
Learning multivariate temporal point processes via the time-change
theorem

Guilherme Augusto Zagatti See-Kiong Ng Stéphane Bressan
Institute of Data Science

National University of Singapore
Singapore

Institute of Data Science
and School of Computing

National University of Singapore
Singapore

School of Computing
and IPAL CNRS IRL2955

National University of Singapore
Singapore

Abstract

Marked temporal point processes (TPPs) are
a class of stochastic processes that describe
the occurrence of a countable number of
marked events over continuous time. In ma-
chine learning, the most common representa-
tion of marked TPPs is the univariate TPP
coupled with a conditional mark distribution.
Alternatively, we can represent marked TPPs
as a multivariate temporal point process in
which we model each sequence of marks inter-
dependently. We introduce a learning frame-
work for multivariate TPPs leveraging re-
cent progress on learning univariate TPPs
via time-change theorems to propose a deep-
learning, invertible model for the conditional
intensity. We rely neither on Monte Carlo
approximation for the compensator nor on
thinning for sampling. Therefore, we have a
generative model that can efficiently sample
the next event given a history of past events.
Our models show strong alignment between
the percentiles of the distribution expected
from theory and the empirical ones.

1 INTRODUCTION

Marked temporal point processes (TPPs) describe
change happening at irregular random intervals. We
can think of the realization of a marked TPP over con-
tinuous time as a sequence of data points recording the
time an event occurred and any associated marks or
attributes. The challenge with modelling TPPs is that

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

we must explain not only the observed events but also
the lack of events in between.

Marked TPPs can represent a plethora of real-world
phenomena, which includes seismic shocks (Ogata,
1988), social interactions (Farajtabar et al., 2017),
spiking activity in neural circuits (Linderman et al.,
2017), electronic health records (Enguehard et al.,
2020), and football league (Panos et al., 2023). In tra-
ditional applications, such as in the study of seismic
shocks, compact TPP models such as the Hawkes pro-
cess are derived from a combination of empirical ob-
servation, statistical analysis and physical modelling.
In the past ten years, TPPs have entered the machine
learning mainstream as neural TPPs, a family of mod-
els that leverage deep learning architectures to repre-
sent TPPs (Shchur et al., 2021).

Many neural TPPs rely on ad-hoc assumptions to pro-
pose a form for the conditional intensity. Alternatively,
Shchur et al. (2020b) describes an approach grounded
on the time-change theorem for univariate TPPs to de-
sign a new and efficient univariate neural TPPs. How-
ever, their method has not been extended to marked
TPPs.

Most neural TPPs adopt the representation of marked
TPPs as a ground, univariate TPP coupled with a
mark distribution. Such representation often leads to
the simplifying assumption that marks are condition-
ally independent of time given the learned history rep-
resentation. While this simplification eases the compu-
tational burden, it limits the model’s ability to capture
the evolving relative likelihood of different marks over
time. Existing neural TPPs attempting to break free
from this constraint often suffer from efficiency issues
in sampling.

In response to the above challenges, our paper presents
a new contribution to neural TPPs. By restricting
our focus to multivariate TPPs, we can re-cast the ap-
proach proposed by Shchur et al. (2020b) to the setting
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of marked TPPs. We use a version of the time-change
theorem for multivariate TPPs to reveal a subtle, but
important difference in how to approach data transfor-
mation with triangular maps. We propose three new
model architectures for multivariate TPPs that take
advantage of triangular maps. Unlike approaches that
rely on Monte Carlo approximation to compute the
compensator or thinning for sampling, triangular maps
offer an elegant solution that avoids these drawbacks.
Leveraging the theoretical foundations of TPPs, we
also employ Q-Q plots to assess the goodness of fit of
our trained model to the data, enhancing our under-
standing of neural TPPs in practice.

2 RELATED WORK

Early efforts of using TPPs to model real-world phe-
nomena include the study of seismic shocks whose de-
velopment is summarized in Vere-Jones (1995). Their
account highlights the difficulty in developing a unified
theory of earthquakes, and the rise of point processes
as a tool to analyze seismologic data as a response.
The Epidemic Type Aftershock-Sequences (ETAS), a
type of Hawkes process with self-excitation, proved
successful for the description of seismic catalogs, but
the computation of its likelihood proved computation-
ally demanding at the time (Ogata et al., 1993).

The advance of machine learning opened the doors to
the estimation of models with a much larger number of
parameters. Neural TPPs were developed partly as a
response to Hawkes processes that are larger and more
flexible than their predecessor. Du et al. (2016) pio-
neered neural TPPs with the recurrent marked TPP
(RMTPP). They model the likelihood of the TPP as
the product of the ground process and the conditional
mark distribution. They assume the conditional in-
dependence between marks and time given the his-
tory of events. Their model first embeds marks and
timestamps. Then, a recurrent neural network (RNN)
encodes the history of past embedded events. A uni-
variate TPP, whose conditional intensity is shaped ac-
cording to a Gompertz distribution taking the encoded
history and the current time as inputs, models the
timestamps. The model uses the encoded history to
predict marks using a logit-type layer.

As reviewed in Lin et al. (2021), different variations of
this architecture came later including the event recur-
rent TPP (ERTPP) from Xiao et al. (2017) and the
continuous time LSTM from Mei and Eisner (2017).
The downside of these approaches is that they require
Monte Carlo approximation to compute the compen-
sator, which is the integrated conditional intensity, and
is required for computing the log-likelihood as well as
for event generation tasks. Event generation via thin-

ning becomes inaccurate when coupled with Monte
Carlo integration.

Instead of modelling TPPs via the conditional inten-
sity, Shchur et al. (2020a) proposed modelling the con-
ditional distribution of inter-event duration with the
Log-Normal mixture (LogNorm) model. Although,
the conditional intensity and the conditional distri-
bution can be derived from one another, by directly
modelling the conditional distribution, it is possible to
sample the next event directly from it with no need
for the compensator.

Later, Omi et al. (2019) proposed to model the com-
pensator with the fully neural network intensity (FN-
NInt) model. The conditional intensity is then ob-
tained via automatic differentiation. Shchur et al.
(2020b) and Enguehard et al. (2020) proposed related
approaches using triangular maps and attention re-
spectively. Enguehard et al. (2020) denote these type
of models cumulative-based and was the only one to
extend these ideas to multivariate TPPs.

Some authors abandoned the conditional indepen-
dence assumption between marks and time given the
history of events. They modelled multivariate TPPs
with separate conditional intensities for each mark us-
ing an approach inspired by Du et al. (2016). The Self-
Attentive Neural Hawkes Process (SAHP) (Zuo et al.,
2020), the Transformer Hawkes Process (THP) (Zhang
et al., 2020) and Enguehard et al. (2020) use attention-
based encoders for encoding the history. Attention
proved more successful than RNN due to its capac-
ity to attend to different parts of the history without
any mediating representation that must travel through
the modelled sequence. The difference between Zuo
et al. (2020) and Zhang et al. (2020) boils down to
the intensity function. Furthering this type approach,
Zhang et al. (2021) assumes that multivariate TPPs
are formed by sparsely connected TPPs, and incorpo-
rates a graph learning component to SAHP. All the
models in this paragraph also rely on expensive Monte
Carlo integration to compute the compensator.

More recently, we have observed new approaches to
neural TPPs. Both Lin et al. (2022) and Dong
et al. (2023) successfully explore generative-based neu-
ral TPPs. These methods also dwell on transforming
random variables from their empirical form to well-
understood representations. Lüdke et al. (2023) pro-
poses a complete new approach based on the idea of
thinning TPPs, but only study the univariate case.

In the theory of TPPs, the Poisson process has always
played an important role akin to the Gaussian process
in continuous processes. The Poisson process stands as
the process with maximum entropy among all possible
TPPs with a fixed mean rate. It is thus a remark-
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able result that marked TPPs that satisfy assump-
tions of time-change theorems can be transformed to
a Poisson process (Daley and Vere-Jones, 2007). From
a machine-learning perspective, these results suggest
that any procedure for learning the parameters of an
unknown TPP from data will be exhausted when it
consistently transforms data to draws of a Poisson
process. In this context, Shchur et al. (2020b) suc-
cessfully designed models that satisfy the time-change
theorem for univariate TPPs using a sequence of tri-
angular maps. As far as we are aware, their approach
has never been extended to marked TPPs, which is the
topic of this paper.

