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Abstract

Detecting novelties given unlabeled examples
of normal data is a challenging task in ma-
chine learning, particularly when the novel
and normal categories are semantically close.
Large deep models pretrained on massive
datasets can provide a rich representation
space in which the simple k-nearest neighbor
distance works as a novelty measure. How-
ever, as we show in this paper, the basic k-
NN method might be insufficient in this con-
text due to ignoring the ‘local geometry’ of
the distribution over representations as well
as the impact of irrelevant ‘background fea-
tures’. To address this, we propose a fully un-
supervised novelty detection approach that
integrates the flexibility of k-NN with a lo-
cally adapted scaling of dimensions based on
the ‘neighbors of nearest neighbor’ and com-
puting a ‘likelihood ratio’ in pretrained (self-
supervised) representation spaces. Our ex-
periments with image data show the advan-
tage of this method when off-the-shelf vision
transformers (e.g., pretrained by DINO) are
used as the feature extractor without any
fine-tuning.

1 INTRODUCTION

Detecting inputs which are dissimilar from training
data is a challenging and important problem in ma-
chine learning, with various real-world applications,
from boosting safety in AI systems to medical diag-
nosis, and discovering new phenomena/categories in
science (Yang et al., 2021; Ruff et al., 2021).

In a novelty detection task, data can belong to mul-
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tiple semantic classes, and the aim is to detect any
novel data point at test time which comes from a class
not present in the training set. This problem is partic-
ularly hard when the only training examples are un-
labeled normal data, and the novel data are close to
them in terms of semantic description. In the image
domain, this often means that both normal and novel
data are in the same coarse object category while be-
longing to different fine-grained classes. For instance,
one might be interested in detecting novel ‘species’ of
‘birds’ given unannotated examples of several known
bird species. We will refer to this problem as unsuper-
vised fine-grained novelty detection, which can be also
identified as a type of out-of-distribution (OOD) de-
tection with unlabeled multi-class in-distribution data
and near-OOD (Yang et al., 2021).

From a deep learning perspective, one obstacle in nov-
elty detection is to learn a good representation space in
absence of any supervision. Regardless of the adopted
loss function (e.g., compactness, or self-supervised),
training a feature extractor, or sometimes even fine-
tuning it, only on unlabeled normal data can poten-
tially result in learning features that are not infor-
mative enough for classifying normal data versus the
novel ones. This is because the model is likely to
become invariant to the unknown (and possibly sub-
tle) ‘directions of variations’ along which novelties are
observable (Reiss et al., 2021). One way to avoid
such collapsed representations is to use a powerful
and general-purpose deep model (so-called foundation
model ; Bommasani et al., 2021) which is pretrained on
a broad dataset (e.g., ImageNet). The idea is that the
representation space of such a feature extractor should
be versatile enough to capture semantic differences be-
tween the normal and a variety of novel data.

Even with a good representation space, we still face the
problem of designing a one-class classifier, or equiva-
lently the inference method, that works in this space.
Interestingly, it has been shown recently that once a
suitable pretrained feature extractor is used, e.g., a
vision transformer (ViT) (Dosovitskiy et al., 2021),
fairly simple inference methods can lead to promising
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novelty/OOD detection performance. For instance, a
popular approach is to employ the Mahalanobis dis-
tance (Lee et al., 2018) in the representation space
of deep models (Fort et al., 2021; Ren et al., 2021;
Z. Zhou et al., 2021). Yet, this method assumes a
Gaussian distribution for representations in each class
of (labeled) normal data. When the normal data are
unlabeled and perhaps coming from a multimodal dis-
tribution, the non-parametric k-nearest neighbor (i.e.,
using k-NN distance as novelty score) is one of the
most feasible inference methods. Despite its simplic-
ity, several recent studies demonstrate that k-NN leads
to a competitive performance in novelty/OOD detec-
tion when it is combined with representations of deep
models (Sun et al., 2022; Bergman et al., 2020; Reiss
et al., 2021). Another reason for the recent interest in
this classical method is the new implementations for
efficient large-scale nearest neighbors search, e.g., the
Faiss library (Johnson et al., 2019).

However, as we argue in this paper, a drawback of us-
ing conventional k-NN distance in unsupervised nov-
elty detection is that the local geometry of normal
data, or their statistical properties in each neighbor-
hood of space, is not taken into account. Particularly,
studying a type of state-of-the-art self-supervised mod-
els, we find that the data in their representation space
seem to lie on a relatively low-dimensional manifold
in each local region. The symmetric distance used in
ordinary k-NN can be sufficient if normal and novel
classes are far away in the representation space, but it
may fail for novelties that are semantically close. In-
deed, another useful source of information for detect-
ing close novelties is the ‘direction’ of the difference be-
tween the input and its nearest neighbor with respect
to the ‘local variations’ around the neighbor. Thus, we
propose to enhance the k-NN by adding a local adapta-
tion step, which scales the space dimensions according
to local variances estimated on the neighborhood of
the nearest neighbor of the input. More formally, we
model the distribution of normal data through local
Gaussian distributions on each Voronoi cell of repre-
sentation space, fitted on the neighbors of each train-
ing point. Moreover, inspired by the arguments for
likelihood ratio in some former studies (e.g., Ren et
al., 2019), we conjecture that a subset of dimensions
in a pretrained representation space correspond to fea-
tures not semantically relevant for detecting novelties.
In order to reduce the influence of such ‘background’
features, we propose the final score as the ratio be-
tween the local likelihood and the likelihood of a low-
capacity background model (uni-modal Gaussian) that
is fitted to the entire training data in representation
space. More specifically, in this paper:

• We propose an unsupervised novelty detection
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Figure 1: A 2-D toy example to show the flaw of near-
est neighbor distance when normal data lie on a man-
ifold, and the test data are close relative to distances
within normal data. ẑ is the nearest neighbor of both
z1 and z2. Our method tackles this by fitting a local
Gaussian distribution around ẑ (section 3.2).

method based on pretrained self-supervised mod-
els (particularly ViTs), and a probabilistic model
fitted to the local regions of representation space.
Our approach does not need any labels in either
of downstream or pretraining stages, and is im-
plementable as a lazy (training-free) algorithm.

• We evaluate the proposed method in fine-grained
novelty detection on images of objects (e.g., Birds
and Flowers) as well as a medical image dataset.
Without any fine-tuning of the feature extractor,
our method shows a considerably better perfor-
mance than k-NN, and mostly outperforms other
compared methods.

• We compare our method to a concurrent work by
Nizan and Tal (2024) which has a similar idea of
locally adapted k-NN, and show that it performs
better or at least on par with their method, in
addition to its different probabilistic flavor.

2 MOTIVATION: K-NN MISSES
LOCAL GEOMETRY AND
BACKGROUND FEATURES

Given a training set DT with Q data points, the ba-
sic k-NN novelty/OOD detection method uses the dis-
tance of an input data point to its kth nearest neigh-
bor in DT as the novelty score (Sun et al., 2022). That
means, the score assigned to input z is d(z, z′k) where
z′i ∈ DT , d(z, z

′
1) ≤ d(z, z′2) ≤ ... ≤ d(z, z′Q), and d is

usually a common distance like ℓ2. The data points
can be in any representation space, and may be ob-
tained, for instance, by encoding images using a neural
network.

