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Abstract

Multi-agent reinforcement learning has a
wide range of applications in cooperative
settings, but ensuring data privacy among
agents is a significant challenge. To ad-
dress this challenge, we propose Privacy-
Preserving Decentralized Actor-Critic (PP-
DAC), an algorithm that motivates agents to
cooperate while maintaining their data pri-
vacy. Leveraging trajectory ranking, PP-
DAC enables the agents to learn a cooper-
ation reward that encourages agents to ac-
count for other agents’ preferences. Subse-
quently, each agent trains a policy that max-
imizes not only its local reward as in inde-
pendent actor-critic (IAC) but also the co-
operation reward, hence, increasing cooper-
ation. Importantly, communication among
agents is restricted to their ranking of tra-
jectories that only include public identifiers
without any private local data. Moreover, as
an additional layer of privacy, the agents can
perturb their rankings with the randomized
response method. We evaluate PPDAC on
the level-based foraging (LBF) environment
and a coin-gathering environment. We com-
pare with IAC and Shared Experience Actor-
Critic (SEAC) which achieves SOTA results
for the LBF environment. The results show
that PPDAC consistently outperforms IAC.
In addition, PPDAC outperforms SEAC in
the coin-gathering environment and achieves
similar performance in the LBF environment,
all while providing better privacy.
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1 INTRODUCTION

Deep reinforcement learning algorithms have been suc-
cessful in solving a wide range of tasks including games
(Silver et al., 2017; Mnih et al., 2013) and continu-
ous control tasks (Schulman et al., 2017). In addi-
tion, multi-agent reinforcement learning (MARL) has
a wide range of applications such as traffic control,
multi-robot path planning, and stock market opera-
tions (Oroojlooy and Hajinezhad, 2022). Cooperative
MARL agents need to be trained simultaneously to
achieve a common goal or multiple goals (Oroojlooy
and Hajinezhad, 2022); however, both single-agent and
multi-agent reinforcement learning can benefit from
distributed training as it can drastically reduce the
required training time (Mnih et al., 2016; Liang et al.,
2018).

Preserving the privacy of data in a distributed learn-
ing paradigm is one of the open challenges of MARL
alongside other challenges such as scalability, non-
stationarity, and partial observability (Gronauer and
Diepold, 2022). In this work, we focus on cooperative
agents that require maintaining some level of data pri-
vacy. We consider the settings where multiple, poten-
tially heterogeneous, agents with private actions and
possibly private observations interact simultaneously
with an environment and each agent receives a differ-
ent local reward according to its own task. In this
cooperative setting, each agent’s goal is to learn a pol-
icy that achieves its own objective and supports the
other agents’ objectives, by maximizing a weighted
average of all rewards. Realizing this goal becomes
significantly challenging when sharing the actions, ob-
servations, or rewards is not allowed due to privacy
issues (Oroojlooy and Hajinezhad, 2022).

In this work, we propose the Privacy-Preserving De-
centralized Actor-Critic (PPDAC) algorithm which
enables a simple yet efficient mechanism for the agents
to cooperate while keeping their rewards, actions, and
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observations private. It utilizes the actor-critic learn-
ing paradigm in which, an actor component learns
the policy while a critic component learns the value
function (Sutton and Barto, 2018). In PPDAC, each
agent learns two critic networks, a critic using its own
rewards, and another critic using a cooperation re-
ward designed to encourage actions that benefit other
agents. To learn the cooperation reward without shar-
ing private data, we propose trajectory ranking as the
mode of communication, relying on the recently shown
effectiveness of learning a reward function from trajec-
tory ranking, especially for learning human preferences
(Christiano et al., 2017). In particular, each agent
estimates the cooperation reward with a parameter-
ized network trained using other agents’ aggregated
ranking over a shared database of trajectory pairs. A
single actor is then trained using an aggregated loss
computed using both critic networks. Furthermore,
to achieve a higher level of privacy, agents can use the
randomized response method (Warner, 1965) to return
a random ranking instead of a truthful one with a pre-
determined probability. We show that this method
achieves local differential privacy for the agents’ pref-
erences over trajectories. To the best of our knowledge,
this is the first algorithm for heterogeneous MARL
that proposes trajectory ranking as an incentive for
cooperation between agents that wish to keep their
data private.

We thoroughly evaluate PPDAC by running simu-
lations in the level-based-foraging environment (Pa-
poudakis et al., 2021) and a newly created coin-
gathering environment in six different settings. We
compare PPDAC with independent actor-critic (IAC)
and Shared Experience Actor-Critic (SEAC) which
achieves state-of-the-art results in the LBF environ-
ment. The results show a clear advantage for PPDAC
over IAC in both environments. In addition, PPDAC
outperforms SEAC in the coin-gathering environment
and achieves similar performance in the LBF environ-
ment without sharing the agents’ private data.

The remainder of the paper is organized as follows.
Section 2 reviews the existing related work. We pro-
vide the necessary technical background in Section 3
and present the proposed PPDAC algorithm in Sec-
tion 4. We demonstrate and discuss the simulation
results in Section 5 and finally, conclude our findings
and provide future work directions in Section 6.

2 RELATED WORK

We now overview the research directions, along with
the existing work, closely related to this paper.

