approximately minimize it.

Kernel Quadrature. KQ is a numerical integration
for calculating the integral of a function belonging to a
reproducing kernel Hilbert space (RKHS). The aim is to
find a good approximation of an, otherwise intractable,
integral with a weighted sum. A KQ rule, Qw,x, is
given by weights w = {wi}ni=1 and points x = {xi}ni=1,

Qw,x(f) :=

n∑
i=1

wif(xi) ≈
∫
X
f(x)dµ(x), (1)

where f is a function of RKHS H associated with the
kernel K. The worst-case error given µ and H is

wce(Qw,x) := sup
∥f∥H≤1

∣∣∣Qw,x(f)−
∫
X
f(x)dµ(x)

∣∣∣. (2)

The aim is to find Qw,x minimizing worst-case error.

Connection to quantization. When inspecting the
KQ rule as integration against a discrete distribution
ν :=

∑n
i=1 wiδxi

, namely, Qw,x(f) =
∫
X f(x)dν(x),

the worst-case error can be viewed as the divergence be-
tween µ and ν. Indeed, there is a theoretical connection
between KQ and quantization, as KQ is the weighted
quantization under the maximum mean discrepancy
(MMD) metric (Karvonen, 2019; Teymur et al., 2021).
MMD is a widely used method to quantify the diver-
gence between two distributions (Sriperumbudur et al.,
2010; Muandet et al., 2017), defined as:

MMDH(ν, µ) :=

∥∥∥∥∥
∫

K(·, x)dν(x)−
∫

K(·, x)dµ(x)

∥∥∥∥∥
H

,

and we can rewrite as (Huszár & Duvenaud, 2012):

MMD2
H(ν, µ) := sup

∥f∥H=1

∣∣∣∣∣
∫

f(x)dν(x)−
∫

f(x)dµ(x)

∣∣∣∣∣
2

.

This squared formulation is the same with the worst-
case error. Therefore, solving KQ is equivalent to find-
ing the discrete distribution ν that best approximates
µ with regard to MMD. Note that KQ is a weighted
quantization, unlike in the previous section.

Connection to Gaussian Process. Assume a
function f is modelled by GP, f ∼ GP(m,C), with
limited number of observed points, D0 := {x0,y0},
where y0 = ftrue(x0) + ϵ are the noisy observations.
We wish to estimate the expectation of the function
Ẑ :=

∫
X f(x)dµ(x). This setting is called Bayesian

quadrature (BQ) (O’Hagan, 1991), one of the central
methods of PN. The integral estimate are as follows:

Ef [Ẑ] =

∫
m(x)dµ(x) = z⊤K−1y0, (3)

Varf [Ẑ]=

∫
C(x, x′)dµ(x)dµ(x′) = z′ − z⊤K−1z,

(4)

where z :=
∫
K(x,x0)dµ(x) and z′ :=∫

K(x, x′)dµ(x)dµ(x′) are kernel mean and vari-
ance, respectively (see details in Supplementary B.3)

Huszár & Duvenaud (2012) proved the worst-case error
(Eq. (2)) equals to the variance in Eq. (4) if quadra-
ture nodes are D0. BQ expectation in Eq. (3) is
a weighted sum; z⊤K−1y0 =

∑n
i=1 wBQ,iyi, where

wBQ, j :=
∑n

i=1 z
⊤
i K−1

i,j . We can further think these
weights as a discrete distribition νBQ :=

∑n
i=1 wBQ,iδxi ,

then the variance of integral estimation becomes:

Varf [Ẑ] = MMD2(µ, νBQ) = inf
w

wce(Qw,x)
2. (5)

This shows that KQ and BQ are closely connected (see
details in (Huszár & Duvenaud, 2012)). The variance of

https://github.com/ma921/AdaBatAL
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integral is the uncertainty of GP over µ, so quantizing
this distribution using KQ can be understood as a ‘pure
batch exploration’ of GP uncertainty. This idea was
applied to batch BQ (Adachi et al., 2022).

In summary. A quantization task can be viewed as
a KQ task. The selected batch samples minimize the
divergence between the target distribution µ and the
batch samples ν, with a given kernel K. When we use
the GP predictive covariance C(·, ·) as the kernel K for
the MMD, the KQ becomes the pure batch exploration
of GP uncertainty while also minimizing the divergence
from the target distribution. Hence, batch construction
via solving KQ can offer a quantization of the target
distribution combined with uncertainty sampling.

3 Adaptive Batch Active Learning

Now, we introduce our method, AdaBatAL. Any KQ
method can be used, but we employ the recombination
(Hayakawa et al., 2022) for flexibility. We extend this
to adaptive batch size under unknown constraints.

3.1 Problem Setting of Batch Active Learning

Batch Active Learning Consider we have a limited
number of a labelled dataset D0 = {xk,yk}mk=1, and
the large number of unlabelled pool set XN = {xl}Nl=1,
where N ≫ m, an oracle can provide labels YN =
{ym}Nm=1 for the corresponding inputs. We sequen-
tially query the batch samples Dn

t = {xj ,yj}nj=1 with
n batch sizes at t-th iteration, resulting in the total
labelled dataset Dt = Dt−1∪Dn

t = (Xt,Yt), and repeat
T times1. The batch AL task is to select the Dt to
minimize the prediction error between true labels YN

and the prediction conditioned on XN at given budget
T . Throughout this paper, we assume the model is an
FBGP for AL and a normal GP for BO.

Following the works Pinsler et al. (2019); Adachi et al.
(2023a), we can recast the batch AL and batch BO
as a quantization task. The difference between AL
and BO comes down to the target distributions µ:
the candidate pool of unlabelled inputs for batch AL,
and the probability of global optimum location for
batch BO. How to recast these tasks to a quantization
is not a primary focus of this paper, we defer the
explanation of their attempts in Supplementary D.1
and E.2. Important takeaways from their works are
that the quantization approach can outperform popular
baselines, such as BALD (Houlsby et al., 2011) for batch
AL, and hallucination Azimi et al. (2010) for batch BO.
Yet, their approach only considers fixed batch size
without constraints. We augment their approaches by
adaptive batch sizes under unknown constraints.

1To clarify, D0 ⊆ Dt but D0 ̸⊂ Dn
t .

Unknown Constraints Consider our labelling scheme
is subject to the constraint c(x) ≥ 0, where c is the
constraint with which we must comply, otherwise the
query x is eliminated from the labelled dataset Dt (e.g.,
a drug candidate that breaches a safety constraint will
not be tested.). We further assume the constraints are
unknown a priori and are only observable pointwise.
Hence, probabilistic model estimates the function ĉ(x)
with its predictive uncertainty, providing the proba-
bility of constraint satisfaction q(x) at given input x.
Following Gelbart et al. (2014), we model the constraint
by another GP (see Supplementary E.4).

3.2 Problem Setting of Kernel Quadrature

As a general situation, consider we are given a kernel K
on X and an N -point samples Xcand ∈ XN associated
with a nonnegative weight wcand with w⊤

cand1 = 12.
We denote this as µ(x) :=

∑N
i=1 wiδxi

as a discrete
distribution, or (wcand,Xcand) as the ordered pair. In
a typical batch AL setting, µ is the candidate pool
of unlabelled inputs with equal weights. The goal
is to find a weighted subset (wbatch,Xbatch), ν(x) :=∑n

j=1 wjδxj
which minimizes MMDH(µ, ν) given µ and

kernel K3. Hence, this is a KQ task. The quantized
subset ν, Xbatch ⊂ Xcand, will give the batch samples
for batch AL and batch BO. Unlike the existing setting
(Hayakawa et al., 2022; Adachi et al., 2022, 2023a), we
additionally work under the following conditions:

(a) The upper bound of batch size n is given but the
actual batch size is adaptively changed to meet
the precision under the given tolerance ϵLP.

(b) After we choose the batch querying points,
(wbatch,Xbatch), each point x ∈ Xbatch is subject
to the probabilistic constraint q(x)4 (and violated
w.p. 1 − q(x)), where q : X → [0, 1] is given as
GP. We query the true constraint c(x), then we ob-
tain the feasible points and corresponding weights
(w̃batch, X̃batch), where X̃batch ⊂ Xbatch

5. We use
the feasible points for the quadrature.

(c) Additionally, a reward function g : X → R is given
as additional flexibility that incorporates the other
desideratum (e.g. soft constraint), and we want
to make the expected reward w̃⊤

batchg(X̃batch) as
big as possible while making the worst-case error
wce(Qw̃batch,X̃batch

) 6 as small as possible.

21 is [1, . . . , 1]N , the vector of ones.
3We set the kernel K as the posterior predictive covari-

ance C(·, ·) (recall the background section).
4The true constraint c(x) is deterministic but q(x) be-

comes probabilistic due to the predictive uncertainty.
5X̃batch = Z⊤Xbatch, where Z is a vector of Bernoulli

random variables with probabilities q(Xbatch)
6For brevity, b is batch, c is cand, then wce(Qw̃b,X̃b

) =

w̃⊤
b K(X̃b, X̃b)w̃b−2w̃⊤

b K(X̃b,Xc)wc+w⊤
c K(Xc,Xc)wc.
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3.3 Kernel Quadrature via Nyström
Approximation

Although the Nyström method (Williams & Seeger,
2000; Drineas & Mahoney, 2005; Kumar et al., 2012) is
primarily used for approximating a large Gram matrix
by a low-rank matrix, it can also be used for directly
approximating the kernel function itself. Given a set of
M points Xnys = {xi}Mi=1 ⊂ X , the Nyström approxi-
mation of K(x, y) is given by:

K(x, y) ≈ K0(x, y) :=

n−1∑
i=1

λ−1
i φi(x)φi(y), (6)

where φi(·) := u⊤
i K(Xnys, ·) (i = 1, . . . , n − 1) are

called test functions, chosen from a larger M dimen-
sional space span{K(xi, ·)}Mi=1. The Eq. (6) holds if
λs > 0. To compute Eq. (6), we perform the best rank-
s approximation of the Gram matrix K(Xnys, Xnys) =
UΛU⊤, given by eigendecomposition, where U =
[u1, . . . , uM ] ∈ RM×M is a real orthogonal matrix and
Λ = diag(λ1, . . . , λM ) with λ1 ≥ . . . ≥ λM ≥ 0.

We can use the test functions for integration estimator
Ẑ =

∫
X f(x)dµ(x). When the spectral decay in eigen-

values is steep, the Nyström method can give a good ap-
proximation of the original kernel function with a small
number of test functions. Let φ = {φ1, . . . , φn−1}⊤ be
the vector of test functions that spans HK0

, the RKHS
associated with the approximated kernel K0, we assume
we have additional knowledge of expectations, namely,∫
X φ(x)dµ(x) = w⊤

candφ(Xcand) is given. We can actu-
ally construct a convex quadrature Qn = (wi, xi)

n
i=1:

n−1∑
i=1

wiφi(xi) =

∫
X
φ(x)dµ(x) ≈

∫
X
f(x)dµ(x). (7)

Now, we can approximate the integral by n − 1 test
functions. Hence, Eq. (7) can be understood as n− 1
equality constraints which wi and xi need to satisfy.