3 FRAMEWORK

3.1 Revisiting the log-likelihood

We assume that an observer captures data over a fixed
duration of time [0, T ), such that the n-th observation
consists of the tuple (tn, kn). We denote the history of
events up to but not including t as Ht− = {(tn, kn) |
0 ≤ tn < t}. Therefore, we denote the observed data
as HT−. The total number of observations N is a
random variable. Marks are discrete. That is, the set
of possible marks K is countable.

Any multivariate TPP can be characterized by its con-
ditional intensity λ∗(t, k) ≡ λ(t, k | Ht−). The super-
script ∗ denotes the conditioning of any function on
the history of events up to but not including t. The
conditional intensity is the probability that the next
event will take place at time t with mark k given that
no event has occurred since the last one in Ht−. Al-
ternatively, the area under the conditional intensity
within some interval is the number of expected points
inside that interval.

Every multivariate TPP has a ground process, which
is the sequence of timestamps without marks. The
ground process is itself a univariate TPP. The con-
ditional intensity of any multivariate TPP is factor-
izable in terms of the conditional intensity of the
ground process λ∗

g(t) and the conditional mark dis-
tribution. We assume the conditional mark distri-
bution has a well-defined probability mass function
f∗
K(· | t), where K denotes the random mark. As we

will work with different probability mass functions, we
sub-script them with the random variable they refer to.
From the direct application of conditional probability,
the conditional intensity function can be decomposed
as λ∗(t, k) = λ∗

g(t)f
∗
K(k | t).

Let λ∗
A(t) ≡ λ∗

g(t)
∑

k∈A f∗
K(k | t) and λ∗

k(t) ≡ λ∗
{k}(t).

We have that ∑
k∈A

f∗
K(k | t) = λ∗

A(t)

λ∗
g(t)

(1)

In other words, we can derive the conditional intensity
for each mark if we know its conditional mark distribu-
tion and vice-versa. Many neural TPPs assume that
f∗
K(k | t) is independent of t given the learned history

representation, which implies a constant likelihood be-
tween marks. For instance, see Lin et al. (2022).

Given λ∗(t, k), its compensator is defined as Λ∗(t, A) =∫ t

0

∑
k∈A λ∗(u, k) du. Similar to the conditional inten-

sity, let Λ∗
A(t) ≡ Λ∗(t, A) and Λ∗

k(t) ≡ Λ∗(t, {k}). It
follows that Λ∗

K(t) =
∫ t

0
λ∗
g(u) du = Λ∗

g(t).

The log-likelihood of the multivariate TPP is

`(HT−) =

=

N∑
n=1

(log λ∗(tn, kn))−
∫ T

0

∑
k∈K

λ∗(u, k)du

=

N∑
n=1

(
log

∂Λ∗
kn

∂tn
(tn)

)
− Λ∗

g(T )

(2)

The first part describes the log-likelihood of observ-
ing the recorded points, and the second part is the
log-likelihood of not observing any point in between.
See Chapter 7 Daley and Vere-Jones (2003) for more
details.

Proposition 7.4.VI Daley and Vere-Jones (2003) state
that a multivariate point process can be transformed
into a multivariate Poisson process with independent
components, each having unit rate via the compen-
sator. We state a modified version of this theorem and
propose a new proof based on Shchur et al. (2020b)
that uses the change of random variable formula for
probability densities. Steps of the proof serve as build-
ing blocks for the learning algorithm proposed in Sub-
section 3.2.
Theorem 1 (Random time change for multivariate
TPP). Let K be the countable set of marks and HT−

be the observed data from a multivariate TPP with
σ-finite conditional intensity functions λ∗

k(t) > 0 for
k ∈ K. We assume that Λ∗

k(t) → ∞ as t → ∞. Let
mk the m-th event with mark k, such that tmkn

= tn
is the time of the m-th event with mark kn, where kn
is the mark of the n-th event in the data. The time
transformation

Λ∗(HT−) : (tn, kn) 7→
(
t̃mkn

≡ Λ∗
kn
(tn), kn

)
(3)

maps HT− into |K| independent sequences Λ∗
k(HT−) ≡

(t̃mkn
, kn|kn = k) each of which is the realization of

a univariate Poisson process with unit rate. Note that
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Λ∗
k(·) does not necessarily preserve the order of the

original events between different sequences, that is,
tn < tn+1 does not imply t̃mkn

< t̃m′
kn+1

.

Proof. First, we decompose the log-likelihood of any
multivariate TPP into the log-likelihood of each com-
ponent.

`(HT−) =

N∑
n=1

log λ∗(tn, kn)−
∫ T

0

∑
k∈K

λ∗(u, k)du

=

N∑
n=1

log λ∗
g(t)f

∗
K(kn | t)−

∫ T

0

λ∗
g(t)

∑
k∈K

f∗
K(k | t)du

=
∑
k∈K

[
Nk∑

mk=1k

log λ∗
k (tmk

)− Λ∗
k(t)

]
(4)

The exchange of the integral with the sum from the
second to the third line follows from Tonelli’s theorem.

Next, we write our proposed transformation Λ∗(H−
T )

in vector format. Read t1k and tNk
as the first and

last event with mark k respectively.

Λ∗(HT−) =

 Λ∗
1(HT−)

...
Λ∗
|K|(HT−)

 =



Λ∗
1(t11)

...
Λ∗
1(tN1

)
...

Λ∗
|K|(t1|K|)

...
Λ∗
|K|(tN|K|)


(5)

From its definition, the compensator is a function of
tn and Ht−n

, therefore we have that ∂Λ∗
k/∂tn(tn) =

λ∗
k(tn), and, for m > n, ∂Λ∗

k/∂tm(tn) = 0. Thus, we
obtain the Jacobian described in Supplement Equa-
tion 1.

The Jacobian of our proposed transformation has in-
teresting properties. Its diagonal is equal to the con-
ditional intensity evaluated at each event. The off-
diagonal entries are zero whenever tnk

< tml
. There-

fore, if we sort the rows of the compensator according
to the time of the events, the Jacobian becomes a tri-
angular matrix, which implies that its determinant is
equal to the product of its diagonal entries.

|JΛ∗(HT−)| =
N∏

n=1

λ∗
kn
(tn)

=
∏
k∈K

Nk∏
mk=1k

λ∗
k (tmk

)

=
∏
k∈K

|JΛ∗
k
(HT−)|

(6)

The change of random variable formula for probability
densities states the following. Let two random vari-
ables X and Y defined on the same probability space
with probability densities fX and fY respectively such
that Y = G(X), G is bijective and differentiable and
JG is the Jacobian of G, then:

Y = G(X) ⇐⇒ log fX(x) = log |JG(x)|+log fY (G(x))
(7)

Let X = HT− and Y = Λ∗(HT−). From Equation 6,
we obtain

log |JG(x)| = log |JΛ∗(HT−)| =
∑
k∈K

Nk∑
mk=1k

log λ∗
k (tmk

)

(8)

If we assume that Y consists of |K| independent Pois-
son processes with unit rate, its log-likelihood is equal
to N =

∑
k∈K Nk draws from the exponential distri-

bution.

logfY (y) = `(Λ∗(HT−))

=
∑
k∈K

(
Nk∑

mk=1k

log 1−
∫ Λ∗

k(T )

0

1 du

)
=
∑
k∈K

−Λ∗
k(T )

(9)

Adding Equation 8 and 9, we obtain Equation 4 which
is the log-likelihood of the original TPP. Therefore,
the proposed transformation Λ∗(HT−) transforms the
multivariate TPP into |K| independent Poisson pro-
cesses with unit rate.

3.2 Normalizing flows for multivariate TPPs

Normalizing flows allow the expression of complex dis-
tributions with simple ones which can be useful for
learning and generation tasks as reviewed in Papa-
makarios et al. (2021). Let X be a random vari-
able which we want to model, the defining element of
the normalizing flow is the bijective and differentiable
transformation G that maps X to a random variable
with a simpler distribution Y . While Y can be easily
sampled and/or fit to data, X cannot.