Centralized Training with Decentralized Exe-
cution for Cooperative MARL One common ap-
proach to tackling cooperative MARL problems is cen-
tralized training with decentralized execution (CTDE)
such as value decomposition networks (VDN) (Sune-
hag et al., 2017), QMIX (Rashid et al., 2020), and
multi-agent deep deterministic policy gradient (MAD-
DPG) (Lowe et al., 2017). In this setup, a centralized
critic is trained to compute the Q-value function of
the joint policy of all agents, and through value fac-
torization, each agent’s contribution is used to update
its local policy. Each agent executes its local policy
independently according to its own observation in a
decentralized manner. In recent literature, different
value factorization methods are used. For example, Du
et al. (2019) proposes learning an intrinsic reward func-
tion for each agent with the existence of a centralized
critic. Their method merges reward shaping and cen-
tralized training in order to learn policies with diver-
sified behavior. Peng et al. (2021) proposed FACtored
Multi-Agent Centralized policy gradients (FACMAC)
where a centralized factored critic is trained with no
constraints on factorization, unlike prior methods. Al-
though CTDE methods achieve state-of-the-art perfor-
mance on benchmark cooperative multi-agent tasks, a
centralized server needs to be trusted with local infor-
mation including rewards in order to train the central-
ized critic.

Fully Decentralized Cooperative MARL De-
centralized approaches to MARL have more poten-
tial for preserving the privacy of each agent’s data
but require efficient communication between agents
(Zhang et al., 2021). Communication can be limited to
training time only where agents share observations, re-
wards, gradients, or any local information to facilitate
training. For example, Christianos et al. (2020) pro-
poses Shared Experience Actor-Critic (SEAC) where
agents with different local rewards can share their ex-
periences during training which results in better ex-
ploration and faster convergence. Although rewards
can be different, agents are assumed to have similar
observation spaces. Ma et al. (2022) proposes Expec-
tation Alignment as a Multi-Agent Intrinsic Reward
(ELIGN) where each agent learns to take actions that
match the expectations of its neighbors to maximize
a team reward. This is achieved through an intrin-
sic reward that encourages action alignment. The re-
ward is estimated using the intersection of observa-
tions with neighboring agents. In a more restricted
setting where rewards are local and private to each
agent, Qu et al. (2019) develops the value propaga-
tion algorithm where agents communicate with a lo-
cal neighborhood during training to reach a consensus
over the local critic parameters assuming full observ-
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ability of the state. In our work, we do not assume
full observability, homogeneity of observation and ac-
tion spaces, or the existence of an intersection in ob-
servation. In addition to communication during train-
ing, communication between agents both during exe-
cution and training has also been studied (Rangwala
and Williams, 2020; Zhang et al., 2019; Jiang and Lu,
2018).

Influencial Agents in Cooperative MARL
Learning to incentivize other agents has also been
studied in the literature. Wang et al. (2022) and Xie
et al. (2021) tackle modeling other agents’ behavior in
order to influence them towards a stable joint policy.
Another approach is augmenting the action space of
agents to allow each agent to decide gifting rewards
to other neighboring agents to incentivize them to do
beneficial actions (Yang et al., 2020; Lupu and Precup,
2020).

Privacy-Preserving in RL Sakuma et al. (2008)
consider privacy in distributed reinforcement learning.
They use cryptographic methods such as encryption
and secure function evaluation in order to develop dis-
tributed privacy-preserving versions of SARSA and Q-
learning in the tabularized form. Vietri et al. (2020)
develop the Private Upper Confidence Bound algo-
rithm which is designed to achieve joint differential
privacy for a single agent that interacts with multiple
users sharing their sensitive data. In a similar set-
ting, Garcelon et al. (2021) achieve local differential
privacy through obfuscating data on the user side. In
a federated multi-agent reinforcement learning setting,
Zhuo et al. (2019) develops deep federated reinforce-
ment learning where agents communicate encrypted
Q-values with Gaussian differentials to learn a global
Q-network. In a multi-agent planning setting, both
Chen et al. (2023) and Ye et al. (2020) develop algo-
rithms that achieve differential privacy. In addition,
Karabag et al. (2021) and Liu et al. (2021) study de-
ception in multi-agent planning which is closely related
to privacy as agents aim to hide their intentions from
other parties observing their interactions with the en-
vironment. In this work, we focus on maintaining pri-
vacy for agents in a multi-agent reinforcement learning
setting where each agent learns a different policy in a
decentralized manner.

3 PRELIMINARIES

In this section, we go over the necessary background
needed to define the proposed method. We first define
the problem as a general-sum Markov game and then
discuss existing actor-critic methods implementation.

3.1 Problem Definition

A Markov game M is defined as the tuple
(N ,S, {O(i)}i∈N , {A(i)}i∈N , {R(i)}i∈N , T ) where
N = {1, ..., N} is the set of N agents, S is the set of
states that the environment could be in, O(i) : S → Rd

maps the set of states to the d-dimensional view of
agent i, A(i) is the set of possible actions for agent i,
R(i) : S × A → R is the reward function for agent i,
and T : S × A → ∆(S) is the transition probability
where A = A1 × ... × AN and ∆(S) is the set of
probability distributions over S.

Each agent has its own policy π(i) : O(i) → ∆(A(i))
that maps its observation to a probability distribu-
tion over actions. The discounted return of agent i
for a given trajectory (s0, a0, s1, a1, ...) is defined as
G(i) =

∑∞
t=0 γ

tR(i)(st, at), where γ ∈ (0, 1) is the dis-
count factor, and at is the joint action of all agents
at time t. In a centralized cooperative setting, the
goal is to find a joint policy π = (π(1), ..., π(N)) that
maximizes the total expected discounted return of all
agents. However, due to the exponentially growing ob-
servation and action spaces with the increasing num-
ber of agents, we consider a decentralized case where
the goal of agent i is to learn a policy that maximizes
Eπ(i)

[
G(i) + λG(−i)

∣∣π(−i)
]
where π(−i) is the joint pol-

icy of the other agents, i.e., agents{j ∈ N : j ̸= i},
G(−i) is the average discounted return of said agents,
λ is the cooperation factor, and Eπ[.] is the expectation
of a random variable if the policy π is followed under
transition probabilities defined by T : S ×A → ∆(S).