The benefit of this approximation is to incorporate the
information of spectral decay of Gram matrix for faster
convergence. If the target function f is smooth, the
spectral decay is fast, then the small number of test
functions can well represent the function, leading to
batch-size efficient AL and BO (Hayakawa et al., 2022;
Adachi et al., 2022).

3.4 Linear Programming Formulation

To solve the above problem, we introduce the following
linear programming (LP) problem that aims to achieve
both the reward maximization and the worst-case error
minimization where possible, given by modifying the

algorithm adopted in (Adachi et al., 2023a) (n ≥ 3):

maximize
w

w⊤[g(Xcand)⊙ q(Xcand)
]
,

subject to∣∣(w − wcand)
⊤φj(Xcand)

∣∣ ≤ ϵLP
√
λj/(n− 2),

∀j : 1 ≤ j ≤ n− 2,
(w − wcand)

⊤q(Xcand) ≥ 0,
w⊤1 = 1, w ≥ 0, |w|0 ≤ n,

where ϵLP ≥ 0 is a tolerance parameter, which can be
interpreted as the quadrature precision requirements
(smaller is more accurate), and (λj , φj) are given by
the Nyström approximation (see 3.3)7.

The intuition of this formulation is as follows:

(1) The solutions are the sparse weights w, where the
non-zero element of w corresponds to the batch se-
lection, and the corresponding samples of Xcand is
the batch samples Xbatch. We refer to the nonzero
weights and corresponding samples as the solution
(wbatch,Xbatch)

8, and its batch size is |Xbatch| ≤ n.
As such, this LP problem is to subsample the batch
samples ν from the given discrete distribution µ,
namely, quantization.

(2) The objective is to maximize the expected reward
g under the risk of constraint violation q. This
promotes safe sampling by increasing the expected
constraints satisfaction w⊤q(Xcand).

(3) The first constraints correspond to equality con-
straints with test functions in Eq. (7). We relaxed
the equality constraints to inequality constraints
to accept the tolerance ϵLP. These n−2 inequality
constraints restrict the solution space to where
the approximation error of the expectations of test
functions |(w − wcand)

⊤φj(Xcand)|9 is within the
tolerance parameter ϵLP. These n− 2 constraints
are very restrictive; the flexibility to select the
larger objective is much more restricted than the
typical LP problem. ϵLP controls the trade-off
between the accuracy for quadrature and relaxing
solution space to find the larger objective.

(4) Other constraints assure the number of nonzero
elements of the solution set w is fewer than the
upper bound of batch size n, the convex and posi-
tive weights, and the probability of probabilistic
constraints’ satisfaction is positive.

Thus, in response to conditions (b)(c), the solution
of this LP problem provides the batch samples that
satisfy convex quadrature rules within the tolerance
and maximizing the reward. The balance between

7⊙ refers to Hadamard product, and | · |0 denotes the
number of nonzero entries.

8Xbatch ⊂ Xcand, wbatch ⊂ wcand, and |Xbatch| = |w|0
9This is a quadrature error in Eq. (7).

∣∣w⊤φ(Xcand)−
w⊤

candφ(Xcand)
∣∣ ≈ ∣∣∫

X f(x)dν(x)−
∫
X f(x)dµ(x)

∣∣.
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quadrature accuracy and reward maximization can be
controlled by a single parameter ϵLP. To be clear, only
within §3.4, the term ‘constraints’ refers to the ones
in LP formulations. Otherwise, the constraints refer
to the task-specific unknown constraints (e.g. safety
constraints for drug discovery).

3.5 Adaptive Batch Sizes

The count of non-zero elements, denoted as |w|0, is
adjusted based on the tolerance ϵLP. The intuition of
the batch size adaptivity is explicated as:

1. Higher precision demands result in a smaller
quadrature error tolerance. This necessitates a
larger sample set for more precise integration.

2. Conversely, lower precision requirements needs
fewer |w|0 to meet the desired accuracy.

Elaborating further, the batch size is tied to slack
variables in LP solvers. As the tolerance ϵLP in-
creases, some inequality constraints become deactivated
(Dantzig, 2002). The batch size is determined by the
number of active constraints, often leading to sparse
weights with |w|0 < n. When constraints are loose,
a large preset batch size is inefficient, as the desired
precision can be achieved with fewer samples. As such,
we can identify the adaptive batch size |w|0 without
needing a brute-force search of all possible batch sizes.

Note that ϵLP controls all balances: the batch size,
quadrature accuracy, and reward maximization. Inter-
estingly, its behavior is not a monotonic decrease in its
magnitude. As ϵLP approaches infinity, the batch size
converges to 1, aligning with the sequential AL case.
An increased ϵLP shrinks the batch size as observed
in §5.1. This approach is essentially a heuristic for
adaptive batch sizes. Although it satisfies a predefined
worst-case error threshold, it does not guarantee opti-
mal results based on other established metrics like mu-
tual information (Krause & Guestrin, 2012). However,
as Leskovec et al. (2007) highlighted, when greedily
maximizing mutual information under the weighted
candidates and a budget constraint (limitation in the
number of the total queries), the approximation factor
can be arbitrarily bad. Hence, even popular strate-
gies, such as BALD (Houlsby et al., 2011), also cannot
achieve a solution within 1− 1/e of the optimal in our
problem setting (Li et al., 2022).

3.6 Unknown Constraints As The Lowered
Precision Requirement

In this further examination, we address the probabilis-
tic constraint denoted as q. Given the uncertainty in
predicting the true constraint c, the candidate solution,
Xcand, carries a risk of violation. We can estimate the

(a) True objective

(b) True constraint

(e) Feasible region  (g)  Batch w/o εLP 

(d) Constraint GP

(c) Objective GP  

(i)  Batch with εLP 

safe

×

Feasible region estimation Batch Sampling

Introduce tolerance εLP
by expected violation rate

≥
εLP 

feasible

infeasible

Figure 2: Constrained batch active learning. As the
increased violation risk ϵvio propagates to the tolerance
ϵLP, reward maximization is subsequently prioritized
over quadrature, resulting in safe batch samples.

expected violation rate by ϵvio := 1−w⊤
candq(Xcand). It

is assumed that infeasible points are eliminated from
quadrature nodes for computation, reducing quadra-
ture accuracy. The expected violation rate ϵvio can
be interpreted as the risk we cannot control. A high-
risk scenario necessitates cautious exploration to avoid
wasting valuable queries; this suggests smaller batch
sizes and selecting queries where xcand is more likely
to satisfy the true constraint c. Conversely, a low risk
allows for more optimistic exploration.

In response to varying risk levels, we advocate for an
adaptive exploration strategy. Our proposed method is
straightforward yet effective: setting ϵLP = ϵvio. This
approach allows for automatic adjustment of explo-
ration safety. When ϵvio is high, indicating greater risk,
ϵLP is set higher. This results in looser quadrature
precision, smaller batch sizes, and a solution space that
is more likely to satisfy constraints10. Thus, a higher
ϵLP leads to safer batch sampling. When the risk ϵvio
is low, ϵLP is set lower, allowing for larger batch sizes
and more explorative solutions. Figure 2 demonstrates
this adaptive behavior: high-risk information ϵvio in-
fluences ϵLP, leading to safer batch samples. Adaptive
safe exploration is not necessarily always safe. We
need to explore uncertain regions at some point and
we propose it is when the risk is low. Our PN frame-
work effectively bridges computational uncertainty and
real-world risk, providing an automated and adaptable
balance between safety and exploration.

10Remember that a reduction in quadrature precision
results in an expansion of the solution space, which in
turn enables the identification of solutions with higher LP
objective values, as denoted by w⊤

cand
[
g(Xcand)⊙q(Xcand)

]
,

where w⊤
candq(Xcand) represents the expected satisfaction

of the constraint. Thus, maximizing the LP objective value
leads to increasing the constraint satisfaction probability.
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3.7 Error Bounds

The error estimate of KQ is essentially determined
by the approximation error of the Nyström method,
ϵnys := maxx∈Xcand |K0(x, x) − K(x, x)|1/2. Error
bounds for this approximation have been well stud-
ied in the literature (Drineas & Mahoney, 2005; Kumar
et al., 2012; Hayakawa et al., 2023).
Proposition 1. Under the above setting, let w∗ be the
optimal solution of the LP, and let Xbatch be the subset
of Xcand, corresponding to the nonzero entries of w∗
(denoted by wbatch). Suppose that X̃batch is given by a
random subset of Xbatch, where each point x satisfies
the constraints with probability q(x), and let w̃batch be
the corresponding weights. Then, we have

E[w̃⊤
batchg(X̃batch)] ≥ w⊤

cand
[
g(Xcand)⊙ q(Xcand)

]
,
(8)

and, for any function f in the RKHS with kernel K,

E
[∣∣∣w̃⊤

batchf(X̃batch)− w⊤
candf(Xcand)

∣∣∣]
≤ (ϵvioKmax + 2ϵnys + ϵLP)∥f∥,

(9)

where ∥f∥ is the RKHS norm of f , Kmax :=
maxx∈Xcand K(x, x)1/2, and ϵvio := 1 − w⊤

candq(xcand)
is the expected violation rate with respect to the empiri-
cal measure given by (wcand,Xcand).

The proof is given in Supplementary A. This proposi-
tion indicates that we can obtain a quantitative esti-
mate of the two tasks described in (c) concurrently. We
can attain at least the expected reward of the original
batch while ensuring that the resulting measure (which
may not necessarily be probabilistic) integrates the
functions in the RKHS within a proven error.

3.8 How to Solve The LP Problem

We used Gurobi (Gurobi Optimization, LLC, 2024)
to solve the LP problem. We used the randomized
singular value decomposition to eigendecompose the
Gram matrix (Halko et al., 2011) with M -point samples
Xnys ⊂ Xcand. We set ϵLP = 10−8 as the lower bound
to avoid LP failure due to the randomness of µ. The
complexity of this computation is lower than O(NM +
M2 log n+Mn2 log(N/n)) (Hayakawa et al., 2022).

Probability function q A probability function q can
be a given constraint function (Gardner et al., 2014),
or estimated function as another GP (Gelbart et al.,
2014) (see details in Supplementary E.4). If there is
no constraints, we can simply set q(x) = 1, then it
becomes standard batch AL, BQ, or BO.

Reward function g A reward function g is for an
additional flexibility to incorporate the information. If
we do not have particularly informative information

to add, we can simply set as g = 1. We can view g
as the soft constraint of the objective. We can set g
for another acquisition function, or prior knowledge of
global optimum such as Hvarfner et al. (2022); Adachi
et al. (2024).