We first highlight a limitation of k-NN novelty detec-
tion through an example. Figure 1 illustrates a simple
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toy problem in a two dimensional space where the nor-
mal data lie on a manifold (curve). Assuming k = 1
and using Euclidean distance here, query points z1 and
z2 get an equal score (||z1 − ẑ||2 = ||z2 − ẑ||2) while z2
obviously fits better into the local manifold structure
of normal data. Thus, it is intuitive in this example
to assign a higher novelty score to z1, which is im-
possible for the vanilla nearest neighbor method. We
should note, however, that this failure also depends on
the relative distances between normal and novel points
(i.e., in the same example, k-NN could work well if the
normal points on the curve were much closer to each
other).

Inspired by this, we form the hypothesis that the per-
formance of k-NN novelty detection in a given repre-
sentation space is particularly impaired when: 1) nor-
mal and novel data points are relatively close (e.g, in
Euclidean distance), and 2) the normal points are lo-
cally structured on low dimensional subspaces. The
first condition is likely to happen in fine-grained nov-
elty detection. Investigating the Local Intrinsic Di-
mensionality (LID) (Amsaleg et al., 2018) of normal
data in the representation space of our pretrained
models indicates that the second condition should also
hold in this problem. LID is loosely defined as the
number of dimensions of underlying manifold which
the neighbors of each data point are sampled from.
Figure 2 (left) shows that in the case of a DINO ViT
model (Caron et al., 2021), LID is varying and has an
average much smaller than the dimensions of represen-
tation space.

Another aspect that is overlooked in k-NN novelty de-
tection is the problem of background features. This
problem has been observed with other methods as well,
such as the Mahalanobis distance and generative mod-
els (Ren et al., 2021; Schirrmeister et al., 2020). In
this context, background features refer to the dimen-
sions of representation space that are not relevant for
distinguishing novel data from normal ones. In prac-
tice, a background feature in images can correspond to
anything apart from the main object of interest such
as the background scene, or low-level features (e.g.,
brightness and smoothness).

To see whether such irrelevant features can be a con-
cern in our novelty detection tasks, we examine the
contributions of different dimensions of representation
space in classifying novel vs. normal data while pre-
tending that the task is supervised. Figure 2 (right)
shows the histogram of coefficients obtained by train-
ing a linear classifier on the labeled PCAM data using
representations of a pretrained ViT. One can easily
verify that the distribution of coefficients magnitude
is far from uniform here, which suggests that different
dimensions can vary largely in terms of their discrim-

Figure 2: (Left) Mean and SD of Local Intrinsic Di-
mensionality estimated by the method of Amsaleg et
al. (2018) (using 50 neighbors) on four datasets in the
representation space of a DINO ViT-B/16, pretrained
on ImageNet, with 768 dimensions. (Right) Histogram
of the absolute value of coefficients of a logistic re-
gression classifier (with test accuracy 84.7%) trained
on the (standardized) representations of PCAM data
with binary labels, using the same ViT model.

inative value for classification. This example demon-
strates that the assumption of equally weighted dimen-
sions that is implicit in k-NN novelty score can be too
unrealistic in practice.

3 NOVELTY DETECTION USING
PRETRAINED MODELS

3.1 Problem Statement

We define unsupervised novelty detection as a type
of binary classification task with super-classes normal
(in-distribution) DI and novel (OOD) DO while only
samples from DI are observed in training data. The
sets DI and DO are disjoint, where each can be further
partitioned into one or more classes as DI = CI

1 ∪ ...∪
CI

q , and DO = CO
1 ∪ ... ∪ CO

p . However, the class
labels are not available in the training data. We are
specifically interested in problems where all the classes
in DI ∪ DO are semantically close (e.g., each CI

i or
CO

i is a bird species). The training set DT ⊂ DI is
assumed to include examples from every CI

i class. It is
noted that we allow the normal data to be multi-class,
which is more challenging than the more common ‘one
vs. rest’ (unimodal) novelty detection setup (Ruff et
al., 2018; Bergman et al., 2020; Gong et al., 2019).

Moreover, we assume access to a pretrained deep fea-
ture extractor (encoder) model. This model returns
a representation vector z = f(x) given an image x,
where z ∈ Rm. More specifically, off-the-shelf foun-
dation models like ViTs are employed as feature ex-
tractor in this work, which are pretrained using self-
supervised methods on a large unlabeled dataset (Im-
ageNet). We choose two recent and promising self-
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distillation based methods, namely DINO (Caron et
al., 2021) and iBOT (J. Zhou et al., 2021), for pre-
training in practice. One particular reason for this
choice is the advantage of such methods (when used
with ViTs) in terms of downstream k-NN classification
performance, which makes them a good candidate for
an unsupervised nearest neighbor based setup as well.

Following the conventions in novelty/OOD detection,
we pose the detection method at high level as a score
function s(x), and express the decision rule as: x is
OOD if s(x) > τ , where τ is a user specified thresh-
old. Novelty detection methods are always applied in
a given representation space in this study, and thus
the score can be also written as s(z) : Rm → R.

3.2 Voronoi-Gaussian Model

Motivated by the discussion in section 2, we propose
a probabilistic model for novelty detection that com-
bines the nearest neighbors search of k-NN with a lo-
cally adapted distance to incorporate the geometry of
data around the nearest neighbor. The key idea is to
partition the representation space into nearest neigh-
bor regions, that is, Voronoi cells corresponding to the
normal training data points, and assign a multivariate
Gaussian probability density function to each region.
The parameters of the Gaussian distribution of a cell
are calculated based on the cell’s generator data point
in the training set as well as the training points which
are in the local neighborhood of generator.

Let ẑ be the nearest neighbor of input z among the
training data in the representation space:

ẑ = argmin
z̃∈DT

||z − z̃||2 (1)

This implies that z is inside the Voronoi cell generated
by ẑ, which we write as z ∈ V(ẑ). Then, we define
a local density function as the following, which the
novelty score of input is derived from:

pL(z) = N (z; ẑ, Σ̂), (2)

where the local covariance matrix Σ̂ = ΣL(ẑ) is esti-
mated on the set of data points that lie in the local
neighborhood of ẑ, which is L(ẑ) ⊂ DT . The point ẑ,
the generator of the Voronoi cell, is designated as the
center/mean of the Gaussian distribution. Concretely,
we specify the local neighborhood of ẑ to be the set
of its k′ nearest data representations in the training
set, L(ẑ) = NNk′(ẑ), where k′ is a hyperparameter
(thus, the method looks at the ‘nearest neighbors of
nearest neighbor’, similarly to the concurrent work by
Nizan and Tal, 2024). The role of ẑ can be inter-
preted as a selected prototype, to which the similarity
of z is measured using eq. (2). In local learning view

(Bodesheim et al., 2015), obtaining ẑ and its neighbors
is like a ‘coarse recognition’ stage where the ordinary
ℓ2 distance is used to consider the overall similarities
of images. This is followed by another stage in which
the more precise local model pL, fitted only to a small
relevant neighborhood, decides the score.