We assume that every agent views other agents’
policies as part of the transition dynamics of the
environment and that it does not change drasti-
cally. This means that for a single agent, the tran-

sition probability P (st+1 = s′|a(i)t = a(i), st =
s) =

∑
a−i∈A−i π(−i)(a−i|s)T (s, (a(i), a−i), s′) appears

fixed during a small number of steps. This assumes
that the environment appears stationary and allows
agents to learn by simply forgetting old timesteps
where the environment dynamics were different. This
approach is similar to the family of forget algorithms
discussed by Hernandez-Leal et al. (2017) on how to
deal with non-stationarity in MARL.

3.2 Independet Actor-Critic for MARL

We begin by discussing actor-critic methods for the
single-agent case. Actor-critic methods are a subset of
model-free policy gradient algorithms. Policy gradient
algorithms are based on the REINFORCE algorithm
(Williams, 1992) which trains a parameterized policy
πϕ with parameters ϕ to maximize the expected re-
turns of an agent. Formally, the objective function is
defined as L(ϕ) = Eπϕ

[Gt log πϕ(at|st)] where Gt is the



Privacy-Preserving Decentralized Actor-Critic for Cooperative Multi-Agent Reinforcement Learning

discounted return at time step t. The parameters ϕ are
updated by performing gradient ascent in the direc-
tion ∇ϕ log πϕ(at|st)Gt using samples collected from
interacting with the environment. REINFORCE with
a baseline (Williams, 1992) reduces variance in gra-
dient estimation by subtracting a baseline indepen-
dent of the actions from Gt such that the gradient
is ∇ϕ log πϕ(at|st)(Gt − b(st)).

In actor-critic methods, a critic V π
θ parameterized by θ

acts as a baseline. The critic is trained to estimate the
expected returns of the current policy starting from a
given state or observation (Sutton and Barto, 2018).
The expected returns of a policy is referred to as the
value function of a policy and is defined as V π(s) =
Eπ[Gt|st = s] = Eπ[rt+Es′∼T V

π(s′)]. The gradient of
loss with respect to the policy for an n-step actor-critic
becomes ∇ϕ log πϕ(at|st)(

∑n−1
k=0 γ

krk + γnV π
θ (st+n) −

V π
θ (st)).

The most natural extension of actor-critic algorithms
to MARL is independent actor-critic (IAC) (Foerster
et al., 2018) where each agent trains an actor and a
critic independently using its local observations, ac-
tions, and rewards. Assuming partial observability, a

critic V π(i)

θi
is trained per agent to estimate the ex-

pected local returns from a given observation. The
critic parameters are updated using batches of sam-
ples collected from the environment through minimiz-
ing the loss function defined in Equation (1) where the

Vπ(i)

θi
is a vector defined as Vπ(i)

θi
(t) = V π(i)

θi
(o

(i)
t ) and

the targets vector Y(i) is defined in Equation (2).

L(θi) =
∣∣∣∣∣∣Vπ(i)

θi −Y(i)
∣∣∣∣∣∣2
2

(1)

Y(i)(t) =

n−1∑
k=0

γkr
(i)
t+k + γnV π(i)

θi

(
o
(i)
t+n

)
(2)

For each agent, a policy π
(i)
ϕi

is trained to map
the observation to a probability distribution over ac-
tions by minimizing the loss defined in Equation (3)
where the n-step estimate of the advantage function

A(i)
(
o
(i)
t , a

(i)
t

)
is defined in Equation (4).

L(ϕi) = − log π
(i)
ϕi

(
a
(i)
t

∣∣∣o(i)t

)
A(i)

(
o
(i)
t , a

(i)
t

)
(3)

A(i)
(
o
(i)
t , a

(i)
t

)
=

n−1∑
k=0

γkr
(i)
t+k + γnV π(i)

θi (o
(i)
t+n)

− V π(i)

θi (o
(i)
t )

(4)

We model PPDAC as an extension to the advantage
actor-critic (Mnih et al., 2016) which is defined by the
loss in Equations (1) and (3). However, there exist sev-
eral extensions to on-policy actor-critic methods such
as Trust Region Policy Optimization (TRPO) (Schul-
man et al., 2015) and Proximal Policy Optimization
(PPO) (Schulman et al., 2017) which can also be used
in the updates of the PPDAC algorithm.

4 PRIVACY-PRESERVING
DECENTRALIZED
ACTOR-CRITIC

In this section, we define the structure of the Privacy-
Preserving Decentralized Actor-Critic (PPDAC) algo-
rithm and analyze its privacy guarantees. There are
two key components to PPDAC: learning cooperation
through estimating a cooperation reward and train-
ing the actor, the local critic, and the cooperation
critic through minimizing the PPDAC loss function.
An overview of the main modules of the PPDAC ar-
chitecture for the simple case of 1-step return updates
is provided in Figure 1. The algorithm’s pseudocode
for a single agent with n-step returns is shown in Al-
gorithm 1.