As we saw in Subsection 3.1, the compensator of a mul-
tivariate TPP is a bijective transformation that maps
a complex, unknown distribution to a simple, well-
known distribution, namely the exponential distribu-
tion. In Shchur et al. (2020b), the authors propose
an architecture based on normalizing flow for learn-
ing univariate TPPs via triangular maps. A triangu-
lar map G : RN → RN is composed of N functions
such that each component function gn depends only
on the first n elements of its domain (x1, · · · , xn) and
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is increasing on xn. The previous Subsection shows
that the compensator of a multivariate TPP is in-
deed a triangular map. Alternatively, any triangular
map G that satisfies the conditions of Theorem 1 is a
valid compensator. Like with the compensator, we de-
note Gk(HT−) ≡ ((Gk(tn) ≡ G(tn, kn), kn | kn = k)).
Then, G is a valid compensator, if each Gk is bijective
on the space of increasing sequences restricted to k.
Note the subtle, but important difference between the
condition stated here and Condition 2 of Section C.3
of Shchur et al. (2020b). In our case G only needs to
preserve the order of elements in the sequence with the
same mark, while in Shchur et al. (2020b) the order of
elements should be preserved in the whole sequence.

3.3 Learning triangular maps

We model the data HT− using a parameterized trian-
gular map G∗(· | θ) by minimizing the average nega-
tive log-likelihood via gradient descent. Let g∗(tn) ≡
∂G∗/∂tn(tn) and re-writing Equation 4 in terms of G
we obtain our minimization problem.

θ̂ = min
θ

1

N

∑
k∈K

[
Nk∑

mk=1k

log g∗k (tmk
| θ)−G∗

k(T | θ)

]
(10)

Borrowing the lessons from Shchur et al. (2020b) we
propose to construct G as a sequence of triangu-
lar maps. However, since our discussion in Subsec-
tion 3.2 reveals that G only needs to preserve the
order of the transformation within each mark k, we
modify the layers introduced by Shchur et al. (2020b)
to increase the expressiveness of our model. First,
we modify the affine layer A to use separate scal-
ing and bias parameters for each mark k. Next, the
pairwise difference matrix D depicted in Supplement
Figure 1 applies the pairwise difference between con-
secutive timestamps of the same mark, that is, for
n = mkn

, D(tn) = tmkn
− t(m−1)kn

which is performed
in O(N |K|) steps. Cumulative sum C ≡ D−1 performs
the reverse operation in the same number of steps.
Shchur et al. (2020b) borrows the rational quadratic
spline function from Durkan et al. (2019) as a flexi-
ble operator with well-defined derivatives and inverse.
We modify the spline layer Φ such that we train a set
of spline parameters for each mark k. Given tn we
apply Φkn(tn), see Supplement Figure 2. To capture
the dependency of events on previous events, Shchur
et al. (2020b) proposes the use of a sequence of block-
diagonal matrices Bl, “where each block is a repeated
H×H lower-triangular matrix with strictly positive di-
agonal entries. [...] The blocks in every other layer are
shifted by an offset H/2.” Again, we propose to train a
block-diagonal matrix for each mark k as illustrated in
Supplement Figure 4. To do that, for every mark k in

the model we multiply all the timestamps by Bl,k. We
allocate the transformed timestamps by masking with
k. If multiplication by the original Bl takes O(NH),
then the marked version of Bl takes O(|K|NH). Sim-
ilarly, computing the inverse B−1

l,k takes O(H2), so the
inverse of B−1

l takes O(|K|H2). Since transformations
are sequential, the transformation of timestamp with
mark k at layer l might impact the transformation of
timestamp with mark k′ in layer l + 1 which means
that, even though we apply mark-specific parameters
at each layer, these mark-specific transformations are
transmitted down the chain to other marks.

In the light of our discussion, we re-assess the SAHP
model by Zhang et al. (2020). SAHP innovates in sepa-
rately modelling the conditional intensity of each mark
like we propose in this paper. Their model is also a
triangular map since they use a causal attention layer
to encode the history. However, their model suffers the
drawback that it computes the compensator via Monte
Carlo. It would require modifications to become in-
vertible and, even so, it would need root finding meth-
ods for inversion 1. To overcome these challenges, we
propose an alternative attention-based triangular map
layer R. We encode HT− using a causal attention layer
following Zhang et al. (2020). Using a linear layer, we
transform the encoded history of dimension E to the
parameters of a spline layer to obtain a vector of order
O(|K|). This is very similar to Zhang et al. (2020),
who transform the encoded history to the parameters
of their Hawkes model. The benefit of our approach
is that the spline can be inverted as easily as the for-
ward pass which is shown in Supplement Figure 4. The
disadvantage is that the spline has a much larger num-
ber of parameters. This approach is also inspired by
Shchur et al. (2020b) implementation of RNN using
triangular maps.

Using our modified layers, we train three models
adapted from Shchur et al. (2020b): the multivariate
modulated renewal (MultiMRP), G = C ◦Φ1 ◦D ◦A ◦
Φ0, MultiTriTPP, G = C ◦ Φ2 ◦ BL ◦ · · · ◦ B1 · · ·Φ1 ◦
D ◦ A ◦ Φ0, and the multivariate spline transformer
(MultiTraTPP), G = C ◦ R ◦ D ◦ A ◦ Φ0. Following
Lin et al. (2022), we re-scale the data with a fixed
affine transformation by dividing each timestamp by
the maximum timestamp observed in the training set
and multiplying them by 50. If we denote this trans-
formation as A0, this is equivalent to G ◦ A0. This
helps to stabilize training. See Supplement Section 2
for model diagrams and more details.

To train multivariate TPPs using triangular maps we
must supply as input, in addition to HT− , a |K|-
dimensional vector with repeated entries containing

1As the vanilla Hawkes process does.
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QQD (↓) MAPE (↓)

Yelp Hawkes Retweet SO MIMIC MOOC Yelp Hawkes Retweet SO MIMIC MOOC

Mul-
tiMRP

0.14 0.01 0.07 0.08 0.87 0.31 15.89 6.24 13.11 6.83 1.29 65.69

Multi-
TriTPP

0.08 0.01 0.04 0.06 0.70 0.38 16.89 1.24 7.81 1.51 2.08 9.07

Multi-
TraTPP

0.05 0.04 0.04 0.04 0.71 0.27 14.96 4.52 9.09 4.59 3.36 68.25

DETER 39.89 30.98 29.99 32.96 26.87 8.53 14.72 5.61 21.47 7.01 3.21 69.89

RMTPP 0.25 0.48 0.65 0.93 0.52 0.97 42.29 11.22 69.59 34.99 3.57 87.56

Log-
Norm

0.24 0.48 0.66 0.93 0.97 0.97 32.94 52.18 86.03 49.29 21.48 94.26

ERTPP 0.38 0.48 0.69 0.93 0.38 0.97 44.61 38.93 95.37 49.30 18.90 94.26

WeibMix 0.98 0.98 0.98 0.98 0.98 0.98 74.84 28.10 62.27 49.30 21.43 93.96

FNNInt 0.24 0.05 0.11 0.06 1.97 0.45 15.55 5.42 5.47 6.72 1.49 17.11

SAHP 18.79 2.18 284.20 2.20 0.64 413.62 13.36 5.27 2.46 5.02 0.75 1.95
THP 10.59 2.88 15.15 0.66 0.83 15.04 17.09 5.23 16.06 5.73 0.75 42.30

TCDDM 0.51 0.03 0.01 0.16 0.37 0.10 74.84 7.29 17.02 19.00 21.47 72.27

TCVAE 13.85 1.19 0.13 2.19 6.24 0.07 10.81 4.66 9.55 6.13 1.47 75.22

TCGAN 53.82 42.87 17.24 1.52 49.55 46.85 11.75 4.20 40.39 2.26 1.46 8.13

TCCNF 0.43 0.10 0.25 0.15 5.28 0.95 19.13 6.71 22.79 9.63 0.91 90.98

TCNSN 0.51 0.46 0.63 0.47 0.62 0.74 N/A 57.40 95.37 49.30 21.47 94.26

Table 1: Test set model evaluation. QQ deviation (QQD) and mean absolute percentage error (MAPE). Best
values are bold and second-best are underlined.

the last timestamp of the sequence (T, · · · , T ). This
vector will be used to compute the compensated times-
tamp at the end of the observation time T for each
mark as required by Equation 10. This is a unique re-
quirement for the multivariate models we are propos-
ing, since the last timestamp of HT− is only trans-
formed according to its associated mark kN . There-
fore, we need the additional information to compute
the correct log-likelihood.

