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Abstract

Causal representation learning has emerged
as the center of action in causal machine
learning research. In particular, multi-domain
datasets present a natural opportunity for
showcasing the advantages of causal
representation learning over standard
unsupervised representation learning. While
recent works have taken crucial steps towards
learning causal representations, they often
lack applicability to multi-domain datasets
due to over-simplifying assumptions about
the data; e.g. each domain comes from a
different single-node perfect intervention. In
this work, we relax these assumptions and
capitalize on the following observation: there
often exists a subset of latents whose certain
distributional properties (e.g., support,
variance) remain stable across domains; this
property holds when, for example, each
domain comes from a multi-node imperfect
intervention. Leveraging this observation,
we show that autoencoders that incorporate
such invariances can provably identify the
stable set of latents from the rest across
different settings.

1 Introduction

Despite the incredible success of modern AI systems,
they possess limited reasoning and planning skills
(Bubeck et al., 2023) and often lack controllability
(Leivada et al., 2023). Towards alleviating these
concerns, causal representation learning (Schölkopf
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et al., 2021) aims to build models with a better causal
understanding of the world.

The theory of causal representation learning to date
has largely focused on developing algorithms that
are capable of identifying the underlying causal
structure of the data-generating process under minimal
supervision. This capability is enabled by endowing
these learners with inductive biases that capture
natural properties of the data (Locatello et al., 2020;
Brehmer et al., 2022). Despite the advances, existing
causal representation learners remain far from readily
applicable to the increasingly prevalent multi-domain
datasets in practice (Gulrajani and Lopez-Paz, 2020;
Koh et al., 2021). One wonders why? An important
reason is that existing approaches rely on strong
assumptions about the data-generating process. For
example, many assume that the data in different
domains is gathered under perfect interventions.
Moreover, many also require that the relationships
between the latents can be described by the same fixed
directed acyclic graph (DAG) across all data points.
This assumption is often violated: e.g. the causal
relationships between the latents can have different
causal directions in two images, where a cat chases
a dog in one image and the dog chases the cat in
the other. In this work, we relax these assumptions,
making progress towards causal representation learning
for complex multi-domain datasets.

Contributions. The invariance principle considered
in this paper is reminiscent of the invariance principle
in Peters et al. (2016); Arjovsky et al. (2019), though
we focus on unlabelled multi-domain data. At a
high-level, the principle requires that a fixed subset of
latents is not intervened across domains, and their
distributions remain invariant. We study different
forms of distributional invariance, ranging from weak
invariance on the support to strong invariance on the
marginal distribution of the latents. We divide our
analysis into two parts. We first focus on standard
settings where the latents in the entire data are
governed by a fixed acyclic structural causal model; we
then relax this assumption. We also consider different
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assumptions on the mixing function that generates the
observations. In our theoretical and empirical analysis,
the identification results take the form “latents with
invariant distributional properties can be disentangled
from the rest.”

2 Related Works

The field of causal representation learning bears
a deep connection to the field of independent
component analysis (ICA) (Hyvarinen et al., 2023).
The seminal work of Comon (1994) on linear
independent component analysis studied linear mixing
of independent non-Gaussian latents and proposed
a method that identifies the true latents up to
permutation and scaling. Since then, much progress
has taken place. Existing works in the area of
representation identification can be categorized into
the following categories based on the assumptions:
i) assumptions on the distribution of latent factors,
and ii) assumptions on the mixing functions. In
the pivotal work of Khemakhem et al. (2020a), the
authors studied general diffeomorphisms mixing but
made additional assumptions such as the availability of
auxiliary information that renders latents conditionally
independent. Recently, Kivva et al. (2022) considered
a setup similar to Khemakhem et al. (2020a);
they relaxed the crucial assumption that auxiliary
information is observed but restricted the family of
mixing maps to piecewise linear diffeomorphisms, in
order to obtain a similar level of identification as
Khemakhem et al. (2020a). The recent work of Liang
et al. (2023) takes the connection between causal
representation learning and ICA one step further.
They study the question of identifiability under the
supposition that the underlying causal graph is known,
much in the same spirit that ICA supposes the graph
is known and all latent variables are independent.

More recently, the problem of interventional causal
representation learning has come to attention in Ahuja
et al. (2022b); Seigal et al. (2022); Varici et al. (2023).
Ahuja et al. (2022b) study a) polynomial mixing with
interventions that induce independent support; b)
general diffeomorphisms with hard do interventions.
Seigal et al. (2022) study linear mixing with perfect
interventions, and Varici et al. (2023) study linear
mixing with perfect and imperfect interventions. The
relatively recent work of von Kügelgen et al. (2023)
studied general diffeomorphism mixing with perfect
interventions, and Buchholz et al. (2023) studied
general diffeomorphisms with latents that follow linear
Gaussian structural causal model (SCM) under both
perfect and imperfect interventions. The different
identification guarantees in these works are summarized
in Table 1, where we also contrast our results. There

are a few aspects that separate us from existing works.
Firstly, these works study single-node interventions
and we study multi-node imperfect interventions. We
also study the setting where a fixed DAG does not
explain the relationships between the latents for the
entire observational dataset. Another close line of
work focuses on the intermediate goal of learning the
underlying latent causal graph. Some examples in
this line of work include Cai et al. (2019); Xie et al.
(2020); Jiang and Aragam (2023) and a concurrent
work (Zhang et al., 2023).

Aside from the above works, other causal representation
learning settings that have been studied include settings
where the learner has access to i) paired observations
(e.g., data generated pre- and post-intervention)
(Locatello et al., 2020; Lachapelle et al., 2022; Ahuja
et al., 2022a; Lippe et al., 2022b,a; Von Kügelgen et al.,
2021), ii) temporal data (Hyvarinen et al., 2019; Yao
et al., 2022; Lachapelle and Lacoste-Julien, 2022; Ahuja
et al., 2021), iii) multi-view data (Gresele et al., 2020)
iv) other forms of auxiliary information (Khemakhem
et al., 2020a,b; Hyvarinen et al., 2019), v) object-centric
inductive biases (Mansouri et al., 2022; Lachapelle et al.,
2023; Brady et al., 2023).

Lastly, the distributional invariances used in our work
may remind the readers of the seminal works of Ganin
et al. (2016); Muandet et al. (2013). There are a few
notable differences: i) these works focus on domain
generalization in the presence of labeled data, while
we focus on the unsupervised setting, ii) these works
enforce invariance of the joint distribution of all the
latents, while we enforce a weaker invariance on a subset
of the latents.

3 Unsupervised Multi-Domain Causal
Representation Learning

Problem statement. We are given unlabelled
data— a set of x’s (e.g., images)—from multiple
domains. Consider a domain j ∈ [k], where k is the
number of domains, [k] is shorthand for {1, · · · , k}.
The latent variables z ∈ Rd in domain j are sampled
from a distribution p

(j)
Z whose support is denoted as

Z(j). These sampled latents z are then rendered by
an injective mixing function g : Rd → Rn to generate
x ∈ Rn. The support of the corresponding x’s in
domain j is denoted as X (j). Define the union of
the support of the latents across domains as Z =
∪j∈[k]Z(j) and correspondingly for the observations x’s
as X = ∪j∈[k]X (j). The data-generating process (DGP)
is formally stated below. In each domain j ∈ [k],

z ∼ p
(j)
Z , x← g(z) (1)



Kartik Ahuja†, Amin Mansouri†, Yixin Wang

Table 1: Our results compared with related works. Existing works assume that the relationship between latents can be
described by a fixed DAG across domains. We relax this assumption to work with general multi-domain settings.

Input data Assm. on pZ Assm. on g Identification

Observational zi ⊥ zj |u, u aux info. Diffeomorphism Perm & scale (Khemakhem et al.)
Multi do intvn/node Non-parametric Diffeomorphism ≈ Comp-wise (Ahuja et al.)
Perfect (1-node) Linear Linear Comp-wise (Seigal et al.)
Perfect (1-node) Non-parametric Polynomial Comp-wise (Ahuja et al.)
Perfect (1-node) Non-parametric Diffeomorphism Comp-wise (Kugelgen et al.)
Imperfect (1-node) Non-parametric Linear Mix consistency (Varici et al.)
Imperfect (1-node) Non-parametric + ind support Polynomial Block affine (Ahuja et al.)
Imperfect (1-node) Linear Gaussian Diffeomorphism Affine (Buchholz et al.)
Imperfect (multi-node) Non-linear Polynomial Block affine (Theorem 3)
General multi-domain Non-param, sup inv S Polynomial Block affine (Theorem 4)
General multi-domain Non-param, sup inv S Diffeomorphism Γc identification (Theorem 5)
Counterfactual Non-parametric Diffeomorphism Comp-wise (Brehmer et al.)

The goal of causal representation learning is provable
representation identification, i.e. to learn an encoder
function that can take in the observation x and provably
output its underlying true latent z (or its desirable
approximation). In practice, such an encoder is often
learned via solving a reconstruction identity, h◦f(x) =
x, ∀x ∈ X , where f : Rn → Rd and h : Rd → Rn

are a pair of encoder and decoder that jointly satisfy
the reconstruction identity. The pair (f, h) together
is referred to as the autoencoder. Given the learned
encoder f , the resulting representation is ẑ , f(x),
which holds the encoder’s estimate of the latents. A
common goal in causal representation learning is to
achieve component-wise disentanglement, i.e., each ẑi
is a scalar and invertible function of some zj , where ẑi
and zj are ith and jth components of ẑ and z.

Invariance principle for causal representations.
The invariance principle we consider here is inspired
by the folklore cow-on-the-beach example (Beery et al.,
2018). The distributional properties of a certain set of
latents (e.g., the alphabets across domains as shown in
Figure 1, or the cow characteristics across domains) are
stable. In contrast, the distribution properties of the
other latents (e.g. color characteristics in Figure 1) are
unstable; they vary across domains. More concretely,
we divide the different components of latent z into two
sets, S and U , where S corresponds to the stable set of
latents and U corresponds to the unstable set of latents,
and without loss of generality we write z = [zS , zU ].
We require that some aspect of the joint distribution
of S—denoted as p

(j)
zS —does not vary across domains.

Formally, there exists a functional F such that F
[
p
(j)
zS

]
is invariant across j. If F [·] is the identity functional,
then the distribution itself is invariant. Other examples
of F [·] include the support of the latents’ distributions,
the mean of the latents, the variance of the latents,
etc. To realize this invariance principle in causal

Figure 1: The distribution of the alphabet styles is
stable across the domains but the distribution of color
is unstable.

representation learning, we study autoencoders that
enforce similar invariance on a certain subset Ŝ ⊆ [d]
of its estimated latents ẑ:

h ◦ f(x) = x, ∀x ∈ X ; (2)

F
[
p
(p)
ẑŜ

]
= F

[
p
(q)
ẑŜ

]
, ∀p 6= q, p, q ∈ [k]. (3)

In what follows, we will show how autoencoders
equipped with this class of invariance constraints can
learn to disentangle the stable latents from the unstable
latents: they return representations ẑ that can provably
satisfy ẑŜ = u(zS), where u(·) is an injective map.
For some choice of Ŝ, a solution to the reconstruction
identity under invariance constraint may not exist. The
learner can select Ŝ as follows. It can start with the
largest possible Ŝ, i.e. a set of size d. It reduces the size
of the set by one until a solution to the reconstruction
identity under invariance constraint is found, which is
guaranteed to occur when |Ŝ| = |S|.

3.1 Acyclic Structural Causal Models pz

We start with the setting where the distribution of
the latents pz comes from an acyclic causal model. To
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identify the stable latents, we first leverage previous
results to achieve affine identification of all latents.
We then use distributional invariance to achieve the
identification of the stable latents. Let us now revisit a
result from Ahuja et al. (2022b) for affine identification
under a polynomial mixing g.
Assumption 1. (Polynomial mixing) The interior of
the support of z, denoted as Z, is a non-empty subset
of Rd. The mixing map g is a polynomial of finite
degree p whose corresponding coefficient matrix G has
full column rank. Specifically, g is determined by the
coefficient matrix G as follows,

g(z) = G[1, z, z⊗̄z, · · · , z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
p times

]> ∀z ∈ Rd,

where ⊗̄ represents the Kronecker product with all
distinct entries; for example, if z = [z1, z2], then z⊗̄z =
[z21 , z1z2, z

2
2 ].

Constraint 1. (Polynomial decoder) The learned
decoder h is a polynomial of degree p that is determined
by its corresponding coefficient matrix H as follows,

h(z) = H[1, z, z⊗̄z, · · · , z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
p times

]> ∀z ∈ Rd.

Moreover, the interior of the image of the encoder f(X )
is a non-empty subset of Rd.
Theorem 1 (Ahuja et al. (2022b)). Suppose the
multi-domain data is gathered from the DGP in
equation (1) under Assumptions 1. Then the
autoencoder that solves the reconstruction identity
(equation (2)) under Constraint 1 achieves affine
identification, i.e., ∀z ∈ Z, ẑ = Az + c, where ẑ is
the encoder f ’s output, z is the true latent, A ∈ Rd×d

is invertible and c ∈ Rd.

We now strengthen the above affine identification by
using the distributional invariance of the stable set of
latents. In what follows, we focus on the latents pz that
follow an acyclic structural causal model as follows. In
each domain j ∈ [k],

z
(j)
i ← qi

(
z
(j)
Pa(i)

)
+ %

(j)
i , z

(j)
Pa(i) ⊥ %

(j)
i ,∀i ∈ [d];

x← g(z),
(4)

where qi(·) refers to the map that generates z(j)i , namely
the ith component of z(j); Pa(i) is the set of parents
of z(j)i ; %(j)i is noise in domain j. Each sampled latent
is mixed by g to generate x. We drop the domain
index j from z(j) in x ← g(z) and wherever else it
is not needed. We use domain index 1 to denote
the observational dataset. The domains from index
2 and onwards correspond to interventional datasets.
The interventions considered in this section correspond

to imperfect interventions, where the mapping qi(·)
remains unchanged but the distribution of the noise
variables changes across domains. We assume that the
nodes in U undergo imperfect interventions, but the
nodes in S are never intervened.
Assumption 2 (Single-node imperfect interventions).
In interventional domain j (j ≥ 2), exactly one node
in U undergoes an imperfect intervention on the noise
term. Moreover, across all domains, each node in
U undergoes intervention at least once. Further, the
children of any node in U must also belong to U .

Assumption 2 implies that the distribution of zS
remains invariant across domains. To identify zS , we
thus impose the following invariance constraint: the
marginal distribution of components in subset Ŝ ⊆ [d]
of the estimated latents must remain invariant across
domains.
Constraint 2. (Marginal invariance) For each i ∈ Ŝ,
p
ẑ
(p)
i

= p
ẑ
(q)
i

,∀p 6= q, p, q ∈ [k].

Theorem 2 (Single-node imperfect interventions).
Suppose the multi-domain data is gathered from the
DGP in equation (4) under Assumptions 1 and 2. Then
the autoencoder that solves the reconstruction identity
(equation (2)) under Constraints 1 and 2 achieves
block-affine identification, i.e., ∀z ∈ Z, ẑŜ = DzS + e,
where ẑ is the encoder’s output, z is the true latent,
D ∈ R|Ŝ|×|S|, and e ∈ R|Ŝ|.

The proof of Theorem 2 is in the Appendix. Theorem 2
implies that, under single-node imperfect interventions
and polynomial mixing, the invariant latents zS are
disentangled from the rest of the latents. While the
SCM (equation (4)) of the DGP in Theorem 2 does
not involve any confounders, we show how this result
readily extends to settings with confounders in the
Appendix.

We next study multi-domain data coming from
multi-node imperfect interventions. For ease of
exposition, we begin with two-node imperfect
interventions and assume that the noise distributions
are Gaussian. We discuss how to relax these
assumptions in the Appendix. Below we describe
the key assumptions we make about the mechanisms
underlying the interventions.
Assumption 3. (Multi-node imperfect interventions)
(1) The children of any node in U must also belong to
U and the underlying DAG must have at least two
terminal nodes. Further, the noise %′s in (4) are
zero-mean Gaussians with variances for observational
data (domain 1) sampled i.i.d. from a non-atomic
density pσ%

.