4 Related Work

Batch Active Learning and Optimization There
are a wide variety of batch methods has been proposed:
(1) batch AL; for kernels (Kremer et al., 2014; Joshi
et al., 2009; Leskovec et al., 2007; Riis et al., 2022), deep
learning (Gal et al., 2017; Kirsch et al., 2019; Sener
& Savarese, 2018; Pinsler et al., 2019). (2) batch BQ
(Wagstaff et al., 2018; Adachi et al., 2022, 2023b), (3)
batch BO, a greedy extension of sequential algorithms
(Azimi et al., 2010; González et al., 2016; Eriksson et al.,
2019; Balandat et al., 2020), diversified batch with
determinantal point process (DPP) (Kathuria et al.,
2016; Nava et al., 2022). Constrained batch sampling
has been researched in BO (Hernández-Lobato et al.,
2016; Letham et al., 2019; Eriksson & Poloczek, 2021).
However, most do not discuss the quality of batch
construction, like KQ methods. The adaptive batch
size setting only found in BO (Nguyen et al., 2016), to
the best of our knowledge.

Kernel Quadrature There are a number of KQ algo-
rithms; herding/optimization (Chen et al., 2010; Bach
et al., 2012; Huszár & Duvenaud, 2012), random sam-
pling (Bach, 2017; Belhadji et al., 2019), DPP (Belhadji
et al., 2019; Belhadji, 2021), kernel thinning (Dwivedi &
Mackey, 2021, 2022), recombination (Hayakawa et al.,
2022, 2023), kernel Stein discrepancy (Chen et al., 2018,
2019; Teymur et al., 2021), randomly pivoted Cholesky
(Epperly & Moreno, 2023). While any KQ algorithms
can be used to solve our problems, we focused on the
recombination algorithm due to its flexibility.

5 Experiments

We evaluate our new algorithm, AdaBatAL, on syn-
thetic and real-world tasks on batch AL and BO, with
and without probabilistic constraints. We implemented
AdaBatAL using PyTorch (Paszke et al., 2019), GPy-
Torch (Gardner et al., 2018), BoTorch (Balandat et al.,
2020), and SOBER (Adachi et al., 2023a). All experi-
ments were averaged over 10 repeats, and performed on
a laptop11. We fix the number of initial random sam-
ples for objective queries to nobj = 10. The details on
experimental conditions and background on real-world
examples are summarized in Supplementary G.

11Performed on MacBook Pro 2019, 2.4 GHz 8-Core Intel
Core i9, 64 GB 2667 MHz DDR4
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Figure 3: Batch Bayesian optimization results on Hart-
mann (d = 6): (a) convergence plot with (n ≤ 5). (b)
batch size variability (n ≤ 100). The tolerance is set
(ϵ = 10−1, 10−2, 10−3, 10−4). (c) Total queries vs. sim-
ple regret at the last iteration results of (a)(b). For
fixed batch size methods, the mean batch size of Ad-
aBatAL is used (n = 5, 30, 50, 73, 90). The plot shows
mean ± standard error of the mean.

5.1 Efficacy of Adaptive Batch Size

We first investigate the effect of the adaptive batch size
itself without unknown constraints, namely, q(x) = 1.
To compare with the only baseline of the adaptive batch
size method, B3O (Nguyen et al., 2016), we selected
the batch BO setting. We compared AdaBatAL with
the 6 popular baselines of batch BO; B3O, Thompson
sampling (TS) (Kandasamy et al., 2018), hallucination
(Azimi et al., 2010), local penalization (LP)12 (González
et al., 2016), TurBO (Eriksson et al., 2019), SOBER
(Adachi et al., 2023a).

Figure 3 illustrates that AdaBatAL consistently outper-
formed the baselines throughout the experiments. An
increase in the tolerance ϵLP results in a reduced batch
size. Over iterations, the batch size decreases for all
values of ϵLP. This indicates that AdaBatAL initially
needs more exploratory samples, then it squeezes its
search space for exploitation. When matched against
fixed batch size methods with a total cost, AdaBatAL
achieves a lower regret for the same budget, even when
compared to the original SOBER. While B3O tends to
opt for a small batch size of around 4, AdaBatAL can
adjust its batch size by ϵLP.

5.2 Efficacy of Expected Violation Rate

We empirically examine the role of expected violation
rate ϵvio in constrained BO as the time-varying toler-
ance ϵLP. Figure 4 presents the main findings.

12Only within this section 5.1, LP refers to local penal-
ization. Otherwise, LP means linear programming.
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Figure 4: Tolerance effect on constrained batch BO
on Branin (d = 2): the balance between (a) violation
rate and expected reward, and (b) worst-case error
and log determinant. (c) Tolerance adaptively controls
violation rate, and (d) outperforms the fixed cases.
(a)(b)(c) are the two Y-axis plots where the color and
arrow indicate which Y axis to see.

Four key metrics

(1) The expected reward (LP objective): the proxy for
how safely we explore.

(2) The violation rate 1−|X̃batch|/|Xbatch|: the proxy
for actual results on how safely we explore.

(3) The worst-case error wce(Qw̃batch,X̃batch
): the pre-

cision of quadrature.
(4) log determinant log|K(X̃batch, X̃batch)|: the proxy

for how diversely we explore.

We examined the impact of ϵLP on four key metrics,
as discussed in § 3.6. We aligned ϵLP with ϵvio to fa-
cilitate adaptive exploration relative to the specified
risk level ϵvio. The x-axis in Figures (a) and (b) rep-
resents variations in ϵvio. At higher risk levels, it is
essential to prioritize safety. Consequently, there is
an increase in the expected reward, correlating with a
higher likelihood of constraint satisfaction. This rela-
tionship is evident through a reduction in the violation
rate, which signifies safer exploration practices. The
numerical metrics give insights of safety exploration in
the numerical level: High tisk leads to an increase in the
worst-case error, which reflects a relaxation in precision
requirements. A smaller log determinant suggests less
diversity in batch samples, indicated by the proximity
of the selected points Xcand to each other. Conversely,
at lower risk levels, we observe a trend towards more
optimistic and exploratory sampling. Hence, our find-
ings confirm that by setting ϵLP = ϵvio, our batch
exploration successfully adapts to varying risk levels.

We further examined the evolution of the expected
violation rate ϵvio during the optimization loop. As
depicted in Figure 4 (c), the expected violation rate
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Figure 5: Convergence plot of both constrained batch active learning and Bayesian optimization results across 5
synthetic functions and 7 real-world tasks . d is the dimension, c is the number of unknown constraints. Negative
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Lines and shaded area denote mean ± 1 standard error.

ϵvio = ϵLP begins high and diminishes to a minimal
value over time. This trend suggests an initial emphasis
on safely gathering data, transitioning to greater explo-
ration later on. This approach mirrors strategies like
‘safe’ BO (Sui et al., 2015), which has demonstrated
strong empirical performance (e.g., Figure 4 in Xu et al.
(2023)) backed by theoretical guarantee. The adaptive
tolerance inherently exhibits this behavior with adap-
tive batch size. Moreover, Figure 4 (d) indicates that
adaptive tolerance converges more rapidly than fixed
versions. Notably, the most effective fixed tolerance
was ϵLP = 10−3, suggesting that even in the absence of
adaptive tolerance, AdaBatAL outperforms the original
SOBER (ϵLP = 0) under constraints.

5.3 Empirical Evaluation

We tested AdaBatAL’s empirical performance across
diverse tasks. For batch AL, we compared against five
baselines: MaxEnt (MacKay, 1992), BALD (Houlsby
et al., 2011; Kirsch et al., 2019), B-QBC (Riis et al.,
2022), and ACS-FW (Pinsler et al., 2019). We evalu-
ated on three synthetic and three real-world tasks. For
batch BO, we also explored constrained batch BO and
compared against five popular baselines: random, cEI
(Letham et al., 2019), PESC (Hernández-Lobato et al.,
2016), SCBO (Eriksson & Poloczek, 2021), and cTS
(Eriksson & Poloczek, 2021). The Malaria, FindFixer,
and TeamOpt tasks involve non-continuous inputs over
non-Euclidean spaces, each requiring specialized kernels

(Tanimoto kernel (Ralaivola et al., 2005) for molecules
and the diffusion graph kernel (Zhi et al., 2023) for
graphs). Due to this unique and crucial real-world set-
ting, the only comparable baselines were random and
cTS. Others utilized a standard GP with an RBF kernel.
It is important to note that this is constrained batch
BO, which differs from normal batch BO. Typically,
constrained batch BO extends the standard acquisition
function with regular batch methods. We chose cEI and
cTS as representative methods for these approaches.
More details are available in Supplementary G. Figure 5
shows AdaBatAL’s strong empirical performance.

6 Discussion and Limitations

We introduced AdaBatAL, a versatile approach capable
of adaptive batch sizes under probabilistic constraints
for both AL and BO. It is also applicable for non-
continuous inputs (e.g., strings for drug discovery and
graphs for social data) and arbitrary acquisition func-
tions as the reward function. AdaBatAL is best suited
for batch sizes larger than three and does not support
asynchronous batch settings (Kandasamy et al., 2018).
Its efficacy in high-dimensional BO, which often faces
challenges with slow eigenvalue decay, remains an open
problem. However, the error bounds of the Nyström
method are not directly related to dimensionality; rapid
convergence is possible if the function exhibits fast
eigenvalue decay, as in the case of the Ackley function.
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A Proof of Proposition 1

Proof of Proposition 1. Note that the constraint |w|0 ≤ n is automatically satisfied when we use the simplex
method or its variant. Without this constraint, we have a trivial feasible solution w = wcand, so, for the optimal
solution w∗, we have w⊤

∗
[
g(Xcand) ⊙ q(Xcand)

]
≥ w⊤

cand
[
g(Xcand) ⊙ q(Xcand)

]
. Since E[w̃⊤

batchg(X̃batch)] =

w⊤
batch

[
g(Xbatch)⊙ q(Xbatch)

]
= w⊤

∗
[
g(Xcand)⊙ q(Xcand)

]
, we obtain the first estimate Eq. (8).

For the latter estimate, we first decompose the error into two parts:

E
[∣∣∣w̃⊤

batchf(X̃batch)− w⊤
candf(Xcand)

∣∣∣]
≤ E

[∣∣∣w̃⊤
batchf(X̃batch)− w⊤

batchf(Xbatch)
∣∣∣]+ ∣∣w⊤

batchf(Xbatch)− w⊤
candf(Xcand)

∣∣ . (10)

For the first term, considering each x ∈ Xbatch on whether or not it gets included in X̃batch, we have

E
[∣∣∣w̃⊤

batchf(X̃batch)− w⊤
batchf(Xbatch)

∣∣∣]
≤ w⊤

batch

[
|f |(Xbatch)⊙ (1− q)(Xbatch)

]
≤ w⊤

batch(1− q)(Xbatch) max
x∈Xbatch

|f(x)|

=
[
1− w⊤

batchq(Xbatch)
]

max
x∈Xbatch

|f(x)| ≤
[
1− w⊤

candq(Xcand)
]

max
x∈Xbatch

|f(x)|,
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where the last inequality follows from the inequality constraint (w − wcand)
⊤q(Xcand) ≥ 0 in the LP. Since

|f(x)| = |⟨f,KLP(·, x)⟩| ≤ ∥f∥KLP(x, x)
1/2 from the reproducing property of RKHS, we obtain

E
[∣∣∣w̃⊤

batchf(X̃batch)− w⊤
batchf(Xbatch)

∣∣∣] ≤ ϵrejKmax∥f∥. (11)

Let us then bound the second term of the RHS of Eq. (10). Note that, from the formula of worst-case error of
kernel quadrature (see, e.g., (Hayakawa et al., 2022, Eq. (14))), we can bound∣∣w⊤

batchf(Xbatch)− w⊤
candf(Xcand)

∣∣2 ≤ ∥f∥2(w∗ − wcand)
⊤KLP(Xcand,Xcand)(w∗ − wcand) (12)

(recall w∗ has the same dimension as wcand). We now want to estimate

(w∗ − wcand)
⊤KLP(Xcand,Xcand)(w∗ − wcand).