4.1 Learning to Cooperate

In order to learn to cooperate, each agent learns a co-

operation reward estimator r̂
(i)
νi : Oi × Ai → R based

on the preferences of other agents. We use a similar
method to the method proposed by Christiano et al.
(2017) to learn a reward function from human prefer-
ence. First, we assume that with each observation the
environment outputs a unique timestep t that acts as
an identifier of the current sample. This unique identi-
fier can be used by the agents to retrieve the true local
data for a given set of timesteps. A centralized trajec-
tory server creates pairs of timestep sequences of a
fixed length m. Each timestep sequence σ = t1, ..., tm
corresponds to a trajectory where t1 is the start time
of the trajectory and tm is the end time of the trajec-
tory. Whenever the trajectory server creates a batch
of pairs, it queries all agents for their preferences and
saves the agents’ preferences along with the trajectory
pairs in a shared buffer. Given a trajectory, each agent
can retrieve the true samples (oit, a

i
t, r

i
t) corresponding

to the trajectory from its replay buffer. Subsequently,
for a given trajectory pair σ1 and σ2, each agent com-
putes a score for each trajectory using the scoring func-
tion defined in Section 4.2. The agent then assigns to
each pair 0.5 if the difference between their scores is
less than a predefined threshold ρ, 0 if σ1 is preferred,
or 1 if σ2 is preferred.
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PPDAC Agent i

Actor

Batch of (S[σ1], S[σ2], µ
−i)Storage S

Critic

λÂ
(i)
t

Coop-Critic

o
(i)
t

o
(i)
t , a

(i)
t , r

(i)
t , t

o
(i)
t o

(i)
trt r̂

(i)
t

A
(i)
t

Reward Estimator
o
(i)
t

r̂
(i)
t

a
(i)
t

t

o
(i)
t , r

(i)
t , t

Environment

a
(i)
t

Batch of (σ1, σ2, µ
−i)

Trajectory Server

Trajectory Pairs Rankings

σi,1 σi,2 µ1 ... µN

Query Preferences

Perturbed Ranking

Figure 1: Overview of a PPDAC agent’s interactions with the environment and the trajectory server in the
simple case of 1-step return updates. The agent chooses an action based on the current observation provided by
the environment and receives the next observation, reward, and unique ID t. The agent computes the loss and
updates the actor, the critic, and the cooperation critic using the inputs on the dotted line. One of these inputs
is the cooperation reward computed by the reward estimator. Data sent by the environment is saved in the local
storage S. In parallel, the trajectory server creates trajectory pairs from the unique IDs t, queries the agent for
its preference, and receives the perturbed ranking from the agent. The agent then samples a batch of pairs from
the server, retrieves the true data from the storage S, and updates the reward estimator. (Note that to reduce
clutter some connectors are disconnected but the labels on the arrows are the same)

Using the mean of the preferences of other agents in
the trajectory server, each agent i then trains the co-

operation reward estimator r̂
(i)
νi using only their lo-

cal observation, local action, and the preferences of
other agents. The loss function of the reward estima-
tor is based on the Bradley-Terry-Luce (BTL) model
(Bradley and Terry, 1952) which models the probabil-
ity of getting a specific ranking of trajectories based
on the cumulative reward achieved during both trajec-
tories. The reward estimator is trained by sampling
random batches from the trajectory server using the
loss function defined in Equations (5) and (6) where
µ−i is the average preference of other agents and νi
represents the parameters of r̂

(i)
νi .

P̂ (i) [σ1 ≻ σ2] =∑
t∈σ1

exp r̂
(i)
νi (o

i
t, a

i
t)∑

t∈σ1
exp r̂

(i)
νi (o

i
t, a

i
t) +

∑
t∈σ2

exp r̂
(i)
νi (o

i
t, a

i
t)

(5)

L(νi, σ1, σ2, µ
−i) =

− (1− µ−i) log P̂ (i) [σ1 ≻ σ2]

− µ−i log P̂ (i) [σ2 ≻ σ1]

(6)

In order to maintain the privacy of preferences, each
agent uses a randomized response method as suggested
by Warner (1965). The agent first samples a number
uniformly u ∈ [0, 1]. If u ≤ ζ where ζ is the perturba-
tion noise, the agent returns a random vote, otherwise,
the agent ranks the trajectories truthfully. For ζ = 0,
the agents are always returning a truthful response
with no privacy over its rankings. On the other end
of the spectrum for ζ = 1, agents always return a ran-
dom response maintaining full privacy of their data,
but sharing no useful information.

4.2 PPDAC Loss Function

In addition to the cooperation reward estimator, each
agent trains two critics by minimizing the loss function
defined in Equation (1) where each critic uses different

rewards. The local critic V π(i)

θi
is trained similarly to

IAC using the local reward samples rt. The coopera-

tion critic V π(i)

ωi
parameterized by ωi is trained using

the cooperation reward samples r̂
(i)
νi

(
oit, a

i
t

)
. The ac-

tor of each agent is updated using the loss function
defined in Equation (7) where the cooperation factor
λ is a hyper-parameter. The actor loss function in-
cludes the advantage computed using both critics as
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in Equations (4) and (8).

L(ϕi) =− log π
(i)
ϕi

(
a
(i)
t

∣∣∣o(i)t

)
×(

A(i)
(
o
(i)
t , a

(i)
t

)
+ λÂ(i)

(
o
(i)
t , a

(i)
t

)) (7)

Â(i)
(
o
(i)
t , a

(i)
t

)
=

n−1∑
k=0

γkr̂(i)νi

(
o
(i)
k , a

(i)
k

)
+ γnV π(i)

ωi
(o

(i)
t+n)− V π(i)

ωi
(o

(i)
t )

(8)

When ranking trajectories, the scoring function de-
fined in Equation (9) is used. The function assigns
a score to the trajectory as the sum of the rewards
received during the trajectory in addition to the ex-
pected discounted returns starting from the last obser-
vation which is estimated using the local critic. This
inclusion of the expected discounted return of the fi-
nal observation in the score of a trajectory gives a
higher score for trajectories with a final observation
that is likely to yield a positive local reward in future
timesteps.

score(i)(σ) =
∑
t∈σ

r
(i)
t + V π(i)

θi (o
(i)
tm) (9)

4.3 Local Differential Privacy of PPDAC

We study the local differential privacy of PPDAC in
the case where agents’ observations are disjoint, i.e.,
an agent does not get a partial observation of other
agents’ view of the environment. Since every agent
can only observe other agents’ rankings, it is sufficient
to show that PPDAC maintains the privacy of agents’
true ranking. Local differential privacy is formally de-
fined as follows (Duchi et al., 2013).