(2) Interventional data in each domain j ≥ 2 is
generated as follows. For each i ∈ U , select a random
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node j from U \ {i} uniformly. The noise variance
for those two nodes (i, j) are two independent draws
from density pσ%

. Repeat this procedure t times for each
node i ∈ U .
Theorem 3 (Multi-node imperfect interventions).
Suppose the multi-domain data is gathered from the
DGP in equation (4) under Assumptions 1 and 3. If
the number of multi-node interventions t impacting each
node is more than log(d/δ)

log(1/(1−1/2d)) , then, with probability
1 − δ, the autoencoder that solves the reconstruction
identity (equation (2)) under Constraints 1 and 2
achieves block-affine identification, i.e., ∀z ∈ Z, ẑŜ =
DzS + e, where ẑ is the encoder’s output, z is the true
latent, D ∈ R|Ŝ|×|S|, e ∈ R|Ŝ|.

The proof of Theorem 3 is in the Appendix. Theorem 3
established that, given sufficiently many random
multi-node interventions, we can block identify the
stable latents zS . Moreover, the required number of
domains scales as d

(
log(d/δ)

log(1/(1−1/2d))

)
. Before closing

this section, we remark that the crucial assumptions
that make these results possible involve diversity of
interventions and using the structure of the causal
model. While we study some relaxations, we believe
these results can inspire a lot of exciting future work.

3.2 General Distributions pz

In the previous section, we made the standard
assumption that the relationships between the latents z
generating the data x are described by a fixed DAG. In
this section, we study a relaxation that is suited to more
complex multi-domain datasets, where a fixed DAG is
insufficient to capture the complexities of the entire
data. For example, in the cow-on-the-beach example,
the relationship of the cow to its surroundings changes
across samples (Beery et al., 2018). We consider a
weaker invariance than one considered in the previous
section, i.e., the support of each latent in the target
set S is invariant. Under these relaxations, we prove
that one can still identify the stable latents, except
that the number of required domains is much larger.
We will also discuss how additional assumptions can
help reduce this number in the Appendix. Below we
begin by stating the invariance condition. The support
of zi in domain p is denoted as Z(p)

i and the support
of estimate ẑi in domain p is denoted as Ẑ(p)

i .
Assumption 4. (Marginal support invariance.)

For each i ∈ S

min
z∈Z(p)

i

z = min
z∈Z(q)

i

z, max
z∈Z(p)

i

z = max
z∈Z(q)

i

, ∀p, q ∈ [k].

We now state a key assumption for the next result:
there exists a pair of domains whose supports

Figure 2: z1 satisfies support invariance (Assumption 4).
[z1, z2] satisfies support variability (Assumption 5). In
panel a), we show that if ẑ1 linearly depends on both
z1 and z2, then it achieves a different maximum value
across the two domains. Thus, support invariance
(Constraint 3) is not satisfied by such functions that
depend on both z1 and z2. In contrast, the function
in panel b), which only depends on z1, achieves the
same maximum across domains and satisfies support
invariance.

are sufficiently different. We make this notion
mathematically precise below.
Assumption 5 (Support variability). There exists
two domains p, q ∈ [k] such that for each z ∈ Z(p),
there exists a z

′ ∈ Z(q) such that z′
< z, namely each

component of z
′ is greater than or equal to z, i.e.,

z
′

i ≥ zi. Further, we require that the inequality is strict
for unstable components j ∈ U , z′

j > zj.

We illustrate the above assumption using an example
in Figure 2. The two domains shown in Figure 2
satisfy Assumption 4, 5. The latent z1 in Domains
1 and 2 satisfies support invariance (Assumption 4).
The latents z = [z1, z2] in Domains 1 and 2 satisfy
Assumption 5. We now state the invariance constraint
that enforces that the latents in subset Ŝ have the same
minimum and maximum across domains.
Constraint 3. (Marginal support invariance)

For each i ∈ Ŝ,

min
z∈Ẑ(p)

i

z = min
z∈Ẑ(q)

i

z, max
z∈Ẑ(p)

i

z = max
z∈Ẑ(q)

i

, ∀p, q ∈ [k].

Next, we use the above assumptions to provably identify
the stable latents up to block affine transformations
under polynomial mixing.
Theorem 4. Suppose the multi-domain data is
generated from equation 1 and satisfies Assumptions 1,
4, 5. Then the autoencoder that solves the
reconstruction identity in equation 2 under Constraints
1 and 3 achieves the following identification guarantees:
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Each latent component i ∈ S satisfies ẑi = A>
i z + ci,

where, among all the vectors Ai < 0, the ones that are
feasible under the assumptions and constraints in this
theorem must satisfy Air = 0 for all r ∈ U .

The proof of Theorem 4 is in the Appendix.

Extending Theorem 4 beyond the positive
orthant. Theorem 4 leveraged the invariance
assumption (Assumption 4) to show that ẑi only
depends on the set of invariant latents in S, provided
that Ai’s are from the positive orthant, i.e., Ai < 0.
We next extend this argument to other orthants.
Consider Ai’s from a different orthant with sign vector
s, where each component of s corresponds to the sign
of the corresponding component of Ai. We multiply
z element-wise with s and denote it as z̄ = z · s and
define the set of transformed latents of domain q as
Z̄(q) = {z · s, z ∈ Z(q)}. If we modify Assumption 5
with set Z̄(q) instead of Z(q), then the condition in
Theorem 4 extends to all vectors Ai in orthant with
sign vector s. Given this assumption, we require a pair
of domains that satisfy a condition analogous to the
one in Assumption 5 for each orthant. Since the total
number of orthants is 2d, the total number of domains
required grows as 2d+1. In Appendix A.2, we show
that the number of domains required can be reduced
to d under some additional structural assumptions, e.g.
the support is a polytope.

In Theorem 4, we relied on the assumption that g is a
polynomial. We next relax this assumption. For ease
of exposition, we consider the two-variable case and
present the general case in the Appendix.

Two-variable case. Consider two-dimensional z’s,
i.e., z = [z1, z2]. We assume that the support of the
first component z1 is invariant across domains and the
support of z2 varies across domains. For the rest of
this section, we assume that z1 and z2 are bounded
between 0 and 1 across all domains. Specifically, the
support of z1 satisfies Assumption 4 and is set to the
entire interval [0, 1] across domains. Recall that the
support of the first component of the encoder in domain
p is Ẑ(p)

1 . Under the support invariance constraint
(Constraint 3), we require that Ẑ(p)

1 does not vary with
p. Recall ẑ = f(x) = a(z), where a = f ◦ g. The first
component of ẑ thus satisfies ẑ1 = a1(z), where a1 is
the first component of the map a. Under this notation,
we define a large class of functions Γ and show that,
if the supports are sufficiently diverse, then a1 cannot
be an element of Γ, provided that the Constraint 3 is
enforced – we call this Γc identification. The larger the
set Γ is, the more likely a1(·) is equal to a map that only
depends on z1, which is the ideal situation. In contrast,
if Constrain 3 is not enforced, then all the invertible

maps a(·) will be allowed under reconstruction identity
in equation (2). Below we state the result formally.
Definition 1. Fix some constants η > 0, ε > 0, and
ι > 0. We then define a set of functions Γ as follows.
Each function γθ : [0, 1]× [0, 1]→ R in Γ satisfies i) it
is parameterized by θ ∈ Θ, where Θ is a bounded subset
of Rs,ii) the minima of γθ over [0, 1]× [0, 1] lie in the
ε interior of the set, i.e., in [ε, 1− ε]× [ε, 1− ε], and
iii) there exists an interval [α†, β†] of width at least ι
such that∣∣∣∣ min

z∈[0,1]×[0,1]
γθ(z1, z2)− min

z∈[0,1]×[α†,β†]
γθ(z1, z2)

∣∣∣∣ ≥ η.

(5)
For each (z1, z2) ∈ [0, 1] × [0, 1], γθ is Lipschitz
continuous in θ ∈ Θ with Lipschitz constant L.

In simple words, Γ consists of functions γθ whose
minima over the entire support [0, 1]× [0, 1] is η better
than any other minima obtained by constraining z2
to some interval. In particular, the functions that
only depend on z1 do not belong to Γ because the
minima of such a map do not depend on z2. A simple
illustrative example of the function class Γ is as follows:
γθ : [0, 1]× [0, 1]→ R, γθ(z1, z2) = (z1− 1

2 )
2+(z2−θ)2,

where θ ∈ [ 12ε, 1 −
3
2ε]. This function has its minima

over [0, 1] × [0, 1] at ( 12 , θ). The function is Lipschitz
continuous in θ for all (z1, z2) ∈ [0, 1]×[0, 1]. Set η = ε2

4
and α† = θ+ ε

2 and β† = θ+ 5
8ε; then the conditions in

Definition 1 are satisfied. This example illustrates how
these conditions are satisfied when γθ has one unique
global minima over the region [0, 1] × [0, 1]. We now
state an assumption that requires that the domains are
drawn at random and their supports satisfy a certain
variability condition.
Assumption 6 (Support variability). The support of
z1 does not vary across domains and is fixed to be
[0, 1]. The support of z2 satisfies P

(
Z(p)

2 ⊆ [α, β]
)
≥

c1|(β − α)|l and P
(
Z(p)

2 ⊇ [κ, 1 − κ]
)
≥ c2κ

r, where
l and r are some integers, c1, c2 are some constants
and α, β, κ ∈ [0, 1].

The first condition on z2 in Assumption 6 states that
the probability of the support of z2 in a randomly
drawn domain being contained in the interval [α, β]
grows faster than a polynomial in (|β−α|). The second
condition states that the support of z2 captures the
set [κ, 1− κ] with probability at least c2κ

r. Below we
give an example where these conditions are satisfied:
suppose the support of z2 is sampled as follows. Sample
two random variables A and B independently from the
uniform distribution over the interval [0, 1]. Define the
upper and lower limit of the supports as max{A,B} and
min{A,B} respectively. In this case, the probabilities
in Assumption 6 are given as (β − α)2 and 2κ2.
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The next result builds on the following insight. If we
sample sufficiently many diverse domains, then it is
likely that, for each map γθ ∈ Γ, we encounter two
domains such that the values at the minima are at
least η apart as in Definition 1. Thus, ẑ1 constructed
from any member of Γ violates the support invariance
constraint and thus a1 is not in Γ.

Define N(δ, ε, η, ι) = Nc log
(
2Nc

δ

)(
1

log
(

1

(1−c1ιl)

) +

1

log
(

1
(1−c2εr)

)), with Nc =

(
2maxθ∈Θ ‖θ‖

√
s

ρ

)s

, and

ρ = η
4L .

Theorem 5. If we gather data generated from
equation (1), where the support of z2 for each domain
is sampled i.i.d. from Assumption 6 and support of
z1 is fixed to [0, 1]. Further, suppose the number
of domains satisfies k ≥ N(δ, ε, η, ι). Then the
set of maps a1(·) that relate ẑ1 to [z1, z2] does not
contain any function from Γ and thus achieves Γc

identification, where ẑ is obtained by solving the
reconstruction identity (equation 2) under support
invariance constraint (Constraint 3) on ẑ1.

The proof of Theorem 5 is in the Appendix. The results
studied in this section relied on support variability
assumptions. While we study some variations in the
Appendix, we believe there is room for new results
on multi-domain datasets that are beyond one DAG
explaining the entire observational data assumption.
In the previous two sections, we saw two types of
mixing – a) polynomial mixing (Theorem 3,4), b)
general diffeomorphisms (Theorem 5). The results
in a) rely on affine identification guarantees afforded by
the polynomial mixing. Under different assumptions
on g that afford affine identification, the results
in Theorem 3,4 can be extended. The seminal
result in Donoho and Grimes (2003) established affine
identification for locally isometric g. Finally, in most of
our results we have obtained a block affine identification.
Extending these results to achieve permutation and
scaling identification is an exciting future work.

4 Learning Invariance-Constrained
Representations

In this section, we describe practical criteria to
learn autoencoders described in equation (2) under
invariance constraints from equation (3). We will
learn in two stages. In the first stage, we learn an
autoencoder (f̃ , h̃) that minimizes the reconstruction
error – E

[
‖h ◦ f(x) − x‖2

]
, where the expectation is

taken over the distribution of the raw input data x. In
Stage 2, we use the output of the encoder from Stage
1 denoted as x̃ as inputs. In many cases, this output
may have an affine relationship or a more structured

relationship with the true latents than the raw inputs.
In Stage 2, we learn an autoencoder (f?, h?) that is
constrained to satisfy certain invariances described in
the previous section. We enforce these constraints by
adding a penalty to the standard reconstruction error
in autoencoders, i.e., the learning objective takes the
form

E
[
‖h ◦ f(x̃)− x̃‖2

]
+ λ · penalty, (6)

where the expectation is taken over the distribution
of the outputs of the encoder from Stage 1, x̃. In
Constraint 3, we require that the smallest and the
largest values to satisfy invariance. The penalty
corresponding to this constraint is stated as∑
p 6=q

∑
i∈Ŝ

((
min

z∈Z̃(p)
i

z − min
z∈Z̃(q)

i

z
)2

+
(
max
z∈Z̃(p)

i

z − max
z∈Z̃(q)

i

z
)2)

,

(7)

where Z̃(p)
i corresponds to the support of the ith

component of f?(x̃) in domain p. We now describe
a stronger form of invariance. We can enforce
the joint distribution of all components in Ŝ to be
invariant, which if enforced perfectly would satisfy
both Constraint 2 and 3. The penalty described below
measures the maximum mean discrepancy (MMD)
distance between the joint distributions ẑŜ across all
the domains: ∑

p 6=q

MMD(p
(p)
ẑŜ

, p
(q)
ẑŜ

). (8)

5 Empirical Findings

We carry out experiments to evaluate the
invariance-constrained autoencoders in a host of
settings that capture varying complexity of g and
varying complexity of the distribution pz. The
code to reproduce the experiments can be found at
https://github.com/facebookresearch/MD-CRL.
We study four different types of mixing maps g –
i) linear mixing, ii) polynomial mixing, iii) image
rendering of balls, iv) unlabeled colored MNIST
data. We follow Ahuja et al. (2022b) in the creation
of datasets for both polynomial mixing and image
rendering of balls. Unlabeled colored MNIST is
inspired from labeled colored MNIST used in Arjovsky
et al. (2019); note that the challenge posed by this
version is significant as we do not use labels of
the digits or colors while training to achieve block
identification. Our multi-domain datasets respect the
following invariance – the distribution of a subset S
(e.g., digit style) of latents does not change across
domains. On the other hand, the distributions of
latents in U (e.g., digit color) undergo change across

https://github.com/facebookresearch/MD-CRL
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Figure 3: (a) Illustration of an image in balls image dataset. (b,c) The SCM dictating the relationship between
the latents varies across data points. (b) For some samples, the coordinates of one ball depend on the other one.
(c) For some samples, all causal variables are independent.

domains. We particularly induce change by changing
the support of latents in U . For each domain j with
distribution p

(j)
z , we study two types of distributions –

i) independent latents, ii) dependent latents. In the
dependent latents data, the latents in U and S depend
on each other. Further, for the dependent latents, the
SCM for the latents is not fixed and it varies across
data points and thus we call this setup as dynamic
SCM (D-SCM). (Further details about data generation
are deferred to the Appendix).

Algorithmically, we employ the two-stage procedure
described in the previous section. For the linear dataset,
we straight carry out Stage 2 directly, because the raw
inputs are already linearly related to the true latents.
However, for the polynomial and image datasets, we
carry out the entire two-stage procedure. For the
polynomial dataset, we carry out Stage 1 experiments
with an MLP encoder and a polynomial decoder as
prescribed in Ahuja et al. (2022b). For the image
dataset, we carry out the Stage 1 experiment with a
ResNet-based encoder and a simple ConvNet-based
decoder. For both the polynomial and the image
dataset, we use an MLP encoder-decoder for Stage
2. We train the Stage 2 autoencoder under three
different variations of the penalty described in the
previous section – i) support invariance penalty from (7)
(denoted Min-Max), ii) distribution invariance penalty
using MMD distance from (8) (denoted MMD), iii)
combination of both support invariance and MMD
based invariance (denoted MMD + Min-Max). Other
experimental details can be found in the Appendix.