Consider approximating KLP by Knys. Since KLP −Knys is positive semi-definite from the property of Nyström
approximation (see, e.g., the proof of (Hayakawa et al., 2022, Corollary 4)), for any x, y ∈ Xcand, we have

|(KLP −Knys)(x, y)| ≤ |(KLP −Knys)(x, x)|1/2|(KLP −Knys)(y, y)|1/2 ≤ ϵ2nys.

Thus, we have

(w∗ − wcand)
⊤
[
(KLP −Knys)(Xcand,Xcand)

]
(w∗ − wcand)

≤ (w∗ + wcand)
⊤(ϵ2nys11

⊤)(w∗ + wcand) = 4ϵ2nys. (13)

Finally, we estimate

(w∗ − wcand)
⊤Knys(Xcand,Xcand)(w∗ − wcand)

= (w∗ − wcand)
⊤

n−2∑
j=1

1{λj>0}λ
−1
j φj(Xcand)φj(Xcand)

⊤(w∗ − wcand)

=

n−2∑
j=1

1{λj>0}λ
−1
j

[
(w∗ − wcand)

⊤φj(Xcand)
]2

. (14)

From the inequality constraint in the LP, we have |(w∗ −wcand)
⊤φj(Xcand)| ≤ ϵLP

√
λj/(n− 2), so that Eq. (14)

is further bounded as

(w∗ − wcand)
⊤Knys(Xcand,Xcand)(w∗ − wcand) ≤

n−2∑
j=1

1{λj>0}λ
−1
j ϵ2LP

λj

n− 2
≤ ϵ2LP. (15)

By adding the both sides of Eqs. (13) and (15), we obtain

(w∗ − wcand)
⊤KLP(Xcand,Xcand)(w∗ − wcand) ≤ 4ϵ2nys + ϵ2LP ≤ (2ϵnys + ϵLP)

2.

By applying this to Eq. (12), we have
∣∣w⊤

batchf(Xbatch)− w⊤
candf(Xcand)

∣∣ ≤ ∥f∥(2ϵnys + ϵLP). Combining this
with Eqs. (10) and (11) yields the desired inequality Eq. (9).

B Background

B.1 Gaussian process

GP (Rasmussen et al., 2006) is a widely used Bayesian regression model and the most popular surrogate model
in PN. We consider the probabilistic model P(y|x, θ) parameterized by θ ∈ Θ, mapping from inputs x ∈ X to
a distribution over outputs/labels y ∈ Y. Here, the labels can potentially only be observed through a noisy
estimate, y = f(x) + ϵ, where y is a continuous value and the noise ϵ ∼ N (0, λ2) is assumed to be generated by
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i.i.d. zero-mean Gaussian, and λ2 is the noise variance. Given a labelled dataset D0 = {xn,yn}Nn=1 := (XN ,YN ),
GP regression model is given by f | D0 ∼ GP(m,C), where

m(x) = K(x,x0)K
−1
λ y0,

C(x, x′) = K(x, x′)−K(x,x0)K
−1
λ K(x0, x

′),
(16)

f is the surrogate function, m(·) and C(·, ·) are the mean and covariance of posterior predictive distribution of f ,
and D0 = (x0,y0) is the observed dataset. K is the kernel parameterized by θ13 and K−1

λ := [K(x0,x0)+λ2I]−1,
and λ2I is the diagonal likelihood variance matrix.

B.2 Fully Bayesian Gaussian Process

In this paper, we will consider the Bayesian active learning for Fully Bayesian Gaussian Process (FBGP) (Riis
et al., 2022). FBGP extends a GP by placing a prior over the hyperparameter P(θ) and approximating their full
posteriors. The predictive posterior for the test inputs x∗ is

P(y∗ | x∗,D0)

=

∫∫
P(y∗ | f∗, θ, x∗,D0)dP(f∗ | θ, x∗,D0)dP(θ | D0).

While the inner integral for f reduces to the normal GP predictive posterior, the outer integral for θ remains
intractable and typically approximated by MCMC.

B.3 Bayesian Quadrature

Bayesian quadrature (BQ) is an algorithm for evaluating integrals given by:

Ẑ =

∫
X
f(x)dπ(x), (17)

where f is the black-box function we wish to integrate against a known probability measure π. The difference from
BO is the objective being integration, not global optimisation. The integration problem is widely recognised in
statistical learning: expectations, variances, marginalisation, ensembles, Bayesian model selection, and Bayesian
model averaging. BQ is, like BO, solved by GP-surrogate-model-based active learning. The batch acquisition
methods are also shared with batch BO. The methodological differences are:

1. BQ typically assumes a specific kernel to make the integration analytical (e.g. RBF kernel).
2. While BO requires to approximate the black-box function only in the vicinity of the global optimum, BQ

needs to approximate the whole region of interest defined by the probability measure π.

Thus, BQ is a purely explorative algorithm, and the uncertainty sampling acquisition function is often applied.

The classic method to estimate the integral exploits Gaussianity. Let π be multivariate normal distribution
π(x) = N (x;µπ,Σπ), and the kernel K be RBF kernel, which can be represented as Gaussian K(x0, x) =
v
√
|2πW|N (x0;x,W), where v is kernel variance and W is the diagonal covariance matrix whose diagonal

elements are the lengthscales of each dimension. As the product of two Gaussians is a Gaussian, the integrand
becomes a Gaussian and its integral has the closed form, as such:∫

m(x)π(x)dx = v

[∫
N (x;x0,W)N (x;µπ,Σπ)dx

]⊤
K−1

λ y0, (18)

= v

[∫
N (x;x0,W)N (x;µπ,Σπ)dx

]⊤
K−1

λ y0, (19)

= vN (x0;µπ,W +Σπ)
⊤K−1

λ y0, (20)

= z⊤K−1
λ y0 (21)

13We typically assume zero mean GP prior over function space GP(0,K), and we assume Gaussian likelihood N (0, λ2),
hence the resulting posterior distribution is closed-form as shown in Eq. (16), thanks to Gaussianity. Throughout the
paper, we refer to a symmetric positive semi-definite kernel just as a kernel.
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where z := vN (x0;µπ,W + Σπ). As such, the integration of GP over the measure π is analytical. This z
corresponds to the kernel mean in Eqs. (3)-(4). This clearly explains that we need an analytical kernel mean to
perform BQ. Thus, classical BQ methods have limitations on prior and kernel selections to be analytical. To
make the integration closed-form, the prior needs to be uniform or Gaussian, and the kernel also needs to be
limited selection (e.g. RBF kernel, see Table 1 in Briol et al. (2019)). Recent work (Adachi et al., 2022) extends
this to arbitrary kernel and prior.

C Related Work

Batch Active Learning A wide variety of batch methods has been proposed for each task: batch AL (Pinsler
et al., 2019; Kirsch et al., 2019; Riis et al., 2022), batch BQ (Wagstaff et al., 2018; Adachi et al., 2022, 2023b) and
batch BO, a greedy extension of sequential algorithms (Azimi et al., 2010; González et al., 2016; Eriksson et al.,
2019; Balandat et al., 2020), diversified batch with determinantal point process (DPP) (Kathuria et al., 2016;
Nava et al., 2022). Constrained batch construction has been researched in BO community (Hernández-Lobato
et al., 2016; Letham et al., 2019; Eriksson & Poloczek, 2021). However, most works do not discuss the relationship
to quality of batch construction like KQ methods.

Kernel Quadrature For general KQ methods, There are a number of KQ algorithms; herding/optimization
(Chen et al., 2010; Bach et al., 2012; Huszár & Duvenaud, 2012), random sampling (Bach, 2017; Belhadji et al.,
2019), DPP (Belhadji et al., 2019; Belhadji, 2021), kernel thinning (Dwivedi & Mackey, 2021, 2022), recombination
(Hayakawa et al., 2022, 2023), kernel Stein discrepancy (Chen et al., 2018, 2019; Teymur et al., 2021), randomly
pivoted Cholesky (Epperly & Moreno, 2023). Similarly, Bayesian coresets is one of applications of quantization
method and proposes a variety of algorithms (Campbell & Broderick, 2019; Manousakas et al., 2020; Zhang et al.,
2021; Chen et al., 2022), thus they are strongly related to KQ. KQ is a more proper framework for GP-based AL
as it can incorporate the model uncertainty information for batch construction.

Adaptive Batch Size While all of the above KQ/Bayesian coresets methods can be used for batch construction,
almost all methods assume the batch size is predefined. The adaptive batch size setting remains largely unsolved.
In batch BO, Nguyen et al. (2016) firstly formulated this setting as a Gaussian mixture fitting to the acquisition
function and estimated the batch size as Bayesian model selection, which is obviously non-KQ-based. No other
work proposes dynamic batch-size AL, to the best of our knowledge.

Connection to Bayesian Coresets While Bayesian coresets use Kullback-Leibler or Wasserstein divergence
as a metric (Kim et al., 2022) and weighted Euclidean inner product, KQ uses MMD. MMD and KQ have a direct
relationship and KQ can incorporate additional information on model uncertainty to quantize the probability
distribution. In KQ, the selected batch points are chosen to reduce the model uncertainty, which is advantageous
property for active learning that needs to train model effectively. Thus, KQ can utilize more information if the
model has the analytical predictive covariance like GP. The quality of batch construction can be evaluated as the
worst-case error in Eq. (2), as this is equivalent to the MMD, which evaluates the divergence between quantized
probability measure and the target distribution.

D Batch Bayesian Active Learning as Quantization

D.1 Sparse Subset Approximation

Pinsler et al. (2019) proposed the batch construction heuristics with sparse subset approximation. The original
paper did not state this but the formulaton is exactly the same as the weighted quantization task. They interpret
this as Bayesian coresets (Campbell & Broderick, 2019), which is another view of weighted quantization and
essentially close to KQ. Their attempt is simple: they construct batch samples to best approximate the true
posterior P(θ|D0 ∪ Dt) ≈ P(θ|D0 ∪ DN ). Here, the true posterior P(θ|D0 ∪ DN ) means the posterior with the
complete dataset DN = (XN ,YN ). Unsurprisingly, this true posterior is not available in the AL setting. While an
unlabelled pool of candidates XN is given, YN is not given. YN means the exhaustive number of costly human
labelling, which we wish to reduce and is the motivation to perform AL. Hence, we have to approximate the true
posterior. Pinsler et al. (2019) approximated the true posterior using the expectation of the current posterior
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with respect to the current predictive distribution.