3.4 Sampling triangular maps

Despite methods that improve sampling efficiency,
marked TPP sampling is inherently sequential as re-
viewed in Zagatti et al. (2023). The reason is that
the history up to the beginning of the sampling in-
terval is required in order to compute the conditional
distribution, which in turn is required for sampling
beyond that point. This is true even when sampling
the ground process because its conditional distribu-
tion can depend on the mark history. There are two
main methods for sampling marked TPPs either via
inverting the compensator or via thinning. Thinning
requires knowledge of the future path of the condi-
tional intensity in order to determine its upper bound.
An inefficient upper bound can lead to high-rejection
rates and less efficient sampling. Alternatively, invert-
ing the compensator allows for fast and rejection-free
sampling if we can efficiently and accurately perform
this computation. Since our models are based on tri-
angular maps, they can be easily inverted as discussed

in Section 3.3.

Taking advantage of this capability, we implement the
first reaction sampling method for sampling the next
event (Zagatti et al., 2023). The method proceed as
following. First, we push HT− and (T, · · · , T ) through
our model to obtain H̃T− and (T̃1, · · · , T̃K). For each
mark k, we sample a value from the exponential dis-
tribution with unit rate conditional on T̃K . Since the
exponential distribution has the memoryless property
this amounts to sampling from the exponential dis-
tribution and adding to T̃k. We obtain the vector of
proposals for the next event time (

˜̂
T1, · · · , ˜̂TK) in the

compensated space. We invert the proposals back to
the original temporal space using H̃T− to obtain the
sampled time for each mark. The earliest timestamp
(T̂1, · · · , T̂k) and its associated mark are selected as the
next sampled event. It is possible to sample multiple
next events in parallel. However, sampling an entire
sequence can only be done sequentially.

4 EXPERIMENTS

4.1 Objectives and data

The main advantage of our model is to learn TPPs
that satisfy Theorem 1, so we adopt as our main evalu-
ation metric the mean absolute deviation between the
expected and computed percentiles (QQD). The ob-
jective of our experiments is to evaluate whether our
proposed framework remains competitive against al-
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Figure 1: Q-Q plot: expected versus predicted quantiles for ground process.

ternatives proposed in the literature.

We also benchmark the mean absolute percentage er-
ror (MAPE) between the predicted and expected next
event time, next event mark top-1 accuracy (TOP1)
and top-3 accuracy (TOP3). When computing met-
rics, we consider all data points in the sequences
tested. See Supplement Section 4 for more compu-
tational details about all the metrics proposed.

The benchmark models are the same selected by Lin
et al. (2022). We consider a baseline determinis-
tic model (DETER), most of the models reviewed
in Section 2, namely RMTPP, LogNorm, ERTPP,
FNNInt, SAHP, THP, and the temporal conditional
models from Lin et al. (2022), diffusion denoising
(TCDDM ), variational autoencoder (TCVAE), gener-
ative adversarial network (TCGAN ), continuous nor-
malizing flows (TCCNF), noise score network (TC-
NSN ). See Supplement Section 5 for a detailed de-
scription.

We benchmark six datasets. The first dataset is the
synthetic dataset described in Zhang et al. (2020),
which consists of the simulation of a multivariate
Hawkes process with exotic kernels (Hawkes). The re-
maining five datasets come from real-world phenom-
ena: Yelp consists of sequences of restaurant check-ins
without any marks; Retweet (Zhao et al., 2015) con-
sists of re-tweet sequences classified into three cate-
gories based on user popularity; SO (Du et al., 2016)
consists of sequences of 22 possible user awards over

two years; MIMIC (Lee et al., 2011) consists of se-
quences of 75 possible diagnosis during clinical visits
over seven years; MOOC (Kumar et al., 2019) con-
sists of sequences of 97 possible different user interac-
tions with an on-line course system. We use Hawkes,
Retweet and MIMIC made available by Zhang et al.
(2020), and Yelp, StackOverflow and MOOC by Lin
et al. (2022).

We base our benchmark suite on the comprehensive
battery of tests from Lin et al. (2022). However, we
noticed issues with their implementation of QQD. We
correct their computation and re-train all their mod-
els with their default settings on the datasets listed
above 2. Apart from QQD, we mostly get similar re-
sults.

4.2 Implementation details

Our proposed framework is implemented with Torch
2.0, and we borrow source code from Shchur et al.
(2020b) and Lin et al. (2022). The source code is
freely available 3. To run our experiments, we used
a computer running Intel Xeon E5 v4 2.20 GHz with
40 CPU cores, 500 GB of memory, 8 Nvidia 32Gb V100
GPUs and CUDA version 12. We tune the following
hyperparameters: number of spline knots {10, 20, 50},

2Our fork is available at https://github.com/
gzagatti/GNTPP.

3https://github.com/NUS-IDS/multi-ttpp

https://github.com/gzagatti/GNTPP
https://github.com/gzagatti/GNTPP
https://github.com/NUS-IDS/multi-ttpp
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Figure 2: Trajectory sampling performance for neural TPP models

number of blocks {2, 4}, block size {8, 16, 32} and em-
bedding size {8, 16}. The model that obtains the best
QQD on the validation set is selected. We also experi-
mented with selecting hyperparameters based on best
negative log-likelihood but found models to be more
robust when using QQD. The training routine uses
the AdamW optimizer, the ReduceLROnPlateau learn-
ing rate scheduler, and early stopping with patience
set to 15.

4.3 Results and discussion

Table 1 summarize our main results. Regarding QQD,
all three models we propose obtain the best values for
datasets with small to medium mark dimensionality.
They become less competitive as the mark dimension-
ality grows. Our models perform the worst against the
MIMIC dataset. When facing MOOC, which has the
biggest mark dimensionality, our models recover some
of their edge but become less competitive with other
alternatives. MIMIC contains numerous marks which
appear only sparsely. Some of the marks do not even
show up in the training sets. Although our models are
equipped to model the non-appearance of marks, it
does not perform as well. Theorem 1 assumes that the
conditional intensities for all marks are strictly posi-
tive, which is unlikely for MIMIC. This assumption is
equivalent to assuming no last points in the process.
One could potentially adapt the theorem for such cases
as Daley and Vere-Jones (2003) Example 7.4 (b) sug-
gests, but it is out of the scope of this paper. Hawkes,
Retweet and SO are datasets in which all marks can
appear at any moment leading to a strong fit. In ad-
dition to that, the validation and test sets of MIMIC
are small, increasing the variance of the estimated em-
pirical quantiles required to compute QQD.

When we analyze Figure 1 which depicts Q-Q plots
of ground process for selected models 4, we can more

4See Supplement Figure 5 for disaggregated processes.

clearly observe the capacity of our models to learn
the correct compensator for the data. The Q-Q plots
for MultiTriTPP show that, indeed, the compensated
data is very close to the exponential distribution for
four out of six datasets. The MIMIC is the most prob-
lematic dataset. The diffusion-based TCDDM also
obtains strong QQD performance, which is reflected
in the Q-Q plots. However, TCDDM performs less
well with the Yelp dataset, which although contains
no marks, is the most challenging in terms of sequence
lengths with an average of 580 check-ins per sequence,
more than four times longer than the next dataset. In
general, SAHP achieves strong results with predictive
marks. However, its Q-Q plots show that it has prob-
lems in finding the compensated form of the data. This
shortcoming reflected in its QQD score is indicative of
potential shortcomings in its use as a TTP. Therefore,
additional investigation is required. Alternatively, we
can use Q-Q plots to evaluate the goodness-of-fit of
models to data. The poor fit of the MIMIC dataset
in addition to the problems highlighted above suggest
that TPP models might not be a good modelling ap-
proach for it.