We evaluate the block affine identification of the models
as follows. We predict zS from ẑŜ using a linear model
and compute the R2, which we denote as R2

S . We also
predict zU from ẑŜ using a linear model and compute
the coefficient of determination R2, which is denoted
as R2

U . Here Ŝ and Û are the set of latents on which
invariance constraints are enforced and the set of latents
on which no such constraints are enforced. High R2

S and
low R2

U indicates block identification of the latents. For
the unlabeled colored MNIST dataset, we do not have

pZ Penalty (R2
S , R

2
U )

Indep Min-Max (0.90± 0.01, 0.10± 0.01)
Indep MMD (0.92± 0.00, 0.16± 0.01)
Indep MMD + Min-Max (0.94± 0.01, 0.07± 0.01)

D-SCM Min-Max (0.90± 0.01, 0.10± 0.01)
D-SCM MMD (0.92± 0.00, 0.16± 0.01)
D-SCM MMD + Min-Max (0.97± 0.00, 0.04± 0.00)

Table 2: Comparisons for linear mixing (latent
dimension d = 32, number of domains k = 16)

pZ Penalty (R2
S , R

2
U )

Indep Min-Max (0.91± 0.01, 0.02± 0.00)
Indep MMD (0.93± 0.01, 0.02± 0.00)
Indep MMD + Min-Max (0.93± 0.01, 0.02± 0.00)

D-SCM Min-Max (0.93± 0.00, 0.01± 0.00)
D-SCM MMD (0.95± 0.00, 0.02± 0.00)
D-SCM MMD + Min-Max (0.95± 0.00, 0.01± 0.00)

Table 3: Comparisons for polynomial mixing (latent
dimension d = 14, polynomial degree 3, number of
domains k = 16).

pZ Penalty (R2
S , R

2
U )

Indep Min-Max (0.65± 0.01, 0.19± 0.01)
Indep MMD (0.63± 0.04, 0.27± 0.05)
Indep MMD + Min-Max (0.81± 0.04, 0.18± 0.02)

D-SCM Min-Max (0.61± 0.03, 0.22± 0.01)
D-SCM MMD (0.55± 0.12, 0.15± 0.04)
D-SCM MMD + Min-Max (0.82± 0.02, 0.20± 0.04)

Table 4: Comparisons for ball-images dataset (number
of domains k = 16).

access to the z corresponding to the digits. However,
we have access to the labels of the digits for evaluation
purposes. On this dataset, we predict the digit from ẑŜ
and predict the color from ẑŜ . We denote the accuracy
of digit prediction as Accdigits and R2 for predicting
color as R2

color.
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pZ Penalty (Accdigits, R
2
color)

Indep Min-Max (0.66± 0.01, 0.49± 0.02)
Indep MMD (0.73± 0.01, 0.63± 0.02)
Indep MMD + Min-Max (0.74± 0.01, 0.28± 0.01)

D-SCM Min-Max (0.53± 0.01, 0.43± 0.02)
D-SCM MMD (0.75± 0.01, 0.65± 0.02)
D-SCM MMD + Min-Max (0.72± 0.02, 0.31± 0.03)

Table 5: Comparisons for unlabeled colored MNIST
dataset (number of domains k = 16).

g Domains (R2
S , R

2
U )

Linear 2 (0.33± 0.01, 0.46± 0.03)
Linear 16 (0.97± 0.00, 0.04± 0.00)

Polynomial 2 (0.58± 0.02, 0.07± 0.01)
Polynomial 16 (0.95± 0.00, 0.01± 0.00)

Ball-images 2 (0.73± 0.01, 0.35± 0.02)
Ball-images 16 (0.82± 0.02, 0.20± 0.04)

Table 6: Results under varying number of domains.

g Domains (Accdigits, R
2
color)

Unlabel CMNIST 2 (0.73± 0.02, 0.73± 0.02)
Unlabel CMNIST 16 (0.74± 0.01, 0.28± 0.02)

Table 7: Results under varying number of domains.

In Tables 2 to 4, we show the results (averaged over five
seeds) for independent latents and correlated latents
(D-SCM) under linear mixing, polynomial mixing, and
ball image rendering. For both linear and polynomial
mixing, we find that all three types of penalties
work well, i.e., the learned ẑŜ achieves block affine
disentanglement. For the ball-images dataset, we find
that the combination of the MMD + Min-Max penalty
works the best. In Table 5, we show the results for
unlabeled colored MNIST dataset. Here we can see
that the combination of the two penalties works much
better as well. One important fact to underscore here is
that unlabeled colored MNIST is more challenging than
balls dataset and separation of color and digit attributes
is even more non-trivial. Our approach achieves a
noticeable degree of disentanglement in this setting
without any supervision, which is quite remarkable
given the challenge posed by this setting. In addition,
Tables 6 and 7 illustrate the role of the number of
domains in identification. We find that increasing the
number of domains helps achieve better identification;
the number of required domains to achieve useful
identification is less than the worst-case requirements
in the theorems.

6 Conclusions

In this work, we advance the theory of multi-domain
causal representation learning, making it applicable
to multi-domain datasets from complex domain shifts
(including multi-node imperfect interventions and
beyond). We consider a simple invariance principle,
namely certain distributional properties of the target
latents remain invariant across domains. Following this
invariance principle, we propose a class of autoencoders
that enforce such weak distributional invariances. We
establish identification guarantees of the stable latents
for different invariances, ranging from weak invariance
of the support to the stronger invariance on the
marginal. To conclude, we would like to emphasize
that the family of invariance constraints studied here
are weaker than those in standard self-supervised
learning (SSL) (Von Kügelgen et al., 2021). In SSL, we
often require access to pairs of observations, where a
portion of the latents (referred to as content) remains
invariant between the samples. In contrast, we do not
have access to such pairs; instead, we have access to
domains where a subset of latents shares some invariant
distributional properties. Hence, one can view the
principles introduced here as a generalization of ideas
in SSL, but applied to pairs of domains instead of pairs
of observations.
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Appendix

A Theorems and Proofs

Theorem 2 (Single-node imperfect interventions). Suppose the multi-domain data is gathered from the DGP in
equation (4) under Assumptions 1 and 2. Then the autoencoder that solves the reconstruction identity (equation (2))
under Constraints 1 and 2 achieves block-affine identification, i.e., ∀z ∈ Z, ẑŜ = DzS + e, where ẑ is the encoder’s
output, z is the true latent, D ∈ R|Ŝ|×|S|, and e ∈ R|Ŝ|.

Proof. We begin by first checking that the solution to reconstruction identity under the above-said constraints
exists. Set f = g−1 and h = g and Ŝ = S. Firstly, the reconstruction identity is easily satisfied. Also, the
Constraint 2 is satisfied as Assumption 2 holds.

We construct a proof based on the principle of induction. We sort the vertices in U in the reverse topological order
based on the DAG to obtain a list U?. We use the principle of induction on this sorted list. Due to Assumption 2,
it follows that the first node in the sorted list has to be a terminal node, say this node is j. Consider a component
ẑi of ẑŜ . From affine identification (follows from Theorem 1), we already know that ẑi = A>

i z + ci. Suppose j
undergoes an imperfect intervention in domain p. We write the invariance constraint condition equating the
distribution of ẑi between domain 1 and domain p as

ẑ
(1)
i

d
= ẑ

(p)
i ,

A>
i z

(1) d
= A>

i z
(p),

A>
i [z

(1)
j , z

(1)
−j ]

d
= A>

i [z
(p)
j , z

(p)
−j ].

(9)

Recall z(q)j = qj
(
z
(q)
Pa(j)

)
+ %

(q)
j ,∀q ∈ [k]. For all q ∈ [k], define w(q) = A>

i,−jz
(q)
−j +Aijqj

(
z
(q)
Pa(j)

)
, where Ai,−j is the

vector of components in Ai other than Ai,j and z
(q)
−j is the vector of all components of z(q) except z

(q)
j . Define

v(q) = Aij%
(q)
j ,∀q ∈ [k]. Substitute these in the above to obtain

w(1) + v(1)
d
= w(p) + v(p). (10)

We make some important observations now. Observe that v(1) ⊥ w(1) and v(p) ⊥ w(p). Also, since the intervention
only changes the noise distribution of j and leaves all rest nodes in the graph unaltered w(1) d

= w(p). We now
write the moment generating function (MGF) of w(1) + v(1) and equate it to MGF of w(p) + v(p) as follows.

Mw(1)(t)Mv(1)(t) = Mw(p)(t)Mv(p)(t) (11)

Since w(1) d
= w(p), the MGFs are equal. As a result, the MGFs of v(1) and v(p) are equal as well. If the MGFs are

equal, then v(1)
d
= v(p). If Aij 6= 0, then this implies %(1)

d
= %(p), which is a contradiction. Therefore, Aij = 0.

This establishes the base case for the induction.

ẑ
(1)
i

d
= ẑ

(s)
i ,

A>
i z

(1) d
= A>

i z
(s),

A>
i [z

(1)
j , z

(1)
−j ]

d
= A>

i [z
(s)
j , z

(s)
−j ].

(12)

In domain s, where node j above is intervened, the only nodes that are impacted are j and its descendants. In
w(q) = A>

i,−jz
(q)
−j +Aijqj

(
z
(q)
Pa(j)

)
, the distribution of second term Aijqj

(
z
(q)
Pa(j)

)
is determinded by distribution of

parents of j, which are not impacted. The first term A>
i,−jz

(q)
−j comprises of both the descendants of j and other

non-descendants. Observe that all the descendants of j precede it in the list U?. As a result, all the coefficients in
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Ai,−j corresponding to the descendants of j are zero. Therefore, the distribution of the first term A>
i,−jz

(s)
−j is

same as distribution of A>
i,−jz

(1)
−j . On the whole, the distribution of w(s) is same as distribution of w(1). Also,

since the contribution of descendants of j in w(q) is zero, we can conclude that v(q) ⊥ w(q). We now repeat the
same argument as before. We now write the moment generating function (MGF) of w(1) + v(1) and equate it to
MGF of w(s) + v(s) as follows.

Mw(1)(t)Mv(1)(t) = Mw(s)(t)Mv(s)(t) (13)

Since w(1) d
= w(s), the MGFs are equal. As a result, the MGFs of v(1) and v(s) are equal as well. If the MGFs are

equal, then v(1)
d
= v(s). If Aij 6= 0, then this implies %(1)

d
= %(s), which is a contradiction. Therefore, Aij = 0.

This completes the proof.

Extension of Theorem 2 The DGP considered above has the form z
(q)
j = qj

(
z
(q)
Pa(j)

)
+ %

(q)
j . Alternatively, if

we consider a new DGP that involves confounder z
(q)
j = qj

(
z
(q)
Pa(j), u

(q)
Pa(j)

)
+ %

(q)
j , where u

(q)
Pa(j) are confounders

that impact at least two latents but are not input to the mixing map g, i.e., x← g(z). The exact proof steps can
be repeated for this more general data generation process provided the additive noise variable is independent of
the parent variables, i.e., %(q)j ⊥

(
z
(q)
Pa(j), u

(q)
Pa(j)

)
. Observe that we have the following the crucial steps: i) affine

identification, ii) v(1) ⊥ w(1), v(p) ⊥ w(p) and w(1) d
= w(p), iii) product of MGFs based separation in equation (11),

are not impacted by this change and as a result the proof of this extension goes through.

Define u(δ) =
log
(
d/δ
)

log
(
1/(1−1/2d)

) . We characterize good interventions next. If a node s is paired with terminal node

w and if the variance of both the intervened nodes increases or decreases in comparison to observational data,
then s undergoes a good intervention.
Lemma 1. Consider the random intervention mechanism described in Assumption 3. If t ≥ u(δ), then with
probability 1− δ each node in U is involved in a good intervention with one of the terminal nodes.

Proof. Select one of the terminal nodes w. Consider all other nodes in U \ {w}. The mechanism of interventions
described in Assumption 3 goes over the nodes in U iteratively. In iteration corresponding to interventions for
node s, each node in U \ {s} is equally likely to be selected for concurrent intervention. Define an event O, which
is true if under the intervention the variance of both intervened nodes is increased in comparison to observational
data (Domain 1) or if under the intervention variance of intervened is decreased in comparison to observational
data. Due to symmetry and non-atomic density pσ%

, the probability of this event is 1
2 . Therefore, the probability

p that in iteration for node s it undergoes a good intervention is p = 1
2(|U|−1) .

Define an event S such that S occurs if in all of (|U| − 1)t interventions each node in U \ {w} undergoes a good
intervention, i.e., it is paired with the terminal node w at least once and for each of these interventions event
O occurs for the paired nodes. Consider a node s ∈ U \ {w}. Define event Es, where Es occurs if none of the
t interventions conducted in the iteration concerning s are good interventions. This probability evaluates to
P (Es) = (1− p)t. The probability that at least one of Es is true is bounded above using union bound as follows:
P (∪s∈U\{w}Es) ≤ (|U| − 1)(1− p)t. The probability P (S) = 1−P (∪s∈U\{w}Es) ≥ 1− (|U| − 1)(1− p)t. Observe
that if t ≥ u(δ), then P (S) ≥ 1− δ.

Theorem 3 (Multi-node imperfect interventions). Suppose the multi-domain data is gathered from the DGP
in equation (4) under Assumptions 1 and 3. If the number of multi-node interventions t impacting each node
is more than log(d/δ)

log(1/(1−1/2d)) , then, with probability 1− δ, the autoencoder that solves the reconstruction identity
(equation (2)) under Constraints 1 and 2 achieves block-affine identification, i.e., ∀z ∈ Z, ẑŜ = DzS + e, where ẑ

is the encoder’s output, z is the true latent, D ∈ R|Ŝ|×|S|, e ∈ R|Ŝ|.

Proof. We begin by first checking that the solution to reconstruction identity under the above-said constraints
exists. Set f = g−1 and h = g and Ŝ = S. Firstly, the reconstruction identity is easily satisfied. Also, the
Constraint 2 is satisfied as Assumption 3 holds.
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We construct a proof based on the principle of induction.

Consider a component ẑi of ẑŜ . From affine identification (follows from Theorem 1), we already know that
ẑi = A>

i z + ci. We sort the vertices in U in the reverse topological order to obtain a list U?. We use the principle
of induction on this sorted list. Due to Assumption 3, it follows that the first two nodes in the sorted list have
to be a terminal node, which we denote as {j, l}. Suppose these nodes are intervened in domain p. Observe
that since t ≥ u(δ) both of these nodes are intervened with probability 1− δ. From the invariance constraint on
distribution ẑi in domain 1 and p it follows

ẑ
(1)
i

d
= ẑ

(p)
i ,

A>
i z

(1) d
= A>

i z
(p),

A>
i [z

(1)
j , z

(1)
l , z

(1)
−jl]

d
= A>

i [z
(p)
j , z

(p)
l , z

(p)
−jl].

(14)

Recall z(q)j = qj
(
z
(q)
Pa(j)

)
+%

(q)
j ,∀q ∈ [k]. For all q ∈ [k], define w(q) = A>

i,−jlz
(q)
−jl+Aijqj

(
z
(q)
Pa(j)

)
+Ailql

(
z
(q)
Pa(l)

)
,∀q ∈

[k], where Ai,−jl is the vector of components in Ai other than Ai,j and Ai,l, and z
(q)
−jl is the vector of all components

of z(q) except z
(q)
j and z

(q)
l . Define v(q) = Aij%

(q)
j +Ail%

(q)
l , ∀q ∈ [k]. Substitute these in the above to obtain

w(1) + v(1)
d
= w(p) + v(p). (15)

We make some important observations now. Observe that v(1) ⊥ w(1) and v(p) ⊥ w(p). This is true since v(q)

is determined by the noise variables at the terminal nodes. Also, since the intervention only changes the noise
distribution of j and l, which are terminal nodes, leaving the rest of the nodes unaltered. Therefore, w(1) d

= w(p).
We now write the moment generating function (MGF) of w(1) + v(1) and equate it to MGF of w(p) + v(p) as
follows

Mw(1)(t)Mv(1)(t) = Mw(p)(t)Mv(p)(t). (16)

Since w(1) d
= w(p), the MGFs are equal. As a result, the MGFs of v(1) and v(p) are equal as well. If the MGFs

are equal, then v(1)
d
= v(p). If Aij 6= 0 and Ail = 0, then this implies %

(1)
j

d
= %

(s)
j , which is a contradiction.

Similarly, Ail 6= 0 and Aij = 0 is not possible either. The last case is Aij 6= 0 and Ail 6= 0. From v(1)
d
= v(p) =⇒

Aij%
(1)
j + Ail%

(1)
l

d
= Aij%

(p)
j + Ail%

(p)
l . This can only be true if A2

ijσ
2

%
(1)
j

+ A2
ilσ

2

%
(1)
l

= A2
ijσ

2

%
(p)
j

+ A2
ilσ

2

%
(p)
l

. Due to
Lemma 1, the selected domain p is such that the two terminal nodes undergo a good intervention and as a
result, the variance in LHS is strictly less or strictly greater than the RHS, which makes the equality impossible.
Therefore, Aij = 0 and Ail = 0.

This establishes the base case for the induction.

