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Abstract

When dealing with imbalanced classification
data, reweighting the loss function is a stan-
dard procedure allowing to equilibrate be-
tween the true positive and true negative rates
within the risk measure. Despite significant
theoretical work in this area, existing results
do not adequately address a main challenge
within the imbalanced classification frame-
work, which is the negligible size of one class
in relation to the full sample size and the
need to rescale the risk function by a proba-
bility tending to zero. To address this gap, we
present two novel contributions in the setting
where the rare class probability approaches
zero: (1) a non asymptotic fast rate proba-
bility bound for constrained balanced empir-
ical risk minimization, and (2) a consistent
upper bound for balanced nearest neighbors
estimates. Our findings provide a clearer un-
derstanding of the benefits of class-weighting
in realistic settings, opening new avenues for
further research in this field.

1 INTRODUCTION

Consider the problem of binary classification with co-
variate X and target Y ∈ {−1, 1}. The flagship ap-
proach to this problem in statistical learning is Em-
pirical Risk Minimization (ERM), which produces ap-
proximate minimizers of R(g) = E [`(g(X), Y )], given
a loss function ` and a family of candidate classifiers
g ∈ G, with the help of observed data. with classifier g,
`g(X,Y ) = `(g(X), Y ). However, when the underlying
distribution is imbalanced, that is p = P(Y = +1)
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is relatively small, minimizing empirical version of
R often leads to trivial classification rules for which
the majority class is always predicted, because min-
imizing R(g) in that case is similar to minimizing
E [`(g(X), Y ) |Y = −1]. Indeed by the law of total
probabilities, R(g) = pE [`(g(X), Y ) |Y = +1] + (1 −
p)E [`(g(X), Y ) |Y = −1] and the former term is negli-
gible with respect to the latter when p� 1. For this
reason, even though standard ERM approaches might
enjoy satisfactory generalization properties over imbal-
anced distributions, with respect to the standard risk
R, they may lead to unpleasantly high false negative
rates and in general the average error on the minority
class has no reason to be small, as its contribution to
the overall risk R is negligible. This is typically what
should be avoided in many applications when false neg-
atives are of particular concern, among which medical
diagnosis or anomaly detection for aircraft engines, con-
sidering the tremendous cost of an error regarding a
positive example.

Bypassing the shortcoming described above is the main
goal of many works regarding imbalanced classifica-
tion. The existing literature may be roughly divided
into oversampling approaches such as SMOTE and
GAN (Chawla et al., 2002; Mariani et al., 2018), under-
sampling procedures (Liu et al., 2009; Triguero et al.,
2015) and risk balancing procedures also known as cost-
sensitive learning (Scott, 2012; Xu et al., 2020). Here
we focus on the latter approach which enjoys numer-
ous benefits, including simplicity, improved decision-
making (Elkan, 2001a; Viaene and Dedene, 2005), im-
proved class probability estimation (Wang et al., 2019;
Fu et al., 2022), better resource allocation (Xiong et al.,
2015; Ryu et al., 2017) and increased fairness (Menon
and Williamson, 2018; Agarwal et al., 2018). By incor-
porating the varying costs of misclassification into the
learning process, it enables models to make more in-
formed and accurate predictions for the minority class,
leading to higher-quality predictions. Balancing the
risk consists of minimizing risk measures that differ
significantly from the standard empirical risk, by means
of an appropriate weighting of the negative and posi-
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tive errors, in order to achieve a balance between the
contributions of the positive and negative classes to
the overall risk. In the present paper our main focus
is the balanced-risk, Rp(g) = E [`(g(X), Y ) |Y = +1] +
E [`(g(X), Y ) |Y = −1]. Other metrics might be con-
sidered as detailed for instance in Table 1 in Menon
et al. (2013) which we do not analyze here for the sake
of conciseness, even though our techniques of proof may
be straightforwardly extended to handle these variants.

Empirical risk minimization based on the balanced risk
is a natural idea, which is widely exploited by practi-
tioners and has demonstrated its practical relevance in
several operational contexts (Elkan, 2001b; Sun et al.,
2007; Wang et al., 2016; Khan et al., 2018; Pathak
et al., 2022). From a theoretical perspective, class
imbalance has been the subject of several works. For
instance, the consistency of the resulting classifier is in-
vestigated in Koyejo et al. (2014). Several different risk
measures and loss functions are considered in Menon
et al. (2013) where results of asymptotic nature are
established, for fixed p > 0, as n → ∞. Also in the
recent work by Xu et al. (2020), generalization bounds
are established for the imbalanced multi-class problem
for a robust variant of the balanced risk considered
here. Their main results from the perspective of class
imbalance, is their Theorem 1 where the upper bound
on the (robust) risk includes a term scaling as 1/(p

√
n).

A related subject is weighted ERM where the purpose
is to learn from biased data (see e.g. Vogel et al. (2020);
Bertail et al. (2021) and the references therein), that
is, the training distribution and the target distribution
differ. The imbalanced classification problem may be
seen as a particular instance of this transfer learning
problem, where the training distribution is imbalanced
and the target is a balanced version of it with equal
class weights. A necessary assumption in Bertail et al.
(2021) is that the density of the target with respect to
the source is bounded, which in our context is equiv-
alent to requiring that p is bounded away from 0, an
explicit assumption in Vogel et al. (2020) where the
main results impose that p > ε for some fixed ε > 0.

The common working assumption in the cited references
that p is bounded from below, renders their application
disputable in concrete situations where the number
of positive examples is negligible with respect to a
wealth of negative instances. To our best knowledge
the literature is silent regarding such a situation. More
precisely, we have not found neither asymptotic results
covering the case where p depends on n in such a way
that p→ 0 as n→∞; nor finite sample bounds which
would remain sharp even in situations where p is much
smaller than 1/

√
n. Such situations arise in many

examples in machine learning (see e.g. the motivating
examples in the next section). However, existing works

assume that the sizes of both classes are of comparable
magnitude, which leaves a gap between theory and
practice. A possible explanation is that existing works
do not exploit the full potential of the low variance
of the loss functions on the minority class typically
induced by boundedness assumptions combined with a
low expected value associated with a small p.

It is the main purpose of this work to overcome this
bottleneck and obtain generalization guarantees for the
balanced risk which remain sharp even for very small p,
that is, under sever class imbalance. Our purpose is to
obtain upper bounds on the deviations of the empirical
risk (and thus on the empirical risk minimizer) match-
ing the state-of-the art, up to replacing the sample size
n with np, the mean size of the rare class. To our best
knowledge, the theoretical results which come closest
to this goal are normalized Vapnik-type inequalities
(Theorem 1.11 in Lugosi (2002)) and relative deviations
(Section 5.1 in Boucheron et al. (2005)). However the
latter results only apply to binary valued functions
and as such do not extend immediately to general real
valued loss functions which we consider in this paper,
nor do they yield fast rates for imbalanced classification
problems, although relative deviations play a key role
in establishing fast rates in standard classification as re-
viewed in Section 5 from Boucheron et al. (2005). Also,
as explained above, we have not found any theoretical
result regarding imbalanced classification which would
leverage these bounds in order to obtain guarantees
with leading terms depending on np instead of n.

Our main tools are (i) Bernstein-type concentration
inequalities (that is, upper bounds including a variance
term) for empirical processes that are consequences
of Talagrand inequalities such as in Giné and Guillou
(2001), (ii) fine controls of the expected deviations
of the supremum error in the vicinity of the Bayes
classifier, by means of local Rademacher complexities
Bartlett et al. (2005); Bartlett and Mendelson (2006).
Our contributions are two-fold.
1. We establish an estimation error bound on the bal-
anced risk which holds true for VC classes of functions,
which scales as 1/

√
np instead of the typical rate 1/

√
n

in well-balanced problem, or 1/(p
√
n) in existing works

regarding the imbalanced case (e.g. as in Xu et al.
(2020)). Thus, in practice, our setting encompasses
the case where p � 1 (severe class imbalanced) and
our upper bound constitutes a crucial improvement by
a factor √p compared with existing works in imbal-
anced classification. Applying the previous bound to
the k-nearest neighbor classification rule, we obtain the
following new consistency result: as soon as kp goes
to infinity, the nearest neighbors classification rule is
consistent in case of relative rarity.
2. We obtain fast rates for empirical risk minimization
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procedures under an additional classical assumption
called a Bernstein condition. Namely we prove up-
per bounds on the excess risk scaling as 1/(np), which
matches fast rate results in the standard, balanced case,
up to replacing the full sample size n with the expected
minority class size np. To our best knowledge such
fast rates are the first of their kind in the imbalanced
classification literature.

Outline. Some mathematical background about im-
balanced classification and some motivating examples
are given in Section 2. In Section 3, we state our first
non-asymptotic bound on the estimation error over VC
class of functions and consider application to k-nearest
neighbor classification rules. In Section 4, fast conver-
gence rates are obtained and an application to ERM
is given. Finally, some numerical experiments are pro-
vided in Section 5 to illustrate the theory developed in
the paper. All proofs of the mathematical statements
are in the supplementary material.