The matrix Σ̂ is obtained by maximum likelihood es-
timation of covariance on the data representations in
L(ẑ) assuming that the mean is equal to ẑ. This lo-
cal parameter aims at capturing the variations of data
in the neighborhood L(ẑ) with respect to ẑ, which is
in turn used to evaluate the typicality of the relation
between ẑ and the test input z. From a geometrical
perspective, this can be understood as using a Gaus-
sian distribution to approximately model the manifold
of data representations around the nearest neighbor of
the input, and predict whether the input is likely to be
in the vicinity of the manifold (figure 1). With mani-
fold theory assumptions (Pidhorskyi et al., 2018), the
normal data in L(ẑ) can exhibit two types of varia-
tions: along the directions tangent to the manifold at
ẑ as well as the ones orthogonal to it (due to noise). A
locally fitted Gaussian distribution should be enough
in principle to learn the direction and scale of both
types of variations.

In practice, the representation space is high dimen-
sional (e.g., m = 768 in our experiments) and the data
for local estimation is sparse (e.g., k′ = 10). We there-
fore always assume Σ̂ to be diagonal 1 .

Given Q training data points, we have the same num-
ber of Voronoi cells in the representation space. This
also means that Q local (unnormalized) distributions
can be defined using eq. (2), where the support of
each distribution is V(zi) for zi ∈ DT . We can de-
rive a probability density function with a support on
the entire Rm by summing up the local densities, and
dividing by a constant to normalize the distribution.
Therefore, the Voronoi-Gaussian model of normal
data is:

p(z) =
1

α

∑
zi∈DT

1{z ∈ V (zi)}N (z; zi,ΣL(zi)) =
1

α
pL(z)

(3)
where 1 is the indicator function, α is a normalization
constant, and pL was defined in eq. (2).

3.3 Likelihood Ratio Score

One general approach to handle background features
in novelty/OOD detection is to pose the score func-
tion as the ratio between the likelihood of a model

1We did not observe better results by using a full matrix
with regularization (e.g., covariance shrinkage) in practice,
perhaps because the problem is extremely high dimensional
relative to the number of local data points.
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representing normal data and an auxiliary background
model (Ren et al., 2019; Ren et al., 2021; Serrà et
al., 2020; Schirrmeister et al., 2020; Gangal et al.,
2020). Following Ren et al. (2019), we assume that the
data distribution (for both normal and novel classes)
is factorized into independent background and seman-
tic components, albeit in the representation space.
That is, z = {zB , zS} and p(z) = p(zB)p(zS), where
zB corresponds to nuisance background dimensions,
and zS denotes the more interesting semantic (dis-
criminative) ones. Moreover, the existence of a back-
ground model p′(z) is assumed which aims to learn
the background component but is not concerned (ide-
ally) with the semantic part of data. More formally,
the distribution over background component is shared
between the data and background models, that is,
p′(z) = p(zB)p

′(zS).

The choice for background model has been addressed
in the literature with different heuristics and assump-
tions, such as training a background model on per-
turbed data (Ren et al., 2019), or using an external
generic dataset (Schirrmeister et al., 2020). We pro-
pose to tackle this in a ‘bootstrapping’ fashion, where
the background model is a low capacity model esti-
mated on the normal training data themselves. Con-
cretely, we simply use a Gaussian distribution with di-
agonal covariance fitted on training data representa-
tions as p′(z). In practice, this is similar to the method
of Ren et al. (2021) for enhancing Mahalanobis dis-
tance. Finally, using eq. (3) for the distribution of
normal data, our proposed novelty score is defined
as the following log-likelihood ratio:

s(z) = − log
p(z)

p′(z)
= − log pL(zS) + log p′(zS) (4)

where α in p(z) is omitted since it only shifts the
score by a constant. Thus, zB is eliminated by the
likelihood ratio trick (under the idealized assumption
p(zB) = p′(zB)), though at the cost of biasing the score
by the term log p′(zS). However, we argue that in ef-
fect, this term does not influence our novelty detection
performance considerably. To see this, let us consider
zI ∼ pI(z) and zO ∼ pO(z) where pI and pO are the
distributions of normal and novel data representation
respectively. Then, we would like to have the following
expectation positive:

E[s(zO)− s(zI)] = {EpI [log pL(z
I
S)]− EpO [log pL(z

O
S )]}

+ {EpO [log p′(zOS )]− EpI [log p′(zIS)]}
= ∆1 +∆2

(5)

Since the pL and p′ models are fitted to the normal
data (and the novel data are OOD w.r.t them), we
should have ∆1 > 0 and ∆2 < 0. However, defining

p′(z) to be a low capacity parametric model (inde-
pendent Gaussian variables) compared to the locally
adapted pL(z), and also assuming that the normal and
novel data are not very far in their global (coarse)
statistics in semantic dimensions, we expect the log-
likelihood gap between in-distribution and OOD data
to be larger in the case of pL (i.e., |∆1| > |∆2|). There-
fore, at least on average, s(z) should be still larger on
novel inputs than the normal ones 2.

As an alternative method for obtaining a background
model, we also tried a multivariate Gaussian distri-
bution estimated on the representations of the Ima-
geNet dataset. Its results with non-fine-tuned mod-
els (reported in the appendix) are comparable overall
to the method above, though this alternative method
will work poorly if the distribution of normal repre-
sentations is too far from ImageNet, which specifically
happens after fine-tuning the feature extractor.

Algorithm 1 VGLR Novelty Detection

1: Input: image x, training representationsDT , con-
stants k′, τ , and feature extractor model f .

2: Representation: z = f(x)
3: Background model: pB(z) = N (z;µb,Σb) where

µb and diagonal Σb are estimated by MLE on DT

4: Nearest neighbor: ẑ = argminz̃∈DT
||z − z̃||2

5: Find k′ nearest neighbors of ẑ in DT − {ẑ} , that
is, NNk′(ẑ)

6: Local model: pL(z) = N (z; ẑ, Σ̂), where Σ̂ is diag-
onal, and Σ̂ii = 1/k′

∑
z̃∈NNk′ (ẑ)(z̃i − ẑi)

2 + ϵ for

each dimension i (and ϵ is a small constant)
7: Novelty score: s(z) = − log pL(z) + log pB(z)
8: if s(z) > τ then
9: Classify x as novel

10: else
11: Classify x as normal
12: end if

4 RELATED WORK

In this section, we use the term out-of-distribution
(OOD) detection to refer to any problem where
abnormal inputs come from a data distribution with
some discrepancy from the distribution of training
data (Yang et al., 2021), including novelty detection.
OOD detection approaches can be divided into two
broad (overlapping) categories from a transfer learn-
ing perspective. The methods in the first category
are most suitable for training machine learning models
from scratch, often with an objective function and/or

2Of course, this does not tell us about the overlap be-
tween the distributions of normal/novel scores. However,
we also empirically observe (section 5.3) that using the
likelihood ratio never impairs the baseline mean AUROC.
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model tailored specifically for OOD detection. Exam-
ples of such methods are Deep Support Vector Data
Description (Ruff et al., 2018), memory augmented
(Gong et al., 2019) and adversarial (Pidhorskyi et al.,
2018) autoencoders, augmented contrastive learning
(Tack et al., 2020), self-distillation with negative sam-
pling (Rafiee et al., 2022), and detecting ‘latent holes’
after compactification of the latent space of generative
models (Glazunov and Zarras, 2023).