Consider an arbitrary vertex say s ∈ U?. Suppose Air = 0 for all that preceded s in U?. Further, suppose that
this node s undergoes an imperfect intervention along with terminal node l in domain u. Note here again since
t ≥ u(δ), such a domain exists with probability 1 − δ. From the invariance condition between domain 1 and
domain u, it follows

ẑ
(1)
i

d
= ẑ

(u)
i ,

A>
i z

(1) d
= A>

i z
(u),

A>
i [z

(1)
s , z

(1)
l , z

(1)
−sl]

d
= A>

i [z
(u)
s , z

(u)
l , z

(u)
−sl].

(17)

Consider domain u, where node s and l above are intervened simultaneously. Recall w(q) = A>
i,−slz

(q)
−sl +

Aisqs
(
z
(q)
Pa(s)

)
+ Ailql

(
z
(q)
Pa(l)

)
,∀q ∈ [k]. We already showed that Ail = 0 so the third term is zero. Further, in

Ai,−sl the terms corresponding to the descendants of s are zero due to supposition in induction principle that
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Air = 0 for all that preceded s in U?. Hence, no descendant of s contributes to the expression w(q). The term
v(q) = Ais%

(q)
s +Ail%

(q)
l , which again simplifies to v(q) = Ais%

(q)
s . Since w(q) does not involve s or its descendants,

we can conclude that w(q) ⊥ v(q),∀q ∈ [k] and w(u) d
= w(1).

The above expressions in equation (17) can be stated as

w(u) + v(u)
d
= w(1) + v(1) (18)

Since w(q) ⊥ v(q) and w(u) d
= w(1), it follows that v(u)

d
= v(1). If Ais 6= 0, then this implies %

(u)
s

d
= %

(1)
s , which

leads to a contradiction. Hence, Ais = 0. This completes the proof.

Extension of Theorem 3 In Theorem 3, we considered two-node interventions. Let us ask what happens
if m-interventions occur at the same time. If we extend the Assumption 2 to require m terminal nodes, the
rest of the argument extends to this case too. Firstly, in Lemma 1 we showed that if the minimum number of
interventions t that each node is involved is sufficiently large, then all the nodes end up being paired with one of
the terminal nodes. The extension of Lemma 1 reads: if the minimum number of interventions t that each node
is involved is sufficiently large, then all the nodes end up being paired with m− 1 terminal nodes under a good
intervention. In the proof of Theorem 3, in the base case, we showed that the Aij and Ail are zero where {j, l} are
two terminal nodes involved in the intervention. In the extension, we consider the domain in which m terminal
nodes are involved in the intervention and the coefficient Air is zero for all r corresponding to indices of the
terminal nodes intervened in that domain. The rest of the argument from the principle of induction is identical.
Theorem 4. Suppose the multi-domain data is generated from equation 1 and satisfies Assumptions 1, 4, 5.
Then the autoencoder that solves the reconstruction identity in equation 2 under Constraints 1 and 3 achieves
the following identification guarantees: Each latent component i ∈ S satisfies ẑi = A>

i z + ci, where, among all
the vectors Ai < 0, the ones that are feasible under the assumptions and constraints in this theorem must satisfy
Air = 0 for all r ∈ U .

Proof. We begin by first checking that the solution to reconstruction identity under the above-said constraints
exists. Set f = g−1 and h = g and Ŝ = S. Firstly, the reconstruction identity is easily satisfied. Also, the
Constraint 3 is satisfied as Assumption 4 holds.

From the Assumptions 1 and Constraint 1 we know that ẑ = Az + c (follows from Theorem 1). Let us consider
i ∈ Ŝ. We know that ẑi = A>

i z + ci. Suppose Ai < 0, where each component of Ai is non-negative.

Let us consider the domains p, q, from Assumption 5. We compute the maximum value of ẑi in domain p and q
below.

zmax,p = arg max
z∈Z(p)

A>
i z + ci (19)

zmax,q = arg max
z∈Z(q)

A>
i z + ci (20)

From Constraint 3, A>
i z

max,p = A>
i z

max,q. Suppose Aik > 0 for some k ∈ U . From Assumption 5, it follows that
there exists a z ∈ Z(q) such that z < zmax,p and zj > zmax,q

j for all j ∈ U . Therefore, A>
i z > A>

i z
max,p. This

contradicts A>
i z

max,p = A>
i z

max,q. Therefore, Aik = 0.

Remark on Definition 1 We illustrate the type of functions captured by Definition 1 in Figure 4. In Figure 4,
we show that a function γθ has three minima (shown as stars) over [0, 1]× [0, 1]. We illustrate two domains in
panels a) and b). For Domain 1 in panel a), the minima over Domain 1 coincides with minima over [0, 1]× [0, 1]
but for Domain 2 that is not the case. The figure lays down the examples idea behind the proof we are about to
present next. Under sufficiently many diverse interventions, it can be guaranteed that we obtain one domain that
is similar to Domain 1 (capturing the minima over [0, 1]× [0, 1]) in Figure 4 and another domain that is similar
to Domain 2 (not capturing the minima over [0, 1]× [0, 1]) in Figure 4.
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(a) (b)
z1 z1

z2 z2

(0,0) (0,0)(1,0)

(0,1) (1,1)

(1,0)

(1,1)(0,1)

Figure 4: The minima of a candidate function γθ over [0, 1]× [0, 1] is attained at points shown in stars. Support
of Domain 1 and Domain 2 are shown in light and dark grey. The minimum value of γθ over Domain 1 is not the
same as the minimum over Domain 2. Therefore, a1(·) relating the first component of the autoencoder, which
satisfies support invariance constraint, to the true latent cannot be equal to the candidate function γθ.

Theorem 5. If we gather data generated from equation (1), where the support of z2 for each domain is sampled
i.i.d. from Assumption 6 and support of z1 is fixed to [0, 1]. Further, suppose the number of domains satisfies
k ≥ N(δ, ε, η, ι). Then the set of maps a1(·) that relate ẑ1 to [z1, z2] does not contain any function from Γ and
thus achieves Γc identification, where ẑ is obtained by solving the reconstruction identity (equation 2) under
support invariance constraint (Constraint 3) on ẑ1.

Proof. Consider the set Θ of parameters, which characterize all the functions in Γ. Let us construct a ρ-cover
for the set Θ with ρ = η

4L , where η and L are constants from Definition 1. We define the set of functions in

the cover as Γc = {γ1, · · · , γNc
}, where Nc is the size of the cover and Nc =

(
2maxθ∈Θ ‖θ‖

√
s

ρ

)s

(follows from

(Shalev-Shwartz and Ben-David, 2014)).

Consider a γj ∈ Γc with parameters θj . From Definition 1, there exists an interval [α†, β†] with width at least ι
such that the minimum value in [0, 1]× [α†, β†] is at least η more than the minimum value over the entire set
[0, 1]× [0, 1]. Since the support to z2 is sampled randomly, we compute the probability that one of the sampled
domain’s support is contained in [α†, β†]. The probability of first success (where success is the event that support
of z2 is a subset of [α†, β†]) in one of the t trials is 1− (1− ps)

t. We want

1− (1− ps)
t ≥ 1− δ

2
=⇒ δ

2
≥ (1− ps)

t =⇒ log

(
2

δ

)
/ log(1/(1− ps)) ≤ t

We plug ps = c1ι
l following Assumption 6. If we set t ≥ t1min = log( 2δ )/ log(1/(1− c1ι

l)), then with probability
1− δ/2 at least for one of the domains indexed from 1 to t1min the minimum value of γj in [0, 1]× [α†, β†] is η
larger than the minimum value in [0, 1]× [0, 1].

Next, we show that if the number of domains is sufficiently large, then the probability that one of the domains
support contains [ε, 1− ε] is sufficiently high. The probability of first success (where success is the event that
the intervention support contains [ε, 1− ε]). In this case, we follow the same calculations as above. It follows
that if t ≥ t2min = log( 2δ )/ log(1/(1− c2ε

r)), then with probability 1− δ/2 the support of z2 in at least one of the
domains indexed from t1min +1 to t1min + t2min contains [ε, 1− ε] the global minimum of γj with probability at least
1− δ/2. Hence, we can conclude that with probability 1− δ both the success events described above happen. In
the case of this event, the function γj cannot satisfy the support invariance constraint.

Let us consider all the elements in Γc together now. We now derive a bound on the number of domains such that
none of the elements in Γc satisfy the support invariance constraint. We divide the total k domains into blocks of
equal length. The first block is chosen to be sufficiently large to ensure that with probability 1− δ

Nc
, the first
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element of Γc, i.e., γ1 does not satisfy support invariance constraints. Similarly, the second block is chosen to
be sufficiently large such that γ2 cannot satisfy support invariance constraints and so on. The minimum size of
each block is computed by substituting δ with δ/Nc in the expression for t1min + t2min derived above. The final
expression for N(δ, ε, η, ι) is given as

Nc

(
log

(
2Nc

δ

)
/ log

(
1/(1− c1ι

l)

)
+ log

(
2Nc

δ

)
/ log

(
1/(1− c2ε

r)

))

where Nc =

(
2maxθ∈Θ ‖θ‖

√
s

ρ

)s

and ρ = η
4L .

Observe that since the probability of success is bounded below by 1− δ
Nc

, the overall probability is bounded by at
least 1− δ. So far, we have shown that none of the elements in the cover of Θ, i.e., Γc satisfy support invariance
constraints.

Let us now consider a γθ ∈ Γ. The nearest neighbor of this γθ in the cover is say γj . Suppose the parameter
associated with γj is θj . Therefore, γj = γθj . Since θj is an element of ρ−cover, the separation between their
corresponding parameters is ‖θj − θ‖ ≤ ρ. Since the number of domains is larger than N(δ, ε, η, ι) we can state
the following. With probability 1 − δ/Nc, there exists a pair of domains whose supports say Z and Z̃, where
γθj ’s minimum value on the former is at least η higher than the minimum value on Z̃. Let us now compute a
lower bound on the minimum value of γ on Z. For all z ∈ Z

|γθ(z)− γθj (z)| ≤ L‖θ − θj‖ ≤ Lρ =⇒ γθ(z) ≥ γθj (z)− Lρ

In the first inequality, we rely on Lipschitz continuity of γθ in θ (from Assumption 6). From the above, it follows
that

min
z∈Z

γθ(z) ≥ min
z∈Z

γθj (z)− Lρ (21)

Next, we compute an upper bound on the minimum value of γθ on Z̃

|γθ(z)− γθj (z)| ≤ L‖θ − θj‖ ≤ Lρ =⇒ γθ(z) ≤ γθj (z) + Lρ

From the above, it follows that
min
z∈Z̃

γθ(z) ≤ min
z∈Z̃

γθj (z) + Lρ (22)

We now take the difference of the bounds in equation (21) and (22) above to arrive at the following.

min
z∈Z̃

γθ(z)−min
z∈Z

γθ(z) ≥ min
z∈Z

γθj (z)−min
z∈Z̃

γθj (z)− 2Lρ ≥ η − 2Lρ =
η

2

where we set ρ = η/4L in the last inequality. Therefore, γθ does not satisfy support invariance. We require
the above argument to hold for all γθ ∈ Γ. Here we exploit the fact that with probability 1 − δ all elements
in the cover Γc do not satisfy the support invariance constraint. Therefore, we can pick any γθ ∈ Γ, select the
corresponding nearest neighbor in the cover, and apply the argument stated above. This completes the proof.

A.1 Beyond the Two Variable Case

In this section, we aim to generalize the results presented in the previous section to more than two variables. We
first adapt the Definition 1.
Definition 2. Fix some constants η > 0, ε > 0 and ι > 0. Given these constants, we define a set of functions
Γ as follows. Each function γθ : [0, 1]d → R in Γ i) is parameterized by θ ∈ Θ, where Θ is a bounded subset of
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Rs,ii) the minima of γθ over the entire set [0, 1]d lie in the ε interior of the set, i.e., in [ε, 1− ε]d, and iii) there
exists a hypercube L of volume at least ι such that∣∣∣∣ min

z∈[0,1]d
γ(z)− min

z∈[0,1]×L
γ(z)

∣∣∣∣ ≥ η.

For each z ∈ [0, 1]d, γθ is Lipschitz continuous in the parameter θ ∈ Θ with Lipschitz constant L.

Next, we adapt Assumption 6.
Assumption 7. We assume that the domains are drawn at random and the support of latents in U satisfy

P
(
Z(p)

U ⊆ [α1, β1]× · · · [α|U|, β|U|]

)
≥ c1vol

l[[α1, β1]× · · · [α|U|, β|U|]] and P
(
Z(p)

U ⊇ [κ, 1− κ]q
)
≥ c2κ

qr, where l

and r are some integers and c1, c2 some constants.

Define

Ñ(δ, ε, η, ι) = Nc

(
log

(
2Nc

δ

)
/ log

(
1/(1− c1ι

l)

)
+ log

(
2Nc

δ

)
/ log

(
1/(1− c2ε

dr)

))

where Nc =

(
2maxθ∈Θ ‖θ‖

√
s

ρ

)s

and ρ = η
4L

Theorem 6. If we gather data generated from equation (1), where the support of z2 for each domain is sampled
i.i.d. from Assumption 7. Further, if the number of domains k ≥ Ñ(δ, ε, η, ι), then the maps a1(·), which
are obtained from autoencoders that solve the reconstruction identity in equation (2) under support invariance
constraint (Constraint 3) on ẑ1, do not contain function from Γ.

Proof. We will follow the same line of reasoning as in the proof of the two-variable case. Consider the set Θ
characterizing the functions γ. Let us construct a ρ-cover for the set Θ. The cover consists of functions in the set
Γc = {γ1, · · · , γNc}, where Nc is the size of the cover. Consider γj ∈ Γc with parameters θj . From Assumption 7,
there exists a hypercube L with volume at least ι such that the minimum value in that hypercube is η more
than the global minimum on the set [0, 1]d. The probability that one of the domain’s support is contained in the
hypercube L is calculated as follows. The probability of first success (where success is the event that intervention
support is a subset of L) in one of the t trials is 1− (1− ps)

t. We want

1− (1− ps)
t ≥ 1− δ

2
=⇒ δ

2
≥ (1− ps)

t =⇒ log

(
2

δ

)
/ log(1/(1− ps)) ≤ t

Finally we have t ≥ t1min = log
(
2
δ

)
/ log(1/(1 − c1ι

l)). Therefore, with probability 1 − δ/2 at least one of the
domains s indexed from 1 to t1min achieves a minima η larger than the global minimum of γj .

Next, we derive the probability that one of the domain’s support contains [ε, 1 − ε]d. The probability of first
success (where success is the event that the domain contains [ε, 1 − ε]d). In this case, we have t ≥ t2min =
log( 2δ )/ log(1/(1− c2ε

rd)). Therefore, with probability 1− δ/2 at least one of the domains indexed from t1min + 1
to t1min + t2min achieves the global minimum of γj with probability at least 1− δ/2. Hence, we can conclude that
with probability 1− δ both the success events described above happen. In the case of this event, the function γj
cannot satisfy the invariance constraint.

Let us consider all the elements in Γc together now. We would require the total interventions to be divided into
blocks of equal length. The first block is chosen to be sufficiently large to ensure that with probability 1− δ

Nc
,

γ1 cannot satisfy support invariance constraints. Similarly, the second block is chosen to be sufficiently large
such that γ2 cannot satisfy support invariance constraints and so on. Due to symmetry, the minimum size of
each block is computed by substituting δ with δ/Nc in the expression for t1min + t2min derived above. The final
expression for Ñ(δ, ε, η, ι) is given as

Nc

(
log

(
2Nc

δ

)
/ log

(
1/(1− c1ι

l)

)
+ log

(
2Nc

δ

)
/ log

(
1/(1− c2ε

dr)

))
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where Nc =

(
2maxθ∈Θ ‖θ‖

√
s

ρ

)s

and ρ = η
4L . Observe that since the probability of success is bounded below by

1− δ
Nc

, the overall probability is bounded by at least 1− δ. So far we have shown that none of the elements in
the cover of Θ, i.e., Γc satisfy support invariance constraints.