2 DEFINITIONS AND NOTATIONS

Consider a standard binary classification problem
where random covariates X, defined over a space X ,
are employed to distinguish between two classes defined
by their labels Y = 1 and Y = −1. The underlying
probability measure is denoted by P and the associated
expectancy, by E. The law of (X,Y ) on the sample
space X × Y := X × {−1, 1}, is denoted by P . We
assume that the label Y = 1 corresponds to minority
class, i.e., p = P(Y = 1)� 1. In the sequel we assume
that p > 0, even though p may be arbitrarily small.

We adopt notation from empirical process theory.
Given a measure µ on X × Y and a real function f
defined over X × Y, we denote µ(f) =

∫
fdµ. When

f = 1C for a measurable set C, we may write inter-
changeably µ(f) = µ(1C) = µ(C). We denote by P+

the conditional law of (X,Y ) given that Y = +1, thus

P+(f) =
E(f(X,Y )1{Y = 1})

p
= E(f(X,Y ) | Y = 1).

In addition, we denote by Var+(f) the conditional vari-
ance of f(X,Y ) given that Y = +1. The conditional
distribution and variance P− and Var− are defined sim-
ilarly, conditional to Y = −1. Consider more generally
the weighted probability measures, for q ∈ (0, 1),

Pq(f) =
1

2

(
q−1P (fI+) + (1− q)−1P (fI−)

)
,

where fIs = f(x, y)1{y = s.1}, s ∈ {+,−}. Notice
that Ppf = (P+f + P−f)/2.

In this paper we consider general discrimination func-
tions (also called scores) g : X → R and loss func-
tions ` : R × {−1, 1} → R, and our results will hold

under boundedness and Vapnik-type complexity as-
sumptions detailed below in Sections 3, 4. Given a
score function g and a loss `, it is convenient to intro-
duce the function `g : (x, y) 7→ `(g(x), y). Thus the
(unbalanced) risk of the score function g is R(g) =
E[`g (X,Y )]. Notice that the standard 0 − 1 misclas-
sification risk, R0−1(g) = P (g(X) 6= Y ), is retrieved
when g is real valued and `(g(x), y) = sign(−g(x)y).
Allowing for more general scores and losses is a stan-
dard approach in statistical learning allowing to bypass
the NP-hardness of the minimization problem asso-
ciated with R0−1. Typically (although not required
here) `g(x, y) = φ (−g(x)y), where φ is convex and dif-
ferentiable with φ′(0) < 0 (Zhang, 2004; Bartlett et al.,
2006). This ensures that the loss is classification cali-
brated and that R(g) = E [`g (X,Y )] is a convex upper
bound of R0−1(g). Various consistency results ensuring
that g∗ = arg ming∈RX R(g) = arg ming∈RX R0−1(g)
can be found in Bartlett et al. (2006). Examples in-
clude the logistic (φ(u) = log(1 + e−u)), exponential
(φ(u) = e−u), squared (φ(u) = (1 − u)2), and hinge
loss (φ(u) = max(0, 1− u)).

The balanced 0−1 risk, defined as the arithmetic mean
R0−1
p (g) = (P+(Y 6= g(X)) + P−(Y 6= g(X)))/2 is

called the AM risk in Menon et al. (2013). The mini-
mizer of the latter risk, g∗p, is known as the balanced
Bayes classifier. It returns 1 when η(X) = P(Y =
+1 |X) ≥ p and −1 otherwise (see e.g. Th. 2 or Prop. 2
in Koyejo et al. (2014)). Here we consider general
weighted risks and real-valued loss function `g, defined
for g ∈ G, q ∈ (0, 1) as

Rq(g) = Pq(`q).

Of particular interest is the case q = p, for which Rp
is called the balanced risk.

Given an independent and identically distributed sam-
ple (Xi, Yi)1≤i≤n according to P , we denote by Pn the
empirical measure, Pn(f) = (1/n)

∑n
i=1 f(Xi, Yi), for

any measurable and real-valued function f on X × Y.
While the standard empirical probability is simply ex-
pressed as Pn(f) for any measurable function f , the
weighted empirical probability with weight q ∈ (0, 1) is

Pn,q(f) =
1

2

(
q−1Pn(fI+) + (1− q)−1Pn(fI−)

)
.

The balanced empirical probability Pn,p̂(f) must be
defined in terms of p̂ if p is unkown. We shall
sometimes use that Pn,p̂(f) = (Pn,+f + Pn,−f)/2,
where Pn,+(f) = p̂−1Pn(fI+) (by convention we set
Pn,+(f) = 0 when p̂ = Pn(Y = 1) = 0). The empirical
measure of the negative class, Pn,−, is defined in a
similar manner. For q ∈ (0, 1) the weighted q-empirical
risk is

Rn,q(g) = Pn,q(`g).
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Finally the balanced empirical risk considered in this
paper is

Rn,p̂(g) = Pn,p̂(`g) =
1

2
(Pn,+(`g) + Pn,−(`g)) .

For simplicity we make the standard assumption
throughout this paper that for all q ∈ (0, 1), a minimizer
g∗q (resp. ĝq) of Rq (resp. Rn,q) exists, in particular
that g∗p (resp. ĝp̂), a minimizer of the balanced risk
Rp(resp. Rn,p̂), exists.

Motivating examples We now present two exam-
ples where the probability p→ 0 as n→∞ :

1. The first example is the problem of contaminated
data which is central in the robustness literature.
A common theoretical assumption is that the num-
ber of anomalies n0 grows sub-linearly with the
sample size, as discussed in (Xu et al., 2012; Staer-
man et al., 2021). In this context, n0 = na for
some a < 1 and consequently, p = na−1 → 0.

2. The second example pertains to Extreme Value
Theory (EVT) (Resnick, 2013; Goix et al., 2015;
Jalalzai et al., 2018; Aghbalou et al., 2023). Con-
sider a continuous positive random variable T , pre-
dicting exceedances over arbitrarily high thresh-
old t may be viewed as a binary classification
problem. Indeed for fixed t, consider the binary
target Y = 1{T > t} − 1{T ≤ t} with marginal
class probability p = P (T > t). The goal is
thus to predict Y , by means of the covariate vec-
tor X. In practice, EVT based approaches set
the threshold t as the 1 − α quantile of T with
α = k/n → 0 and k = o(n). This approach es-
sentially assumes that the positive class consists
of the k = o(n) largest observations of T so that
P (T > t) = P (Y = 1) = k/n→ 0.

The considered framework “p going to 0 with n” is
also valuable from a theoretical perspective as it allows
to picture a learning frontier defined in terms of the
relative order of magnitude of p and n, above which
learning is consistent while below this threshold, one
would not be able to estimate the quantity of interest.
In a similar spirit, the in high-dimensional statistics, it
is customary to let the underlying dimension to grow
with the sample size.

3 STANDARD LEARNING RATES
UNDER RELATIVE RARITY

3.1 A First Deviation Inequality for Balanced
Risks

The primary goal of this paper is to assess the error
associated with estimating the balanced risk Rp(g)

using the empirical balanced risk Rn,p̂(g). Given the
definition of the balanced risk, the quantity of interest
takes the form (Pn,+ − P+)(f), and a similar analysis
applies to (Pn,− − P−)(f). In this paper we control
the complexity of the function class via the following
notion of VC-complexity. Let (S,S) be a measurable
space. Let F be a class of real valued functions defined
on S and Q be a probability measure on (S,S). Given
F ⊂ L2(Q), i.e., Q(f2) < ∞, for each f ∈ F , the ε-
covering number, denoted by N (F , L2(Q), ε), is defined
as the smallest number of closed L2(Q)-balls of radius
ε > 0 needed to cover F . For a given class of functions
F , F is called an envelope if |f(x)| ≤ F (x), for all
x ∈ S and all f ∈ F .
Definition 3.1. The family of functions F is said
to be of VC-type with constant envelope U > 0 and
parameters v ≥ 1 and A ≥ 1 if all functions in F
are bounded by U and for any 0 < ε < 1 and any
probability measure Q on (S,S), we have

N (F , L2(Q), εU) ≤ (A/ε)v.

The connection between the usual VC definition (Vap-
nik and Chervonenkis, 1971) and Definition 3.1 can
be directly established through Haussler’s inequality
(Haussler, 1995), which indicates that the covering num-
ber of a class of binary classifiers with VC dimension
v (in the sense of Vapnik and Chervonenkis (1971)) is
given by

N (F , L2(Q), ε) ≤ e(v + 1)(2e/ε2)v ≤ (e2/ε)2v.

Thus a VC-class of functions in the sense of Vapnik
and Chervonenkis (1971) is necessarily a VC-type class
in the sense of Definition 3.1.

Notice that within a class F with envelope U > 0, the
following variance bounds are automatically satisfied:

σ2
+, σ

2
− = sup

f∈F
Var+(f), sup

f∈F
Var−(f) ≤ U2.