The second category, which our method falls into,
comprises methods that primarily aim at leveraging a
pretrained deep classifier or generic feature extractor
model in OOD detection (post hoc, or transfer learning
OOD detection). Many of these methods, e.g., ODIN
(Liang et al., 2018), energy based OOD (Liu et al.,
2020), and Mahalanobis distance (Lee et al., 2018) are
essentially derived from a (supervised) classifier’s soft-
max scores or representations, which means they are
only applicable when the normal data have labels, or
alternatively have been clustered beforehand (Sehwag
et al., 2021).

A trending approach in post hoc OOD detection is
to use k-Nearest Neighbor (k-NN) search at the
core of the inference method. Sun et al. (2022) show
that using k-NN distance in representation space of
a deep model as the OOD score is competitive with
more complicated popular methods. However, before
applying the unsupervised k-NN, they use labeled nor-
mal data to train their deep model. k-NN has been also
employed for unsupervised OOD (anomaly) detection
with deep feature extractors (ResNet) pretrained on
ImageNet by Bergman et al. (2020) and Reiss et al.
(2021), where in the latter, the model is fine-tuned on
normal data using compactness loss. Raghuram et al.
(2021) use k-NN search on representations of labeled
normal data to obtain statistics for OOD detection
with pretrained deep classifiers.

Our proposed local adaptation method is related to
the concept of local learning (Bottou and Vapnik,
1992), that is, training/adapting a model on a sub-
set of training data which are most similar to input.
Leveraging this idea, Bodesheim et al. (2015) propose
the Local KNFST novelty detection method, where
the input is mapped to Kernel Null Foley-Sammon
space (Bodesheim et al., 2013) of its k-nearest data
points, and the score is calculated as a distance to
class prototypes in this space. Verdier and Ferreira
(2010) propose a method to detect faults (anomalies)
in semiconductor manufacturing based on estimating
the mean and covariance of Mahalanobis distance lo-
cally, i.e., on the nearest neighbors of input. However,
they only consider low dimensional problems in a cer-
tain industrial domain.

In a concurrent work with ours, Nizan and Tal (2024)
propose the Nearest Neighbors of Neighbors (k-NNN)
method to extend k-NN to a locally adapted operator
which considers the structure of data in a pretrained
representation space. To this end, PCA is run on the
k′-nearest neighbors of a given ith nearest neighbor
of input. Then, each dimension is weighted propor-
tionally to its dot product with the local eigenvectors
and corresponding inverse eigenvalues to obtain a dis-
tance function. k-NNN, and its underlying motiva-
tion, is very close to the local adaptation part of our
proposed method. Yet, unlike their formulation, we
take a probabilistic perspective to the problem, where
the data distribution is modeled as the sum of defined
local (Voronoi-Gaussian) densities. Moreover, in the
same framework, our score function is posed as the ra-
tio between the log-likelihood of data and background
distributions. Besides, unlike our diagonal local co-
variance, the covariance for PCA is assumed as block
diagonal in k-NNN, where the block size is determined
by a hyperparameter after a heuristic sorting of vari-
ables.

5 EXPERIMENTAL RESULTS

Methods. We present the empirical results of
our Voronoi-Gaussian with Likelihood Ratio (VGLR)
method (algorithm 1) on four different unsupervised
fine-grained novelty detection problems in image do-
main 3. The performance is compared to the base-
line k-NN (with Euclidean distance), and four other
unsupervised methods from the literature, where all
methods are applied in the pretrained representation
spaces. The closely related k-NNN (Nizan and Tal,
2024) is one of the compared methods. The Local KN-
FST (Bodesheim et al., 2015) method is also selected,
as it is an application of the local learning idea in nov-
elty detection. We include One-Class SVM (Schölkopf
et al., 2001) and a k-means clustering based method
as well since they are both well-known, and easy to
implement without training any extra deep models.
K-means is used in combination with Mahalanobis dis-
tance in the same way as proposed in the SSD method
(Sehwag et al., 2021).

Models. We employ off-the-shelf ViTs that are pre-
trained using DINO and iBOT self-supervised meth-
ods on the ImageNet-1K dataset. Given an image
x, the ℓ2-normalized CLS token at the last layer of
the ViT backbone is used as the representation vec-
tor f(x). We have experiments with a DINO pre-
trained ResNet-50 model as well which are reported

3The code is available at:
https://github.com/aahmadian-liu/pretrained-novelty-
loclr
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in the appendix, but the best performance over all
methods drops considerably when ViT is replaced with
ResNet. This should not be surprising as we know that
ViTs generally lead to better representations in a self-
distillation framework (Caron et al., 2021).

Tasks. We demonstrate novelty detection ex-
periments using the public datasets CUB-200-2011
(Birds) (Wah et al., 2011), Flowers-102 (Nilsback and
Zisserman, 2008), Food-101 (Bossard et al., 2014),
and PatchCamelyon (PCAM ) (Veeling et al., 2018).
All of the datasets consist of RGB images, resized to
224 × 224 pixels. PCAM is in the medical imaging
domain, and is obtained from histopathologic scans of
lymph node sections (Bejnordi et al., 2017). To de-
fine a novelty detection task, i.e., specifying the normal
(DI) and novel (DO) sets, it is necessary to choose a
subset of classes in each dataset as normal data. We
use the following protocol to this end:

- For PCAM, class 0 is always considered normal, and
class 1 is novel. This is a natural choice because all the
samples in the latter class contain metastatic (anoma-
lous) tissues.

- For any other dataset, half of the classes (rounded
up) are assumed normal, and the remaining classes
are novel. This is done by choosing the first half of
the classes (in the default dataset order) as normal,
in addition to randomly choosing half of the classes as
normal for 4 times.

Although the datasets are labeled, the labels are only
used to split the data into normal and novel sets. More
specifically, all images in the training partition of the
normal set are used for the training data (DT ). For the
test data, an equal number of images is used from the
test partitions of normal and novel sets. The Flowers-
102 dataset has an untypical partitioning, where the
‘test’ part is much larger than the ‘train’ part. For
this reason, we swap the default partitioning for this
particular dataset.