P(θ | XN ,D0) =

∫
P(θ | D0,XN , y∗)dP(y∗ | D0,XN ),

where P(y∗ | D0,XN ) is the predictive posterior for the unlabelled inputs XN . This expected posterior is different
from the current posterior P(θ | D0) as it is explicitly conditioned on XN . In other words, the current posterior
is not conditioned on the input x, thus it is not useful to guide the next query Xt. This expected posterior is
conditioned on the input, hence this can guide the next query points. They used this expected posterior as the
target distribution in the quantization task, then constructed the batch samples using Bayesian coresets. Namely,
approximating expected posterior using the subset Xt ⊂ XN , P(θ | XN ,D0) ≈ P(θ | Xt,D0). This heuristic
outperformed popular baselines, such as BALD (Houlsby et al., 2011) and clustering-based approach.

D.2 Reinterpret as Kernel Quadrature

We reinterpret this formulation as a KQ task.

1. The target distribution µ is the weighted samples (wcand,Xcand), where Xcand := XN is the candidate
samples (the unlabelled pool), and wcand ∝ P(θ | xl,D0) is the weights of candidate samples and xl ∈ Xcand.
The weights are the expected posterior as introduced in the section D.1.

2. The quantized distribution ν is the weighted samples (wbatch,Xbatch), and Xbatch ⊂ Xcand is the next batch
query points.

3. The kernel is the expected predictive covariance of FBGP model, K(·, ·) := Eθ∼P(θ|D0)[C(·, · | θ)]. This enables
us to incorporate the model uncertainty to construct the quantized samples unlike the original paper (Pinsler
et al., 2019). The original work used the weighted Euclidean inner product using only the expected posterior,
which loses the information of uncertainty.

As such, we can reinterpret the sparse subset approximation method as a KQ task. Hence, we can apply our
LP formulation in the AdaBatAL to batch AL tasks. Furthermore, we have additional room for incorporating
the information in LP formulation; the reward g. We used the B-QBC acquisition function as the reward for
incorporating the additional information on estimation variance in mean estimation.

E Batch Bayesian Optimization as Quantization

E.1 Primer of Bayesian Optimization

BO (Mockus, 1998; Garnett, 2023) aims to optimize the blackbox function f when there is no access to the
closed-form function nor gradient but can query the function pointwise.

x∗
true = argmax

x∈X
f(x), (22)

where x∗
true is the ground truth of the global optimum. We wish to find as large f(x) as possible under some

given budget, such as the overall cost or number of queries. BO is a surrogate-model-based optimizer, which
typically adopts GP. BO is also extended to batch BO. The core difference between BO and BQ is that BO only
needs an accurate model in the vicinity of global optimal locations, whereas BQ needs an accurate model all
over the domain. Therefore, BQ can be viewed as a pure exploration algorithm (as BQ explores based on only
uncertainty, as shown in Eq. (5)).

E.2 Batch Bayesian Optimization as a Kernel Quadrature

Adachi et al. (2023a) has introduced the heuristics to recast the batch BO as a KQ task:

δx∗
true

∈ argmax
π

∫
f(x)dπ(x), (23)

where δx is the delta distribution at x and π(x) := P(f(x) = maxx∈X f(x)) is a probability distributions (belief)
of x∗

true. Note that the optimization target in Eq. (23) has now changed from x into π. We view Eq. (23) as a
batch-sequential ‘measure’ (π) optimization, which updates π over each iteration. The more data we observe, the
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more confidently we can estimate the location of the global maximum. This corresponds to that the distribution
π ‘shrinks’ toward the true global optimum location, and becomes the delta distribution in the ideal case of a
single global maximum. The role of π can be understood as ‘exploitation’, which determines the promising region
over the domain.

The intuition of this reformulation is as follows:

(a) Measure optimization is dual to original global optimization (Lasserre, 2011). Classically, a deterministic
polynomial regressor (Lasserre, 2011; Martinez et al., 2020; Rudi et al., 2020) has been applied with provable
convergence rate.

(b) Measure optimization is convex optimization with a linear objective function even if the function f is
non-convex (Rudi et al., 2020).

(c) Convexity negates the necessity to maximize the non-convex multimodal acquisition function. Thus, it
provides a computationally efficient solution without worrying acquisition function being properly maximised
at each iteration and batch in typical batch heuristics.

(d) Variance of π correlates with the variance of predictive distribution under π (Adachi et al., 2023a). Thus,
minimising the variance of π leads to minimising the GP predictive variance under π, which is exactly the
BQ task and finding the batch points is exactly the KQ task via the duality in Eq. (5)

(e) Unlike typical BO, BQ has the robustness guarantee when RKHS is misspecified (Kanagawa et al., 2016;
Hayakawa et al., 2022). This is advantageous as GP in BO tends to be suboptimally tuned (Ha et al., 2023).

This heuristic approach showed the state-of-the-art performance as batch BO over commonly used 8 heuristics
of batch BO(Adachi et al., 2023a). Similar to the fact that many acquisition functions have been proposed, a
variety of π definitions can be adopted. Adachi et al. (2023a) has proposed two variants: (i) Thompson sampling
(TS) (Thompson, 1933), π := P(x∗|Dt), where x∗ := argmaxx f is the maximum location of f , a sample from
GP predictive posterior distribution, Dt := (xobs, t,yobs, t) is the dataset we observed until t-th iterations. That
is, we use the current belief of the maximum location of surrogate model x∗ instead of ground truth x∗

true. (ii)
Probability of improvement (PI) (Kushner, 1964): π := P(f ≥ η|Dt), where η := argmaxx Dt. In both cases, π
shrinks toward x∗

true upon Dt updates.

E.3 Defining as Kernel Quadrature

We define this formulation as a KQ task.

1. The target distribution µ is the weighted samples (wcand,Xcand), where Xcand ∼ π(x) is the candidate
samples drawn from the probability distribution of xtrue. wcand can be equal weights or importance weights
when proposal distribution is applied (Adachi et al., 2023a).

2. The quantized distribution ν is the weighted samples (wbatch,Xbatch), and Xbatch ⊂ Xcand is the next batch
query points.

3. The kernel is the predictive covariance of normal GP, K(·, ·) := C(·, · | θ).

As such, regardless of the π definition, batch BO can be solved as a KQ task.

E.4 Constrained Bayesian Active Learning and Optimization

Suppose we have constraints with which we must comply, but we do not know the constraint functions a priori
and are only observable pointwise. We can model such constraint functions by GPs, similarly to the surrogate
model of the objective function. We can classify the type of constraints into (A) continuous, and (B) binary
constraints.

E.4.1 Modelling Continuous Constraints

Continuous constraints naturally appear in the form of threshold (e.g. controlling a car not to exceed the speed
limit, or maximize the computer power not to exceed the temperature limit), given by:

Qℓ(x) ≥ 0 (24)

where Qℓ is the ℓ-th latent constraint function. We can reformulate most constraints to be the form of Eq. (24).
For instance, when we wish for the temperature not to surpass the limit Tlimit ≥ T , we can set Qℓ(T ) = Tlimit −T .
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We assume we can query these latent values gℓ(x) at the designated location x, but the function itself is unknown.
We need to guess the function shape only from queries.

We place a GP regression model on the latent values Qℓ(x). Then, the probability of constraint satisfaction qℓ
can be given:

qℓ(x) := P(Qℓ(x) ≥ 0) = Φ

(
mℓ(x)√
Cℓ(x, x)

)
(25)

where mℓ and Cℓ are the posterior predictive mean and covariance of GP on the ℓ-th constraint, Φ(x) is the
cumulative distribution function of the standard normal distribution N (x; 0, 1).

E.4.2 Modelling Binary Constraints

Binary constraints return the constraint satisfaction as a Boolean value (yes or no). This is typically modelled
with a GP classifier: As the classification likelihood such as Bernoulli likelihood is not conjugate with GP prior,
the resulting posterior predictive distribution is no more closed-form. As such, we normally estimate the posterior
predictive distribution via sampling functions from latent space, then transform them via the so-called link
function Rasmussen et al. (2006).

We adopted an approach with Dirichlet-based GP (DGP) (Milios et al., 2018) for scalability. Let fℓ ∼ GP(mℓ, Cℓ)
be the GP classifier modelling the ℓ-th binary constraint, the binary feedback y = 1 be the constraint satisfaction,
y = 0 be the constraint violation. Monte Carlo integration via transforming the sampled function with the link
function can estimate the expectation of binary probability as Bernoulli distribution:

qℓ(x) := P(y = 1 | x) =
∫

exp(fℓ,i)∑
exp(fℓ,i)

P(fℓ,i|x,Dℓ)dfℓ (26)

where Dℓ is the observed dataset of the constraint satisfaction yℓ at the inputs xℓ.

E.4.3 Constrainted Active learning and Optimization

With the above constraint models, the typical constrained BO is performed by constraining the acquisition
function, namely, α(x)

∏c
ℓ=1 qℓ(x) (Gardner et al., 2014; Gelbart et al., 2014). In an AdaBatAl algorithm, we can

incorporate the constraint information as q in the LP formulation. We do not need to modify the acquisition
function.

F Kernel Quadrature for Intractable Kernel Mean

Table 1: How to set the target distribution for each active learning task.

task target distribution meaning

Active learning XN unlabelled pool of candidate inputs
Bayesian optimization P(f(x) = maxx∈X f(x)) probability distribution of global optimum location
Bayesian quadrature P(x) prior distribution

Table 1 summarizes the target distribution definitions for each AL, BO, and BQ task. While active learning
considers the discrete candidates, BO and BQ consider continuous distributions. As seen in the section B.3, only
a handful of combinations of continuous target distributions and the kernels can provide the analytical kernel
mean and variance, thereby providing the analytical expectation of test functions in the section 3.3. This is
not always true, particularly for intractable probability distribution (e.g. Thompson sampling in BO), and/or
intractable kernel (e.g. Tanimoto kernel for drug discovery tasks). We review how to construct a KQ task for
such an intractable pair of target distribution and kernel in this section.

Intractable Expectations of Test Functions We consider approximately constructing the probability
measure to estimate the expectation. We construct empirical measure µcand(x) :=

∑P
i=1 wiδxi

:= (wcand,Xcand),
where Xcand ⊂ XN . We draw very large N samples to approximate the expectations, which assumes N is
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sufficiently larger than the batch size n, N ≫ n. Hence, we can approximate
∫
X φ(x)dµ(x) ≈ wT

candφ(Xcand).
This permits kernel quadrature for any pair (K,µ), unlike the original BQ. If directly sampling from µ(x) is
expensive, the empirical measure can be constructed with importance weights. Namely, we draw large samples
from cheaper-to-sample distribution (e.g., domain X ), then calculate the importance weights by taking the ratio
of the probability density function (see details in (Adachi et al., 2023a)).