The following theorem states a uniform generalization
bound that incorporates the probability of each class
in such a way that the deviations of the empirical
measures are controlled by the expected number of
examples in each class, np and n(1− p). Interestingly
the deviations may be small even for small p, as soon as
the product np is large. The bound also incorporates
the conditional variance of a class (σ2

+, σ
2
−), which will

play a key role in our application to nearest neighbors.

Theorem 3.2. Let F be of VC-type with constant
envelope U and parameters (v,A). For any n and δ
such that

np ≥ max

[
U2

σ2
+

v log

(
KAU

δσ+
√
p

)
, 8 log(1/δ)

]
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we have with probability 1− 2δ,

sup
f∈F
|Pn,+(f)− P+(f)| ≤ Kσ+

√
v

np
log

(
KAU

δσ+
√
p

)
for some universal explicit constant K > 0.

Remark 3.1. This upper bounds extends Theorem 1.11
in Lugosi (2002), which is limited to a binary class of
functions characterized by finite shatter coefficients.
The extension is possible by utilizing Berstein type in-
equalities for empirical processes defined on VC-type
classes of functions as in Giné and Guillou (2001);
Portier (2021). It is crucial to recognize that most ex-
isting non-asymptotic statistical rates in the imbalanced
classification literature (Menon et al., 2013; Koyejo
et al., 2014; Xu et al., 2020) follow the rate 1/(p

√
n),

leading to a trivial upper bound when p ≤ 1/
√
n. In our

analysis, the upper bound remains consistent provided
that np→∞, thereby emphasizing the merits of using
concentration inequalities incorporating the variance of
the positive class Var(f1{y = 1}) ≤ Up� 1.

The next corollary, which derives from Theorem 3.2
together with standard arguments, provides generaliza-
tion guarantees for ERM algorithms based upon the
balanced risk. Namely it gives an upper bound on the
excess risk of a minimizer of the balanced risk. The
proof is provided in the supplementary material for
completeness.

Corollary 3.3. Suppose that {`g : g ∈ G} is VC-type
with envelope U and parameters (v,A). Under the
conditions of Theorem 3.2 and that p ≤ 1/2, we have,
with probability 1− δ,

Rp(ĝp) ≤ Rp(g∗p) +Kσmax

√
v

np
log

(
KAU

δσmin
√
p

)
,

with σmax = σ− ∨ σ+, σmin = σ− ∧ σ+ and K > 0 is
an explicit universal constant (σ− and σ+ are defined
as before but with {`g : g ∈ G} instead of F).

The previous result shows that whenever np → ∞,
learning from ERM based on a VC-type class of func-
tions is consistent. Another application of our result
pertains to k-nearest neighbor classification algorithms.
In this case the sharpness of our bound is fully exploited
by leveraging the variance term σ+. This is the subject
of the next section.

Remark 3.2. The AM risk objective may be viewed
as a Lagrangian formulation of the constrained opti-
mization problem associated with the Neyman-Pearson
framework (Scott and Nowak, 2005). For instance,
Rigollet and Tong (2011) demonstrate an upper bound
of order 1/

√
np under the condition that the number of

observations in each class remains fixed. Their proof

technique heavily relies on this fixed sample size as-
sumption for each class. It is unclear how to leverage
this result to our context where n+ and n− are random.
Another key result in the given reference (Corollary 6)
is also close to our framework, however the stated upper
bound holds with probability 1−δ−exp(−np2). Thus the
probability of the adverse event becomes large as soon
as p ≤ 1/

√
n, rendering the guarantee vacuous. Inci-

dentally, note that the analysis in the referenced work
relies on the assumption that the family of classifiers
is finite.

3.2 Balanced k-Nearest Neighbor

In the context of imbalanced classification, we con-
sider here a balanced version of the standard k-nearest
neighbor (k-NN for short) rule, which is designed in
relation with the balanced risk R∗bal(g). We establish
the consistency of the balanced k-NN classifier with
respect to the balanced risk.

Let x ∈ Rd and ‖ · ‖ be the Euclidean norm on Rd.
Denote by B(x, τ) the set of points z ∈ Rd such that
‖x− z‖ ≤ τ . For n ≥ 1 and k ∈ {1, . . . , n}, the k-NN
radius at x is defined as

τ̂x := inf

{
τ ≥ 0 :

n∑
i=1

1B(x,τ)(Xi) ≥ k
}
.

Let Î(x) be the set of index i such that Xi ∈ B(x, τ̂x)
and define the estimate of the regression function η(x)
as

η̂(x) =
1

k

∑
i∈Î(x)

1Yi=1.

While standard NN classification rule is a majority
vote following η̂(x), i.e., predict 1 whenever η̂(x) ≥ 1/2,
it is natural, in view of well known results recalled
in Section 2, to consider a balanced classifier ĝ for
imbalanced data which predicts 1 whenever η̂(x) ≥ p̂,
that is ĝ = sign(η̂(x)/p̂− 1).

The analysis of the k-NN classification rule is conducted
for covariates X that admit a density with respect to
the Lebesgue measure. We will need in addition that
the support SX is well shaped and that the density
is lower bounded away from zero. These standard
regularity conditions in the k-NN literature are recalled
below.

(X1) The random variable X admits a density fX
with compact support SX ⊂ Rd.

(X2) There is c > 0 and T > 0 such that ∀τ ∈ (0, T ]
and ∀x ∈ SX ,

λ(SX ∩B(x, τ)) ≥ cλ(B(x, τ)),
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where λ is the Lebesgue measure.

(X3) There is 0 < bX ≤ UX < +∞ such that

bX ≤ fX(x) ≤ UX , ∀x ∈ SX .

In light of Proposition A.4 (stated in the supplement),
we consider the estimation of η(x)/p using the k-NN
estimate η̂(x)/p̂. The proof, which is postponed to the
supplementary file, crucially relies on arguments from
the proof of our Theorem 3.2 combined with known
results concerning the VC dimension of Euclidean balls
(Wenocur and Dudley, 1981).
Theorem 3.4. Suppose that (X1) (X2) and (X3) are
fulfilled and that x 7→ η(x)/p is L-Lipschitz on SX
(L does not depend on n). Then whenever p → 0,
pn/ log(n) → ∞, k/ log(n) → ∞ and k/n → 0, we
have, with probability 1,

sup
x∈X

∣∣∣∣ η̂(x)

p̂
− η(x)

p

∣∣∣∣ = O

(√
log(n)

kp
+

(
k

n

)1/d
)
.

The consistency of the balanced k-NN with respect to
the AM risk, encapsulated in the next corollary, follows
from Theorem 3.4 combined with an additional result
(Lemma A.4) relating the deviations of the empirical
regression function with the excess balanced risk.
Corollary 3.5. Suppose that (X1) (X2) and (X3) are
fulfilled and that x 7→ η(x)/p is L-Lipschitz on SX .
Then whenever p→ 0, kp/ log(n)→∞ and k/n→ 0,
we have, with probability 1,

Rp(ĝp̂)→ Rp(g∗p).

The main interest of Corollary 3.5 is that the condition
for consistency involves the product of the number of
neighbors k with the rare class probability p. The take-
home message is that learning nonparametric decision
rules is possible with imbalanced data, as soon as kp
is large enough. In other words local averaging process
should be done carefully to ensure a sufficiently large
expected number of neighbors from the rare class.

4 FAST RATES UNDER RELATIVE
RARITY

We now state and prove a concentration inequality that
is key to obtain fast convergence rates for the excess
risk in the context of balanced ERM. The following
condition regarding a class of functions F is a prevalent
concept within the fast rates literature (Bartlett and
Mendelson, 2006; Klochkov and Zhivotovskiy, 2021).
A class of function F satisfies a Bernstein condition
relative to a probability measure P on X × Y if there
exists B > 0 such that

(B1) for all f ∈ F , Pf2 ≤ BPf.

Prior to stating our main result, we introduce classes of
functions that are constructed as convex combinations
of differences between functions in the original loss class
and minimizers of the weighted risk Rq. For q ∈ (0, 1)
recall that g∗q minimizes the Rq-risk over the class of
score functions G and let Hq = {`g − `g∗q , g ∈ G}. Let

H = {(1− q)hqI+ + qhqI−, q ∈ (0, 1), hq ∈ Hq}.

With these notations notice already that for h = (1−
q)hqI+ + qhqI− ∈ H, with hq = `g − `g∗q , the quantity
Ph should be interpreted as an excess of weighted risk,
since

1

q(q − 1)
Ph =

1

q
P (hqI+) +

1

1− qP (hqI−)

= Pqhq = Pq(`g − `g∗q )

= Rq(gq)−Rq(g∗q ).