5.1 Results with non-fine-tuned ViTs

Novelty detection performance on test data in terms
of threshold-independent Area under ROC curve (AU-
ROC) with DINO and iBOT pretrained ViTs is re-
ported in table 1. Here, the publicly available weights
of pretrained models4 is directly used, without any
fine-tuning. Additionally, performance on the same
experiments in terms of FPR@95TPR can be found in
the appendix. We choose hyperparameter values for
each method such that the overall average AUROC
(the mean over the four datasets) on the test data is

4https://github.com/facebookresearch/dino,
https://github.com/bytedance/ibot

maximized. This implies that, for a certain method
and feature extractor, hyperparameter values are the
same across all the tasks/datasets (more details on hy-
perparameters is given in the appendix). Specifically,
we find that k = 1 is the optimal value in k-NN with
both DINO and iBOT. Moreover, for k-NNN, we al-
ways assume k and s (covariance block size) equal to 1.
This leads to having k′ (number of neighbors of neigh-
bor) as the only hyperparameter both in our method
and k-NNN, for a more fair comparison.

The results clearly show that our method leads to
improvement over k-NN, which can be as substantial
as around +18% AUROC in the case of PCAM, and
+11% average AUROC on Flowers. More notably, the
reported performance of VGLR ranks first on all the
datasets/models except for Food where it is on par
with k-NNN. Interestingly, VGLR with DINO achieves
an AUROC about 80% (5% higher than the second-
best method) on PCAM, while this dataset is quite dif-
ferent from the pretraining (ImageNet) data. The av-
erage performance on Food data is the smallest among
the studied datasets, meaning that it is a quite hard
case for all the methods. A possible reason can be the
noise (wrong labels, and clutter) in training images of
Food-101 dataset, as mentioned in its documentation.

As expected, k-NNN seems to be the most competi-
tive method to ours, and ranks second after VGLR in
the majority of cases. However, we find our method
to be more efficient than k-NNN in terms of num-
ber of neighbors (of nearest neighbor) even when the
performance is close. Specifically, all results in table
1 are obtained with k′ = 10 for VGLR, but either
k′ = 80 (DINO) or k′ = 40 (iBOT) for k-NNN. More-
over, although table 1 reports the average performance
over repeated normal/novel splits, we find that on al-
most all the splits, the best AUROC belongs to either
VGLR or k-NNN (the only exception happens with
iBOT-Food where k-NN ranks second once; more de-
tails given in the appendix).

5.2 Self-supervised fine-tuning of feature
extractor

In the next setup, the feature extractor model is fine-
tuned on the normal training data before running
the methods in its representation space. The loss we
use in fine-tuning is the same as the pretraining self-
supervised loss. DINO models, and one task (default
order of classes) from each dataset are studied under
this setup. Specifically, the DINO algorithm, initial-
ized with ImageNet weights, is run for 20 epochs onDT

images of each task (more details in the appendix). In
table 2, we show how AUROC performance is changed
after fine-tuning the ViT model in each task. The
methods hyperparameters on each dataset are set to
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Table 1: Unsupervised novelty detection performance using ViT-B/16 feature extractor pretrained on ImageNet
by DINO and iBOT methods (without fine-tuning). The numbers are averages over 5 novel/normal splits, except
for the case of PCAM.

AUROC (%) DINO/iBOT
Method CUB Flowers Food PCAM

VGLR (proposed) 71.3 / 70.5 91.8 / 90.6 66.4 / 65.1 80.2 / 78.5
k-NN 66.0 / 65.8 80.3 / 79.1 63.3 / 63.4 62.2 / 59.9
k-NNN (k=1, s=1) 69.8 / 70.0 90.1 / 89.4 66.5 / 64.3 74.9 / 73.2
k-means + Maha. (SSD) 63.7 / 64.4 81.6 / 80.0 59.1 / 60.2 68.8 / 66.6
OC-SVM 63.1 / 63.0 77.5 / 76.4 60.3 / 61.0 60.5 / 58.4
Local KNFST 58.8 / 59.5 65.8 / 67.0 53.8 / 52.4 74.1 / 73.1

Table 2: Change in task-specific AUROC performance (%) by fine-tuning the ViT-B/16 using DINO loss on
normal data. The last column shows the change in the average over the 4 tasks.

Method CUB Flowers Food PCAM Average

VGLR (proposed) 80.8 → 76.5 91.5 → 92.1 62.9 → 77.2 80.2 → 80.2 78.8 → 81.5
k-NN 72.9 → 73.9 76.6 → 82.3 60.8 → 80.5 62.2 → 78.5 68.1 → 78.8

k-NNN (k=1, s=1) 77 → 71.9 90.3 → 89.7 64.3 → 71.0 74.9 → 74 76.6 → 76.6
k-means + Maha. (SSD) 68.2 → 69.1 78.3 → 82.0 56.9 → 78.2 68.8 → 80.6 68.0 → 77.4

OC-SVM 68.7 → 70.6 73 → 79.2 58.5 → 80.1 60.5 → 80.1 65.1 → 77.5
Local KNFST 58.8 → 61.7 68.3 → 71.4 55.6 → 52.1 74.1 → 78.1 64.2 → 65.8

the same values found with the non-fine-tuned model.

The numbers indicate that the performance of k-
NN is consistently increased on all tasks by our self-
supervised fine-tuning, though to different degrees.
This is anticipated since DINO should move similar
data points towards each other in representation space
(into semantic clusters, ideally) (Vaze et al., 2022),
which in turn means novel data points should get fur-
ther from normal ones on average. More generally,
fine-tuning does not impair the average performance
of any method over the studied tasks. Yet, perfor-
mance decrease happens in a few tasks particularly
with VGLR and k-NNN (e.g., on CUB).

Although the overall gap between VGLR and k-NN
looks smaller in table 2 than table 1, the proposed
method still ranks first in average AUROC after fine-
tuning. One can also see that the only case where the
costly fine-tuning has led to a substantial performance
gain is with Food data (around 16% improvement in
best AUROC). In other cases, the top performance is
either slightly increased (around 0.5% on PCAM and
Flowers) or even impaired (-4.3% on CUB).

5.3 Ablation study

The proposed VGLR method was described as the
combination of two distinct ideas: a locally adapted

Gaussian model, and the likelihood ratio trick. Here,
we investigate the role of each component by consid-
ering two ablation modes of our method:

(I) No Local Adaptation: This means that the back-
ground model (likelihood ratio) is used as before
but no local scaling of dimensions is performed.
Hence, the local covariance (Σ̂ in eq. (2)) is al-
ways set to identity here.

(II) No Likelihood Ratio: In this case, the likelihood of
the Voronoi-Gaussian model is directly used to ob-
tain the score without dividing by p′(z) (eq. (4)),
that is, using s(z) = − log pL(z).