Error Bounds While the empirical measure makes BQ/KQ applicable to an arbitrary combination of (K,µ),
this produces an additional approximation error. The total error bounds of this KQ method are given by:

wce(Qw) ≤ 2 sup
x,y

√
K(x, y)−K0(x, y) + MMDH(µ, µcand). (27)

The proof is given in Proposition 1 in (Hayakawa et al., 2022). The first and second terms correspond to the
Nyström and the empirical measure approximation error, respectively. When we take large M Nyström samples
and N empirical measures, we can make error bounds tighter if the time budget allows. In practice, we take
N = 20, 000 and M = 500 for the batch size n ≤ 100. (see Appendix in (Adachi et al., 2022) for how to set these
values).

G Experimental Details

G.1 Training details

We have tested AdaBatAL for 7 synthetics and 7 real-world tasks for batch AL and BO tasks. Our experiments
were repeated 10 times and took a mean and one standard error with different random seeds (the seeds are shared
with baseline methods). We use FBGP for batch AL tasks, and simple GP with type-II maximum likelihood
estimation for batch BO tasks. The kernel is different for each task but shared with baseline methods (see details
in the dataset section). We randomly generated 10 samples as the initial dataset D0. We use different batch
sizes for each task (see details in the dataset section). While the fixed batch size methods simply adopt this
as the batch size, AdaBatAL sets this as the upper bound of batch sizes. This means the AdaBatAL tends to
query a smaller number of samples than fixed batch size methods. We iterated this batch acquisition process
for the fixed iteration times and compared the best-observed values at the last round. For the fair comparison
with the adaptive batch size method, we employ the accumulated queries as the metric, which counts the total
number of queries at the t-th iteration. As explained, AdaBatAL yields the smaller accumulated queries with the
same iteration times. For constrained cases, we removed the violated samples. Thus, constrained tasks yield
smaller accumulated queries than unconstrained cases even with the same batch sizes and the same iteration
times. Surprisingly, non-adaptive batch baselines tend to have smaller batch sizes than adaptive AdaBatAL due
to constraint violation (See Figure 5).

Our code is built upon PyTorch-based libraries (Paszke et al., 2019; Gardner et al., 2018; Balandat et al., 2020;
Griffiths et al., 2022) and Gurobipy (Gurobi Optimization, LLC, 2024) is used to solve the linear programming.
All baseline methods are official implementations in BoTorch or coded with BoTorch (Balandat et al., 2020).

Batch Bayesian Optimization We use a constant-mean GP with either RBF, Tanimto, or graph diffusion
kernel for batch BO tasks. In each iteration of the active learning loop, the outputs are standardized to have
zero mean and unit variance. We optimize the hyperparameter by maximizing the marginal likelihood (type-II
maximum likelihood estimation) using L-BFGS-B optimizer (Liu & Nocedal, 1989) implemented with BoTorch
(Balandat et al., 2020). The initial data sets consist of ten data points drawn by Sobol sequence (Sobol’, 1967),
and in each iteration, multiple data points are queried as the batch acquisition (upper bound for AdaBatAL). We
adopt log regret if the true global maxima are known, otherwise, the log of best-observed value is the evaluation
metric using the test dataset. The models are implemented in GPyTorch (Gardner et al., 2018). All experiments
are repeated ten times with different initial data sets via different random seeds.

Batch active learning We use a zero-mean GP with an RBF kernel for all batch AL tasks. In each iteration
of the active learning loop, the inputs are rescaled to the unit cube [0, 1]d, and the outputs are standardized to
have zero mean and unit variance. Following Lalchand & Rasmussen (2020), we give all the hyperparameters
relatively uninformative N (0, 3) lognormal priors. The initial data sets consist of ten data points drawn by Sobol
sequence (Sobol’, 1967), and in each iteration, 10 data points are queried as the batch acquisition (upper bound
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for AdaBatAL). The unlabeled pool consists of the 10,000 data points drawn by Sobol sequence all over the
domain. We used this unlabelled pool and corresponding true values as the test dataset for the evaluation. We
adopt negative log marginal likelihood (NLML) as the evaluation metric using the test dataset. The inference in
FBGP is carried out using NUTS (Hoffman & Gelman, 2014) in Pyro (Bingham et al., 2019) with five chains and
500 samples, including a warm-up period with 200 samples. The remaining 1500 samples are all used for the
acquisition functions. The models are implemented in GPyTorch (Gardner et al., 2018). All experiments are
repeated ten times with different initial data sets via different random seeds.

For batch AL, we typically assume training a model is very expensive (e.g. deep learning). FBGP is expensive to
train even with parallel chains. Thus, we exclude methods like hallucination that require the sequential update of
the model to select multiple points. This assumption is widely shared with the AL community (e.g. Kirsch et al.
(2019); Pinsler et al. (2019)). Moreover, all baseline batch AL methods do not consider probabilistic constraints.
We simply follow the constrained BO approaches, explained in section E.4.3.

Extension to non-continuous input domain Almost all methods are not compatible with categorical and
mixed input spaces due to the continuity assumption in these methods. To enable comparison against these
methods, we adopt the nearest neighbor in discrete or mixed problems: namely, we optimise the discrete variables
as bounded continuous variables, then the selected continuous locations are classified into the closest original
discrete values. For the graph space, we deem the search space itself to be a graph and the objective is to find a
subgraph. This is different from, for example, the drug discovery problem, whose input variables are graphs but
the space itself is a non-Euclidean discrete set of drugs. In contrast, the graph space is over the large graph, and
the graph example is only one. Thus, cTS is the only method applicable to graph space other than AdaBatAL.

Extension to constrained cases We simply follow the constrained BO approaches, explained in the sec-
tion E.4.3; Modelling the probabilistic constraints by GPs and multiplying the probability of constraint satisfaction
to the acquisition function.

Training details of AdaBatAL For AdaBatAL, we have two hyperparameters; the number of Nyström
samples M , and the tolerance ϵLP. The number of unlabeled pools N , the batch sizes n, and M need to satisfy
the relationship N ≫ M ≥ n. We fixed M = 500. As explained in the section F, the larger M yields tighter error
bounds for worst-case error but it slows down the computation. We find M = 500 works well over the tasks we
have tested. For ϵLP, this is automatically determined for the constrained case via ϵLP = ϵvio. For unconstrained
cases, we set ϵLP = 0.01. For reward function g, we set B-QBC (Riis et al., 2022) for batch AL, and no reward
function is set for batch BO. The probabilistic constraints q were modeled by GP as explained. For the intractable
expectation of kernel means, we generate N = 20, 000 data points from the probability distribution µ as explained
in section F.

G.2 Baseline Implementations

Table 2 summarizes all baselines. Our method, AdaBatAL, is the only method that can offer adaptive batch size
under probabilistic constraints for both AL and BO tasks.

G.2.1 Batch Bayesian Optimization

B3O Budgeted Batch Bayesian Optimization (B3O) (Nguyen et al., 2016) is the only baseline method that
offers the adaptive batch size. B3O recasts batch construction as the approximation of acquisition function using
a mixture of Gaussians. The adaptive batch size is determined through the marginal likelihood of Gaussian
mixture model; the number of Gaussians corresponds to the batch size, and select the batch sizes that yield the
largest marginal likelihood, following the standard Bayesian model selection procedure. However, original B3O
cannot apply to AL and constrained cases. Simple extension with constraining acquisition function or changing
to AL acquisition function could apply to them but we do not investigate in this paper. B3O tends to select
around 4-5 batch sizes regardless of the dimension, and is not applicable to large batch size. Moreover, Gaussian
mixture model assumption is not always appropriate (e.g. Tanimoto kernel in drug discovery), whereas AdaBatAL
naturally adopts these kernel via MMD.

Thompson sampling (TS) Thompson sampling (TS) (Hernández-Lobato et al., 2017) is a random sampling
method of P (x∗ | Dt) by maximising the function samples drawing from the predictive posterior. Due to its
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Table 2: Summary of baseline method. cBO refers to constrained BO.

method task adaptive? constraints? discrete? large batch? any kernel? any AF?

random any ✓ ✓ ✓ ✓
AdaBatAL (ours) any ✓ ✓ ✓ ✓ ✓ ✓

B3O BO ✓ ✓ ✓
TS BO ✓ ✓ ✓
hallucination BO ✓ ✓ ✓
LP BO ✓ ✓
TurBO BO ✓ ✓
SOBER BO ✓ ✓ ✓ ✓

MaxEnt AL ✓ ✓ ✓
BALD AL ✓ ✓ ✓
B-QBC AL ✓ ✓ ✓
ACS-FW AL ✓ ✓ ✓ ✓

cEI cBO ✓ ✓ ✓
cTS cBO ✓ ✓ ✓ ✓
SCBO cBO ✓ ✓
PropertyDAG cBO ✓ ✓
PESC cBO ✓ ✓ ✓

random sampling nature, exactly maximising the function samples is not strict when compared to others (e.g.
hallucination). Thus, in practice, TS is typically done by taking argmax of function samples amongst the
candidates of random samples over input space. This two-step sampling nature (random samples over input space
→ subsamples with argmax of random function samples) allows us for domain-agnostic BO. However, this scheme
itself is a type of acquisition function, so other acquisition function is not naïvely supported. Moreover, due to
the random sampling nature, the selected batch samples are not sparsified to efficiently explore uncertain regions.

Hallucination Hallucination (Azimi et al., 2010) tackled batch BO by simulating a sequential process by
putting ‘fantasy’ oracles estimated by GP, translating batch selection into a sequential problem. Hallucination is
successful in low batch size n, but not scalable. Even a single iteration of acquisition function maximisation is
not trivial due to non-convexity, but they repeat this over n times and produce prohibitive overhead. For discrete
and mixed space, maximizing the acquisition function requires enumerating all possible candidates. However,
the higher the dimension and larger the number of categorical classes, the more infeasibly large the combination
becomes (combinatorial explosion).

Local penalisation (LP) Local penalisation (González et al., 2016), simulates only acquisition function shape
change, without fantasy oracles, by penalising acquisition function assuming Lipschitz continuity. This succeeds
in speeding up the hallucination algorithm. However, the principled limitations are inherited (combinatorial
explosion). Large batch sizes are also not applicable because maximising acquisition function still produces large
overhead. This is because maximising acquisition function is typically computed by a multi-start optimiser, but
the number of random seeds needs to increase dependent on the number of dimensions and multimodality of the
true function. This optimiser also does not guarantee to be globally maximised, which contradicts the assumption
of acquisition function (only optimal if it is globally maximised.). Furthermore, Lipschitz continuity assumption
limits its applicable range to be only for continuous space.