It turns out that the classH indeed satisfies a Bernstein
assumption under standard assumptions regarding the
original loss class L = {`g, g ∈ G}. Namely it is enough
to assume that the latter satisfies a strong convexity
property and a Lipschitz property, which are commonly
satisfied in Machine Learning problems. The proof of
the following statement is deferred to the Supplemen-
tary material

Lemma 4.1 (Sufficient conditions for H to satisfy
a Bernstein-condition). Assume that G is a convex
subset of a normed vector space, and that there ex-
ists L, λ > 0, such that for s ∈ {+,−} the func-
tions g 7→ P`gIs are respectively (pλ)-strongly convex
and ((1− p)λ)-strongly convex. Assume also that for
g1, g2 ∈ G,

√
P ((`g1 − `g2)2I+) ≤ (

√
pL)‖g1−g2‖ and√

P ((`g1 − `g2)2I−) ≤ (
√

1− pL)‖g1 − g2‖. Then H
satisfies the Bernstein condition (B1), with B = L2/λ.

Example 4.1. Assume that the domain X is bounded
in Rd i.e., there exists some ∆X > 0 such as
∀x ∈ X , ‖x‖ ≤ ∆X for some norm ‖ · ‖. Consider
the family of classifier and the loss function Gu ={
gβ : x 7→ βTx ‖β‖ ≤ u

}
and `gβ (X,Y ) = φ(βTXY ),

where φ : R 7→ R is a twice continuously differentiable
non-decreasing function which is µ-strongly convex for
some µ > 0. Then we have that the domain I =
{β>xy , , ‖β‖ ≤ u, x ∈ ∆x, y ∈ {−1,+1}} is bounded
and the derivative φ′ satisfies supt∈I |φ′|(t) = D <∞.
Let Vs = E

[
XX> |Y = s.1

]
, s = +,− be the second

moment matrix of each class and σ2
max, σ

2
min their max-

imum and minimum eigenvalues. Direct computations
show that the Lipschitz and convexity constraints in
Lemma 4.1 are respectively L = Dσmax, and λ = µσ2

min.
Under the condition that each class distribution is non
degenerate, i.e. does not concentrate on any lower
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dimensional subspace of Rd, we have σmin > 0, thus
λ > 0. The assumptions of Lemma 4.1 are thus satis-
fied, so that Bernstein condition (B1) holds true with

B = L2/λ =
D2σ2

max

µσ2
min

.

Another useful property of H is that it inherits the reg-
ularity property of L, see the Supplementary material
for details.

Lemma 4.2 (VC-property of H). If L = {`g, g ∈ G}
is of VC-type with envelope U and parameters (v,A)
then H also is VC with envelope 2U and parameters
(ṽ = 4v + 1, Ã = 6A).

We now state our main result (fast rates for the devia-
tions of weighted risks) in the light of the good proper-
ties of H stated below. To wit, in our application to
empirical risk minimization (Corollaries 4.4, 4.5), the
classes Fq in the following statement will be chosen as
Hq, so that we shall have F = H.
Theorem 4.3. [Fast rates for the deviations of
weighted probabilities] Let (Fq, q ∈ (0, 1)) be a family
of classes of functions with common envelope 2U >
0. Assume that the class of convex combinations
{(1 − q)fqI+ + qfqI−, q ∈ (0, 1), fq ∈ Fq} satisfies
Bernstein condition (B1) for some B ≥ 2U , and that
it is of VC-type with parameters (ṽ, Ã).

Then the deviations of the weighted probabilities Pq over
the classes Fq are uniformly controlled as follows: for
any K > 1 and every δ > 0, with probability at least
1− δ, for all q ∈ (0, 1) and for all fq ∈ Fq,

Pq(fq) ≤
K

K − 1
Pn,q(fq) +

c1BKṽ log(5Ã
√
n/δ)

2nq(1− q) ,

where c1 > 0 is an explicit universal constant given in
the proof.
Also, with probability at least 1− δ, ∀q,∀fq ∈ Fq,

Pn,q(fq) ≤
K + 1

K
Pq(fq) +

c1BKṽ log(5Ã
√
n/δ)

2nq(1− q) .

Sketch of proof. The main tool for the proof is a fast
rate result (Theorem 3.3 in Bartlett et al. (2005), re-
called for completeness in the supplementary material
as Theorem C.4). The argument from the cited refer-
ence relies on a fixed point technique relative to a sub-
root function upper bounding some local Rademacher
complexity. Leveraging fine controls of the latters (Sec-
tion C.1) we establish that the fixed point of the sub-
root function is of order O(log(n)/n) and we obtain
an explicit control of the deviations of the (standard)
empirical measure, under a Bernstein condition (see
Proposition C.5). Finally the main result is obtained

by applying the latter proposition to the specific class
of convex combinations defined in the statement, and
rescaling the obtained bound by the quantity 2q(1− q),
see Section C.1 for details.

Discussion. Similar proof techniques can be found
in the standard classification literature, for example
Corollary 3.7 in Bartlett et al. (2005). Nevertheless,
this particular work primarily concentrates on loss func-
tions with binary values, namely {0, 1}. The proof is
based upon the fact that these functions are positive,
and it employs the initial definition of the VC dimen-
sion (Vapnik and Chervonenkis, 1971). In contrast,
other existing works (e.g. Theorem 2.12 in Bartlett
and Mendelson (2006) or Example 7.2 in Giné and
Koltchinskii (2006)) demonstrate accelerated conver-
gence rates for the typical empirical risk minimizers,
which do not extend to their balanced counterparts.
The present result is more general, as it is uniformly
applicable to a broader range of bounded functions
and encompasses a more extensive definition of the
VC class. This notable extension facilitates the estab-
lishment of fast convergence rates for the excess risk
of (ML) algorithms employed in imbalanced classifica-
tion scenarios, such as cost-sensitive logistic regression
and balanced boosting (Menon et al., 2013; Koyejo
et al., 2014; Tanha et al., 2020; Xu et al., 2020). In
the remainder of this section we provide examples of
algorithms that verify the assumptions of Theorem 4.3.

As an application of Theorem 4.3, we derive fast rates
for the excess risk of empirical risk minimizers. Our
result (Corollary 4.4 below) is stated in terms of excess
of Rp̂ risk.

Corollary 4.4. Assume that L = {`g : g ∈ G} is of
VC-type with envelope U > 0 and parameters (v,A)
and assume that H defined at the beginning of this
section satisfies the Bernstein condition (B1) for some
B ≥ 2U (this is the case e.g. under the Assumptions
of Lemma 4.1). Let ĝp̂ be a minimizer of the empirical
balanced risk Rn,p̂ considered in Section 3. Then for
δ > 0, with probability 1− δ,

Rp̂(ĝp̂)−Rp̂(g∗p̂) ≤ c1Bṽ log(5Ã
√
n/δ)

2np̂(1− p̂) ,

where (ṽ = 4v + 1, Ã = 6A), and where the constant
c1is the same as in Theorem 4.3.

Proof. We consider the classes of functions Fq = Hq.
The class of convex combinations from the statement
of Theorem 4.3 is precisely H, which is B-Bernstein by
assumption and it is also of VC-type with parameters
(ṽ, Ã) by virtue of Lemma 4.2. We may thus apply
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Theorem 4.3. Because the result of Theorem 4.3 holds
uniformly over q ∈ (0, 1), f ∈ Fq, one may choose
q = p̂. Also we choose fp̂ ∈ Fp̂ = Hp̂ as fp̂ = `ĝp̂ − `g∗p̂ .
Then the first term on the right-hand side of the first
upper bound in Theorem 4.3 is nonpositive, and the
result follows upon choosing K = 2.

Remark 4.1 (Weighting with p̂ or p). Under mild
conditions on np and δ, we have that p̂(1− p̂) ≥ p(1−
p)/2 (as indicated by Chernoff’s multiplicative bound
in Theorem A.1), so that Corollary 4.4 immediately
yields a rate of convergence in terms of the true value p
rather than its empirical counter part. However whether
it is possible to replace Rp̂ with Rp in the statement
remains an open question. The main bottleneck seems
to be that replacing p̂ with p in expressions of the kind
‘Pn(fI+)/p̂+ Pn(fI−)/(1− p̂)’, where one term in the
summand may be negative, induces additional slow rate
terms of order O(1/

√
np).

We conclude this section by illustrating the significance
of our results, through the concrete setting of Exam-
ple 4.1. The following corollary is a direct consequence
of Corollary 4.4 and guarantees fast rates of conver-
gence for constrained ERM, specifically for algorithms
of the form ĝu,p̂(x) = β̂Tu x with

β̂u = arg min
‖β‖≤u

n−1
n∑
i=1

φ(β>XiYi)
(
p−11{Yi = 1}+ · · ·

(1− p)−11{Yi = −1}
)
.