Definition 1. A randomized algorithm F satisfies ϵ-
local differential privacy if and only if for any two pairs
of inputs di and dj and for any output A ∈ Range(F),
the inequality Pr[F(di) = A] ≤ eϵPr[F(dj) = A]
holds.

For PPDAC, the randomization step is an extended
Warner’s randomized response method with three el-
ements (Ma and Wang, 2021). The set of possi-
ble inputs and outputs of the randomization step is
{0, 1, 0.5} which corresponds to an agent’s ranking
over two trajectories. In PPDAC, the truthful re-
sponse is returned with probability Pr[F(di) = di] =
(1−ζ)+ 1

3ζ = 1− 2
3ζ, while the other two responses are

returned with probability Pr[F(di) = dj ] =
1
3ζ where

j ̸= i. Given this randomization scheme in PPDAC,
we present the following Theorem.

Algorithm 1 PPDAC Algorithm

1: Initialize local critic network V π(i)

θi
, cooperation

critic network V π(i)

ωi
, actor network π

(i)
ϕi
, and the

reward estimator r̂
(i)
νi .

2: Get initial observation o
(i)
0 from the environment.

3: for t = 0 to training steps do

4: Pick action a
(i)
t using policy π

(i)
ϕi
.

5: Execute action a
(i)
t and observe next observation

o
(i)
t+1 and reward r

(i)
t .

6: for each query from the trajectory server do
7: Sample a uniform random variable u ∈ [0, 1].
8: if u ≤ ζ then
9: Respond with a random ranking.

10: else
11: Respond with 0.5 if |score(i)(σ1) −

score(i)(σ2)|≤ ρ, 0 if σ1 preferred, or 1 oth-
erwise.

12: end if
13: end for
14: if t mod n == 0 then
15: Perform gradient descent to update all networks

using the loss functions defined in Equations (6),
(1), and (7).

16: end if
17: end for

Theorem 1. PPDAC satisfies ϵ-local differential pri-

vacy for the agents’ rankings with ϵ = ln
(

3−2ζ
ζ

)
.

Proof. For ζ ∈ [0, 1], it is clear that 1
3ζ ≤ 1

3 ≤ 1− 2
3ζ.

Hence, it is sufficient to show that Pr[F(di) = di] ≤
eln (

3−2ζ
ζ )Pr[F(di) = dj ] for j ̸= i as the other direc-

tion of the inequality is trivial given that Pr[F(di) =
dj ] ≤ Pr[F(di) = di] and eϵ ≥ 1, ∀ϵ ≥ 0. The proba-
bility Pr[F(di) = di] can be expressed as

Pr[F(di) = di] = 1− 2

3
ζ =

3− 2ζ

ζ
× 1

3
ζ

Therefore, Pr[F(di) = di] = eln (
3−2ζ

ζ )Pr[F(di) = dj ].

If the disjoint observation assumption is dropped, an
agent’s rewards can be susceptible to more sophisti-
cated longitudinal attacks that can deduce rewards
from multiple rankings of similar observations. In ad-
dition, other agents can deduce the agent’s intentions
by observing the results of the agent’s interactions with
the environment. To address the former problem, a
randomized response that can address longitudinal at-
tacks such as RAPPOR (Erlingsson et al., 2014) could
be used. For the latter problem, learning deception
(Karabag et al., 2021; Liu et al., 2021) would be re-
quired. We leave this for future work.
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5 EXPERIMENTS

We evaluate the proposed method in six different set-
tings across two simulation environments, a newly cre-
ated environment called coin-gathering and the level-
based foraging (LBF) environment (Papoudakis et al.,
2021). We compare with two baselines, independent
actor-critic (IAC) and Shared Experience Actor-Critic
(SEAC) (Christianos et al., 2020) which achieves state-
of-the-art results in the LBF environment. Additional
simulations and analysis of PPDAC are presented in
the supplementary material.

5.1 Environments

Coin-Gathering (Figure 2a): This environment is
developed to mimic systems where each agent is inter-
acting with an isolated sub-system, however, agents’
actions affect each other. In this environment, agents
exist in a 2D grid where each agent is located in an
isolated room that is initially empty. The room gets
populated with a coin, a bomb, or a star based on
virtual arms that the agents can pull. Picking a coin
gives a reward of +1, hitting a bomb gives a reward of
−0.5, and collecting a star removes all bombs in the
room. The agent’s observation consists of its (x,y) co-
ordinates, whether a coin exists or not, the relative po-
sition of the coin if it exists, whether a star exists, the
relative position of the star if it exists, and whether or
not each cell of the middle row contains a bomb. Each
agent has access to the basic four movement actions in
addition to L actions that correspond to pulling a vir-
tual arm. When an agent pulls a virtual arm it has an
effect on its room and another effect on other agents’
rooms. Each room is divided into a top half and a
lower half. Each arm has a predefined probability to
either spawn a coin in the half of the room that the
agent is not in, spawn a bomb in the middle row of
the room blocking the agent’s way, spawning a star in
the half of the room the agent is in or do nothing. No
more coins would be spawned in a room containing a
coin until the existing coin gets picked up. In addi-
tion, spawning a new star removes the existing star
from the room. Each arm has the same effects on the
other rooms but with a different probability distribu-
tion, i.e., an arm can be beneficial locally to the agent
but harmful to other agents.