Figure 3 illustrates the performance of the two ablated
methods on the previous tasks with the non-fine-tuned
DINO ViT, and compares them to the original VGLR
results. It is verified that generally both of the compo-
nents are necessary to achieve maximum performance.
Remarkably, in the case of PCAM, each of the ablated
methods alone has a fairly large performance gap both
with the full method and k-NN. We speculate that this
is related to the type of features in tissue images that
help to detect metastasis; the differences are relatively
subtle, and buried in many noisy background features.
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Figure 3: Average AUROC of the ablated methods I
and II (i.e., removing either local adaptation or like-
lihood ratio) compared to the full proposed VGLR
method (using DINO ViT-B/16). Dashed lines indi-
cate the vanilla k-NN performance (as in table 1)

6 CONCLUSION

We presented a method to leverage large pretrained
(self-supervised) models for novelty/OOD detection in
absence of any labeled data. Our method refines the
well-known k-NN score in the model representation
space by fitting an on-the-fly Gaussian distribution to
the neighbors of the input’s nearest neighbor (to cap-
ture the local geometry), and obtaining its likelihood
ratio w.r.t. a simple background Gaussian distribu-
tion. Using vision transformer models without any
fine-tuning, the AUROC performance of the proposed
VGLR method in fine-grained image novelty detec-
tion (with DINO/iBOT pretrained models) is remark-
ably better than k-NN, while k-NN is still competitive
with prior methods in most cases. We showed that k-
NN performance was improved by fine-tuning the ViT
on normal data using DINO, but VGLR still ranked
first in average over datasets. Thus, the advantage of
VGLR seems most prominent with non-fine-tuned pre-
trained models, which should also make it a favorable
method in general, considering the cost of fine-tuning
foundation models.

The differences in behavior of VGLR after fine-tuning
the encoder can be partly related to the collapse
of representation space (i.e., a type of overfitting to
in-distribution data) caused by the downstream self-
supervised training. Also, it should be considered that
the performance of our method can depend on how
‘near’ the OOD data are. As an extreme case, the
in-distribution data points can be so concentrated in
the representation space (w.r.t OOD points) that the
vanilla nearest neighbor distance is already the opti-
mal score. In that situation, any weighting on the
space dimensions using our local/background model
might lead to unintended effects. Thus, one idea for fu-

ture could be to aim at a combination of the proposed
VGLR and ordinary k-NN scores to enhance both near
and far OOD detection.
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A.1 Additional details on experiments and methods

In this section, we provide more details regarding the datasets, implementation, and choosing the hyperparam-
eters of each method.

A.1.1 Datasets

Some more information about how we use the datasets in our experiments, such as number of the categories
(classes), and number of images (instances) are given in table 3. The numbers are specified for the normal and
novel parts of data, which are defined according to our protocol described in section 5 of the paper. Since the
number of training/test images can differ among the randomized choice of normal/novel classes (the 5 splits),
the rounded average is reported in the table. Moreover, figure 4 shows a few example images from each dataset.

Table 3: Number of the categories and images of each dataset used in our unsupervised novelty detection tasks.
We never use novel images in the training data. The number of normal and novel images in test data are always
equal.

CUB-200 Flowers-102 Food-101 PCAM

Normal categories 100 51 51 1
Novel categories 100 51 50 1
Normal training images (average) 4417 2896 38250 131072
Normal test images (average) 1446 510 12500 16377
Novel test images (average) 1446 510 12500 16377

Figure 4: Example images from the normal and novel sets of the data used in our experiments. Here, the tasks
considered for CUB, Flowers, and Food datasets are defined by assuming the first half of the classes as normal.

A.1.2 Software and hardware specifications

All the experiments are implemented in Python 3. The feature extraction part using pretrained models uses
the PyTorch library (Paszke et al., 2019), and nearest neighbors search (in k-NN, VGLR, k-NNN, and Local
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KNFST) is performed using the Faiss library (Johnson et al., 2019) . Scikit-learn library (Pedregosa et al., 2011)
is used for OC-SVM and k-means.

We use a single GPU (e.g., NVIDIA RTX 2080TI) to obtain the representations vectors for one time, and store
them to disk. Then, we run the novelty detection methods on CPU (e.g, Intel Xeon E5-1620 3.5GHz). Using
CPU, our VGLR method takes about a few minutes (e.g., around 4 minutes) to run on the whole test data
representations of PCAM dataset (the largest dataset). However, this can be speeded up by using GPU (the
Faiss library has GPU support for neighbors search).

A.1.3 Methods and hyperparameters

In order to choose the value of a hyperparameter λ given a method (and feature extractor) through searching
over a set of candidate values Λ, we find the λ∗ ∈ Λ that maximizes the mean AUROC over all the datasets. The
mean AUROC here refers to the mean of the AUROCs of the method on the test data of each of the 4 datasets,
where each AUROC value in turn corresponds to the average over 5 tasks, or a single task (in case of PCAM).
When having multiple hyperparameters, the search is done over all the combinations of them. Eventually, we
fix the hyperparameters in each method to the optimum values (keeping them constant across all the tasks) to
obtain the final performance values reported in our results tables.

Table 4 summarizes the hyperparameter values used for each method with the pretrained DINO ViT feature
extractor. All the hyperparameter values are the same in the case of iBOT ViT except k′ in k-NNN, which
is equal to 40 there. Here, ‘standardized’ refers to standardizing the representation vectors using mean and
standard deviation (the vectors are always normalized in l2 norm at first). The Euclidean (l2) distance is used
to define nearest neighbors in any method. We also provide more implementation details on each method in the
following.

Table 4: Hyperparameter values of each method used in our experiments with DINO ViT-B/16 model.

Method Hyperparameter values

VGLR k′ = 10, standardized
k-NN k = 1
k-NNN k′ = 80, k = 1, s = 1
k-means k = 100
OC-SVM kernel=‘rbf’, ν = 0.5, γ = 0.02, standardized
Local KNFST kernel=‘rbf’, γ = 0.02, standardized

VGLR. The main hyperparameter of our proposed method is k′, that is the number of neighbors of the nearest
neighbor, used to calculate the local variances. We search over the values k′ ∈ {10, 20, 40, 80}. As an additional
hyperparameter or choice, we consider whether to standardize the representation vectors by mean and SD.

K-NN. The number of neighbors (k) is found by evaluating k ∈ {1, 2, 4, 8, 16}. We always observed decrease in
the mean AUROC by increasing k, thus did not try larger values. Standardization of representation vectors is
the other hyperparameter considered for k-NN.

K-NNN. Similar to VGLR, k-NNN has a hyperparameter that determines the number of neighbors of neighbors
for local adaptation, which we call k′. The same candidate values is used to tune this hyperparameter, that is,
k′ ∈ {10, 20, 40, 80}. k-NNN’s authors propose two other hyperparameters as well: number of neighbors of
the input (over which the score is averaged) k, and the partition size s that is used to assume uncorrelated
dimensions in representation vector (bock diagonal covariance). However, we assume k = 1 and s = 1 in our
implementation. This is a simplifying assumption that we justify in two ways. First, this helps to have k′ as the
only hyperparamter of k-NNN in common with our method, that also has a similar interpretation. This makes
the comparison between the two more ‘apples to apples’. Moreover, if any advantage comes from the ‘block
diagonal’ covariance matrix or averaging over ‘multiple neighbors of input’, then it should be easy to add these
two components into our method and rise its performance as well.

k-means + Maha. (SSD). The number of clusters (k) is the only hyperparameter that is found by considering
k ∈ {1, 50, 100}. Clusters are initialized by ‘kmeans++’ method, and the algorithm is run for up to 500 iterations,
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with 2 random restarts. Following the SSD method, at inference time, we use a separate full covariance matrix
for each cluster to define the Mahalanobis distance. It is worth noting that with k = 1 this method is equivalent
to One-class Mahalanobis Distance novelty detection.