Then from standard arguments the class L = {`(x, y) =
φ(β>} is of VC-type with parameters (v = 2(d+ 1), A)
for some A > 0 (see e.g.van der Vaart and Wellner
(1996), Chap.2.6) depending on φ. The following result
derives immediately from the argument of Example 4.1,
from Lemma 4.1 and from Corollary 4.4.
Corollary 4.5. In the setting of Example 4.1, let
(v = 2(d + 1), A) be the parameters of the VC-type
class L defined above the statement. The excess risk
of ĝu verifies, for any δ > 0, with probability 1− 4δ,

Rp̂ (ĝp̂) ≤ Rp̂(g∗p̂) +
c1(d+ 1)D2σ2

max

µσ2
min

log(30A
√
n/δ)

np̂(1− p̂) ,

where c1 is as in Theorem 4.3.
Discussion. In the context of constrained logistic re-
gression, where φ(x) = log(1+e−x), the latter corollary
yields fast convergence rates with constants and L′ = 1,
along with λ = e−u. Corollary 4.5 further establishes
accelerated convergence rates for constrained empiri-
cal balanced risk minimization with respect to losses
such as mean squared error, squared hinge, and ex-
ponential loss, among others. This outcome aligns
with expectations, as constrained empirical risk mini-
mization is equivalent to penalization (Lee et al., 2006;

Homrighausen and McDonald, 2017). Numerous stud-
ies have demonstrated the effectiveness of penalization
in achieving rapid convergence rates (Koren and Levy,
2015; van Erven et al., 2015). This aspect is particu-
larly significant in the present context, as the standard
convergence rate for imbalanced classification is 1/

√
np,

and accelerating the convergence rate leads to a more
pronounced impact.

5 NUMERICAL ILLUSTRATION

In this section, we illustrate on synthetic data our the-
oretical results on k-NN classification (Corollary 3.5)
and on logistic regression (Corollary 4.5). In both cases,
particular attention is paid to highly imbalanced set-
tings where p = n−a for some 0 < a < 1. Due to space
constraint, the real data experiments are postponed
to the supplement. We use the following simple data
generation process to obtain a binary classification i.i.d
dataset (Xi, Yi)i=1,...,n, with Xi ∈ R2 and Y ∈ {−1, 1}.
The Yi are Bernoulli variables with parameter p = 1/na,
for some a < 1. Then, given Yi = y, Xi is drawn accord-
ing to a t-multivariate-student distribution, with pa-
rameters (µy, σy, νy), where (µ−1, gµ1) = ((0, 0), (1, 1)),
σ1 = 3σ−1 = 3I and (ν−1, ν1) = (2.5, 1.1).

5.1 Balanced k-Nearest Neighbors

Corollary 3.5 provides sufficient conditions on k, n and
p for consistency of the k-NN classification rule, the
key being that kp should go to ∞. This suggests the
existence of a learning frontier on the set (k, p) above
which consistent learning is ensured. Our experiments
aim at illustrating this fact. Here the training size is
n = 1e4. We set p = pn = 1/na and k = nb, where a, b
vary within the interval [1/4, 3/4] and cover different
cases ranging from pn→ 0 to pn→∞. The AM-risk
for the classification error associated to the balanced
k-NN classifier (estimated with 20 simulations) is dis-
played as a function of (k, p) in Figure 1. For small
values of kp, the performance of the k-nearest neighbors
classifier mirrors that of a random guess, maintaining
an AM risk near 0.5, while kp large ensures good per-
formance.This observation illustrates (and extends) the
conclusion of Corollary 3.5, supporting that consistency
is obtained if (and only if) kp→∞.

5.2 Balanced ERM

Our goal is to demonstrate empirically that the fast
convergence rate of order 1/(np) obtained in Corollary
4.5 is sharp and can be observed in practice for a wide
range of values of p. We consider the linear setting of
Example 4.1, with the logistic loss: `g(X,Y ) = log(1−
e−g(X)Y ), g(X) = βTX and ‖β‖ ≤ u = 10. The sample
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n1/4 n1/2 n3/4

k

1/n1/4

1/n1/2

1/n3/4

pn

0.55

0.60

0.65

0.70

Figure 1: AM risk of the balanced k-NN (heatmap).

size n ranges over the grid [100, 1e4] and we let p = n−a,
a ∈ {1/3, 1/2, 2/3}. Some Monte-Carlo simulations
(N = 1e5 simulations) are needed to estimate g∗p̂. For
simplicity and to alleviate the computational burde we
consider g∗p for fixed p instead, and the balanced riskRp
instead of Rp̂. The risk function Rp is also estimated
based on Monte-Carlo simulations (N ′ = 1e4). We thus
obtain both Rp(g∗p) and Rp(ĝp̂), and the value of the
excess p-risk follows We perform report the average and
the upper 0.10 and 0.90 quantile of the absolute error
obtained over the nsimu = 1e4 experiments. Figure
2 displays the excess risk as a function of the sample
size n on a logarithmic scale, for a ∈ {1/3, 1/2, 2/3}.
Other figures exploring other values of a are reported
in the supplementary material. We notice that the
excess risk vanishes in the same way as the function
n 7→ 1/np confirming the accuracy of the upper bound
from Corollary 4.5.

6 Conclusion

In this paper, we have derived upper bounds for the
balanced risk in highly imbalanced classification sce-
narios. Notably, our bounds remain consistent even
under severe class imbalance (p→ 0), setting our work
apart from existing studies in imbalanced classifica-
tion (Menon et al., 2013; Koyejo et al., 2014; Xu et al.,
2020). Furthermore, it is worth to highlight that this
is the first study to achieve fast rates in imbalanced
classification, marking a significant advancement in the
field. Our findings confirm that both risk-balancing
approaches and cost-sensitive learning are consistent
across nearly all imbalanced classification scenarios.
This aligns with experimental works previously docu-
mented in the literature (Elkan, 2001b; Wang et al.,
2016; Khan et al., 2018; Wang et al., 2019; Pathak et al.,
2022). Furthermore, the methodologies and proof tech-
niques presented in this paper are adaptable to other

102 103 104

n

10−3

10−2

10−1

(a) pn = 1/n1/3.

102 103 104

n

10−2

10−1

(b) pn = 1/n1/2.

102 103 104

n

10−1

100

(c) pn = 1/n2/3.

Figure 2: Excess balanced risk (log-scale) of logistic
regression as a function of n, when p = pn → 0. Or-
ange line: curve 1/np. Blue area: inter-quantile range
[0.1, 0.9].

.

imbalanced classification metrics beyond balanced clas-
sification. Potential extensions include demonstrating
consistency for metrics such as the F1-measure, Recall,
and their respective variants.
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Supplementary material for "Sharp Error Bounds for Imbalanced
Classification: How many Examples in the Minority Class?"

A AUXILIARY RESULTS

The following standard Chernoff inequality is stated and proven in Hagerup and Rüb (1990).

Theorem A.1. Let (Zi)i≥1 be a sequence of i.i.d. random variables valued in {0, 1}. Set µ = nP (Z1) and
S =

∑n
i=1 Zi. For any δ ∈ (0, 1) and all n ≥ 1, we have with probability 1− δ:

S ≥
(

1−
√

2 log(1/δ)

µ

)
µ.

In addition, for any δ ∈ (0, 1) and n ≥ 1, we have with probability 1− δ:

S ≤
(

1 +

√
3 log(1/δ)

µ

)
µ.

The following is taken from Portier (2021). Other similar results are given in Giné and Guillou (2001) or Plassier
et al. (2023) with non-explicit constants.

Theorem A.2. Let (Z1, . . . , Zn) be an independent and identically distributed collection of random variables
with common distribution P on (S,S). Let G be of VC-type with parameters v ≥ 1, A ≥ 1 and uniform envelope
U ≥ supg∈G, x∈S |g(x)|. Let σ be such that supg∈G VarP (g) ≤ σ2 ≤ U2. For any n ≥ 1 and δ ∈ (0, 1), it holds,
with probability at least 1− δ,

sup
g∈G

∣∣∣∣∣
n∑
i=1

{g(Zi)− P (g)}
∣∣∣∣∣ ≤ K1

√
vnσ2 log (9AU/(σδ)) +K2Uv log (9AU/(σδ)) ,

with K1 = 5C, K2 = 64C2 and C = 12.

Lemma A.3. Suppose that F (resp. G) defined on (S,S) is of VC-type with envelope U and parameter (v,A)
and let E ∈ S. The following holds:

1. {fIE : f ∈ F} is of VC-type with envelope U and parameter (v,A),

2. F − G = {f − g : f ∈ F , g ∈ G} is of VC-type with envelope 2U and parameter (2v, 2A),

3. {f − P (f |E) : f ∈ F} is of VC-type with envelope 2U and parameter (2v,A),

4. {qf + (1− q)g : f ∈ F , g ∈ G, q ∈ [0, 1]} is of VC-type with envelope U and parameter (2v + 1, 3A).
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Proof. Let Q be a probability measure on (S,S). Let (fk)k=1,...,K be the center of an εU -covering of (F , Q).
The first statement follow from the fact that ‖f1E − fk1E‖L2(Q) ≤ ‖f − fk‖L2(Q). For the second statement
consider Uε-covers (fk, k ≤ K) and (gj , j ≤ J) respectively of F and G. Then the triangle inequality shows that
(fk− gj), k ≤ K, j ≤ J forms a 2Uε-cover of F +G and the result follows. Now let (f̃k)k=1,...,K be the center of an
εU -covering of (F , PE) with PE(·) = P (·|E). Consider the covering induces by the centers (fk − PE(f̃j))1≤k,j≤K
made of K2 elements. Suppose that f ∈ F . Then there is k and j such that

‖(f − PE(f))− (fk − PE(f̃j)‖L2(Q) ≤ ‖f − fk‖L2(Q) + PE(f − f̃j)
≤ ‖f − fk‖L2(Q) + ‖f − f̃j‖L2(P )

≤ 2Uε.