To investigate efficiency in generative tasks, we con-
ducted a benchmark exercise in which we measured
the time it took to generate sequences from 50 to 1, 600
events for 10 sequences in parallel. Results are de-
picted in Figure 2. SAHP and THP do not support
sampling — see Lin et al. (2022). RMTPP, ERTPP,
FNNInt and DETER can sample negative time inter-
vals, which means that they do not produce correct
trajectories 5, so they were not benchmarked. Our
methods rank in the middle, scaling linearly with se-
quence length as expected from 3.4. While not as ef-
ficient as models that sample directly from the inter-
event time distribution, it is faster than all models that
sample from the conditional intensity.

5At least with the traditional TPP sampling algorithms
implemented in the source code.
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Next, it is informative to consider the shape of the
conditional intensity. For the Hawkes process, we can
analytically compute it, and compare it with our fit-
ted models. For this discussion, we pick a random
sequence from the Hawkes test set and plot the inten-
sity for the first mark. We plot two models in Figure 3.
Both models follow the general path of the true inten-
sity. MultiTriTPP is characterized by spikes of a much
larger magnitude than that observed in data. SAHP
tends to stay above the true intensity. It has smooth
decay as it is modelled after a Hawkes process with an
exponential kernel. Overall, none of the benchmarked
models have a perfect fit 6.

The performance of the models on prediction-focused
metrics does not always agree with QQD. Starting
with MAPE we note that our models offer good per-
formance. MultiTriTPP obtains the best MAPE on
the Hawkes and SO datasets. Again, we see some de-
terioration in performance when mark dimensionality
increases and marks become more sparse. Regarding
other models, there are disagreements between MAPE
and QQD. Some models like SAHP, THP and TC-
GAN have strong MAPE but weak QQD. Alterna-
tively, TCDDM has strong QQD and weak MAPE,
which is also encountered by Lüdke et al. (2023).

Next, we list mark accuracy metrics in Supplement
Table 3. On the one hand, our models tend to per-
form poorly in these metrics, which is surprising since
they are designed with mark interdependency in mind.
On the other hand, all the models tested in Lin et al.
(2022) have strong, but similar mark accuracy as they
use a common approach for modelling marks. Engue-
hard et al. (2020) also find that their cumulative-based
models are harder to train, display accuracy metrics
with high variance, and mismatch between the rela-
tive performance of the negative log-likelihood and ac-
curacy. Alternatively, their most performant models
are their Monte Carlo based ones that are closer to
SAHP. Unfortunately, they do not evaluate QQD or
MAPE in their work.

As an alternative to SAHP, we proposed Multi-
TraTPP. Both models encode the history of events
using attention, but differ on the parameterization of
the conditional intensity. Since the rational-quadratic
splines used to parameterize the conditional intensity
of MultiTraTPP are flexible enough to represent a wide
range of functions (Durkan et al., 2019). Surprisingly,
MultiTraTPP fails to obtain the strong performance
of SAHP in predictive-focused metrics.

Finally, a characteristic of our models that shows up
in our experiment is the fact that the total number of
parameters grows with the dimensionality of the marks

6See Supplement Figure 7 for more.

at rate O(|K|). While our model is compact when
dealing with small to medium mark dimensionality, it
grows significantly larger with bigger dimensionality.
This also affects other models like SAHP and THP
that use the multivariate representation of TTPs as
we do, but to a lower extent.
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Figure 3: Predicted versus estimated intensity rate,
Hawkes process. True sequence at bottom.

5 CONCLUSION

In this paper, we used the time-change theorem for
multivariate TPPs to extend the work of Shchur et al.
(2020b) to the setting of marked TPPs. The proposed
framework uses triangular maps to design neural TPPs
that rely neither on Monte Carlo approximation to
compute the compensator or thinning for sampling.
We conducted extensive experiments to demonstrate
that our models can find the compensated form of the
data whose empirical distribution closely tracks the
exponential distribution as expected by theory. In the
future, we would like to investigate attention-based tri-
angular maps for stronger predictive performance. It
remains unsolved the gap between QQD or MAPE and
accuracy metrics for cumulative-based neural TPPs.
Alternatively, research should focus on reducing the
rate at which the number of parameters of the pro-
posed triangular maps scale with mark dimensionality.
One option is to model TPPs as a network of sparsely
connected TPPs as proposed in Zhang et al. (2021).
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theorem: Supplementary Materials

1 JACOBIAN

The Jacobian of the compensator JΛ∗ can be transformed into a triangular matrix by re-arranging the rows, as
we can see from its expansion below.
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2 MODEL DETAILS

Subsection 3.3 introduces the triangular maps we propose for modelling multivariate TPPs. This section provides
additional details about their architecture. We also share our source code 1 for those interested in studying our
implementation.

All diagrams in this section represent a multivariate TPP with three marks. We represent the input Ht−N
=

{(tn, kn)|0 ≤ tn < tN} as a sequence of colored boxes, and, {(tN,k1
, k1), · · · , (tN,|K|, k|K|)} as a perpendicular

vector at the bottom of the sequence. Given the input, the triangular maps return the transformed data H̃t−N
and

{(t̃N,k1
, k1), · · · , (t̃N,|K|, k|K|)}. All the maps are invertible. Bear in mind that as the original sequence changes

along the chain of triangular maps, the transformed sequence H̃t−N
will not necessarily be sorted, and t̃N,k will

differ for different marks.

Pairwise difference (D : R+ → R+), Figure 1. This operation applies pairwise difference between consecutive
timestamps of the same mark. The diagram shows the history split into mark-specific sub-histories. We prepend
t0 = 0 and append tN,k to each sub-history to obtain mark-specific pairwise differences. The output is reassembled
to maintain the same order as in the input.

Figure 1: Pairwise difference

Spline (Φ : (0, 1) → (0, 1)), Figure 2. As shown in the diagram, this operation defines a set of mark-specific
parameters for the rational-quadratic spline described in Durkan et al. (2019). Splines are flexible non-linear
functions φ : (0, 1) → (0, 1) for which the number of parameters depends on the number of spline knots.
Like Shchur et al. (2020b), we stack element-wise helper functions before and after splines to ensure domain
compatibility. When the domain is R+ we apply ψ(x) = 1−exp(−x) before the spline, and ψ−1(y) = − log(1−y)
after the spline since ψ : R+ → (0, 1). When the domain is R we apply σ(x) = 1/(1+exp(−x)) before the spline,
and σ−1(y) = log(y) − log(1 − y) after the spline since σ : R → (0, 1). The only occasion in which the domain
becomes non-positive is after the use of block-diagonal maps. See Section C.4 of Shchur et al. (2020b) for more
details.

Figure 2: Spline

Block-diagonal (B : R → R), Figure 3. Shchur et al. (2020b) uses a single block-diagonal matrix for
univariate TPPs. Alternatively, we propose the block-diagonal map for multivariate TPPs as a sequence of
mark-specific block-diagonal matrices. A block-diagonal matrix contains stacked attention blocks. It outputs a
linear combination of the current event with events coming prior to it up to a certain lag, which is defined by
the block size and the event position. In that sense, it resembles an attention layer. In contrast to attention,
block-diagonal matrices are fixed, but invertible. Block-diagonal maps chained sequentially will have attention
blocks shifted by an offset to ensure all events in the sequence can attend to prior events.

Spline transformer (R : (0, 1) → (0, 1)), Figure 4. This layer is similar to the spline layer above, but instead
of having the spline parameters defined internally, spline transformer obtains the spline parameters from the
encoded history. A transformer-based network — borrowed from Lin et al. (2022) — encodes the history. The
network outputs a vector with the same length as the history of events. We expand each vector row with a linear
layer to obtain mark-specific spline parameters. Therefore, each input element will have a tailored parameter

1https://github.com/NUS-IDS/multi-ttpp

https://github.com/NUS-IDS/multi-ttpp


Figure 3: Block-diagonal

set for the spline. This architecture is similar to the RNN architecture proposed by Shchur et al. (2020b) for
univariate TPPs.

Figure 4: Spline transformer

3 DATA

This section provides additional details for the datasets used in our benchmarks. Additionally, see the descriptive
statistics in Table 1.

Yelp Hawkes Retweet SO MIMIC MOOC

K 1 2 3 22 75 97

B
Train 200 3, 200 20, 000 4, 633 527 4, 510

Val. 40 400 2, 000 700 58 1, 127

Test 60 400 2, 000 1, 300 65 1, 410

N
Mean 580 132 109 72 4 56

Min. 380 68 50 41 2 4

Max. 835 269 264 736 33 493

Table 1: Descriptive statistics. K refers to the total number of marks, B to the total number of sequences, and
N to the number of events in a sequence.