OC-SVM. We use RBF kernel for OC-SVM. The ν parameter in the loss function is assumed to 0.5 (the default
value in scikit-learn 1.3). The only tuned hyperparameter is γ, which is the spread of the RBF kernel, using
γ ∈ {0.01, 0.02, 0.08}. The representation vectors are standardized.

Local KNFST. The number of retrieved nearest neighbors (k) is assumed as k = 100 in this method. The
second (dummy) class used to compute the projection direction is assumed to be the origin. We try both linear
and RBF kernels. When RBF kernel is used, its spread γ is set to 0.02, and the representations are standardized
(following what we found the best with OC-SVM).

DINO for fine-tuning. We run the DINO self-supervised training method on a pretrained feature extractor
to fine tune it. The method is run for 20 epochs starting from the DINO ImageNet weights, and the training
data are the same as the ones for novelty detection methods. We use learning rate 2× 10−4, 3 warm up epochs,
and final weight decay equal to 0.1. We keep the other hyparameters same as it is in the DINO author’s code,
suggested for ImageNet. The same hyperparameter values are used for all the datasets.

A.2 Performance comparison per task

As explained in section 5 of the paper, for each of the CUB-200, Flowers-102, and Food-101 datasets, we define 5
different novelty detection tasks by including different classes of the dataset in the normal and novel sets. Since
only the average AUROC over the tasks was reported in the paper for each dataset, here we show the more
detailed AUROC results per each individual task in figure 5, which represent the variability of performances on
each dataset. We choose the three methods VGLR, k-NN, k-NNN to this end, as they appear to be the most
competitive methods overall according to the average numbers.

Similar to the average results, it is verified that our proposed VGLR method outperforms k-NN in every task.
The k-NNN method has a very competitive performance as well, and is only outperformed by k-NN in one case
(task 5 in Food with iBOT). More specifically, VGLR ranks first in 6 out of 10 tasks on CUB, 10 out of 10
tasks on Flowers, and 6 out of 10 tasks on Food data. Despite the close performance with k-NNN, it is worth
reminding that k-NNN here uses at least 4 times as many nearest neighbors (k′) as our proposed method, which
means possibly 4 times higher computational cost for obtaining neighbors.

A.3 Results with ResNet model

In table 5, we show the AUROC performance of methods when the feature extractor is a ResNet-50 model
pretrained using DINO on ImageNet (the representation vector is the pre-logits value in the network). The
protocols used in splitting the data and setting hyperparameters are the same as described before for ViT models.
Most of the hyperparameter values are same as in the case of DINO ViTs (e.g. k′ = 10 in VGLR , k′ = 80 in
k-NNN, and k = 1 in k-NN). One difference here is that the representation vectors are not standardized in VGLR.
We found that standardization would impair the performance of k-NN considerably as well (and consequently,
the nearest neighbor stage of our method) when using the ResNet model (about 6% drop in average AUROC of
k-NN).

The pattern in the results is almost similar to the one with ViTs; VGLR and k-NNN performance rank as
the first or second in the majority of cases. However, the best obtained mean AUROC with DINO ResNet is
everywhere significantly lower than the the one with DINO ViT, as shown in the last row. Moreover, it looks
that the improvement achieved by our VGLR method is generally smaller in this case, which can suggest our
method is particularly suitable for ‘harnessing’ the power of pretrained ViTs in novelty detection.

A.4 Performance in FPR@95TPR

Tables 6 and 7 below report the performance of the experimented methods in terms of FPR@95TPR 5 before
and after fine tuning the feature extractor, which means they are counterparts to the AUROC performance

5False Positive Rate when the score threshold (τ) is such that the True Positive Rate is 95%
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Figure 5: AUROC performance of three methods (VGLR, k-NN, and k-NNN) in 5 novelty detection tasks per
each dataset (rows), using non-fine-tuned ViT-B/16 feature extractor pretrained on ImageNet with DINO (left
column) and iBOT (right column) methods.

tables in the paper. Generally, VGLR ranks first in a fewer number of cases in terms of FPR@95TPR than
AUROC, although its performance still ranks at least as second in quite many cases. Intuitively, the results in
FPR@95TPR are not very satisfactory overall, where the best FPR (error) over all methods is always above
60%, except for the Flowers dataset. One interpretation of this observation is that there are a minority of novel
images in our fine-grained (and challenging) tasks which are hard to detect for all the methods (i.e., they are only
detectable at a small score threshold). Indeed, one can argue that FPR@95TPR is a more ‘noisy’ metric than
AUROC since the former corresponds to a certain threshold, and the latter is an average (area) over different
thresholds. Also, we should take into consideration that the hyperparameters of all the methods are optimized
based on average AUROC in our experiments.
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Table 5: AUROC performance using ResNet-50 feature extractor pretrained on ImageNet by DINO method
(without fine-tuning). The numbers are averages over 5 novel/normal splits, except for the case of PCAM. The
last row shows the best average AUROC for each dataset subtracted by the best corresponding value obtained
by the DINO ViT-B/16.

Method CUB Flowers Food PCAM

VGLR (proposed) 59.6 85.6 61.8 66.9
k-NN 57.4 82.6 62.5 61.0
k-NNN (k=1, s=1) 59.1 80.7 62.4 64.8
k-means + Maha. (SSD) 55.9 83.5 60.0 63.7
OC-SVM 54.1 65.5 56.3 58.5
Local KNFST 52.7 67.0 51.9 53.5
(diff. w.r.t. ViT) -11.7 -6.2 -3.9 -13.3

Table 6: Novelty detection performance in FPR@95TPR using ViT-B/16 feature extractor pretrained on Ima-
geNet by DINO and iBOT methods (without fine-tuning). The numbers are averages over 5 novel/normal splits,
except for the case of PCAM.

FPR@95TPR (%) DINO/iBOT
Method CUB Flowers Food PCAM

VGLR (proposed) 82.7 / 82.8 31.2 / 37.3 86.9 / 88.8 64.0 / 66.0
k-NN 80.5 / 82.3 60.3 / 61.7 88.0 / 88.8 69.0 / 70.3
k-NNN (k=1, s=1) 76.8 / 75.4 35.7 / 36.3 83.7 / 86.5 78.7 / 79.9
k-means + Maha. (SSD) 84.0 / 83.4 57.6 / 59.2 91.2 / 90.7 69.8 / 70.9
OC-SVM 84.0 / 84.5 65.4 / 66.8 90.1 / 90.0 70.3 / 71.7
Local KNFST 81.7 / 81.6 75.5 / 72.9 88.9 / 90.2 72.2 / 75.8

Table 7: Change in the task-specific FPR@95TPR performance (%) by fine-tuning the ViT-B/16 using DINO
loss on normal data.