Hence we have found a 2Uε-covering of size K2 which by assumption is smaller than (A/ε)2v. This implies the
third statement of the lemma. For the last statement, let H = {qf + (1 − q)g : f ∈ F , g ∈ G, q ∈ [0, 1]}. Let
(fk)k=1,...,K (resp. g`, (g`)`=1,...,L) be the center of an εU -covering of (F , Q) (resp. (G, Q)). Let qi, i = 1, . . . , b1/εc
be an ε-covering of [0, 1]. Let h = qf + (1− q)g be such that q ∈ [0, 1], f ∈ F and g ∈ G. There is fk, g`, qi such
that

‖qf + (1− q)g − (qifk + (1− qi)g`)‖L2(Q)

≤ ‖q(f − fk) + (1− q)(g − g`)‖L2(Q) + ‖(q − qi)fk + (qi − q)g`‖L2(Q)

≤ qUε+ (1− q)Uε+ εU + εU = 3εU.

Hence the element (qifk + (1− qi)g`) form an 3εU -covering in the space L2(Q). There are KLd1/εe ≤ KL/ε such
elements. As a consequence, since F and G are are of VC-type, it follows that

N (H, L2(Q), 3εU) ≤ (A/ε)2v(1/ε) ≤ (A/ε)2v+1

which implies the stated result.

The next lemma generalizes Theorem 17.1 from Biau and Devroye (2015) to the balanced type classifiers.

Lemma A.4. For any classifier g that writes g(x) = sign(ν(x)− 1), x ∈ X , we have

Rp(g)−Rp(g∗p) = E
[
1g(X)6=g∗p(X)

|η(X)− p|
p(1− p)

]
,

where g∗p is the balanced Bayes classifier (introduced in Section 2). Furthermore, whenever p ≤ 1/2,

Rp(g)−Rp(g∗p) ≤ 2E [|ν(X)− ν∗(X)|]

where ν∗(x) = η(x)/p.

Proof. The balanced risk writes as

Rp(g) = P+ (ν(X) < 1) + P− (ν(X) ≥ 1)

= E
[ I(ν(X)<1)IY=1

p
+

I(ν(X)≥1)IY=−1

1− p

]
.

In addition, using a conditioning argument yields,

Rp(g) = E
[ I(ν(X)<1)η(X)

p
+

I(ν(X)≥1)(1− η(X))

1− p

]
.

Similarly we have

Rp(g∗) = E
[ I(ν∗(X)<1)η(X)

p
+
1(ν∗(X)≥1)(1− η(X))

1− p

]
.



Anass Aghbalou, François Portier, Anne Sabourin

It follows that

Rp(g)−Rp(g∗p) = E
[
Isign(ν∗(X)−1)6=sign(ν(X)−1)

|η(X)− p|
p(1− p)

]
= E

[
Ig∗(X) 6=g(X)

|η(X)− p|
p(1− p)

]
,

This concludes the first part. For the second part, it remains to note that for any real numbers (x, y)

sign(x− 1) 6= sign(y − 1) =⇒ |y − 1| ≤ |x− y|,
so that, using that ν∗ = η∗/p, we obtain

Rp(g)−Rp(g∗) = E
[
Isign(ν∗(X)−1)6=sign(ν(X)−1)

|η(X)− p|
p(1− p)

]
= E

[
Isign(ν∗(X)−1)6=sign(ν(X)−1)

|ν∗(X)− 1|
(1− p)

]
≤ E [|ν∗(X)− ν(X)|]

1− p ,

but since p ≤ 1/2 we obtain the desired result.

B STANDARD RATES PROOFS

B.1 Proof of Theorem 3.2

We start with the following lemma which is a simple consequence of Theorem A.1.
Lemma B.1. Let zn =

√
2 log(1/δ)/(np) and suppose that zn ≤ 1. Then, with probability at least 1− δ, we have

p

p̂
− 1 ≤ zn

1− zn
(1)

and whenever zn ≤ 1/2 we obtain that p/p̂− 1 ≤ 2zn ≤ 1, with probability greater than 1− δ.

We have that

Pn,+ (f)− P+ (f) =
Pn
(
(f − P+ (f))1{Y=1}

)
p̂

(2)

we focus on each term, denominator and numerator, separately. For the numerator, the term (f − P+(f))1{Y=1}
has mean 0. In virtue of Lemma A.3, the class (f − P+(f))1{Y=1} is still bounded by 2U and is still of VC-type
with VC parameter (2v,A). As a consequence, we can use Theorem 2 in Portier (2021), stated as Theorem A.2 in
the present supplementary file. The variance is bounded as follows

Var
(
(f − P+(f))1{Y=1}

)
= P

(
(f − P+(f))21{Y=1}

)
= Var+(f)p = σ2

+p,

by definition of σ2
+. As a consequence, Theorem A.2 gives that

sup
f∈F
|Pn

(
(f − P+(f))1{Y=1}

)
| ≤ K ′

(√
vσ2

+p

n
log

(
K ′AU

δσ+
√
p

)
+
Uv

n
log

(
K ′AU

δσ+
√
p

))

≤ 2K ′

√
vσ2

+p

n
log

(
K ′AU

δσ+
√
p

)
,

where the last inequality has been obtained using the stated condition on n and δ. For the denominator, using
Lemma B.1, we have that, with probability 1− δ, p ≤ 2p̂, by using the condition on n and δ. Using the union
bound, we get, with probability 1− 2δ,

sup
f∈F

Pn
(
(f − P+(f))1{Y=1}

)
p̂

≤ 4K ′

√
vσ2

+

np
log

(
K ′AU

δσ+
√
p

)
and the proof is complete.
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B.2 Proof of Corollary 3.3

First, using the definition of ĝp̂ yields
Rn,p̂ (ĝp̂)−Rn,p̂

(
g∗p
)
≤ 0,

so that

Rp(ĝp̂)−Rp(g∗p) ≤ Rp(ĝp̂)−Rn,p̂(ĝp̂)−
(
Rp(g∗p)−Rn,p̂(g∗p)

)
≤ 2 sup

g∈G
|Rp(g)−Rn,p̂(g)|

≤ sup
g∈G
|Pn,−(g)− P−(g)|+ sup

g∈G
|Pn,+(g)− P+(g)| .

It remains to use Theorem 3.2 twice, one time with Y = 1 (as stated) and one more time with Y = −1. The end
of the proof consists in verifying that the stated bound is an upper bound for each of the two previously obtained
upper bounds.

B.3 Proof of Theorem 3.4

Even though the results are different, the proof is inspired from the ones of Theorem 1 in Ausset et al. (2021) and
Theorem 6 in Portier (2021). First we recall two results that will be useful in the proof. In each, we assume that
(X1) (X2) and (X3) are fulfilled. The following Lemma (Portier, 2021, Lemma 4) controls the size of the k-NN
balls uniformly over all x ∈ SX .
Lemma B.2 (Portier (2021, Lemma 4)). For all n ≥ 1, δ ∈ (0, 1) and 1 ≤ k ≤ n such that 8d log(12n/δ) ≤ k ≤
T dnbXcVd/2, it holds, with probability at least 1− δ:

sup
x∈SX

τ̂x ≤ τn,k :=

(
2k

nbXcVd

)1/d

, (3)

where Vd = λ(B(0, 1)).

The next lemma is a consequence of Theorem A.2. Let

G = {g(Y,X) = (1Y=1 − η(X))I‖X−x‖≤τ : τ ≤ τn,k, x ∈ Rd}

which is of VC-type as shown in Lemma 9 in Portier (2021) (see also Wenocur and Dudley (1981)). Because SX
is compact and η/p continuous, there exists C such that η(x) ≤ pC for all x ∈ SX . The variance of each element
in the class is bounded as

Var(g(Y,X)) ≤ E(1Y=1I‖X−x‖≤τ ) ≤
∫
η(z)I‖z−x‖≤τfX(z)dz ≤ CpUXτdn,kVd.

Injecting the previous variance bound (which scales as pk/n) in the upper-bound given in Theorem A.2 we obtain
the following statement.
Lemma B.3. We have with probability at least 1− δ,

sup
g∈G

∣∣∣∣∣
n∑
i=1

g(Yi, Xi)

∣∣∣∣∣ ≤ C1

(√
kp log

(
C2n

pδ

)
+ log

(
C2n

pδ

))
(4)

where C1 and C2 are constants that does not depend on n, k and p but on the dimension d, the VC parameter of
G, and the probability measure PX .