Let us now consider a γ ∈ Θ. The nearest neighbor of this γ in the cover is say γj . Suppose the parameter of γj
is θj . Therefore, γj = γθj . The separation between their corresponding parameters is ‖θj − θ‖ ≤ ρ. We know
that with probability 1 − δ, γi does not satisfy the support invariance constraint. There exist interventional
distributions whose supports say Z and Z̃, where γj ’s minimum value on the former is at least η higher than the
minimum value on Z̃. Let us now compute a lower bound on the minimum value of γ on Z.

|γθ(z)− γθj (z)| ≤ L‖θ − θj‖ ≤ Lρ =⇒ γθ(z) ≥ γθj (z)− Lρ

From the above, it follows that
min
z∈Z

γθ(z) ≥ min
z∈Z

γθj (z)− Lρ

Next, we compute an upper bound on the minimum value of γ on Z̃

|γθ(z)− γθj (z)| ≤ L‖θ − θj‖ ≤ Lρ =⇒ γθ(z) ≤ γθj (z) + Lρ

From the above, it follows that
min
z∈Z̃

γθ(z) ≤ min
z∈Z̃

γθj (z) + Lρ

We now take the difference of the bounds above to arrive at the following.

min
z∈Z̃

γθ(z)−min
z∈Z

γθ(z) ≥ min
z∈Z

γθj (z)−min
z∈Z̃

γθj (z)− 2Lρ ≥ η − 2Lρ =
η

2

where we set ρ = η/4L in the last inequality. Therefore, γ does not satisfy support invariance. Note that the
above argument is general and applies to every γ ∈ Θ since we can pick the corresponding nearest neighbor in the
cover.

This completes the proof.

A.2 Polytope Support

In this section, we assume that the support of latents in each domain is characterized by bounded polytopes –
the convex hull of a finite number of vertices, where each vertex has a bounded norm. Under the assumptions
and the constraint (Assumption 1 and Constraint 1) we know that ẑ is an affine function of z. If the support of z
is a bounded polytope, then evaluating the maximum and minimum value that each component of ẑ depends
only on the vertices of the polytope following the fundamental theorem of linear programming. This allows us
to provide identification guarantees by placing assumptions on the diversity of these polytopes, i.e., on these
vertices, observed across domains. .

Following Constraint 3, we equate the maximum value of components in Ŝ across domains. Suppose we equate
the maximum of ẑi across domain p and q. We obtain A>

i (z
max,p − zmax,q) = 0, where zmax,p, zmax,q correspond

to the vertex of the support polytope in domain p, q respectively. Observe how the expression depends on the
difference of vertices from different polytopes. We define a set of matrices M formed by taking the difference
of vertices from the different polytopes as follows. Firstly, we fix the first domain as the reference domain and
we define difference vectors with respect to the vertices in this domain. We also fix some arbitrary ordering of
vertices in the polytope; say they are in the increasing order of the first coordinate. We start with the first vertex
in the first domain. Next, pick the second domain and pick its first vertex. Take the difference of the two selected
vectors, this difference vector forms the first row of one of the matrices. Pick the third domain, take its first
vertex, and again take the difference to get the second row of the matrix. Repeat this process for all the domains.
As a result, we get a matrix with k − 1 rows and d columns. To summarize, the set of matrices M consists of
k − 1× d matrices that satisfy the following condition. For each matrix M ∈ M, the rth row of the matrix is
defined as the difference between some vertex from (r + 1)th domain and another vertex from the first domain.
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Assumption 8. • The support of latents in each domain p ∈ [k], i.e., Z(p) is a bounded polytope; the number
of domains k ≥ d+ 1. Each matrix M ∈M has a rank equal to the number of non-zero columns.

• For each component j ∈ U , there exists a domain p ∈ [k] such that the following condition holds. We denote
the value assumed by zj in Z(1) on vertex r as vr. We assume that there exists another domain p with
support Z(p) such that zj does not take the same value as vr at any vertex of Z(p).

The first part of the above assumption states a simple regularity condition on matrix M . The second part of the
above assumption is also a simple regularity condition on components in U . The condition only requires that the
value attained at some vertex is not attained at any other vertex for some other domain.

Further remarks on Assumption 8. Next, we illustrate that the Assumption 8 holds rather easily in many
settings. Consider a setting where z = [z1, z2] and both z1, z2 take values between 0 and 1. We consider the
setting where the support of z forms a polytope. For each domain p, the polytope is sampled as follows. Each
polytope consists of M vertices and we sample M values for z2 uniformly at random [0, 1]. For z1, we sample
M − 2 vertices uniformly at random from the interval [0, 1]. For the remaining 2 vertices, we fix z1 to take value
0 on one of them and 1 on the other. We generate k polytopes following the above process and check if the rank
constraint in the first part of Assumption 8 is satisfied. We repeat this process over ten thousand trials and
find that the assumption always holds for different values of M and k. The second part of the assumption holds
trivially in the above case as two uniform random variables sampled independently from [0, 1] are not equal to
probability one.

In what follows, we use the notation aB to denote a vector formed by components of a whose indices in a are
from the set B.
Theorem 7. Suppose the data is generated from different domains following equation (1) such that Assumptions
1, 4, 8 are satisfied. The autoencoder that solves the reconstruction identity in equation (2) under Constraint 1, 3
satisfies

ẑŜ = DzS + e

where D ∈ R|Ŝ|×|S|, e ∈ R|Ŝ|.

Proof. We begin by first checking that the solution to reconstruction identity under the above-said constraints
exists. Set f = g−1 and h = g and Ŝ = S. The reconstruction identity and Constraint 3 is satisfied as
Assumption 4 holds.

Consider a component m ∈ Ŝ. From Constraint 3, we know that the support of ẑm does not change. From
Theorem 1, we also know that there is an affine relationship between ẑ and z. Therefore, we can write

ẑm = A>
mz + cm (23)

The support of ẑm is determined by the maximum and minimum of A>
mz + cm computed on the respective

domains. Let us compute the maximum and minimum of ẑm in domain p as follows.

zmax(Am, p) = arg max
z∈Z(p)

A>
mz + cm (24)

zmin(Am, p) = arg min
z∈Z(p)

A>
mz + cm (25)

We define a vector AU
m that contains components of Am whose indices in Am form the set U . We now show that

support invariance constraints in Constraint 3 implies that AU
m = 0. Suppose AU

m 6= 0 (at least one element of
this vector is non-zero). In this case, we write the maximum value of the objective as∑

l

Amlz
max(Am, p)
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Due to the support invariance constraint we get

∑
l

Amlz
max
l (Am, p) =

∑
l

Amlz
max
l (Am, 1)∑

l

Aml

(
zmax
l (Am, p)− zmax

l (Am, 1)
)
= 0

z>diff(Am, p)Am = 0

z>diff(Am, p) is the difference vector formed by taking the difference zmax
l (Am, p) − zmax

l (Am, 1). Construct a
matrix Zdiff(Am) ∈ Rk−1×l by stacking the difference vectors z>diff(Am, p) for all p in {2, · · · , k}.

Let us consider the largest submatrix of Zdiff(Am) with no zero columns and denote it as Zs
diff(Am). Following

Assumption 8, Zs
diff(Am) has a full column rank. Therefore, a non-trivial solution to Zs

diff(Am)v = 0 does not
exist and thus v = 0. Consider an element j ∈ U . Due to Assumption 8, the column in Zdiff(Am) corresponding
to j is non-zero. Therefore, for each element j ∈ U the corresponding columns in Zdiff(Am) are non-zero. The
columns of Zs

diff(Am) contain all coefficients in U , which implies AU
m = 0. This completes the proof.

B Experiments

In this section, we provide additional experimental results and other additional details for the experiments. The
experiments were carried out using the internal cluster of Mila, Quebec AI Institute. For the first stage training
of image datasets (Balls dataset, and unlabeled coloured MNIST) we use NVIDIA A100 GPUs. For the second
stage of all datasets, as well as the first stage of polynomial mixing dataset, and both stages of the linear mixing
dataset, we only train our model on the CPU as these are rather inexpensive runs.

B.1 Linear Mixing

B.1.1 Data Generation and Model Architecture

For both linear and polynomial g(·) we sample z = (zS , zU )
> as follows (zS , zU ∈ Rd/2). We sample zS ∼

Uniform[0, 1] across all domains. For domain i ∈ [k] we sample zU ∼ Uniform[li, hi], where li, hi ∼ Uniform[−5, 5].
Then for the Independent SCM setting, we obtain the observational data via x = Az, where A ∈ Rn×d is a
full-rank random matrix whose entries are drawn from Uniform[0, 1]. We obtain a Dynamic SCM by altering
the above z as follows. For each sample, zjU will be offset by the zjS with probability p and remain unchanged
otherwise. In our experiments we set p to 0.5. We generate 10000 samples for the training split and 2000 for the
validation split. The test and validation sets are the same, since we do not search over hyperparameters (see
Section B.5).
For Linear mixing g(·), stages 1, 2 are carried out simultaneously by a linear autoencoder that is jointly optimized
with reconstruction objective and invariance penalty.

B.1.2 Results

In Table 8, 9 we provide additional results when z’s follow an independent and dynamic SCM as described in the
main body respectively. We conducted experiments for different values of the dimension of the underlying latents
d and for a varying number of domains k. We divide the table into three sections with top block corresponding to
Min-Max penalty, the middle block corresponding to the MMD penalty and the bottom block corresponding
to the combination of the two denoted Min-Max + MMD. Across the different settings, we observe that as the
number of domains increase we achieve high R2

S and low R2
U .

B.2 Polynomial Mixing

B.2.1 Data Generation and Model Architecture

The latents z are sampled identical to the procedure for linear mixing dataset and the details of the polynomial
mixing function g(·) are found in Assumption 1. For stage 1, we use a polynomial autoencoder as follows. The
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Table 8: Linear Mixing Dataset R2 scores, Independent SCM DGP. The results are averaged over 5 seeds.
ẑ, z ∈ Rd and zS , zU ∈ Rd/2 and x = g(z) ∈ R2d. The three sections from top to bottom correspond to Min-Max,
MMD, and the combination.

R2
S R2

U

d k = 2 k = 4 k = 8 k = 16 k = 2 k = 4 k = 8 k = 16
8 0.45±0.02 0.99±0.00 0.93±0.04 0.98±0.01 0.30±0.03 0.01±0.00 0.08±0.04 0.03±0.01
16 0.40±0.01 0.81±0.02 0.95±0.02 0.91±0.03 0.30±0.03 0.10±0.02 0.03±0.01 0.11±0.03
32 0.35±0.00 0.51±0.03 0.80±0.01 0.88±0.01 0.45±0.05 0.24±0.02 0.13±0.02 0.12±0.02
64 0.32±0.00 0.35±0.00 0.63±0.01 0.80±0.00 0.52±0.04 0.35±0.01 0.19±0.00 0.15±0.00
8 0.64±0.05 0.94±0.03 1.00±0.00 0.99±0.00 0.19±0.01 0.03±0.01 0.01±0.00 0.01±0.00
16 0.51±0.04 0.77±0.01 0.92±0.01 0.97±0.01 0.09±0.04 0.10±0.02 0.09±0.04 0.06±0.01
32 0.38±0.02 0.60±0.01 0.75±0.03 0.90±0.01 0.34±0.04 0.17±0.00 0.12±0.02 0.07±0.01
64 0.30±0.01 0.34±0.01 0.57±0.02 0.75±0.00 0.44±0.02 0.27±0.01 0.19±0.01 0.12±0.00
8 0.63±0.06 0.99±0.00 0.99±0.00 0.99±0.00 0.19±0.01 0.01±0.00 0.02±0.00 0.02±0.00
16 0.53±0.02 0.82±0.01 0.93±0.02 0.97±0.00 0.24±0.04 0.10±0.02 0.06±0.02 0.04±0.00
32 0.39±0.02 0.64±0.04 0.81±0.01 0.91±0.01 0.38±0.06 0.17±0.03 0.11±0.00 0.08±0.01
64 0.33±0.00 0.39±0.00 0.64±0.01 0.80±0.00 0.44±0.03 0.30±0.02 0.16±0.01 0.12±0.01

encoder architecture is given in Table 12 where n, d denote the dimensions of x, z, respectively. For decoding the
outputs of the above encoder ẑ, we use a polynomial decoder which takes ẑ and follows the procedure explained
in Assumption 1, where the coefficient matrix G is to be learned and is parameterized by a linear layer.

B.2.2 Results

In Tables 13, 14, 15 and 16, 17, 18 we provide additional results when z’s follow an independent and dynamic
SCM via a polynomial mixing g(·). We conducted experiments for different values of the dimension of the
underlying latents d, different polynomial degrees, and for a varying number of domains k. We divide each
table into two sections with top block corresponding to degree two polynomials with varying d, and the bottom
block corresponding to the degree three polynomials. For each dimension we present two rows, the top row
corresponding to the R2 scores after training an autoencoder with reconstruction objective only, and right before
enforcing any distributional invariances. Since we only need an autoencoder that can fully reconstruct the input,
there is no need for training multiple perfect autoencoders, hence there is no standard error reported for such
entries. We then take the perfectly trained autoencoder and enforce the distributional invariance penalty with 5
seeds, and present the results in the bottom row per each dimension. Across the different settings, we observe
that as the number of domains increase we achieve high R2

S and low R2
U .

B.3 Balls Dataset

B.3.1 Data Generation and Model Architecture

In Tables 23, 24 we provide additional results when z’s (i.e., balls’ coordinates) follow an independent and dynamic
SCM. As described in the main body, we observe that as the number of domains increase we achieve high R2

S and
low R2

U and especially under the combination of Min-Max and MMD penalty. When z’s follow an independent
SCM, zS , the invariant block of z corresponds to the coordinates of the ball that is always sampled in an m× n
rectangle that is at a fix location across all domains. The other ball that accounts for zU is sampled from an
m′ × n′ rectangle whose location varies across the k domains. When z’s follow a dynamic SCM, we alter each
component of zU with probability 0.5 by adding or subtracting its counterpart in zS , subject to the constraints
that zU remains inside the frame, and that the two balls do not overlap to violate the injectivity assumption.
The training and validation splits comprise 50000 and 10000 samples, respectively. We conducted experiments
for a varying number of domains k. We divide the table into three sections with top block corresponding to
Min-Max penalty, the middle block corresponding to the MMD penalty and the bottom block corresponding
to the combination of the two denoted Min-Max + MMD. For each penalty we present two rows, the top row
corresponding to the R2 scores after training an autoencoder with reconstruction objective only, and right before
enforcing any distributional invariances. Again, since we only need an autoencoder that can fully reconstruct the
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Table 9: Linear Mixing Dataset R2 scores, Dynamic SCM DGP. The results are averaged over 5 seeds. ẑ, z ∈ Rd

and zS , zU ∈ Rd/2 and x = g(z) ∈ R2d. The three sections from top to bottom correspond to Min-Max, MMD,
and the combination.

R2
S R2

U

d k = 2 k = 4 k = 8 k = 16 k = 2 k = 4 k = 8 k = 16
8 0.48±0.01 0.98±0.00 0.97±0.01 0.95±0.01 0.30±0.02 0.02±0.00 0.03±0.01 0.03±0.01
16 0.43±0.04 0.73±0.02 0.93±0.02 0.98±0.00 0.33±0.05 0.14±0.01 0.06±0.00 0.03±0.00
32 0.35±0.00 0.51±0.02 0.81±0.00 0.89±0.00 0.38±0.05 0.24±0.01 0.14±0.01 0.11±0.00
64 0.27±0.01 0.34±0.00 0.63±0.01 0.80±0.00 0.55±0.02 0.33±0.01 0.19±0.00 0.14±0.01
8 0.60±0.06 0.92±0.03 0.99±0.00 0.99±0.00 0.25±0.04 0.05±0.01 0.02±0.00 0.02±0.00
16 0.46±0.03 0.74±0.01 0.92±0.02 0.98±0.01 0.29±0.04 0.13±0.02 0.04±0.00 0.04±0.01
32 0.35±0.02 0.56±0.01 0.74±0.03 0.91±0.01 0.37±0.04 0.20±0.01 0.11±0.01 0.08±0.02
64 0.28±0.00 0.31±0.01 0.53±0.01 0.72±0.00 0.47±0.02 0.30±0.01 0.20±0.00 0.16±0.00
8 0.61±0.05 0.98±0.00 0.99±0.00 0.99±0.00 0.21±0.01 0.02±0.00 0.02±0.00 0.02±0.00
16 0.51±0.01 0.80±0.02 0.96±0.01 0.98±0.01 0.28±0.05 0.10±0.02 0.04±0.00 0.04±0.00
32 0.36±0.02 0.65±0.03 0.82±0.01 0.91±0.00 0.35±0.05 0.18±0.02 0.09±0.01 0.09±0.00
64 0.31±0.00 0.38±0.00 0.64±0.01 0.81±0.00 0.48±0.03 0.31±0.01 0.18±0.00 0.11±0.00

input, there is no need for training multiple perfect autoencoders, hence there is no standard error reported for
such entries. We then take the perfectly trained autoencoder and enforce the distributional invariance penalty
with 5 seeds, and present the results in the bottom row per each penalty. Our autoencoder architecture comprises
a ResNet18 (He et al., 2016) encoder with standard deconvolutional layers in the decoder. We closely follow the
architecture from Ahuja et al. (2022b). In all experiments, the encoder’s output is 128-dimensional, and the
invariance penalty is enforced on the first 64-dimensional block of encoder’s output. For sample reconstructions
see Figure 5.