Method CUB Flowers Food PCAM

VGLR (proposed) 61.1 → 65.4 32.1 → 33.7 92.5 → 61.5 64.0 → 65.9
k-NN 67.2 → 69.2 67.8 → 66.4 90.7 → 60.8 69.0 → 64.5

k-NNN (k=1, s=1) 67.2 → 75.7 34.7 → 32.5 88.9 → 75.4 78.7 → 78.8
k-means + Maha. (SSD) 76.1 → 74.4 67.8 → 71.3 92.9 → 64.7 69.8 → 62.1

OC-SVM 72.3 → 73.2 71.9 → 75.6 91.0 → 60.5 70.3 → 60.5
Local KNFST 76.7 → 72.4 73.9 → 62.9 89.9 → 72.6 72.2 → 63.4

A.5 More on the ImageNet background model

The background model that we use for obtaining the likelihood ratio in our proposed method is a Gaussian
distribution with diagonal covariance fitted on the normal data representations (the bootstrapped background
model, as we call it). However, as pointed out in section 3 of the paper, another way that we explored in
our study is to obtain the background model by fitting a Gaussian distribution on the representation vectors
of ImageNet dataset (partly similar to what Schirrmeister et al. (2020) propose with generative models). The
idea is that ImageNet is a broad and generic dataset that contains images of a great number of objects under a
variety of conditions. Thus, this dataset can be a good source to learn the distribution of background part of
representations, i.e., p(zB), which mostly corresponds to the statistics of low-level features. At the same time,
due to the diversity in ImageNet, p′(zS) estimated from this dataset should tend to assign similar values to both
normal and novel data.
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In table 8, we show the performance of VGLR when the background model is replaced by the Gaussian distri-
bution learned from ImageNet, and compare it to the previously reported performance with the default boot-
strapped background model, using non-fine-tuned ViTs. The ImageNet background model is a multivariate
Gaussian distribution with full covariance matrix. The results of the two methods are pretty close, as the table
shows. However, the main flaw that we observe with the ImageNet background model is that the performance of
this method drops dramatically if a feature extractor fine-tuned on normal data is used, similar to section 5.2 in
the paper (for instance, with DINO, the average AUROC on CUB and Flowers will be 55.5% and 56.5% respec-
tively after fine-tuning). This should not be surprising because the distributions of representations (particularly
their background parts) are different between the non-fine-tuned and fine-tuned models while the background
Gaussian distribution still comes from the non-fine-tuned model. One solution can be to estimate the mean
and covariance of ImageNet representations using each fine-tuned model, though that would impose much more
computational cost than the current bootstrapping method.

Table 8: The average AUROC performance (%) of our method when the alternative ImageNet estimated back-
ground model is used compared to when the current bootstrapped one (estimated on normal data) is used, with
non-fine-tuned ViT-B/16 feature extractors pretrained on ImageNet.

Method CUB Flowers Food PCAM

VGLR / ImageNet Background (DINO) 72.7 91.5 67.9 79.1
VGLR / Bootstrapped Background (DINO) 71.3 91.8 66.4 80.2
VGLR / ImageNet Background (iBOT) 71.7 90.2 67.0 76.5
VGLR / Bootstrapped Background (iBOT) 70.5 90.6 65.1 78.5

A.6 Discussion and results on far-OOD tasks

So far, we have only evaluated our method in ‘fine-grained novelty detection’ tasks. Technically, the novel data
in such tasks can be seen as an almost extreme type of ‘near Out-of-Distribution’ (near-OOD) inputs. Although
this problem is challenging enough, one might ask if our VGLR method works reasonably also in ‘far-OOD’
problems where the normal and novel data are from completely different datasets.

In theory, we do not expect the method to work on far-OOD as well as the near-OOD case because of two
reasons. First, as pointed out in the paper conclusion, the unmodified k-NN score should result in the optimal
AUROC if the in-distribution points are sufficiently far (in Euclidean distance) from the OOD ones (consider the
ideal case where distance between every pair of in-distribution points is smaller than every pair of in-distribution
and OOD points). The second point is about the effect of the background model. In deriving the likelihood
ratio score, we start by assuming that the representation vector can be partitioned to semantic and backgrounds
dimensions in the same way for both the in-distribtuion and ODD data. But even this initial assumption can
become unrealistic when these two types of data come from completely different distributions.

Table 9: AUROC performance (%) in far-OOD tasks, where one dataset is considered as novel (OOD) against
another one, with non-fine-tuned ImageNet pretrained DINO ViT-B/16 feature extractor. For each multi-
category dataset, we use half of the classes (in default order) as used in the normal set of previous experiments.

Normal (in-distribution) Novel (OOD) k-NN Performance VGLR Performance

CUB Flowers 99.9 99.1
Food CUB 100 99.4
PCAM Food 99.9 98.3
Flowers PCAM 100 98.9
PCAM Gaussian Noise 99.9 99.9
CUB Gaussian Noise 100 99.9

To investigate this empirically, we run a few far-OOD detection experiments by choosing a pair of datasets as
normal/novel, among the ones already used in the experiments, in addition to Gaussian noise images. Table
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9 shows the AUROC performance results of our proposed method (with k′ = 10) and its comparison to basic
k-NN (k = 1) in this scenario. Interestingly, we see that the k-NN performance is almost perfect on these tasks,
and VGLR also works very well despite of the theoretical concerns. However, VGLR is slightly outperformed by
k-NN (up to 1.6%) in most of the cases.

A.7 Notes on complexity

The time/memory complexity of the method can be discussed in two parts. The first part is about finding the
nearest neighbor of input and the nearest neighbors of the nearest neighbor (lines 4 and 5 in the algorithm 1).
This step has a computational cost similar to finding k′ + 1 nearest neighbors of a data point, that in practice
depends on the algorithm employed for nearest neighbors search (for example, using k-d tree and sequential
processing, the average time complexity will be O((1 + k′)logN) where N is the number of data points, but
parallel computing can speed up the search largely). The second primary part of the computation is where
the local variances (diagonal covariance) are obtained, i.e., line 6 of the algorithm. In case of naive sequential
implementation, this should have O(k′m) time and memory complexity, where m is the number of dimensions
of the representation space.

An alternative way to implement the VGLR method is to pre-compute the local variances for each training data
point of DT and save them in a lookup table, similar to the method of Nizan and Tal (2024). In that case, the
processing time for obtaining local variances at test time will be eliminated though at the cost of increasing the
memory complexity of the whole algorithm by a factor of 2.


	INTRODUCTION
	MOTIVATION: K-NN MISSES LOCAL GEOMETRY AND BACKGROUND FEATURES
	NOVELTY DETECTION USING PRETRAINED MODELS
	Problem Statement
	Voronoi-Gaussian Model
	Likelihood Ratio Score

	RELATED WORK

	EXPERIMENTAL RESULTS
	Results with non-fine-tuned ViTs
	Self-supervised fine-tuning of feature extractor
	Ablation study

	CONCLUSION
	Additional details on experiments and methods
	Datasets
	Software and hardware specifications
	Methods and hyperparameters

	Performance comparison per task
	Results with ResNet model
	Performance in FPR@95TPR
	More on the ImageNet background model
	Discussion and results on far-OOD tasks
	Notes on complexity