Define the event En as the union of (1), (3) and (4). By the previous two lemmas and Lemma B.1, using the
union bound, we obtain that P (En) ≥ 1 − 3δ. In light of Borel-Cantelli Lemma we choose δ = 1/n2 so that∑
n(1 − P (En)) is finite and the event lim infnEn has probability 1. It then suffices to show that En implies

that η̂(x)/p̂− ν∗(x) = O(
√

log(n)/kp+ (k/n)1/d). Note that under En, when n is large enough, by Lemma B.1,
p/p̂ ≤ 2. Let Mi = 1Yi=1 − η(Xi) and Bi(x) = η(Xi)− η(x). We have

η̂(x)

p̂
− ν∗(x) =

∑
i∈Î(x)Mi

kp̂
+

∑
i∈Î(x)Bi(x)

kp̂
+ η(x)

(
1

p̂
− 1

p

)
. (5)
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On the event En, the function (Y,X) 7→ (1Y=1 − η(X))1‖X−x‖≤τ̂x belongs to the space G. Consequently, the
first term in (5) is smaller than

(kp̂)−1 sup
g∈G

∣∣∣∣∣
n∑
i=1

g(Yi, Xi)

∣∣∣∣∣
which by Lemma B.1 and (4) is O(

√
log(n)/kp). Using the assumption that x 7→ η(x)/p is L-Lipschitz we get

that, on En, the second term in (5) is such that∑
i∈Î(x)Bi(x)

kp̂
≤ p

p̂
Lτn,k,

which, using Lemma B.1, is O((k/n)1/d). The third term in (5) is smaller than (η(x)/p) (p/p̂− 1) which is,
using again the Lipschitz assumption and Lemma B.1 again, O(

√
log(n)/(np). The latter bound is smaller than√

log(n)/(kp) so it does not appear in the stated bound.

C FAST RATES PROOFS

C.1 Intermediate results

Before moving to the main proof we remind some necessary concepts and provide two technical lemmas inspired
from several papers dealing with empirical processes on VC-type classes Giné and Guillou (2001); Giné and Nickl
(2009). First, let us recall the definition of a sub-root functions.

Definition C.1. A function ψ : [0,∞)→ [0,∞) is sub-root if it is nonnegative, nondecreasing and if r 7→ ψ(r)/
√
r

is nonincreasing for r > 0.

Let σ1, . . . , σn denote a collection of independent Rademacher variables, i.e., for each i, σi ∈ {−1, 1} and
P (σi = 1) = 1/2. The Rademacher variables are independent from the collection Z1 = (X1, Y1), . . . , Zn = (Xn, Yn).
In the sequel, we will focus on the so called Rademacher complexity of functional classes F , defined as

Rn (F) =
1

n
sup
f∈F

n∑
i=1

σif(Zi).

Namely a central object in our proof will be the Rademacher complexity of classes Fq (differences between a
given loss function and an optimal one) introduced at the beginning of Section 4. The conditional expectation
given (Zi)1≤i≤n (taken with respect to the Rademacher variables (σi)1≤i≤n only), will be denoted Eσ. Define

Fn,r = {f ∈ F : Pn(f2) ≤ r}.

When r > U2, since Pn(f2) ≤ U2, we have that Fn,r = Fn,U2 . Therefore we assume subsequently that r ≤ U2.
In the next lemma we derive an upper bound for EσRn(Fr).
Lemma C.2. Let F be a class of functions that is VC-type with envelope U > 0 and parameter v,A ≥ 1. For
any r ≤ U2, it holds that, with probability 1,

EσRn(Fn,r) ≤ C
√
rn−1v log(eAU/

√
r).

with C = 12
∫∞
1
s−2
√

1 + log(s)ds.

Proof. Using Dudley’s entropy integral bound, see for instance Corollary 5.25 in Van Handel (2014), one has,

Eσ [Rn(Fn,r)] ≤
12√
n

∫ ∞
0

√
logN (Fn,r, L2(Pn), ε)dε

By definition of Fn,r, it holds that N (Fn,r, L2(Pn), ε) = 1 as soon as ε ≥ √r. Hence, using some variable changes,
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we obtain

Eσ [Rn(Fn,r)] ≤
12√
n

∫ √r
0

√
logN (Fn,r, L2(Pn), ε)dε

=
12U√
n

∫ √r/U
0

√
logN (Fn,r, L2(Pn), Uε)dε

≤ 12U
√
v√

n

∫ √r/U
0

√
log(A/ε)dε

=
12UA

√
v√

n

∫ ∞
AU/
√
r

√
log(s)s−2ds

=
12
√
vr√
n

∫ ∞
1

√
log(sAU/

√
r)s−2ds

Now since A ≥ 1, we have log(eAU/
√
r) ≥ 1 and we can write

log(sAU/
√
r) ≤ log(eAU/

√
r)(1 + log(s))

which implies that

Eσ [Rn(Fn,r)] ≤ 12

√
vr log(eAU/

√
r)

n

∫ ∞
1

s−2
√

1 + log(s)ds

= C

√
vr log(eAU/

√
r)

n
.

A further similar result is now given about the class

Fr = {f ∈ F : P (f2) ≤ r}.

.

Lemma C.3. Let F be a class of functions that is VC-type with envelope U > 0 and parameter v,A ≥ 1. We
have, for any r ≤ U2,

E[Rn{Fr}] ≤ C
√
n−1vr log(5AU/

√
r) + 8UC2n−1v log(5AU/

√
r)

where C is defined in Lemma C.2. Moreover if r ≥ n−1U2, we obtain

E[Rn{Fr}] ≤ C
√
vn−1r log(5A

√
n) + 8C2Uvn−1 log(5A

√
n).

Proof. First we apply Lemma C.2 with the largest possible r given by σ̂2
n = supf∈Fr Pn(f2). Note that by

definition Pn(f2) ≤ σ̂2
n for all f ∈ Fr, so that

Fr = {f ∈ Fr : Pn(f2) ≤ σ̂2
n}

and we obtain
Eσ[Rn{Fr}] ≤ C

√
σ̂2
nn
−1v log(eAU/σ̂n)].

Using twice Jensen inequality (functions
√
x and ax log(b/x) are both concave), we get

E[Rn{Fr}] ≤ C
√
E[σ̂2

nn
−1v log(eAU/σ̂n)]

≤ C
√
E[σ̂2

n]n−1v log((eAU)2/E[σ̂2
n])/2

≤ C
√
E[σ̂2

n]n−1v log(9e(AU)2/E[σ̂2
n])/2
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where the last point is just convenient for the increasing function property which will be used in the next few line.
From Corollary 3.4 in Talagrand (1994), we obtain

E[σ̂2
n] ≤ r + 8UE[Rn(Fr)].

Now remark that x log(b/x) is increasing for x ≤ b/e. This is always satisfied for x = r + 8Un−1E[Rn(Fr)]
because this quantity is smaller than 9U2 which itself is smaller or equal to b/e when b = 9e(AU)2 because A ≥ 1.
We therefore obtain

E[Rn{Fr}] ≤ C
√
n−1v(r + 8UE[Rn(Fr)]) log(9e(AU)2/(r + 8UE[Rn(Fr)])]/2

≤ C
√
n−1v(r + 8UE[Rn(Fr)]) log(9e(AU)2/r)/2

Therefore
E[Rn(Fr)]2 ≤ C2n−1v(r + 8UE[Rn(Fr)]) log(3

√
eAU/

√
r) = bE[Rn(G)] + c

with b = 8UC2n−1v log(3
√
eAU/

√
r) and c = rC2n−1v log(3

√
eAU/

√
r). It implies that E[Rn(Fr)] ≤ b+

√
c and

the first statement follows by remarking that 3
√
e ≤ 5.

To proceed further, a central tool Theorem 3.3 in Bartlett et al. (2005) which we state below (Theorem C.4 with
the functional T (f) = P (f2) for which Var(f) ≤ T (f) and T (αf) ≤ α2T (f).
Theorem C.4. Let F be a class of functions with envelope U > 0 and suppose that P (f2) ≤ BPf for all f ∈ F
for some B ≥ U . Let ψ be a sub-root function and let r? be the fixed point of ψ, i.e. ψ(r?) = r?. Assume that ψ
satisfies, for any r ≥ r?,

ψ(r) ≥ BE[Rn{f ∈ F : P (f2) ≤ r}]
Then, for any K > 1 and every δ > 0, with probability at least 1− δ,

∀f ∈ F Pf ≤ K

K − 1
Pnf +

6Kr?

B
+

log(1/δ)B (22 + 5K)

n
.

Also, with probability at least 1− δ,

∀f ∈ F Pnf ≤
K + 1

K
Pf +

6Kr?