B.4 Unlabeled colored MNIST

B.4.1 Data Generation and Model Architecture

Data Generation All of the digit pixels will be coloured according to zU . The background remains untouched
(coloured digits on black background). Now we describe the colouring scheme across domains and different SCMs.
Independent SCM. For each domain i ∈ [k] we sample lic, h

i
c ∼ Uniform[0, 1], such that c ∼ Uniform[lic, h

i
c],

where c ∈ {r, g, b} denotes the colour channel. In other terms, each of the RGB channels comes from a uniform
distribution that is unique to each domain i. The digits then are coloured by sampling zU = (r, g, b) for each
domain.
Dynamic SCM. To obtain a Dynamic SCM, we introduce a probabilistic relation among digits and zU as follows.
For any domain i, we sample each channel c ∼ Uniform[lic, h

i
c] with a probability of 0.2, and with a probability

of 0.8 we introduce the following relation among digits and the colours. If the image contains digits from 0-4,
the channels are sampled according to c ∼ Uniform[lic, (l

i
c + hi

c)/2], and if the image contains digits from 5-9, the
channels are sampled according to c ∼ Uniform[(lic + hi

c)/2, h
i
c]. In simple words, most of the time we introduce

a correlation between the digits and the colours, and for a small portion of the dataset, digits and colours are
sampled independently, thus overall, we achieve a Dynamic SCM.

Model Architecture All experiments are carried out in two stages similar to polynomial mixing, and balls
image datasets. The architectures of the autoencoders at stages 1,2 are given in Tables 21,22.

The results for the Independent and Dynamic SCM are given in Tables 27,28, respectively.

B.5 β−VAE Baseline

For all experiments in sections B.1, B.2, B.3, we implement a baseline based on β−VAE (Higgins et al., 2017)
and report the metrics in tables 10, 11 for Linear Mixing, in tables 19, 20 for Polynomial Mixing, and in tables
25, 26 for the Balls image dataset. To obtain the scores for this baseline, we employ a similar 2 stage procedure,
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Table 10: β-VAE - Linear Mixing Dataset R2 scores, Independent SCM DGP. The results are averaged over 5
seeds. Each set of 4 rows correspond to a specific d and from top to bottom denote the R2 scores before training
β-VAE, and after training with β ∈ [0.1, 1.0, 10.0]. ẑ, z ∈ Rd and zS , zU ∈ Rd/2 and x = g(z) ∈ R2d.

R2
S R2

U

d k = 2 k = 4 k = 8 k = 16 k = 2 k = 4 k = 8 k = 16

8

0.11±0.08 −0.21±0.25 −0.59±0.31 −0.57±0.30 0.69±0.16 0.81±0.05 0.78±0.04 0.81±0.03
0.15±0.09 −0.50±0.40 −0.53±0.41 −0.31±0.32 0.83±0.08 0.85±0.04 0.77±0.05 0.80±0.06
0.17±0.06 −0.86±0.40 −0.84±0.51 −0.92±0.47 0.87±0.04 0.86±0.03 0.85±0.03 0.84±0.03
0.05±0.08 −0.56±0.30 −0.95±0.35 −1.24±0.39 0.81±0.10 0.92±0.01 0.85±0.04 0.90±0.02

16

0.42±0.29 −0.61±0.23 −1.46±0.26 −1.57±0.43 0.31±0.27 0.63±0.04 0.49±0.03 0.51±0.02
0.19±0.03 0.04±0.04 −0.24±0.26 −0.49±0.42 0.83±0.07 0.92±0.02 0.90±0.01 0.90±0.00
0.19±0.03 −0.03±0.22 −0.42±0.29 −0.60±0.25 0.86±0.05 0.94±0.02 0.92±0.01 0.90±0.00
0.15±0.06 −0.19±0.30 −0.09±0.07 −0.52±0.29 0.94±0.01 0.96±0.01 0.94±0.00 0.94±0.01

32

0.35±0.17 −0.49±0.23 −1.10±0.48 −1.24±0.32 0.25±0.17 0.41±0.04 0.35±0.02 0.28±0.01
0.23±0.01 0.10±0.03 0.06±0.03 0.01±0.04 0.91±0.02 0.92±0.00 0.92±0.00 0.92±0.00
0.20±0.01 0.12±0.02 0.06±0.01 0.02±0.02 0.94±0.01 0.95±0.00 0.95±0.00 0.93±0.00
0.22±0.01 0.13±0.02 0.06±0.03 −0.11±0.17 0.93±0.01 0.94±0.00 0.95±0.00 0.94±0.00

64

0.30±0.14 −0.52±0.41 −0.72±0.31 −0.85±0.33 0.26±0.09 0.33±0.05 0.27±0.02 0.19±0.01
0.25±0.01 0.18±0.00 0.14±0.01 0.10±0.01 0.91±0.01 0.95±0.00 0.95±0.00 0.95±0.00
0.24±0.02 0.18±0.01 0.13±0.02 0.07±0.03 0.91±0.01 0.94±0.00 0.95±0.00 0.94±0.00
0.27±0.02 0.23±0.01 0.16±0.01 0.11±0.03 0.89±0.01 0.92±0.00 0.93±0.00 0.92±0.00

Table 11: β-VAE - Linear Mixing Dataset R2 scores, Dynamic SCM DGP. The results are averaged over 5
seeds. Each set of 4 rows correspond to a specific d and from top to bottom denote the R2 scores before training
β-VAE, and after training with β ∈ [0.1, 1.0, 10.0]. ẑ, z ∈ Rd and zS , zU ∈ Rd/2 and x = g(z) ∈ R2d.

R2
S R2

U

d k = 2 k = 4 k = 8 k = 16 k = 2 k = 4 k = 8 k = 16

8

0.08±0.10 −0.23±0.32 −0.54±0.30 −0.51±0.27 0.73±0.13 0.81±0.05 0.79±0.04 0.81±0.04
0.26±0.02 −0.44±0.39 −0.35±0.27 −0.22±0.57 0.85±0.05 0.85±0.04 0.77±0.05 0.82±0.06
0.17±0.09 −0.61±0.34 −0.44±0.32 −0.74±0.39 0.88±0.03 0.87±0.03 0.84±0.02 0.83±0.04
−0.17±0.33 −0.52±0.51 −0.71±1.07 −1.04±0.33 0.85±0.04 0.73±0.19 0.89±0.04 0.90±0.03

16

−0.53±0.43 −0.56±0.54 −1.18±0.44 −1.23±0.32 0.33±0.28 0.62±0.04 0.50±0.03 0.51±0.02
0.19±0.03 0.04±0.03 −0.15±0.16 −0.32±0.31 0.85±0.05 0.91±0.03 0.90±0.02 0.91±0.01
0.17±0.09 0.00±0.08 −0.37±0.31 −0.51±0.49 0.88±0.03 0.94±0.01 0.93±0.01 0.92±0.01
0.13±0.08 −0.13±0.32 −0.15±0.16 −0.56±0.28 0.94±0.01 0.95±0.01 0.93±0.00 0.93±0.00

32

−0.33±0.40 −0.35±0.11 −0.79±0.36 −0.86±0.21 0.29±0.15 0.41±0.03 0.35±0.02 0.29±0.01
0.22±0.01 0.12±0.02 0.05±0.02 −0.01±0.12 0.91±0.02 0.93±0.00 0.93±0.00 0.92±0.00
0.20±0.01 0.12±0.02 0.07±0.00 −0.04±0.10 0.93±0.01 0.94±0.00 0.95±0.00 0.93±0.01
0.23±0.01 0.15±0.02 0.10±0.02 0.03±0.04 0.93±0.01 0.93±0.01 0.94±0.00 0.90±0.01

64

−0.16±0.11 −0.31±0.22 −0.47±0.20 −0.53±0.16 0.34±0.05 0.35±0.04 0.27±0.02 0.19±0.01
0.24±0.01 0.19±0.00 0.15±0.01 0.11±0.01 0.90±0.01 0.95±0.00 0.95±0.00 0.94±0.00
0.20±0.01 0.20±0.01 0.15±0.01 0.10±0.03 0.93±0.01 0.94±0.00 0.94±0.00 0.93±0.00
0.29±0.01 0.23±0.01 0.18±0.01 0.16±0.03 0.88±0.01 0.92±0.00 0.92±0.00 0.89±0.01

Table 12: Polynomial Encoder.

Layer Input Size Output Size Bias Activation
Linear (1) n n/2 False LeakyReLU(0.5)
Linear (2) n/2 n/2 False LeakyReLU(0.5)
Linear (3) n/2 d False -
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Table 13: Polynomial Mixing Dataset R2 scores, Independent DGP. The results are averaged over 5 seeds.
ẑ, z ∈ Rd and zS , zU ∈ Rd/2 and x = g(z) ∈ R200. Penalty used here is Min-Max. Top section and bottom
section correspond to polynomial degrees of 2 and 3. For each dimension d, the top row corresponds to the scores
after training the autoencoder with reconstruction objective only, and the bottom row denotes the scores after
enforcing distributional invariances in 5 different runs.

R2
S R2

U

d k = 2 k = 4 k = 8 k = 16 k = 2 k = 4 k = 8 k = 16

6
0.03 0.08 0.09 0.02 0.96 0.83 0.89 0.98

0.42±0.04 0.62±0.01 0.99±0.00 0.99±0.00 0.01±0.00 0.01±0.00 0.00±0.00 0.00±0.00

8
0.26 0.15 0.08 0.12 0.80 0.92 0.91 0.95

0.34±0.02 0.99±0.00 0.98±0.01 0.97±0.01 0.01±0.00 0.01±0.00 0.00±0.00 0.01±0.00

10
0.22 0.04 0.03 0.05 0.79 0.97 0.98 0.96

0.32±0.03 0.90±0.04 0.94±0.04 0.92±0.04 0.04±0.00 0.01±0.00 0.01±0.00 0.01±0.00

12
0.07 0.19 0.04 0.17 0.95 0.90 0.98 0.88

0.38±0.03 0.83±0.01 0.89±0.00 0.95±0.02 0.06±0.02 0.01±0.00 0.01±0.00 0.01±0.00

14
0.12 0.17 0.17 0.11 0.94 0.93 0.86 0.93

0.34±0.03 0.67±0.01 0.95±0.02 0.96±0.02 0.05±0.01 0.04±0.01 0.01±0.00 0.01±0.00

6
0.16 0.04 0.05 0.09 0.83 0.96 0.95 0.92

0.33±0.01 0.62±0.00 0.80±0.00 0.97±0.01 0.05±0.02 0.00±0.00 0.00±0.00 0.00±0.00

8
0.06 0.25 0.23 0.20 0.95 0.87 0.83 0.81

0.45±0.06 0.84±0.03 0.93±0.01 0.92±0.01 0.06±0.04 0.01±0.00 0.01±0.00 0.00±0.00

10
0.13 0.15 0.11 0.04 0.89 0.80 0.93 0.96

0.48±0.01 0.83±0.00 0.87±0.00 0.93±0.01 0.02±0.00 0.01±0.00 0.01±0.00 0.01±0.00

12
0.20 0.21 0.18 0.19 0.85 0.84 0.85 0.82

0.52±0.02 0.80±0.03 0.88±0.01 0.95±0.01 0.07±0.02 0.02±0.00 0.01±0.00 0.02±0.00

14
0.18 0.06 0.29 0.27 0.74 0.80 0.76 0.71

0.26±0.02 0.32±0.01 0.91±0.01 0.93±0.00 0.10±0.01 0.03±0.00 0.01±0.00 0.01±0.00

where in stage 1, we train an autoencoder with reconstruction objective only. Then at stage 2, we employ the KL
divergence constraint from Higgins et al. (2017) on the representations obtained from the autoencoder at stage 1,
and randomly divide the resulting ẑ into two halves to represent ẑŜ ,ẑÛ , and compute the R2 scores against zS ,zU .
Note that unlike our method that directly affects a known subset of ẑ to obtain ẑŜ , we have no way of knowing
beforehand such subsets with the KL divergence penalty of Higgins et al. (2017), hence the need for randomly
selecting such features.

Training Details and Hyperparameter Selection It should be noted that hyperparameter selection in
unsupervised scenarios such as this work differs crucially from the conventional setups as in practice one does not
have access to the ground-truth latents z. Therefore we focus on using default hyperparameters and demonstrate
the robustness and versatility of our approach across the different datasets. We train all models with Adam
(Kingma and Ba, 2014) optimizer with a learning rate of 10−3 without weight decay, ε = 10−8, β1 = 0.9, β2 = 0.999.
We reduce the learning rate by a factor of 0.5 if the training objective is not improved for 10 epochs. This drop is
followed by a cool-down period of 10 epochs, and the learning rate cannot decrease to lower than 10−4. For all
datasets we use a batch size of 1024 and early stop the training at 2000 steps. The weight of invariance penalty
is always set to 1.0, regardless of the combination of penalties used. To ensure the robustness of the Min-Max
penalty, we enforce the support invariance not just on the minimum and maximum across a batch, rather, we
sort the batch and for each component of zS take the top 10 for computing the penalty. For MMD penalty we
always use the standard RBF kernel with a default bandwidth of 1.0, with the only exception of using an adaptive
bandwidth for linear mixing experiments.
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Table 14: Polynomial Mixing Dataset R2 scores, Independent DGP. The results are averaged over 5 seeds.
ẑ, z ∈ Rd and zS , zU ∈ Rd/2 and x = g(z) ∈ R200. Penalty used here is MMD. Top section and bottom section
correspond to polynomial degrees of 2 and 3. For each dimension d, the top and bottom rows correspond to the
scores after Stages 1, 2.

R2
S R2

U

d k = 2 k = 4 k = 8 k = 16 k = 2 k = 4 k = 8 k = 16

6
0.03 0.08 0.09 0.02 0.96 0.83 0.86 0.98

0.54±0.04 0.55±0.04 0.99±0.00 0.99±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.00±0.00

8
0.26 0.15 0.08 0.12 0.80 0.92 0.91 0.92

0.42±0.05 0.76±0.00 0.98±0.01 0.97±0.02 0.08±0.05 0.01±0.00 0.00±0.00 0.01±0.00

10
0.22 0.04 0.03 0.05 0.79 0.97 0.98 0.96

0.52±0.04 0.81±0.00 0.86±0.00 0.91±0.04 0.05±0.01 0.01±0.00 0.01±0.00 0.01±0.00

12
0.07 0.19 0.04 0.17 0.95 0.90 0.98 0.88

0.48±0.01 0.65±0.02 0.90±0.00 0.98±0.00 0.12±0.03 0.02±0.00 0.01±0.00 0.01±0.00

14
0.12 0.17 0.17 0.11 0.94 0.93 0.86 0.93

0.52±0.05 0.55±0.01 0.99±0.00 0.98±0.01 0.05±0.01 0.06±0.02 0.01±0.00 0.01±0.00

6
0.16 0.04 0.05 0.09 0.83 0.96 0.95 0.92

0.46±0.05 0.63±0.00 0.80±0.00 0.98±0.01 0.05±0.03 0.01±0.00 0.00±0.00 0.00±0.00

8
0.06 0.25 0.23 0.20 0.95 0.87 0.83 0.81

0.54±0.02 0.73±0.01 0.92±0.04 0.98±0.00 0.07±0.04 0.02±0.00 0.01±0.00 0.00±0.00

10
0.13 0.15 0.11 0.04 0.89 0.80 0.93 0.96

0.49±0.04 0.72±0.01 0.87±0.00 0.98±0.00 0.05±0.01 0.01±0.00 0.01±0.00 0.01±0.00

12
0.20 0.21 0.18 0.19 0.85 0.84 0.85 0.82

0.51±0.02 0.74±0.02 0.89±0.00 0.97±0.00 0.12±0.02 0.04±0.00 0.01±0.00 0.01±0.00

14
0.18 0.06 0.29 0.27 0.74 0.80 0.76 0.71

0.38±0.02 0.40±0.00 0.94±0.00 0.95±0.00 0.08±0.00 0.03±0.00 0.02±0.00 0.01±0.00

Figure 5: The top row shows the inputs to the image autoencoder, and the bottom row shows model’s
reconstructions.
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Table 15: Polynomial Mixing Dataset R2 scores, Independent DGP. The results are averaged over 5 seeds.
ẑ, z ∈ Rd and zS , zU ∈ Rd/2 and x = g(z) ∈ R200. Penalty used here is MMD+Min-Max. Top section and bottom
section correspond to polynomial degrees of 2 and 3. For each dimension d, the top and bottom rows correspond
to the scores after Stages 1, 2.