Level-Based-Foraging (Figure 2b): The LBF en-
vironment consists of agents with different levels that
get a positive reward when they pick up foods. Each
food requires a minimum total level of the agent(s)
picking it up. Agents are required to coordinate in or-
der to be able to pick up all foods. The observation
of each agent consists of the agents and food positions
and levels. Each agent has access to movement ac-

tions in the four directions (up, down, left, right) in
addition to a do-nothing action and an action that at-
tempts to load food from an adjacent cell. Whenever
one or more agents pick up a food item, each agent
gets a fraction of the reward proportional to the ratio
between the agent’s level and the total level of agents
that picked up the item. The total reward of a single
episode is scaled to be at most one. The reward of an
episode reflects the fraction of resources picked up.

5.2 Implementation Details

Parallel synchronized environments are used to collect
the samples needed for training following prior work
methods by Mnih et al. (2016) and Christianos et al.
(2020). We chose to run 4 environments in parallel.
For AC updates, 25 steps are used to estimate the re-
turns. The advantages used to compute the actor loss
are normalized before doing the update. This is essen-
tial for PPDAC as it scales the advantages of both crit-
ics to have similar statistics. However, even for IAC
and SEAC, normalization has significantly improved
the results for the LBF environment compared to the
results obtained by Christianos et al. (2020) which we
discuss in the results section. Each of the critics, the
actors, and the reward estimators have two hidden lay-
ers of size 64 each. Each critic has one linear output
representing the estimated value function. Rewards
estimators have one tanh output and actors have a
softmax output layer with k outputs corresponding to
k actions. In addition, to reduce variance 3 parallel
estimators are trained per agent, and their output is
aggregated (Christiano et al., 2017). Finally, entropy
regularization is included for the actor loss. The pa-
rameters of an agent’s actor and critics are updated
simultaneously with an Adam optimizer (Kingma and
Ba, 2014), while its reward estimators are also updated
together. Due to the computational complexity of the
experiments, a manual search over hyper-parameters
was conducted to find a set of parameters working best
for all experiments. IAC, SEAC, and PPDAC use the
same values of hyper-parameters for common param-
eters. The full list of hyper-parameters is included in
the Appendix. For SEAC, we use the implementation
by Christianos et al. (2020).

In every experiment setting, each algorithm is run
three times with different seeds and evaluated by sim-
ulating 100 episodes and computing the average to-
tal reward. We evaluate an algorithm every 104 or
5 × 104 simulation steps depending on the task. The
average across the three seeds is plotted along with the
95% confidence region shaded with the same color key.
Each run is carried out using 5 cores of an AMD Epyc
7763 “Milan” CPU @ 2.2GHz with allocated memory
of 4 GB. We provide an open-source implementation of
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(a) Coin-gathering environment: each agent,
illustrated with the robot icon, is in a separate
room and is required to collect any spawning
coins and avoid bombs. An agent can pick a

star to remove all bombs in its room.

(b) Level-based-foraging environment
(Christianos et al., 2020): agents are illustrated
with the robot icon, and the level of each agent
and food is included in its bottom right. Agents
get a positive reward upon picking any food

item.

Figure 2: Environments included in the experiments

PPDAC in www.github.com/MaheedHatem/private_

coop_marl/.

5.3 Results

The first experiment shown in Figure 3a studies a
simple setting in the coin-gathering environment with
two agents where each agent has access to two virtual
levers. Each lever has no effect on the agent’s room,
however, for the other agent’s room, one lever always
spawns a coin and the other lever always spawns a
bomb. Given the limited observation of each agent,
IAC and SEAC are unable to find a local policy ca-
pable of achieving significant rewards. On the other
hand, PPDAC with perturbation up to ζ = 0.8 is capa-
ble of converging to a policy that achieves much higher
total rewards. As the level of perturbation increases,
PPDAC converges to a slightly lower reward with a
slight increase in steps required to converge. In the re-
maining experiments, we only include one or two levels
of reasonable perturbation levels. In a more general
setting, Figure 3b shows the results of simulations in
the coin-gathering environment with three agents and
four levers. One of the levers appears to be optimal if
viewed locally as it spawns a coin locally with a high
probability, however, it spawns a bomb in other rooms
with a high probability. The other three levers have a
mixed probability of spawning coins, stars, and bombs.
The full experiment setting is included in the supple-
mentary material. PPDAC converges to a higher total
reward than both IAC and SEAC, with SEAC surpris-
ingly performing worse than IAC. The locally greedy
policy adopted by IAC that involves using the first
lever appears to be sub-optimal with agents hitting
bombs more often. However, PPDAC agents are able
to find a better joint policy that is better at creating
a bomb-free path and converges to a higher reward.

In the LBF environment, Figure 3c shows the evalua-
tion of PPDAC and the baselines in a setting with two
agents and two foods. In this simple setting, all al-
gorithms are able to converge to the same value with
SEAC having faster convergence as sharing data in-
creases sample efficiency. Figures 3d and 3e show the
results of simulations with three agents and three and
four foods, respectively. In this slightly harder setting,
our implementations of IAC and PPDAC are able to
match the performance of SEAC. This result is a bit
different from what was obtained by Christianos et al.
(2020) where IAC was unable to match SEAC’s per-
formance. We hypothesize that this is due to the ad-
vantage normalization step and using a larger number
of steps to compute the returns as this is the main
difference between our implementation and the imple-
mentation of IAC from (Christianos et al., 2020). In
addition, SEAC and IAC also achieve higher returns
using this modification in the final LBF setting shown
in Figure 3f. In this setting, there are two agents with
two foods but each food always requires cooperation
to be picked up. PPDAC and SEAC achieve a near-
optimal value of almost 1 which reflects picking up
both foods, outperforming IAC.