Yelp. Sequences of restaurant check-ins from Yelp. When a user visits the premises of a business listed on Yelp,
they can check in with them via the mobile app. The data only contains the timestamp of check-ins. It is used
in Lin et al. (2022) and available from their source repo 2.

2https://github.com/BIRD-TAO/GNTPP

https://github.com/BIRD-TAO/GNTPP
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Hawkes. Sequences of simulations of a two-dimensional Hawkes process with exotic kernel. The dataset was
first introduced in Zhang et al. (2020). They generate it with Python library tick 3. The authors also provide
the equations for the kernels used in the simulation. We obtain the data from their source repo 4. The data is
also benchmarked in Zhang et al. (2021).

Retweet. A sample collected from 7 October to 7 November 2011 of retweet sequences, each retweet event
contains the tweet timestamp and the popularity of the user who tweeted it. Users belong to one of three
categories determined by their number of followers. The dataset was first introduced by Zhao et al. (2015).
Later, it was prepared for benchmarking neural TPPs by Mei and Eisner (2017) — see Section C.5 of their
Supplementary Material for additional information. This dataset was also benchmarked in Zuo et al. (2020) and
Zhang et al. (2020) — from whose source repo 5 we obtain the dataset — Zhang et al. (2021) and Lin et al.
(2022).

SO. Sequences of StackOverflow user awards received between 1 January 2012 and 1 January 2014. Users receive
awards after completing certain tasks on the question-answering website that names the dataset. The dataset
was first introduced by Bacchelli (2013). Later, it was prepared for benchmarking neural TPPs by Du et al.
(2016), see Section 6.3. This dataset was also benchmarked in Mei and Eisner (2017), Zuo et al. (2020), Shchur
et al. (2020a), Zhang et al. (2020), Zhang et al. (2021), and Lin et al. (2022) —- from whose source repo 6 we
obtain the dataset.

MIMIC . Sequences of anonymous patient’s clinical visits in seven years, each event contains its timestamp
and one out of 75 possible clinical diagnostics. The dataset is extracted from the Multiparameter Intelligent
Monitoring in Intensive Care II database (Lee et al., 2011). This dataset was benchmarked in Du et al. (2016),
Mei and Eisner (2017), Zuo et al. (2020), Zhang et al. (2020) — from whose source repo 7 we obtain the dataset
— and Zhang et al. (2021).

MOOC . Sequences of interaction with an online course system, each event contains its timestamp and one out
of 97 possible interactions. The dataset, extracted from the XuetangX MOOC platform, debuted in the KDD
Cup 2015. It contains data from 40 different courses. The data is described in more detail by Kuzilek et al.
(2017) and Kumar et al. (2019). It was first used for benchmarking neural TPPs by Shchur et al. (2020a). This
dataset was also benchmarked in Lin et al. (2022) — from whose source repo 8 we obtain the dataset.

4 BENCHMARK METRICS

We benchmark three different metrics, which are listed below. In all cases, assume that the test set contains a
total of B sequences such that the total number of events in the set is

∑B
b=1Nb.

Quantile-quantile deviation (QQD). We compute the average absolute difference between the estimated and
expected percentiles of the compensated inter-event duration. The percentiles of the exponential distribution
with unit-rate for p = F (t) ∈ (0.01, · · · , 0.99) are computed as follows.

Qp ≡ F−1(t) = − log(1− F (p)) (2)

Let event (tn, kn) such that the n-th event corresponds to themkn
-th k-marked event and t0 = 0, the compensated

inter-event duration is given below.

∆t̃n = ∆t̃mkn
= Λ∗

k

(
tmkn

)
− Λ∗

k

(
t(m−1)kn

)
(3)

To compute the empirical percentiles, we append all compensated inter-event durations from all sequences in the
test set to a single vector ∆t̃ which we sort. Given the cumulative distribution p and h = (

∑B
b=1Nb + 1)p, the

empirical quantile is equal to:

Q̂p = ∆t̃bhc + (h− bhc)× (∆t̃bhc −∆t̃bh−1c) (4)
3https://x-datainitiative.github.io/tick
4https://github.com/QiangAIResearcher/sahp_repo
5https://github.com/QiangAIResearcher/sahp_repo
6https://github.com/BIRD-TAO/GNTPP
7https://github.com/QiangAIResearcher/sahp_repo
8https://github.com/BIRD-TAO/GNTPP

https://x-datainitiative.github.io/tick
https://github.com/QiangAIResearcher/sahp_repo
https://github.com/QiangAIResearcher/sahp_repo
https://github.com/BIRD-TAO/GNTPP
https://github.com/QiangAIResearcher/sahp_repo
https://github.com/BIRD-TAO/GNTPP


The mean absolute quantile is computed as:

QQD =
1

99

∑
p∈(0.01,··· ,0.99)

|Qp − Q̂p| (5)

We train the benchmark models listed in Section 5 of the Supplementary Materials using Lin et al. (2022)
implementation 9. However, their implementation of QQD is incorrect. We can split the models we benchmark
against into two groups. The first group implements the compensator in closed-form — RMTPP, LogNorm,
ERTPP, FNNInt, and WeibMix — or with Monte Carlo approximation — SAHP, THP. Models in this group
return the compensated inter-event interval as in Equation 3.

The second group does not implement the compensator — DETER, TCDDM, TCVAE, TCGAN, TCCNF,
TCNSN. The compensated inter-event duration must be approximated via sampling. To obtain these values,
models in this group should first compute an empirical approximation to the cumulative distribution function of
the compensated inter-event duration. However, the implementation 10 is incorrect. Rather than the cumulative
distribution function, their implementation attempts to approximate the probability density function as follows.
It evenly splits the domain of inter-arrival times up to an upper bound. Inter-arrival time are sampled and the
fraction of samples that fall in the interval containing the true inter-arrival time is computed. This routine cannot
approximate the probability density function of the compensated inter-arrival time because the regularity of the
splits in the original domain is not preserved after transformation. Intervals that cover peaks of the conditional
intensity function will be expanded in the compensated domain and vice-versa. The alternative is to approximate
the cumulative distribution function as follows. We sample inter-arrival times. The approximated cumulative
distribution function is the fraction of samples equals to or smaller than the true value. Using the cumulative
distribution function of the exponential distribution with unit rate, we can invert the approximated cumulative
distribution to obtain the compensated inter-event duration.

Other issues remain. In both cases, when calling the method to compute the compensator, the implementation
passes the last inter-event interval contained in the history of events instead of the next event inter-event inter-
val 11. Finally, they use the same routine to compute the quantiles 12, even though they pass values from different
domains depending on whether models are members of the first or second group above. Regardless, this routine
fails to compute QQD whether we pass the compensated inter-arrival times or the cumulative distribution, which
one can easily verify by passing values sampled from an exponential distribution with unit rate. We fix all these
issues in our fork of their repo 13 to obtain consistent QQD metrics.

Mean absolute percentage error (MAPE). Let the predicted inter-event duration ∆t̂n,b, the true duration
∆tn,b and ∆t̄ be the maximum duration observed during training, the MAPE is defined below.

MAPE =
1∑B

n=1Nb

B∑
b=1

Nb∑
n=1

|max(∆t̂n,b,∆t̄)−∆tn,b|
∆tn,b + ε

(6)

We add ε ≡ 1e − 7 to the denominator to ensure the expression is well-defined even for ∆tn,b = 0 as it occurs
on the Twitter dataset on rare occasions. The magnitude of ε can significantly affect the MAPE, so we use the
same as in Lin et al. (2022).