R2
S R2

U

d k = 2 k = 4 k = 8 k = 16 k = 2 k = 4 k = 8 k = 16

6
0.03 0.08 0.09 0.02 0.96 0.83 0.89 0.98

0.60±0.06 0.60±0.00 0.99±0.00 0.99±0.01 0.02±0.01 0.00±0.00 0.01±0.00 0.00±0.00

8
0.26 0.15 0.08 0.12 0.80 0.92 0.91 0.92

0.52±0.04 0.98±0.00 0.97±0.01 0.99±0.00 0.03±0.02 0.00±0.00 0.00±0.00 0.01±0.00

10
0.22 0.04 0.03 0.05 0.79 0.97 0.98 0.96

0.68±0.03 0.96±0.01 0.95±0.03 0.94±0.01 0.02±0.00 0.01±0.00 0.01±0.00 0.01±0.00

12
0.07 0.19 0.04 0.17 0.95 0.90 0.98 0.88

0.63±0.04 0.92±0.00 0.90±0.00 0.97±0.01 0.02±0.00 0.01±0.00 0.01±0.00 0.01±0.00

14
0.12 0.17 0.17 0.11 0.94 0.93 0.86 0.93

0.63±0.02 0.65±0.00 0.96±0.02 0.98±0.01 0.04±0.02 0.04±0.01 0.01±0.00 0.01±0.00

6
0.16 0.04 0.05 0.10 0.83 0.96 0.95 0.92

0.44±0.03 0.63±0.00 0.80±0.00 0.96±0.02 0.03±0.01 0.00±0.00 0.00±0.00 0.01±0.00

8
0.06 0.25 0.23 0.20 0.95 0.87 0.83 0.81

0.63±0.04 0.91±0.02 0.93±0.02 0.97±0.01 0.03±0.02 0.01±0.00 0.01±0.00 0.00±0.00

10
0.13 0.15 0.11 0.04 0.89 0.80 0.93 0.96

0.62±0.04 0.79±0.04 0.85±0.01 0.97±0.00 0.02±0.00 0.01±0.00 0.01±0.00 0.01±0.00

12
0.20 0.21 0.18 0.20 0.85 0.84 0.85 0.82

0.62±0.02 0.81±0.01 0.89±0.00 0.97±0.00 0.08±0.02 0.02±0.00 0.01±0.00 0.01±0.00

14
0.18 0.06 0.29 0.27 0.74 0.80 0.76 0.71

0.36±0.01 0.39±0.00 0.93±0.02 0.95±0.00 0.10±0.01 0.03±0.00 0.02±0.00 0.01±0.00
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Table 16: Polynomial Mixing Dataset R2 scores, Dynamic SCM DGP. The results are averaged over 5 seeds.
ẑ, z ∈ Rd and zS , zU ∈ Rd/2 and x = g(z) ∈ R200. Penalty used here is Min-Max. Top section and bottom section
correspond to polynomial degrees of 2 and 3. For each dimension d, the top and bottom rows correspond to the
scores after Stages 1, 2.

R2
S R2

U

d k = 2 k = 4 k = 8 k = 16 k = 2 k = 4 k = 8 k = 16

6
0.05 0.02 0.01 0.05 0.95 0.97 0.99 0.95

0.28±0.04 0.96±0.01 0.71±0.00 0.99±0.00 0.03±0.02 0.01±0.00 0.01±0.00 0.01±0.00

8
0.20 0.18 0.14 0.01 0.88 0.87 0.85 0.99

0.39±0.03 0.71±0.01 0.78±0.01 0.93±0.04 0.05±0.01 0.01±0.00 0.01±0.00 0.01±0.00

10
0.19 0.04 0.02 0.05 0.86 0.98 0.99 0.97

0.35±0.04 0.76±0.02 0.98±0.00 0.99±0.00 0.07±0.03 0.01±0.00 0.01±0.00 0.01±0.00

12
0.05 0.18 0.13 0.11 0.97 0.90 0.92 0.93

0.41±0.03 0.80±0.01 0.97±0.01 0.97±0.01 0.09±0.03 0.01±0.00 0.01±0.00 0.01±0.00

14
0.11 0.16 0.17 0.04 0.95 0.94 0.83 0.98

0.39±0.01 0.69±0.01 0.95±0.02 0.97±0.01 0.06±0.01 0.04±0.01 0.02±0.00 0.01±0.00

6
0.30 0.16 0.30 0.07 0.71 0.88 0.74 0.94

0.34±0.01 0.92±0.01 0.98±0.00 0.99±0.00 0.03±0.02 0.01±0.00 0.01±0.00 0.01±0.00

8
0.18 0.06 0.13 0.21 0.86 0.98 0.89 0.80

0.45±0.05 0.90±0.04 0.95±0.01 0.95±0.02 0.07±0.04 0.01±0.00 0.01±0.00 0.01±0.00

10
0.21 0.12 0.22 0.07 0.87 0.84 0.87 0.94

0.42±0.02 0.70±0.00 0.95±0.01 0.95±0.01 0.08±0.03 0.01±0.00 0.01±0.00 0.01±0.00

12
0.15 0.23 0.14 0.17 0.88 0.81 0.87 0.85

0.44±0.02 0.81±0.02 0.87±0.03 0.94±0.01 0.11±0.01 0.02±0.00 0.01±0.00 0.01±0.00

14
0.22 0.16 0.25 0.22 0.69 0.79 0.80 0.73

0.34±0.02 0.63±0.01 0.88±0.02 0.92±0.00 0.08±0.01 0.03±0.00 0.02±0.00 0.02±0.00
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Table 17: Polynomial Mixing Dataset R2 scores, Dynamic SCM DGP. The results are averaged over 5 seeds.
ẑ, z ∈ Rd and zS , zU ∈ Rd/2 and x = g(z) ∈ R200. Penalty used here is MMD. Top section and bottom section
correspond to polynomial degrees of 2 and 3. For each dimension d, the top and bottom rows correspond to the
scores after Stages 1, 2.

R2
S R2

U

d k = 2 k = 4 k = 8 k = 16 k = 2 k = 4 k = 8 k = 16

6
0.05 0.02 0.01 0.05 0.95 0.97 0.99 0.95

0.25±0.06 0.85±0.03 0.64±0.02 0.99±0.00 0.08±0.05 0.05±0.01 0.01±0.00 0.01±0.00

8
0.20 0.18 0.14 0.01 0.88 0.87 0.85 0.99

0.41±0.03 0.58±0.03 0.73±0.02 0.95±0.03 0.08±0.04 0.08±0.03 0.02±0.00 0.01±0.00

10
0.19 0.04 0.02 0.04 0.86 0.98 0.99 0.97

0.41±0.02 0.53±0.02 0.91±0.01 0.96±0.02 0.10±0.03 0.04±0.01 0.02±0.00 0.01±0.00

12
0.05 0.18 0.13 0.11 0.97 0.90 0.92 0.93

0.39±0.03 0.54±0.02 0.89±0.01 0.99±0.00 0.10±0.03 0.04±0.01 0.03±0.01 0.01±0.00

14
0.11 0.16 0.17 0.04 0.95 0.94 0.83 0.98

0.38±0.02 0.48±0.02 0.89±0.01 0.99±0.00 0.09±0.02 0.10±0.02 0.03±0.00 0.01±0.00

6
0.30 0.16 0.30 0.07 0.71 0.88 0.74 0.94

0.41±0.03 0.77±0.03 0.86±0.03 0.98±0.00 0.04±0.01 0.05±0.02 0.02±0.01 0.01±0.00

8
0.18 0.06 0.13 0.21 0.86 0.98 0.89 0.80

0.46±0.02 0.66±0.02 0.84±0.03 0.98±0.00 0.05±0.02 0.02±0.01 0.02±0.00 0.01±0.00

10
0.21 0.12 0.22 0.07 0.87 0.84 0.87 0.94

0.42±0.03 0.55±0.02 0.90±0.01 0.96±0.00 0.08±0.01 0.03±0.00 0.03±0.00 0.01±0.00

12
0.15 0.23 0.14 0.17 0.88 0.81 0.87 0.85

0.45±0.01 0.64±0.02 0.85±0.01 0.96±0.00 0.11±0.01 0.07±0.01 0.04±0.00 0.01±0.00

14
0.22 0.16 0.25 0.22 0.69 0.79 0.80 0.73

0.34±0.01 0.52±0.01 0.85±0.01 0.93±0.01 0.09±0.01 0.09±0.02 0.05±0.00 0.02±0.00
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Table 18: Polynomial Mixing Dataset R2 scores, Dynamic SCM DGP. The results are averaged over 5 seeds.
ẑ, z ∈ Rd and zS , zU ∈ Rd/2 and x = g(z) ∈ R200. Penalty used here is MMD+Min-Max. Top section and bottom
section correspond to polynomial degrees of 2 and 3. For each dimension d, the top and bottom rows correspond
to the scores after Stages 1, 2.

R2
S R2

U

d k = 2 k = 4 k = 8 k = 16 k = 2 k = 4 k = 8 k = 16

6
0.05 0.16 0.01 0.05 0.95 0.88 0.99 0.95

0.32±0.04 0.81±0.03 0.69±0.01 0.99±0.00 0.02±0.00 0.05±0.02 0.01±0.00 0.01±0.00

8
0.20 0.06 0.14 0.01 0.88 0.98 0.85 0.99

0.43±0.02 0.82±0.02 0.80±0.00 0.95±0.03 0.05±0.01 0.02±0.01 0.01±0.00 0.01±0.00

10
0.19 0.04 0.02 0.04 0.86 0.98 0.99 0.97

0.53±0.02 0.65±0.02 0.90±0.01 0.99±0.00 0.07±0.01 0.02±0.00 0.02±0.00 0.01±0.00

12
0.05 0.18 0.13 0.11 0.97 0.90 0.92 0.93

0.48±0.03 0.72±0.02 0.88±0.03 0.98±0.00 0.07±0.02 0.03±0.00 0.02±0.00 0.01±0.00

14
0.11 0.16 0.17 0.04 0.95 0.94 0.83 0.98

0.49±0.02 0.56±0.02 0.89±0.01 0.97±0.02 0.06±0.01 0.07±0.01 0.03±0.00 0.01±0.00

6
0.30 0.02 0.30 0.07 0.71 0.97 0.74 0.94

0.36±0.03 0.88±0.03 0.87±0.04 0.99±0.00 0.04±0.02 0.05±0.01 0.02±0.00 0.01±0.00

8
0.18 0.18 0.13 0.21 0.86 0.87 0.89 0.80

0.53±0.04 0.62±0.03 0.83±0.04 0.98±0.00 0.06±0.03 0.04±0.01 0.02±0.00 0.01±0.00

10
0.21 0.12 0.22 0.07 0.87 0.84 0.87 0.94

0.53±0.02 0.62±0.01 0.90±0.01 0.96±0.00 0.08±0.03 0.03±0.00 0.03±0.00 0.01±0.00

12
0.15 0.23 0.14 0.17 0.88 0.81 0.87 0.85

0.52±0.02 0.73±0.02 0.83±0.01 0.96±0.00 0.10±0.02 0.05±0.00 0.04±0.00 0.01±0.00

14
0.22 0.16 0.25 0.22 0.69 0.79 0.80 0.73

0.41±0.01 0.55±0.01 0.85±0.01 0.93±0.00 0.08±0.01 0.07±0.01 0.04±0.00 0.02±0.00
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Table 19: β-VAE - Polynomial Mixing Dataset R2 scores, Independent SCM DGP. The results are averaged
over 5 seeds. ẑ, z ∈ Rd and zS , zU ∈ Rd/2 and x = g(z) ∈ R200. Top section and bottom section correspond to
polynomial degrees of 2 and 3. Each set of 4 rows correspond to a specific d and from top to bottom denote the
R2 scores before training β-VAE, and after training with β ∈ [0.1, 1.0, 10.0].

R2
S R2

U

d k = 2 k = 4 k = 8 k = 16 k = 2 k = 4 k = 8 k = 16

6

0.37±0.02 0.19±0.05 0.35±0.00 0.19±0.04 0.96±0.02 0.99±0.00 0.98±0.00 0.99±0.00
0.12±0.07 0.03±0.01 0.08±0.05 0.02±0.01 0.91±0.04 0.95±0.02 0.84±0.07 0.95±0.02
0.07±0.05 0.02±0.00 0.02±0.00 0.01±0.00 0.96±0.01 0.94±0.04 0.90±0.08 0.93±0.04
0.09±0.06 0.01±0.00 0.02±0.00 0.01±0.00 0.97±0.01 0.96±0.03 0.95±0.03 0.92±0.06

8

0.05±0.01 0.12±0.05 0.05±0.03 0.06±0.04 0.97±0.00 0.92±0.04 0.95±0.04 0.95±0.04
0.10±0.04 0.03±0.01 0.08±0.06 0.01±0.00 0.93±0.03 0.92±0.03 0.95±0.03 0.93±0.03
0.07±0.03 0.02±0.00 0.04±0.01 0.03±0.01 0.91±0.02 0.96±0.02 0.94±0.03 0.91±0.04
0.05±0.02 0.04±0.01 0.07±0.04 0.03±0.01 0.93±0.03 0.92±0.03 0.95±0.04 0.93±0.04

10

0.06±0.03 0.05±0.01 0.04±0.02 0.02±0.01 0.80±0.03 0.83±0.02 0.77±0.04 0.80±0.02
0.05±0.01 0.09±0.03 0.05±0.02 0.05±0.03 0.95±0.01 0.94±0.03 0.98±0.00 0.95±0.01
0.09±0.03 0.12±0.04 0.04±0.01 0.09±0.04 0.94±0.02 0.96±0.02 0.95±0.03 0.95±0.04
0.08±0.03 0.03±0.00 0.04±0.01 0.07±0.04 0.97±0.00 0.96±0.03 0.99±0.00 0.98±0.01

12

0.04±0.02 0.03±0.01 0.02±0.00 0.01±0.00 0.70±0.02 0.79±0.01 0.72±0.02 0.69±0.02
0.15±0.03 0.07±0.02 0.07±0.03 0.05±0.02 0.91±0.02 0.96±0.01 0.97±0.00 0.90±0.03
0.08±0.02 0.09±0.03 0.06±0.03 0.10±0.03 0.97±0.00 0.95±0.01 0.95±0.02 0.96±0.02
0.08±0.03 0.09±0.03 0.03±0.01 0.02±0.00 0.96±0.01 0.97±0.00 0.95±0.03 0.99±0.00

14

0.02±0.00 0.03±0.01 0.02±0.01 0.01±0.00 0.70±0.02 0.68±0.04 0.65±0.03 0.58±0.02
0.14±0.01 0.08±0.02 0.17±0.02 0.07±0.02 0.95±0.01 0.95±0.00 0.96±0.01 0.92±0.02
0.08±0.02 0.07±0.02 0.07±0.01 0.11±0.02 0.94±0.01 0.94±0.01 0.96±0.02 0.93±0.02
0.05±0.00 0.09±0.03 0.09±0.03 0.03±0.01 0.95±0.02 0.97±0.00 0.96±0.02 0.97±0.01

6

0.35±0.03 0.13±0.04 0.28±0.01 0.33±0.00 0.97±0.03 0.97±0.02 1.00±0.00 1.00±0.00
0.13±0.06 0.02±0.01 0.02±0.00 0.03±0.01 0.86±0.06 0.93±0.02 0.97±0.01 0.97±0.01
0.10±0.05 0.02±0.00 0.01±0.00 0.03±0.01 0.90±0.03 0.93±0.03 0.98±0.01 0.93±0.04
0.05±0.03 0.02±0.01 0.01±0.00 0.02±0.01 0.97±0.02 0.95±0.03 0.99±0.00 0.99±0.00

8

0.19±0.04 0.09±0.03 0.05±0.02 0.14±0.05 0.82±0.06 0.93±0.02 0.94±0.02 0.84±0.07
0.08±0.03 0.14±0.05 0.08±0.04 0.05±0.03 0.87±0.02 0.92±0.03 0.96±0.02 0.94±0.04
0.12±0.04 0.13±0.04 0.05±0.03 0.07±0.02 0.90±0.04 0.92±0.03 0.98±0.00 0.91±0.03
0.05±0.01 0.13±0.04 0.03±0.01 0.01±0.00 0.94±0.02 0.97±0.02 0.97±0.03 0.88±0.04

10

0.08±0.04 0.05±0.01 0.14±0.03 0.07±0.03 0.77±0.05 0.75±0.03 0.67±0.05 0.76±0.04
0.12±0.02 0.07±0.02 0.13±0.04 0.08±0.04 0.95±0.01 0.90±0.03 0.88±0.04 0.94±0.02
0.15±0.01 0.08±0.04 0.12±0.03 0.15±0.03 0.93±0.02 0.95±0.01 0.92±0.03 0.90±0.03
0.08±0.03 0.04±0.01 0.05±0.01 0.10±0.04 0.94±0.01 0.93±0.03 0.96±0.02 0.98±0.00

12

0.04±0.01 0.06±0.01 0.06±0.01 0.06±0.01 0.66±0.03 0.63±0.04 0.65±0.03 0.65±0.02
0.16±0.03 0.13±0.02 0.15±0.02 0.15±0.03 0.89±0.02 0.91±0.02 0.88±0.02 0.86±0.02
0.15±0.01 0.13±0.01 0.11±0.01 0.12±0.02 0.89±0.02 0.92±0.02 0.92±0.01 0.90±0.02
0.13±0.02 0.11±0.03 0.12±0.02 0.11±0.03 0.93±0.02 0.91±0.03 0.93±0.02 0.96±0.01

14

0.07±0.02 0.04±0.01 0.07±0.01 0.08±0.01 0.54±0.02 0.51±0.04 0.52±0.01 0.51±0.03
0.13±0.01 0.09±0.02 0.16±0.02 0.11±0.03 0.81±0.02 0.81±0.01 0.88±0.01 0.80±0.02
0.10±0.01 0.07±0.01 0.10±0.02 0.13±0.02 0.83±0.01 0.83±0.02 0.91±0.01 0.85±0.02
0.08±0.01 0.05±0.01 0.07±0.01 0.10±0.03 0.85±0.01 0.92±0.01 0.92±0.02 0.91±0.02
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Table 20: β-VAE - Polynomial Mixing Dataset R2 scores, Dynamic SCM DGP. The results are averaged
over 5 seeds. ẑ, z ∈ Rd and zS , zU ∈ Rd/2 and x = g(z) ∈ R200. Top section and bottom section correspond to
polynomial degrees of 2 and 3. Each set of 4 rows correspond to a specific d and from top to bottom denote the
R2 scores before training β-VAE, and after training with β ∈ [0.1, 1.0, 10.0].