PPDAC has a clear advantage in the coin-gathering
environment where the agent’s observations are dis-
joint. In such scenarios, the cooperation reward within
PPDAC provides a compelling incentive for agents to
collaborate, even when they lack direct observation of
the consequences of their actions on others. On the
other hand, even when sharing experience, agents do
not have a clear way to collaborate. Although SEAC
shares experience among agents, the goal of sharing is
to enhance exploration and there is no notion of co-
operation in the objective function. On the contrary,
PPDAC agents take into consideration the rewards of

www.github.com/MaheedHatem/private_coop_marl/
www.github.com/MaheedHatem/private_coop_marl/
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(a) Coin-gathering: two agents with
two locally ineffective levers. Each

room is 2× 9.
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(b) Coin-gathering: three agents with
four levers. Each room is 5× 12.
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(c) LBF: two agents with two foods.
Grid size is 12× 12.

0 1 2 3 4 5
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

A
v
e
ra

g
e
T
o
ta

l
R
e
tu

rn
s

PPDAC(ζ=0)
PPDAC(ζ=0.2)
IAC
SEAC

(d) LBF: three agents with three
foods. Grid size is 10× 10.
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(e) LBF: three agents with four foods.
Grid size is 15× 15.
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(f) LBF: two agents with two foods
(Cooperative). Grid size is 8× 8.

Figure 3: Average total returns of agents over three random seeds in the coin-gathering and LBF environments.
The x-axis shows the number of simulation steps and the y-axis shows the average total rewards received by the
agents.

other agents by aligning with their preferences. Fur-
thermore, in the case where a joint observation exists
such as in the LBF environment, PPDAC is still able to
outperform independent training and match the per-
formance of SEAC where the actions and observations
of other agents are shared during training. Notably,
with a non-zero value of the perturbation noise ζ, PP-
DAC agents maintain their performance across both
settings. In one case, in the coin-gathering environ-
ment with three agents, PPDAC with perturbation
(ζ = 0.4) achieves the best performance. This could
either stem from the random nature of the training
procedure or due to the noise acting as regularization
which could improve performance as commonly exer-
cised in deep learning (Noh et al., 2017).

6 CONCLUSION

We proposed Privacy-Preserving Decentralized Actor-
Critic (PPDAC), a method for agents in a coopera-
tive multi-agent reinforcement learning setting to col-
laborate while keeping their data private. By sim-
ply ranking a shared database that holds sequences
of timestamps, agents can estimate the effect of their
actions on other agents. This incentivizes agents to

take actions that help increase the overall reward of
all agents. In addition to not sharing any of the pri-
vate data, agents can achieve a higher level of privacy
by perturbing their rankings. Through extensive simu-
lations on the coin-gathering and level-based-foraging
environments, we show that PPDAC with and without
perturbed ranking is able to outperform independent
actor-critic (IAC) and shared experience actor-critic
(SEAC) agents in settings where agents’ observations
are disjoint. Furthermore, in settings with overlapping
observations, PPDAC learns policies with the same
quality as SEAC which performs better than IAC. PP-
DAC is able to achieve this performance while main-
taining the privacy of the agents’ data.

Future work could address settings where agents inter-
act asynchronously with an environment. In that set-
ting, a different approach for trajectory ranking would
need to be developed. In addition, in a large network
where a central database is not feasible, a different
communication paradigm would need to be adopted
to propagate agents’ preferences throughout the net-
work. Finally, when agents observations overlap, de-
veloping a randomization technique and studying its
privacy guarantees is necessary.



Privacy-Preserving Decentralized Actor-Critic for Cooperative Multi-Agent Reinforcement Learning

References

David Silver, Thomas Hubert, Julian Schrittwieser,
Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran,
Thore Graepel, et al. Mastering chess and shogi by
self-play with a general reinforcement learning algo-
rithm. arXiv preprint arXiv:1712.01815, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Alex Graves, Ioannis Antonoglou, Daan Wierstra,
and Martin Riedmiller. Playing atari with deep rein-
forcement learning. arXiv preprint arXiv:1312.5602,
2013.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

Afshin Oroojlooy and Davood Hajinezhad. A review
of cooperative multi-agent deep reinforcement learn-
ing. Applied Intelligence, pages 1–46, 2022.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi
Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning.
In International conference on machine learning,
pages 1928–1937. PMLR, 2016.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp
Moritz, Roy Fox, Ken Goldberg, Joseph Gonzalez,
Michael Jordan, and Ion Stoica. Rllib: Abstrac-
tions for distributed reinforcement learning. In In-
ternational Conference on Machine Learning, pages
3053–3062. PMLR, 2018.

Sven Gronauer and Klaus Diepold. Multi-agent deep
reinforcement learning: a survey. Artificial Intelli-
gence Review, pages 1–49, 2022.

Richard S Sutton and Andrew G Barto. Reinforcement
learning: An introduction. MIT press, 2018.

Paul F Christiano, Jan Leike, Tom Brown, Miljan
Martic, Shane Legg, and Dario Amodei. Deep re-
inforcement learning from human preferences. Ad-
vances in neural information processing systems, 30,
2017.

Stanley L Warner. Randomized response: A survey
technique for eliminating evasive answer bias. Jour-
nal of the American Statistical Association, 60(309):
63–69, 1965.