B
+

log(1/δ)B (22 + 5K)

n
.

The next Proposition is key to obtain our main fast rates result Theorem 4.3.
Proposition C.5. Let F be a VC-type class of functions with envelope U > 0 and parameters (Ã, ṽ). Assume
that F satisfies the Bernstein condition (B1) with constant B > U relative to a probability P on X × Y. Then
with probability 1− δ, for all f ∈ F ,

P (f) ≤ K

K − 1
Pn(f) +

c1BKṽ log(5Ã
√
n/δ)

n
,

where c1 > 0 is an explicit universal constant given in the proof.

Also, with probability at least 1− δ, ∀f ∈ F ,

Pn(f) ≤ K + 1

K
P (f) +

c1BKṽ log(5Ã
√
n/δ)

n
.

Proof. In light of the upper bound given in Lemma C.3, and in order to apply Theorem C.4, we introduce

ψ(r) = b
√
r + c

with b = BC
√
ṽn−1 log(5Ã

√
n) and c = 8B2C2n−1ṽ log(5Ã

√
n). The function ψ, defined on R+, is sub-root with

unique fixed point r∗ given by
√
r∗ = (b+

√
b2 + 4c)/2 ≤ b+

√
c. Therefore

r∗ ≤ 2(b2 + c) ≤ 18B2C2n−1ṽ log(5Ã
√
n). (6)
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We have that r ≥ r∗ implies that r ≥ ψ(r) ≥ c ≥ 8B2C2n−1v which is larger than U2n−1 by our assumption on
the constant B. Hence the second inequality in Theorem C.3 holds true, which implies that whenever r ≥ r?, we
have

BE
(
Rn{f ∈ F̃ : P (f2) ≤ r}

)
≤ BC

√
ṽn−1r log(5Ã

√
n) + 8BUC2n−1ṽ log(5Ã

√
n) ≤ ψ(r).

Applying Theorem C.4 combined with the previous bound for r∗, we obtain, with probability 1− δ,

∀f ∈ F , P (f) ≤ K

K − 1
Pn(f) +

BS

n
,

where
S = c1Kṽ log(5Ã

√
n) + log(1/δ)(22 + 5K),

and c1 = 18× 6C2 = 108C2. It remains to check that, since K > 1 and v ≥ 1,

S ≤ c2Kv log(5A
√
n/δ),

with c2 = (c1 ∨ 27) = c1. We have established the first statement. For the second statement, the argument is
similar, using this time the second statement of Theorem C.4.

C.2 Proof of Theorem 4.3

We start by applying Proposition C.5 to the class F = {(1 − q)fqI+ + qfqI−, q ∈ (0, 1), fq ∈ Fq} which, by
assumption, is of VC-type with parameters (Ã, ṽ) and envelope 2U . By construction, any f ∈ F writes as
f = (1− q)fqI+ + qfqI− for some fq ∈ Fq. The first statement of Proposition C.5 writes in this context as follows:

With probability at least 1− δ, for all q ∈ (0, 1), for all fq ∈ Fq,

P
(
(1− q)fqI+ + qfqI−

)
≤ K

K − 1
Pn
(
(1− q)fqI+ + qfqI−

)
+

c1BKṽ log(5Ã
√
n/δ)

n
.

Dividing both sides by 2q(1− q) yields

1

2

(
q−1P (fqI+) + (1− q)−1P (fqI−)

)
≤ K

K − 1

1

2

(
q−1Pn(fqI+) + (1− q)−1Pn(fqI−)

)
+

c1BKṽ log(5Ã
√
n/δ)

2nq(q − 1)
,

which means precisely, by definition of Pq and Pn,q (see Section 2),

Pqfq ≤
K

K − 1
Pn,q +

c1BKṽ log(5Ã
√
n/δ)

2nq(q − 1)
.

C.3 Proof of Lemma 4.1

Fix q ∈ (0, 1) and consider the function ϕ(g) = P ((1− q)`gI+ + q`gI−), g ∈ G. Notice that ϕ(g) = 2q(1− q)Rq(g).
The function ϕ is a convex combination of the functions ϕ+(g) = P (`gI+) and ϕ−(g) = P (`gI−) with coefficients
(1 − q, q). By assumption of the statement, ϕ+ and ϕ− are both strongly convex with respective parameters
pλ, (1− p)λ, meaning that for all α ∈ (0, 1) and g1, g2, it holds that for s ∈ {+,−}

ϕs(αg1 + (1− α)g2) ≤

αϕs(g1) + (1− α)ϕs(g2)− α(α− 1)

2
πsλ‖g1 − g2‖2,
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with π+ = p and π− = 1− p. By convex combination with coefficients q, 1− q we obtain

ϕ(αg1 + (1− α)g2) ≤ αϕ(g1) + (1− α)ϕ(g2)
α(α− 1)

2
((1− q)p+ q(1− p))λ‖g1 − g2‖2.

Thus ϕ is λ′-strongly convex with λ′ = ((1− q)p+ q(1− p))λ. Now the score g∗q is a minimizer of Rq, whence it
is also a minimizer of ϕ = 2q(1− q)Rq. By strong convexity and because is a minimizer of ϕ we obtain that for
any g ∈ G,

P
(
(1− q)(`g − `g∗q )I+ + q(`g − `g∗q )I−

)
= ϕ(g)− ϕ(g∗q ) ≥ λ′‖g − g∗q‖2. (7)

In other words for all h ∈ H of the form h = hq,g = (1− q)(`g − `g∗q )I+ + q(`g − `g∗q )I− we have

P (hq,g) ≤ λ′‖g − g∗q‖2. (8)

On the other hand, the second assumption of the statement is that

‖(`g1 − `g2)Is‖L2(P ) ≤
√
πsL‖g1 − g2‖,

Thus we may write for all g1, g2 ∈ G,

‖(1− q)(`g1 − `g2)I+ + q(`g1 − `g2)I−‖L2(P ) ≤ (1− q)‖(`g1 − `g2)I+‖L2(P ) + q‖(`g1 − `g2)I−‖L2(P )

≤ L
(

(1− q)√p+ q
√

1− p
)
‖g1 − g2‖.

In other words,
P
[(

(1− q)(`g1 − `g2)I+ + q(`g1 − `g2)I−
)2] ≤ (L′)2‖g1 − g2‖2,

with L′ = L
(
(1− q)√p+ q

√
1− p

)
. Choosing g1 = g and g = g∗q yields that for any h = hq,g ∈ H as above,

P (h2q,g) ≤ L′2‖g − g∗q‖2. (9)

Combining (8) and (9), we obtain

P (˜̀
q,g − ˜̀

q,g∗q
)2 ≤ L′2

λ′
P (˜̀

q,g − ˜̀
q,g∗q

).

Now by Jensen inequality applied to the function t 7→ t2 and the convex combination with coefficents (1− q), q,
we have

(L′)2 ≤ L2
(

(1− q)√p2 + q
√

1− p2
)
,

so that (L′)2/λ′ ≤ L2/λ, which concludes the proof.

C.4 Proof of Lemma 4.2

Write

H = {q(`g − `g∗q )I+ + (1− q)(`g − `g∗q )I−} ⊂ {qf + (1− q)g, q ∈ (0, 1), f ∈ L′+, g ∈ L′−} = F ′

where L′s = {(`1 − `2)Is `1, `2 ∈ L}. From Lemma A.3(1., 2.), each L′s is of VC-type with envelope 2U and
parameters (2v, 2A). Using the 4th statement of the same lemma, also F ′ is of VC type with envelope 2U and
parameters (2(2v + 1), 3 ∗ 2A).

D Numerical experiments: Real world dataset

Our aim, just as in the main paper, is to illustrate the decision boundary of the k-nn classifiers on real-world
datasets. To do so, we follow the same procedure as the main paper, but instead of using synthetic data, we employ
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six real-world datasets (Pima, Breast, Cardio, Sattelite, Annthyroid, Ionosphere) from the ODDS repository1.
Figures 3 to 8 display the balanced accuracy (1−R0−1

p ) of the balanced k-nn as function of (k, p), we make the
proportion of positive class p vary by randomly removing positive examples. Similar to the findings on synthetic
data, these experiments suggest that a large number of neighbors k should be chosen relative to p = pn to ensure
the consistency of the nearest neighbors method. It’s important to note, however, that the learning boundary
appears somewhat more noisy than in the synthetic data case. This is indeed not surprising since the number of
examples available is significantly smaller in comparison to the previous simulation.
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Figure 3: Balanced accuracy heat map for the
Breast dataset.
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Figure 4: Balanced accuracy heat map for the Iono-
sphere dataset.
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Figure 5: Balanced accuracy heat map for the Pima
dataset.
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Figure 6: Balanced accuracy heat map for the An-
nthyroid dataset.

1http://odds.cs.stonybrook.edu
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Figure 7: Balanced accuracy heat map for the Car-
dio dataset.
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Figure 8: Balanced accuracy heat map for the Satel-
lite dataset.
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