TurBO TurBO (Eriksson et al., 2019) introduced multiple local BO bounded with trust regions, and allocates
batching budgets based on TS. This succeeded in scalable batching via maintaining local BOs that are compact,
via shrinking trust regions, based on heuristics with many hyperparameters. Selecting hyperpameters is non-
trivial and TurBO cannot apply to discrete and non-Euclidean space, for which kernels do not have lengthscale
hyperparameters for the trust region update heuristic (e.g. Tanimoto kernel for drug discovery (Ralaivola et al.,
2005)).
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SOBER SOBER (Adachi et al., 2022) first introduced the idea of batch BO as a kernel quadrature. Our
AdaBatAL is based on SOBER when applying to batch BO tasks. The details are delineated in the section E.2.
However, original SOBER is not capable of adaptive batch size or constrained cases.

G.2.2 Constrained Batch Bayesian Optimization

Constrained Expected Improvement (cEI) Constrained expected improvement (cEI) (Letham et al.,
2019) is the method based on constrained expected improvement acquisition function (Jones et al., 1998). cEI
simply multiplies the probability of constraint satisfaction qℓ to the acquisition function. We adopted the
official implementation on BoTorch (Balandat et al., 2020). The batching algorithm is based on sample average
approximation, a standard batching methid in BoTorch library (Balandat et al., 2020).

Predictive Entropy Search with Constraints (PESC) Predictive Entropy Seach with Constraints (PESC)
(Hernández-Lobato et al., 2015) is the constrained version of the predictive entropy search acquisition function
(Hernández-Lobato et al., 2014). The official implementation in Spearmint is dependent on Python 2 and is no
longer supported in 2023. Thus, we adopted the implementation on BoTorch (Balandat et al., 2020). The batching
algorithm is based on Monte Carlo sampling following the original code. However, this code is tremendously slow,
which is repeatedly pointed out in BO literature (Eriksson & Poloczek, 2021). We set 7 days as the practical
limit of execution time allowing for active learning, and PESC exceeds this limit for almost all tasks except for
Hartmann synthetic function. Thus, we only compare PESC on Hartmann task but it was not the best performer.

Scalable Constrained Bayesian Optimization Scalable Constrained Bayesian Optimization (SCBO) is the
constrained version of TurBO based on the TS acquistion function and trust region methods. We adopted the
official implementation on BoTorch (Balandat et al., 2020) and the same hyperparameters in the original papers
(Eriksson et al., 2019) for trust region update heuristics.

Constrained Thompson sampling (cTS) Constrained Thompson sampling (cTS) is the constrained TS
method. cTS has not been considered in existing work but this is a simple modification of SCBO. We adopted
the two-step sampling used in SCBO for TS and removed the trust region heuristics because this cannot apply to
a non-Euclidean kernel (e.g. Tanimoto kernel does not have lengthscale hyperparameter). This is coded based on
SCBO implementation on BoTorch (Balandat et al., 2020).

PropertyDAG PropertyDAG Park et al. (2022) is the method based on qNEHVI acquisition function and
(Daulton et al., 2020, 2021) for multi-objective optimization. This method assumes (1) ordered constraints but
the constraint function is given, (2) multi-objective BO. So it cannot simply apply to our setting as it is. This
method is the only one considering ordered case, so we dismantle the components of PropertyDAG to compare
in the blackbox ordered constraint case. PropertyDAG consists of three parts: (A) explicit modelling of DAG
network in surrogate model (Astudillo & Frazier, 2021), (B) zero inflation model to encode ordered constraint
information to qNEHVI acquisition function, and (C) resampling of posterior function samples using sample
average approximation to be more likely to satisfy the constraint. We cannot apply (A) and (B) for black-box
ordered constraint, because (A) is only for white-box ordered constraint (we cannot model of unknown DAG),
and (B) is only for multi-objective BO and specific acquisition function. Thus, we extracted the last part, (C)
resampling with sample average approximation, and combined this with cEI, which we refer to PropertyDAG in
this paper. We can say this as just resampled version of cEI. The implementation is based on cEI implementation
on BoTorch (Balandat et al., 2020) and added the resampling part.

G.2.3 Batch Active Learning

Maximum entropy (MaxEnt) Maximum entropy (MaxEnt) (MacKay, 1992) is the classic acquisition function
to select the next query with the largest Shannon entropy. As Riis et al. (2022) pointed out, MaxEnt in FBGP is
proportional to the posterior predictive variance. We adopted the following formulation (Riis et al., 2022):

MaxEnt := H
[∫

P(y | x, θ)dP(θ | D0)

]
∝ EP(θ|D0) [C(x, x | θ)] (28)

For the batch construction, we take the top n samples following the common practice in batch AL community
(Kirsch et al., 2019).
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Bayesian Active Learning by Disagreement (BALD) Bayesian active learning by disagreement (BALD)
(Houlsby et al., 2011) is another popular objective in Bayesian active learning, is to maximize the expected
decrease in posterior entropy (Guestrin et al., 2005). Houlsby et al. (2011) recast the objective from computing
entropies in the parameter space to the output space by observing that it is equivalent to maximizing the
conditional mutual information between the model’s parameters θ and output I[θ, y | x,D0]:

BALD := H
[
EP(θ|D0) [y | x,D0, θ]

]
− EP(θ|D0) [H [y | x, θ]] (29)

Kirsch et al. (2019) pointed out the original BALD criterion is independent selection of a batch of data points
leads to data inefficiency as correlations between data points in an acquisition batch are not taken into account.
Instead, BatchBALD is proposed whereby we jointly score points by estimating the mutual information between
a joint of multiple data points and the model parameters:

batchBALD := H
[
EP(θ|D0) [y1, . . . , yn | x1, . . . , xn,D0, θ]

]
− EP(θ|D0) [H [y1, . . . , yn | x1, . . . , xn, θ]] (30)

We adopted BatchBALD formulation for batch construction.

Bayesian Query-by-Committee (B-QBC) Richardson et al. (2017) propose a Bayesian version of the
Query-by-Committee (Seung et al., 1992), using the MCMC samples of the hyperparameters’ joint posterior. We
query a new data point where the mean predictions m(x | θ) disagree the most. Each mean predictor m(· | θ)
drawn from the posterior is equivalent to a single model, and thus this criteria can be seen as a Bayesian variant
of a Query-by-Committee, and thus denoted as Bayesian Query-by-Committee (B-QBC). Given that m̄(x) is the
average mean function, B-QBC is given as:

B-QBC := VP(θ|D0) [m(x | θ)] = EP(θ|D0)

[
(m(x | θ)− m̄(x))

2
]

(31)

For the batch construction, we take the top n samples following the common practice in batch AL community
(Kirsch et al., 2019).

Active Bayesian CoreSets with Frank-Wolfe optimization (ACS-FW) Active Bayesian CoreSets with
Frank-Wolfe optimization (ACS-FW) recasts the batch construction as the Bayesian coreset task. Our AdaBatAL
is based on ACS-FW when applying to batch AL tasks. The details are deliniated in the section D.1. However,
original ACS-FW is not capable of adaptive batch size nor constrained cases. Also, the Bayesian coreset formulation
fails to incorporate the predictive uncertainty for batch construction unlike the kernel quadrature formulation.
We implemented ACS-FW via following the official code https://github.com/rpinsler/active-bayesian-coresets.

G.3 Dataset

All datasets and tasks are summarized in Table 3.

G.3.1 Synthetic Functions

Hartmann Hartmann 6-dimensional function is defined as:

f(x) := −
4∑

i=1

αi exp

−
6∑

j=1

Aij(xj − Pij)
2

 , (32)

α = (1.0, 1.2, 3.0, 3.2)⊤, (33)

A =


10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

 , (34)

P =


1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

 (35)

https://github.com/rpinsler/active-bayesian-coresets
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Table 3: Summary of tasks.

task method real/synthetic space X dimension constraints batch size kernel

Hartmann BO synthetic continuous 6 - 5-90 RBF
Branin cBO synthetic continuous 2 2 20 RBF

Hartmann AL synthetic continuous 6 - 10 RBF
Ishigami AL synthetic continuous 3 - 10 RBF
Friedman AL synthetic continuous 5 - 10 RBF
Electrolyte cAL real-world continuous 3 2 10 RBF
Cantilever cAL real-world continuous 4 2 10 RBF
Steel cAL real-world continuous 9 1 10 RBF

Ackley cBO synthetic mixed 23 2 200 RBF
Hartmann cBO synthetic continuous 6 2 5 RBF
PestControl cBO real-world discrete 15 2 200 RBF
Malaria cBO real-world discrete molecule 4 100 Tanimoto
FindFixer cBO real-world graph node 3 100 graph diffusion
TeamOpt cBO real-world graph subgraph 3 100 graph diffusion

We take the negative Hartmann function as the objective of BO to make this optimisation problem maximisation.
All input variables are continuous with bounds [0, 1]6. The batch size n is 100. The continuous prior is the
uniform distribution ranging from [0, 1], following Adachi et al. (2023a). The noisy output is generated by adding
i.i.d. zero-mean Gaussian noise with the 0.01922 variance to the noiseless f(x).

For constrained BO, we added two constraints; (1)
∑d

i=1 xi ≥ 0.15 and (2)
∑d

i=1 xi ≤ 3.

Branin Branin function is defined as:

f(x) :=

d∏
i=1

√
sin(x) + 0.5 cos(3x)√

0.5x+ 0.3
, (36)

where the dimension d = 2. All input variables are continuous with bounds x ∈ [−2, 3]d. The batch size n is
20. The continuous prior is the uniform distribution. The noisy output is generated by adding i.i.d. zero-mean
Gaussian noise with the 0.01922 variance to the noiseless f(x).

For constrained BO, we added two constraints; (1)
∑d

i=1 x
2
i ≤ 4 and (2)

∑d
i=1 xi ≤ 0.

Ishigami Ishigami function is defined as:

f(x) := sin(x1) + 7 sin2(x2) + 0.1x4
3 sin(x1), (37)

where xi is the i-th dimensional input and the dimension d = 3. All input variables are continuous with bounds
x ∈ [−π, π]d. The batch size n is 10. The continuous prior is the uniform distribution. The noisy output is
generated by adding i.i.d. zero-mean Gaussian noise with the 0.1872 variance to the noiseless f(x).

Friedman Friedman function is defined as:

f(x) := 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5, (38)

where xi is the i-th dimensional input and the dimension d = 5. All input variables are continuous with bounds
x ∈ [0, 1]d. The batch size n is 10. The continuous prior is the uniform distribution. The noisy output is generated
by adding i.i.d. zero-mean Gaussian noise with the 0.052 variance to the noiseless f(x).

Ackely Ackley funciton is defined as:

f(x) := −a exp

−b

√√√√1

d

d∑
i=1

x2
i

− exp

[
1

d

d∑
i=1

cos(cxi)

]
+ a+ exp(1) (39)
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where a = 20, c = 2π, d = 23. We take the negative Ackley function as the objective of BO to make this
optimisation problem maximisation. We modified the original Ackley function into a 23-dimensional function
with the mixed spaces of 3 continuous and 20 binary inputs from [0, 1]20, following Adachi et al. (2023a). The
batch size n is 200. The continuous prior is the uniform distribution ranging from [-1, 1]. The binary prior is the
Bernoulli distribution with unbiased weights of 0.5. We assume each of the continuous and binary priors at each
dimension is independent.