Georgios Papoudakis, Filippos Christianos, Lukas
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Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
Yes, the description is provided in Section 4.

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
No, an analysis of the complexity is not pro-
vided. However, the model’s sizes and archi-
tecture are clearly described in Section 5.

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. Yes.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. Yes in Section 4.3.

(b) Complete proofs of all theoretical results.
Yes.

(c) Clear explanations of any assumptions. Yes.

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). Yes, the code and instructions are in-
cluded in the supplementary material.

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). Yes.

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). Yes.

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). Yes.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. Yes, we use the official imple-
mentation of shared-experience actor-critic
and cite the authors.

(b) The license information of the assets, if ap-
plicable. Not Applicable.

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. Not Applica-
ble

(d) Information about consent from data
providers/curators. Not Applicable.

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. Not Applicable.

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. Not Applicable.

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. Not Applica-
ble.

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. Not Applicable.
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A EXPERIMENTAL SETUP

The full list of hyper-parameters used in the experiments in Section 4 is presented in Table 1. Common hyper-
parameters are grouped together and algorithm-specific hyper-parameters are listed after.

Table 1: Hyper-parameters

Common Parameters
Discount Factor λ 0.99

Number of parallel processes 4
n-steps to estimate returns 25

Value coefficient (multiple to the critic’s loss) 0.5
Entropy coefficient 0.01

Learning rate for coin-gathering environment with two agents 1× 10−4

Learning rate for other environments 3× 10−4

Adam optimizer epsilon 1× 10−4

Maximum gradient norm 0.5
Neural networks’ hidden layers sizes [64, 64]

SEAC Parameters
SEAC loss cofficient 1.0

PPDAC Parameters
Cooperation factor λ 0.5

Number of reward estimators 3
Similarity threshold ρ 0.25

Cooperation value coefficient (multiple to the cooperation critic’s loss) 0.25
Reward estimator batch size 32

The full probabilities of the levers in the coin-gathering with three agents (Figure 3b) are given in Table 2. The
probabilities of the effect of each lever on the local room are first listed followed by the probabilities of the effect
on other rooms.

Table 2: Levers effects probabilities in the coin-gathering environment with three agents.

Spawn a coin Spawn a bomb Spawn a star Do nothing
Lever 1 (locally) 1 0 0 0

Lever 1 (other rooms) 0 0.9 0.0 0.1
Lever 2 (locally) 0.7 0.3 0 0

Lever 2 (other rooms) 0.25 0.05 0.05 0.65
Lever 3 (locally) 0.5 0.25 0 0.25

Lever 3 (other rooms) 0 0.5 0 0.5
Lever 4 (locally) 0 0 0 1

Lever 4 (other rooms) 0 0 0.6 0.4

B ADDITIONAL EXPERIMENTS

We run a set of experiments to evaluate the effect of the cooperation factor λ, the trajectory length, and the
similarity threshold ρ on the performance of PPDAC. We fix all hyper-parameters to the values shown in Table 1
except for the one under analysis and vary it across a space of a valid range. We analyze the effect of these hyper-
parameters in the coin-gathering environment with two agents and two locally-ineffective levers. We evaluate
the agents every 1000 steps and average the last 20 evaluations across 3 seeds and report the mean and the 95%
confidence region. We also report the full evaluation plot for a set of selected values of each hyper-parameter.
The results of this study are shown in Figure 4.

Figures 4a and 4b show the effect of varying the cooperation factor λ starting from 0 where PPDAC is reduced
to IAC up to 2. It is clear that for small values of λ, there is a significant increase in returns for small increments.
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(a) Cooperation factor λ (Aggregated).
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(b) Cooperation factor λ.
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(c) Trajectory length (Aggregated).
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(d) Trajectory length.
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(e) Similarity threshold ρ (Aggregated).
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(f) Similarity threshold ρ.

Figure 4: Analysis of the effect of PPDAC hyper-parameters on the average returns.

However, between 0.5 and 1, there is not a huge variation in the convergence values with the maximum being
when λ = 0.7. In addition, for λ = 2, where actors would be giving more weight to cooperation, the returns
drop significantly. Hence, we suggest tuning λ between 0.5 and 1 when performing hyper-parameter tuning for
PPDAC.

Figures 4c and 4d show the effect of the trajectory length used in training the reward estimators. The trajectory
length can lie anywhere between 1 and the maximum number of steps per episode, which is 100 in this case.
There is a tradeoff incurred when selecting the trajectory length. For the extreme case of length 1, each agent
can get feedback for each action from other agents, however, it would require more queries. On the other hand, a
larger trajectory length would yield fewer queries but factoring the effect of each action could be more difficult.
For a fixed number of queries, PPDAC appears to be a bit sensitive to the value of the trajectory length, hence
we suggest assigning computational resources to tuning the trajectory length when the computational budget
is limited. For the coin-gathering environment, it seems trajectories of lengths 10 work best. On the contrary,
PPDAC seems less sensitive to the similarity threshold ρ as shown in Figures 4e and 4f. We argue that ρ acts as
a regularizer since the agents do not pick a preferred trajectory when their scores differ by a small value, hence
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other agents would not overfit to the rankings. For ρ = 0, PPDAC performs worse than ρ ∈ {0.25, 0.5, 1} with
almost no variance between the values in the set. However, for a larger value of ρ = 2 the performance drops.
The value of ρ depends heavily on the range of the rewards received in the environment. For example, in the
LBF environment using ρ = 1 does not differentiate between trajectories as the maximum reward received is 1,
and all trajectories would get ranked as similar. Hence, we suggest using a small non-zero value for ρ to act as
a regularizer.
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