R2
S R2

U

d k = 2 k = 4 k = 8 k = 16 k = 2 k = 4 k = 8 k = 16

6

0.27±0.05 0.41±0.06 0.23±0.04 0.34±0.00 0.98±0.01 0.92±0.06 0.99±0.00 0.99±0.00
0.05±0.01 0.19±0.04 0.07±0.03 0.07±0.03 0.87±0.06 0.91±0.03 0.92±0.04 0.92±0.02
0.07±0.03 0.25±0.04 0.07±0.03 0.07±0.03 0.91±0.04 0.83±0.05 0.89±0.04 0.89±0.04
0.05±0.01 0.21±0.06 0.08±0.04 0.13±0.05 0.85±0.07 0.81±0.05 0.87±0.04 0.90±0.04

8

0.18±0.04 0.05±0.01 0.05±0.02 0.03±0.01 0.89±0.02 0.96±0.01 0.96±0.02 0.97±0.01
0.14±0.05 0.12±0.03 0.04±0.01 0.03±0.01 0.92±0.02 0.94±0.03 0.94±0.01 0.93±0.02
0.14±0.04 0.12±0.03 0.08±0.04 0.05±0.02 0.86±0.04 0.91±0.05 0.92±0.03 0.90±0.04
0.14±0.03 0.16±0.02 0.11±0.04 0.08±0.04 0.90±0.01 0.91±0.06 0.88±0.04 0.89±0.04

10

0.06±0.02 0.02±0.01 0.03±0.00 0.05±0.02 0.81±0.02 0.83±0.02 0.79±0.03 0.77±0.03
0.17±0.03 0.10±0.03 0.11±0.03 0.08±0.02 0.92±0.01 0.93±0.02 0.92±0.03 0.96±0.01
0.17±0.02 0.08±0.01 0.14±0.03 0.09±0.04 0.89±0.02 0.92±0.03 0.95±0.01 0.92±0.03
0.17±0.03 0.15±0.02 0.14±0.04 0.09±0.04 0.89±0.02 0.88±0.04 0.94±0.02 0.91±0.04

12

0.04±0.00 0.03±0.01 0.02±0.00 0.03±0.01 0.69±0.02 0.79±0.02 0.71±0.01 0.69±0.02
0.18±0.01 0.14±0.02 0.10±0.03 0.10±0.03 0.91±0.01 0.93±0.02 0.90±0.01 0.96±0.01
0.14±0.02 0.12±0.03 0.09±0.03 0.11±0.03 0.91±0.02 0.93±0.02 0.90±0.08 0.94±0.03
0.14±0.03 0.13±0.03 0.09±0.03 0.14±0.03 0.90±0.02 0.90±0.03 0.90±0.01 0.95±0.02

14

0.03±0.01 0.03±0.01 0.02±0.00 0.01±0.00 0.68±0.01 0.69±0.03 0.64±0.01 0.58±0.02
0.17±0.01 0.15±0.03 0.13±0.02 0.13±0.03 0.91±0.01 0.94±0.01 0.93±0.02 0.90±0.01
0.19±0.03 0.16±0.03 0.15±0.03 0.15±0.03 0.91±0.01 0.91±0.02 0.88±0.02 0.87±0.03
0.21±0.02 0.17±0.03 0.14±0.02 0.18±0.03 0.91±0.01 0.88±0.02 0.85±0.03 0.84±0.03

6

0.37±0.04 0.33±0.01 0.35±0.01 0.34±0.00 0.95±0.04 0.99±0.00 0.99±0.00 1.00±0.00
0.07±0.04 0.10±0.05 0.09±0.06 0.03±0.01 0.94±0.02 0.94±0.02 0.95±0.02 0.90±0.04
0.11±0.06 0.09±0.05 0.08±0.06 0.04±0.02 0.94±0.02 0.91±0.04 0.93±0.03 0.89±0.05
0.06±0.03 0.09±0.05 0.08±0.05 0.06±0.03 0.92±0.05 0.92±0.03 0.96±0.02 0.91±0.04

8

0.17±0.04 0.10±0.04 0.05±0.02 0.11±0.04 0.86±0.06 0.92±0.03 0.95±0.02 0.87±0.05
0.13±0.05 0.10±0.04 0.07±0.02 0.09±0.03 0.87±0.04 0.90±0.02 0.84±0.03 0.87±0.03
0.16±0.05 0.09±0.04 0.09±0.02 0.08±0.02 0.87±0.03 0.90±0.03 0.87±0.03 0.85±0.03
0.21±0.04 0.12±0.05 0.12±0.04 0.13±0.04 0.87±0.02 0.92±0.02 0.88±0.03 0.84±0.05

10

0.08±0.03 0.06±0.01 0.10±0.02 0.05±0.02 0.80±0.03 0.74±0.03 0.73±0.02 0.76±0.03
0.19±0.03 0.17±0.02 0.16±0.03 0.09±0.02 0.88±0.02 0.82±0.04 0.85±0.03 0.85±0.03
0.21±0.02 0.20±0.03 0.18±0.04 0.16±0.03 0.84±0.03 0.83±0.03 0.82±0.04 0.79±0.02
0.22±0.02 0.20±0.02 0.16±0.04 0.19±0.02 0.81±0.04 0.81±0.03 0.79±0.04 0.79±0.03

12

0.05±0.01 0.06±0.01 0.07±0.02 0.04±0.00 0.65±0.03 0.65±0.03 0.64±0.03 0.67±0.02
0.17±0.02 0.18±0.01 0.20±0.01 0.13±0.03 0.84±0.01 0.82±0.02 0.82±0.03 0.83±0.03
0.17±0.02 0.18±0.01 0.22±0.01 0.13±0.02 0.81±0.01 0.84±0.02 0.82±0.02 0.80±0.02
0.16±0.02 0.19±0.01 0.23±0.01 0.12±0.02 0.80±0.02 0.82±0.02 0.81±0.02 0.80±0.02

14

0.06±0.02 0.05±0.01 0.06±0.01 0.08±0.01 0.51±0.07 0.55±0.07 0.53±0.01 0.50±0.03
0.18±0.03 0.20±0.01 0.21±0.01 0.18±0.01 0.82±0.03 0.82±0.02 0.83±0.02 0.79±0.01
0.19±0.03 0.22±0.02 0.25±0.02 0.23±0.03 0.78±0.03 0.80±0.03 0.78±0.02 0.75±0.02
0.21±0.02 0.22±0.02 0.25±0.01 0.25±0.03 0.75±0.03 0.80±0.02 0.75±0.03 0.75±0.02
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Table 21: Autoencoder architecture for stage 1. First section presents the encoder layers, and the second section
presents the decoder layers.

Layer Input Size Output Size Bias Activation BatchNorm
Linear (1) 784 256 True ReLU True
Linear (2) 256 256 True ReLU True
Linear (3) 256 128 True ReLU True
Linear (1) 128 256 True ReLU True
Linear (2) 256 256 True ReLU True
Linear (3) 256 784 True - False

Table 22: Autoencoder architecture for stage 2. First section presents the encoder layers, and the second section
presents the decoder layers.

Layer Input Size Output Size Bias Activation BatchNorm
Linear (1) 128 200 True LeakyReLU(0.2) True
Linear (2) 200 200 True LeakyReLU(0.2) True
Linear (3) 200 200 True LeakyReLU(0.2) True
Linear (3) 200 128 True - False
Linear (1) 128 200 True LeakyReLU(0.2) True
Linear (2) 200 200 True LeakyReLU(0.2) True
Linear (3) 200 200 True LeakyReLU(0.2) True
Linear (3) 200 128 True - False

Table 23: Balls Dataset R2, Independent SCM DGP. For each penalty, the top row corresponds to the scores
after training the autoencoder, and the bottom row denotes the scores after enforcing distributional invariances.
The results are averaged over 5 seeds. ẑ ∈ R128 and zS , zU ∈ R64. The underlying latent z ∈ R4. The sections
are Min-Max, MMD, and the combination, respectively.

R2
S R2

U

k = 2 k = 4 k = 8 k = 16 k = 2 k = 4 k = 8 k = 16
0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.97

0.94±0.00 0.89±0.01 0.85±0.04 0.65±0.01 0.88±0.00 0.66±0.02 0.56±0.04 0.19±0.01
0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.97

0.76±0.01 0.83±0.03 0.67±0.05 0.63±0.04 0.65±0.02 0.72±0.04 0.57±0.01 0.27±0.05
0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.97

0.77±0.01 0.91±0.01 0.86±0.03 0.81±0.04 0.30±0.01 0.11±0.01 0.14±0.01 0.18±0.02

Table 24: Balls Dataset R2, Dynamic SCM DGP. For each penalty, the top row corresponds to the scores after
training the autoencoder, and the bottom row denotes the scores after enforcing distributional invariances. The
results are averaged over 5 seeds. ẑ ∈ R128 and zS , zU ∈ R64. The underlying latent z ∈ R4. The sections are
Min-Max, MMD, and the combination, respectively.

R2
S R2

U

k = 2 k = 4 k = 8 k = 16 k = 2 k = 4 k = 8 k = 16
0.99 0.99 0.99 0.99 0.97 0.95 0.99 0.99

0.93±0.00 0.77±0.03 0.42±0.01 0.61±0.03 0.92±0.01 0.84±0.00 0.67±0.04 0.22±0.01
0.99 0.99 0.99 0.99 0.97 0.95 0.99 0.99

0.55±0.01 0.46±0.01 0.31±0.01 0.55±0.12 0.67±0.01 0.46±0.01 0.32±0.01 0.15±0.04
0.99 0.99 0.99 0.99 0.97 0.95 0.99 0.99

0.73±0.01 0.71±0.03 0.77±0.02 0.82±0.02 0.35±0.02 0.22±0.01 0.19±0.01 0.20±0.04
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Table 25: β-VAE - Balls Dataset R2, Independent SCM DGP. The top row corresponds to the scores after
training the autoencoder and before enforcing β-VAE’s KL divergence constraint, and the rest denote the
disentanglement performance after training the β-VAE for each value of β. β-VAE The results are averaged over
5 seeds. ẑ ∈ R128 and zS , zU ∈ R64. The underlying latent z ∈ R4.

R2
S R2

U

β k = 2 k = 4 k = 8 k = 16 k = 2 k = 4 k = 8 k = 16
0.28±0.02 0.24±0.04 0.25±0.02 0.25±0.03 0.29±0.06 0.25±0.03 0.34±0.04 0.26±0.04

0.1 0.97±0.00 0.97±0.00 0.96±0.00 0.96±0.00 0.98±0.00 0.98±0.00 0.97±0.00 0.93±0.01
1.0 0.96±0.00 0.94±0.01 0.93±0.00 0.92±0.01 0.95±0.01 0.97±0.00 0.97±0.00 0.93±0.01
10.0 0.83±0.03 0.82±0.03 0.77±0.02 0.77±0.02 0.92±0.01 0.93±0.01 0.94±0.00 0.87±0.01

Table 26: β-VAE - Balls Dataset R2, Dynamic SCM DGP. The top row corresponds to the scores after training
the autoencoder and before enforcing β-VAE’s KL divergence constraint, and the rest denote the disentanglement
performance after training the β-VAE for each value of β. β-VAE The results are averaged over 5 seeds. ẑ ∈ R128

and zS , zU ∈ R64. The underlying latent z ∈ R4.

R2
S R2

U

β k = 2 k = 4 k = 8 k = 16 k = 2 k = 4 k = 8 k = 16
0.29±0.03 0.32±0.03 0.29±0.04 0.37±0.03 0.34±0.03 0.29±0.03 0.26±0.04 0.37±0.05

0.1 0.96±0.00 0.96±0.00 0.95±0.00 0.95±0.00 0.94±0.01 0.93±0.00 0.98±0.00 0.98±0.00
1.0 0.94±0.00 0.94±0.01 0.92±0.01 0.90±0.01 0.93±0.00 0.93±0.01 0.97±0.00 0.98±0.00
10.0 0.82±0.02 0.81±0.05 0.77±0.02 0.74±0.03 0.88±0.01 0.89±0.01 0.94±0.00 0.94±0.01

Table 27: MNIST, Coloured Digits, Independent SCM DGP. The top row corresponds to the scores after
training the autoencoder, and the following rows denote the scores after enforcing distributional invariances
through Min-Max penalty, MMD, and the combination, respectively. The results are averaged over 5 seeds.
ẑ ∈ R128 and ẑŜ , ẑÛ ∈ R64.

Digits Classification Accuracy Colours R2
U

k = 2 k = 4 k = 8 k = 16 k = 2 k = 4 k = 8 k = 16
0.87 0.33 0.33 0.32 0.76 0.67 0.73 0.74

0.71±0.02 0.59±0.01 0.58±0.01 0.66±0.01 0.72±0.02 0.55±0.01 0.51±0.03 0.49±0.02
0.72±0.01 0.70±0.01 0.73±0.01 0.73±0.01 0.77±0.01 0.64±0.01 0.64±0.02 0.63±0.02
0.73±0.02 0.70±0.02 0.74±0.00 0.74±0.01 0.73±0.02 0.54±0.02 0.38±0.01 0.28±0.01

Table 28: MNIST, Coloured Digits, Dynamic SCM DGP. The top row corresponds to the scores after training
the autoencoder, and the following rows denote the scores after enforcing distributional invariances through
Min-Max penalty, MMD, and the combination, respectively. The results are averaged over 5 seeds. ẑ ∈ R128 and
ẑŜ , ẑÛ ∈ R64.

Digits Classification Accuracy Colours R2
U

k = 2 k = 4 k = 8 k = 16 k = 2 k = 4 k = 8 k = 16
0.84 0.90 0.70 0.75 0.81 0.55 0.74 0.77

0.56±0.01 0.78±0.01 0.48±0.02 0.53±0.01 0.72±0.02 0.16±0.01 0.56±0.02 0.43±0.02
0.70±0.01 0.80±0.01 0.71±0.01 0.75±0.01 0.80±0.01 0.16±0.01 0.63±0.02 0.65±0.02
0.70±0.02 0.79±0.02 0.64±0.01 0.72±0.02 0.58±0.03 0.13±0.01 0.46±0.01 0.31±0.03
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