All the benchmarked models — except for DETER — are probabilistic, which rather than returning a single
prediction, returns a distribution of possible inter-event durations. Lin et al. (2022) define the predicted inter-
event duration as the mean inter-event duration of the model. They clamp the mean inter-event duration to
equal to or less than the maximum inter-event duration observed during training. All predicted values are
computed on the scaled data in which the original timestamps are divided by the maximum timestamp observed

9https://github.com/BIRD-TAO/GNTPP
10https://github.com/BIRD-TAO/GNTPP/blob/2042c9be947d0e600ceb98a1eb55cfe3d55be33c/models/prob_

decoders/base_prob_dec.py#L58
11https://github.com/BIRD-TAO/GNTPP/blob/2042c9be947d0e600ceb98a1eb55cfe3d55be33c/models/tpp_warper.

py#L191
12https://github.com/BIRD-TAO/GNTPP/blob/2042c9be947d0e600ceb98a1eb55cfe3d55be33c/trainers/trainer.

py#L225
13Our fork is available at https://github.com/gzagatti/GNTPP.

https://github.com/BIRD-TAO/GNTPP
https://github.com/BIRD-TAO/GNTPP/blob/2042c9be947d0e600ceb98a1eb55cfe3d55be33c/models/prob_decoders/base_prob_dec.py#L58
https://github.com/BIRD-TAO/GNTPP/blob/2042c9be947d0e600ceb98a1eb55cfe3d55be33c/models/prob_decoders/base_prob_dec.py#L58
https://github.com/BIRD-TAO/GNTPP/blob/2042c9be947d0e600ceb98a1eb55cfe3d55be33c/models/tpp_warper.py#L191
https://github.com/BIRD-TAO/GNTPP/blob/2042c9be947d0e600ceb98a1eb55cfe3d55be33c/models/tpp_warper.py#L191
https://github.com/BIRD-TAO/GNTPP/blob/2042c9be947d0e600ceb98a1eb55cfe3d55be33c/trainers/trainer.py#L225
https://github.com/BIRD-TAO/GNTPP/blob/2042c9be947d0e600ceb98a1eb55cfe3d55be33c/trainers/trainer.py#L225
https://github.com/gzagatti/GNTPP
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during training and multiplied by the normalization scale which is set to 50. We follow the same conventions for
consistency’s sake.

There are three alternatives to compute the mean. The first alternative is to derive it analytically. That is the
case for LogNorm, ERTPP, and WeibMix. The second alternative consists of computing the mean via Riemann
sum. Lin et al. (2022) approximate the distribution of inter-event duration with a discrete partition of the
original time domain up to an upper bound. The mean is computed as a weighted sum. The upper bound
ensures the mean is constrained to 90 percent of the maximum training timestamp. While this constraint is very
generous for the inter-event duration, it limits extreme values at the tail of the distribution. RMTPP, SAHP,
and THP compute the mean with this approach. The third alternative consists of estimating the mean via
sampling. Given S samples, the predicted inter-event duration is equal to the average sampled duration.

∆t̂n,b =
1

S

∑
s∈S

∆t̂n,b,s (7)

That is the case for TCCDM, TCVAE, TCGAN, TCCNF, TCNSN, and the methods we present in this paper.
While our methods can approximate the expected inter-event duration via the Riemann sum similar to the
methods above, we predict the mean via sampling. As discussed above in the context of QQD, the even partition
of the original time domain is not necessarily even in the compensated domain, which can bias the mean when
approximating it via the Riemann sum. For instance, in the Retweet dataset, most of the events happen right at
the start, while there is a very long tail for the last few events — see Figures 8 below. Using the Riemann sum
would distort the mean approximation by placing too much weight on rare events at the tail.

Accuracy of top-1 (TOP1) and top-3 (TOP3) mark prediction. Given a ranking of mark predictions
k̂n,b = {k̂(1),n,b, · · · , k̂(R),n,b}, the top-R accuracy is the fraction of time that the true mark appears within the
top-R predictions.

TOPR =
1∑B

n=1Nb

B∑
b=1

Nb∑
n=1

1
(
kn,b ∈ k̂n,b

)
(8)

As discussed in Section 3.1, the probability density function of marks is equal to f∗K(k | t) = λ∗k(t)/λ
∗
g(t). Given

the predicted event time t̂n = tn−1+∆t̂n, we define the ranking of mark predictions k̂n,b = {k̂(1),n,b, · · · , k̂(R),n,b}
such that λ∗k(r),n,b

(t̂n,b) ≥ λ∗k(q),n,b
(t̂n,b) for r < q. Alternatively, Zhang et al. (2020) defines the r-th mark

prediction as mark k which obtains the r-th highest Λ∗
k(T̄ ) given an upper-bound T̄ . Our proposed definition

suggests an approach in which the user first predicts the next-event time, and then selects the most likely mark.

Lin et al. (2022) assumes that mark distribution is independent of t given the learned history representation. As
we discussed in Section 3.1, this assumption implies a constant likelihood between marks, that is, f∗K(k | t) =
f∗K(k). They define the r-th mark prediction as mark k which obtains the r-th highest f∗K(k). As discussed in
Supplementary Materials Section 2, Lin et al. (2022) has a separate model for the mark distribution, which is
independent of the conditional intensity.

5 BENCHMARK MODELS

We benchmark the models proposed in our paper against the models tested in Lin et al. (2022), which include
most of the state-of-the-art neural TPP models proposed in the literature. The authors make their source code
freely available 14. The advantage of using the same repo is that all models use the same trainer and utilities —
from loading the data to computing metrics —, which ensures that model predictions are comparable. We also
implement our proposed models to benefit from these shared facilities.

For convenience, we list the models that we benchmark against. In all cases, Lin et al. (2022) uses an attention
encoder to encode the history of events. The decoders model the univariate, ground TPP and follow the original
sources. This is what is listed below. For the mark distribution, Lin et al. (2022) uses the same approach for all
models. They assume that the mark distribution is independent of the time distribution. The mark distribution
follows from the logit of the marks, which is computed from the embedded history using a linear projection and
the softmax. All their models are trained with the objective of minimizing the sum of the negative log-likelihood
of the ground TPP plus the mark loss, which equals the cross-entropy loss.

14https://github.com/BIRD-TAO/GNTPP

https://github.com/BIRD-TAO/GNTPP


Lin et al. (2022) implementation of SAHP and THP differ from the original ones in the computation of the mark
distribution 15, since the original versions of these models produce a multivariate conditional intensity. Despite
these changes, their versions of SAHP and THP remain competitive with respect to mark accuracy. Therefore,
the changes are not necessarily detrimental to performance.

Deterministic (DETER). A baseline deterministic decoder uses a linear projection whose weights are all
constrained to be positive. The ground TPP is trained as a regression problem to minimize the mean-squared
error between the true and predicted timestamp.

Recurrent marked TPP (RMTPP) (Du et al., 2016). This decoder pioneered neural TTPs. It models the
conditional intensity function λ∗g according to a Gompertz distribution as discussed by Lin et al. (2021). Lin
et al. (2022) extends by modelling λ∗g as a mixture of Gompertz distributions. The compensator Λ∗

g can be
analytically computed.

Log-Normal mixture (LogNorm) (Shchur et al., 2020a). This decoder was proposed by Shchur et al. (2020a)
in the context of “intensity-free” neural TPP models — that is, models defined by the inter-event duration
conditional distribution. It is obviously the case that λ∗g is defined for any conditional distribution, but the authors
choose instead to focus on the conditional distribution for simplicity purposes. LogNorm models λ∗g as a mixture
of Log-Normal distributions. Λ∗

g can be analytically computed. Although Λ∗
g can be analytically computed, there

is no stable implementation of the survival function of the Gaussian distribution. For computational purposes,
Lin et al. (2022) clamps the Gaussian cumulative density function at both extremes.

Event recurrent TPP (ERTPP) (Xiao et al., 2017). Xiao et al. (2017) adopt a Gaussian penalty function
to compute the loss of the predicted timestamp. As discussed in Lin et al. (2021), the approach is equivalent to
modelling λ∗g as a Gaussian distribution, which they extend to a mixture of Gaussian distributions. Although
Λ∗
g can be analytically computed, there is no stable implementation of the survival function of the Gaussian

distribution. For computational purposes, Lin et al. (2022) clamps the Gaussian cumulative density function at
both extremes.

Fully neural network intensity (FNNInt) (Omi et al., 2019). In this case, the decoder describes the
compensator Λ∗

g. Constraints are in-place to ensure the network satisfies conditions on Λ∗
g such as non-negativity

and strict monotonicity. The conditional intensity comes from the automatic differentiation of Λ∗
g. Originally,

the model only applied to univariate TPPs. Lin et al. (2021) extends this method to marked TPPs.