For constrained BO, we added the two constraints; (1) x1 ≥ 0 and (2) x2 ≥ 0, where x1 and x2 are the first and
second dimensions of continuous inputs.

G.3.2 Real-World Functions

Electrolyte Electrolyte is the new problem for the AL task. This is the task of creating the model that predicts
the ionic conductivity for the given composition of liquid electrolyte material for the next generation of lithium-ion
batteries. This ionic-conductivity function is used for the control model of batteries and plays a crucial role in
the control accuracy. However, common practice is to use the lookup table with massive data or pairwise linear
function fitting. Collecting the ionic conductivity data requires costly laboratory experiments and fewer data
points can accelerate this process while minimizing the cost. GP and AL are powerful frameworks to offer more
accurate models with fewer data sizes and cheap models allowing them to be implemented in the control chip.
Still, this data collection is under an unknown constraint; the freezing point. While low-temperature operation
performance is the key performance indicator of batteries, it causes freezing electrolytes and cannot measure
ionic conductivity. The freezing point is dependent on both lithium salt molarity and the cosolvent composition.
They show the complex non-linear relationship due to the solvation effect and cannot predict even with the
state-of-the-art quantum chemistry simulator. Thus, it is natural to assume this freezing point is an unknown
constraint. We create the true function by fitting the experimental data of MA-DMC-EMC-LiPF6 (Logan et al.,
2018) system using the Casteel-Amis equation (Casteel & Amis, 1972). Note that Casteel-Amis equation is just
for the interpolation of experimental data to be continuous, and is not capable of predicting different cosolvent
nor freezing points.

Electrolyte is a three-dimensional continuous input function with two constraints. The input features are (1) the
lithium salt (LiPF6) molarity, (2) DMC/EMC cosolvent ratio, and (3) MA/carbonates cosolvent ratio, respectively.
The inputs are bounded with x1 ∈ [0, 2], x2 ∈ [0, 1], and x3 ∈ [0, 0.3]. The constraints are x1 > 0.3 and x2 < 0.9.
The noisy output is generated by adding i.i.d. zero-mean Gaussian noise with the 32 variance to the noiseless
f(x).

Cantilever Cantilever (Wu et al., 2001) has been proposed for a task to develop a probability-based design
optimization framework for ensuring high reliability and safety. This task is to design a cantilever beam under
the two failure modes as safety constraints. The objective function to model with GP is the tip displacement,
modelled as:

f(x) :=
4× 1003

E

√
X2 + Y 2, (40)

subject to: (41)
f(x)− 4400

3100
< 2.2535, (42)

0.8(X + Y ) < R. (43)

Cantilever is a four-dimensional continuous input function with two constraints. The input features are (1) the
yield stress R, (2) the Young’s modulus of beam material E, (3) the horizontal load X, and (4) the vertical load
Y , respectively. The inputs are bounded with R ∈ [3E + 4, 5E + 4], E ∈ [1E + 7, 5E + 7], X ∈ [1E + 2, 1E + 3],
and Y ∈ [5E + 3, 5E + 4]. The noisy output is generated by adding i.i.d. zero-mean Gaussian noise with the 12

variance to the noiseless f(x).

Steel Steel (Kuschel & Rackwitz, 1997) has been proposed for design optimization to balance the reliability
and cost. This task is to design a steel column under cost constraints. The objective function to model with GP
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is the limit state function, modelled as:

f(x) := Fs − P

[
1

2BD
+

F0Eb

BDH(Eb − P )

]
, (44)

subject to: (45)
BD + 5H < 9000, (46)

where

P := P1 + P2 + P3 (47)

Eb :=
π2EBDH2

2L2
(48)

Steel is the nine-dimensional continuous input function with one constraint. The input features are (1) the yield
stress Fs, (2) the dead weight load P1, (3) the variable load P2, (4) the variable load P3, (5) the flange breadth
B, (6) the flange thickness D, (7) the profile height H, (8) the initial deflection F0, and (9) Young’s modulus
E, respectively. The inputs are bounded with Fs ∈ [300, 500], P1 ∈ [1E + 4, 1E + 5], P2 ∈ [4E + 5, 1E + 6],
P3 ∈ [4E + 5, 1E + 6], B ∈ [290, 310], D ∈ [14, 26], H ∈ [290, 310], F0 ∈ 209800, 210100]. The noisy output is
generated by adding i.i.d. zero-mean Gaussian noise with the 12 variance to the noiseless f(x).

PestControl Pest Control (PestControl in the main) is proposed in Oh et al. (2019), which is a multi-categorical
optimisation problem (15 dimensions, 5 categories for each dimension). We wish to optimise the effectiveness of
pesticides by choosing the 5 actions (selection of pesticides from 4 different firms, or not using any of them), but
penalised by their prices. This choice is a sequential decision of 15 stages, and the objective function is expressed
as the cumulative loss function with the total of both cost and the portion having pest. The batch size n is 200.
We set the categorical prior with equal weights for each choice (discrete uniform distribution). Code is used in
https://github.com/xingchenwan/Casmopolitan (Wan et al., 2021).

We added 2 constraints for a more realistic situation. The first constraint is ecosystem change, which assumes
exterminating pests too much causes other harmful pests/animals to increase when they reach the hidden threshold.
The portion of the product having pests follows the dynamics below:

zi = αi(1− xi)(1− zi−1) + (1− Γixi)zi−1, (49)
zi ≥ zlimit, (50)

where i is the number of pest control cycles (15 in total), z is the portion of the product having pest, x is the
effectiveness of pesticide that follows a beta distribution with the parameters, which has been adjusted according
to the sequence of actions taken in previous control points, α is the action taken (selection of pesticides from 4
different firms, or not using any of it), and zlimit is the threshold for ecosystem change (we set 1e− 3). Eq. 50 is
the constraint of ecosystem change, and we assume the latent variable zi is observable.

The second constraint is neighbour disputes, which assume some of the pesticides have unfavourable smells.
Neighbours objection follows the Bernoulli distribution and its weights based on the proportion of certain pesticide
types and random Gaussian noise. Thus, the feedback to this constraint is in the noisy binary value. If the
neighbours’ objection is larger than supportive opinion θpest > 0.5, a decision maker stops spraying pesticides,
thus, objective value cannot be evaluated.

Malaria The objective is to discover an anti-malarial drug exhibiting the smallest EC50 value, which is defined
as the concentration of the drug that gives half the maximal response. The lower the concentration, the more
effective (better) the drug. The dataset consists of 20,746 small molecules taken from the P. falciparum whole-cell
screening derived by the Novatis-GNF Malaria Box (Spangenberg et al., 2013). The molecules are represented as
SMILES string and are converted into 2048-dimensional binary features for the Tanimoto kernel. We set four
safety constraints, all of which are rules of thumb for judging molecules likely to be oral drugs, shared in drug
discovery community (Lipinski et al., 1997; Veber et al., 2002; Butler, 2004; Mochizuki et al., 2019).

The first is Lipinski’s rule of five (Lipinski et al., 1997), (A) no more than 5 hydrogen bond donors, (B) no more
than 10 hydrogen bond acceptors, (C) A molecular mass less than 500 daltons, (D) A calculated octanol-water
partition coefficient that does not exceed 5, (E) no more than 5 rotatable bonds. The second is the Veber filter

https://github.com/xingchenwan/Casmopolitan
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(Veber et al., 2002), (A) no more than 10 rotatable bonds, (B) a polar surface area that does not exceed 140. The
third is the REOS filter (Butler, 2004), (A) A molecular mass more than 200 daltons and less than 500 daltons,
(B) A calculated octanol-water partition coefficient that exceeds -5 but does not exceed 5, (C) no more than
5 hydrogen bond donors, (D) no more than 10 hydrogen bond acceptors, (E) no more than 8 roratable bonds,
(F) more than 15 but less than 50 heavy atoms, (G) more than -2 but less than 2 formal charge. The fourth
is the drug likeliness filter, (A) A molecular mass less than 400 daltons, (B) at least one ring structure, (C) no
more than 5 roratable bonds, (D) no more than 5 hydrogen bond donors, (E) no more than 10 hydrogen bond
acceptors, (F) A calculated octanol-water partition coefficient that does not exceed 5.

FindFixer This task is to find the fixer connecting influencers rather than finding the most popular influencer
on the social networks graph. A job seeker who wishes to be a celebrity explores the fixer to ask introductions
based on graph data using the centrality analysis. Finding a node requires searching on a website or meeting in
person, both of which are expensive to evaluate. Fixer can be interpreted as a node with maximum eigenvector
centrality under constraints on the degree centrality that does not exceed the threshold (Kiss & Bichler, 2008). In
other words, finding the node that is connected to the largest number of nodes with many edges but does not have
many edges itself. A job seeker wishes to find the fixer who connects influencers with similar popularity (degree
centrality). Thus, the node is constrained based on the degree centrality, and other hidden preference factors. A
job seeker judges constraints as a binary value, and the judgment is possibly shaky. We assume the domain is
defined as a social network graph synthesized by the Barábsi–Albert model (BA) (Barabási & Albert, 1999).

TeamOpt This task is to organise a team consisting of the most diverse skill sets of members (Wan et al.,
2023). The objective is measured by the entropy of the skills of members, assuming the optimal team is when
each member is specialised in one skill, and the whole skill distribution is close to uniform. Such teams are
positioned on the node of the supergraph, of which edge is the similarity between teams defined as the Jaccord
index. The constraints are interpersonal relationships. Every combination of two individuals from N candidates
has unobservable hidden continuous likability from 0 to 1. The first is the mean likability constraint, which is the
mean of likeability between all possible combinations of members that should be larger than equal-chance. The
second is the tragedy-avoidance constraint, which is a binary judge that none of them has a likability lower than
a threshold. The third is a flat-relationship constraint, which assumes an entropy of likability must be higher
than a threshold. As likability is unobservable, a decision-maker needs to seek advice from many colleagues who
partially know each constraint but are noisy estimations.

G.4 Complexity Analysis
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Figure 6: Overhead on Batch Bayesian optimization task for Hartmann (d = 6)
As explained in the section 3.8, the time complexity of the AdaBatAL is lower than O(NM + M2 log n +
Mn2 log(N/n)) (Hayakawa et al., 2022), where N is the number of unlabelled pool, M is the number of Nyström
samples, and n is the upper bound of the batch size. The space complexity is O(NM).

We empirically compare the time complexity against the baselines using the Hartmann function with unconstrained
batch BO tasks. Figure 6 shows the log overhead to generate the batch samples with different batch sizes that
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are the same with Figure 3 setting. While TurBO and TS were faster than others, our AdaBatAL was relatively
faster than other baselines (SOBER, hallucination, and LP).
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