Weibull mixture (WeibMix) (Lin et al., 2021). The decoder is a mixture of Weibull distributions. The Weibull
distribution commonly features in survival analysis as discussed in Daley and Vere-Jones (2003) Chapter 1. The
compensator Λ∗

g can be analytically computed.

Self-attentive Hawkes process (SAHP) (Zhang et al., 2020). This decoder takes inspiration from the
Hawkes process to model the conditional intensity, λ∗k(t) = softplus (α∗

k + (β∗
k − α∗

k) exp(−γ∗k × (t− tn−1))). For
each mark k, the parameter θ∗k = (α∗

k, β
∗
k , γ

∗
k) is a neural network that takes the encoded history as input and

outputs a vector of dimension three. Therefore, SAHP models marked TPPs as a multivariate TPP. Λ∗
k must

be approximated via Monte Carlo integration.

Transformer Hawkes process (THP) (Zuo et al., 2020). This decoder takes inspiration from the Hawkes
process to model the conditional intensity, λ∗k(t) = softplus (α∗

k + β∗
k × ((t− tn−1)/tn−1)). For each mark k, the

parameter θ∗k = (α∗
k, β

∗
k) is a neural network that takes the encoded history as input and outputs a vector of

dimension two. Therefore, THP models marked TPPs as a multivariate TPP. Λ∗
k must be approximated via

Monte Carlo integration.

Temporal conditional diffusion denoising model (TCDDM) (Lin et al., 2022). This decoder models
the conditional distribution as a diffusion model. It assumes that inter-event duration is distributed according
to a sequence of latent variables, whose posterior distribution follows a sequence of Normal distributions. The
seed distribution at the end of the sequence follows a Gaussian distribution with zero mean and unit standard
deviation. Given a sample from the seed distribution, we obtain the distribution of the original inter-event
duration as a sequence of Gaussian distribution whose parameters are the output of a neural network — the
denoising network. A variational bound approximates the log-likelihood of the data. With the reparametrization
trick, it is possible to estimate the variational bound by sampling the seed distribution. Λ∗

g is not implemented,

15The time distribution is not affected.
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though it could be approximated with the posterior.

Temporal conditional variational autoencoder (TCVAE) (Lin et al., 2022). This decoder models the
conditional distribution with a variational autoencoder. It uses an encoder network to approximate the inter-
event duration posterior distribution — that is, to approximate the mean and standard deviations. The posterior
can be interpreted as an approximation to the prior Gaussian distribution with zero mean and unit standard
deviation. It uses the posterior to sample in the transformed space. Conversely, samples from the transformed
space are transformed back to the original space with a decoder network. The evidence lower bound approximates
the log-likelihood of the data. Λ∗

g is not implemented, though it could be approximated with the encoder network
and the posterior distribution.

Temporal conditional generative adversarial network (TCGAN) (Lin et al., 2022). This decoder models
the conditional distribution much like the decoder network of TCVAE. However, this transformation is not
invertible because no encoding network needs to be defined. The model is trained via an adversarial process in
which the discriminator maximizes the Wasserstein distance between the distributions of generated inter-event
intervals and of true inter-event intervals. The authors add a Lipschitz constraint as a regularization term. Λ∗

g

is not implemented.

Temporal conditional continuous normalizing flows (TCCNF) (Lin et al., 2022). The decoder transforms
draws from a Gaussian distribution ε ∼ Normal(0, 1) using a neural ordinary differential equation (ODE), that
is ∆tn = ε +

∫ L

0
G∗(l | θ) dl, such that G∗(l | θ) is a neural network, which can be interpreted as the derivative

of the transformation with respect to layer depth. The log-likelihood of the data derives from the change of
random variable formula for probability densities. This method shares many similarities with the methods we
proposed in this paper. While we define our models as a discrete sequence of triangular maps, the neural ODE
is equivalent to a continuous sequence. However, TCCNF fails to use the time-change theorem as we propose.
First, it uses a Gaussian distribution instead of the exponential as the base distribution — though this might not
make much difference given that there is a one-to-one mapping between these distributions. Second, TCCNF is
trained by sampling ε and transforming it back to the original space. The true timestamp thus only affects the
computation of the Jacobian. In our proposed approach, the true timestamp is first transformed into a sample
of the exponential distribution. The timestamp then affects all the elements of the log-likelihood, which affects
training since there is a trade-off between increasing the likelihood of the observed points and the likelihood
of not observing the points in between. Λ∗

g is not implemented, though it could be computed by reversing the
neural ODE and under the assumption that G∗ is strictly monotonic.

Temporal conditional noise score network (TCNSN) (Lin et al., 2022). The decoder is modelled via score
matching, which learns the gradient field — or scores — of the target distribution rather than the distribution
itself. The score is defined as a neural network. The objective function consists of minimizing the score function
with respect to the predicted timestamp plus the mean-squared error between the true and predicted timestamp.
Λ∗
g is not implemented.



6 ADDITIONAL BENCHMARKS

Number of Parameters Loss per event (↓)

Yelp Hawkes Retweet SO MIMIC MOOC Yelp Hawkes Retweet SO MIMIC MOOC

Mul-
tiMRP

63 605 187 1,365 22,651 29,295 13.73 1.83 6.49 15.70 1.11 14.00

Multi-
TriTPP

998 1,275 7,696 48,511 34,126 222,616 13.42 1.60 6.09 15.41 -0.60 14.06

Multi-
TraTPP

2,432 15,038 11,728 26,478 438,904 643,878 13.52 1.41 5.63 15.13 0.41 12.27

DETER 13,647 13,696 13,745 14,676 17,273 18,351 0.01 0.88 2.22 2.20 40.45 3.05

RMTPP 15,294 15,343 15,392 16,323 18,920 19,998 -1.51 1.08 -1.94 4.98 34.86 1.92

Log-
Norm

15,294 15,343 15,392 16,323 18,920 19,998 -1.79 1.08 -2.65 4.95 5.78 1.40

ERTPP 15,294 15,343 15,392 16,323 18,920 19,998 -1.42 1.10 -1.01 5.02 37.74 3.50

Weib-
Mix

15,294 15,343 15,392 16,323 18,920 19,998 -1.79 0.56 -2.61 3.88 3.19 1.23

FNNInt 14,735 14,784 14,833 15,764 18,361 19,439 -0.95 0.47 -2.66 2.00 3.76 -0.52

SAHP 13,713 13,861 14,009 16,821 24,665 27,921 -1.65 0.40 -3.00 1.89 3.20 -2.19

THP 13,647 13,729 13,811 15,369 19,715 21,519 -1.61 0.43 -1.30 1.95 2.82 0.12

TCDDM 18,911 18,960 19,009 19,940 22,537 23,615 0.25 1.23 1.76 2.28 1.47 4.03

TCVAE 21,103 21,152 21,201 22,132 24,729 25,807 2.30 1.83 2.02 2.55 1.69 3.65

TCGAN 15,823 15,872 15,921 16,852 19,449 20,527 0.04 0.10 0.05 0.05 0.04 0.01

TCCNF 17,075 17,124 17,173 18,104 20,701 21,779 -1.63 0.45 -2.83 2.09 2.70 24.29

TCNSN 15,775 15,824 15,873 16,804 19,401 20,479 0.04 0.72 0.80 1.43 0.67 2.11

Table 2: Number of trainable parameters and loss per event on test set. Best value is bold and second-best is
underlined. Losses are not necessarily comparable across every model.
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TOP1 (↑) TOP3 (↑)

Yelp Hawkes Retweet SO MIMIC MOOC Yelp Hawkes Retweet SO MIMIC MOOC

Multi-
TraTPP

1.00 0.53 0.55 0.50 0.26 0.05 1.00 1.00 1.00 0.82 0.48 0.12

Multi-
TriTPP

1.00 0.50 0.53 0.33 0.19 0.10 1.00 1.00 1.00 0.55 0.47 0.24

Mul-
tiMRP

1.00 0.52 0.49 0.40 0.27 0.09 1.00 1.00 1.00 0.69 0.44 0.21

DETER 1.00 0.55 0.57 0.53 0.59 0.33 1.00 1.00 1.00 0.84 0.61 0.66

RMTPP 1.00 0.55 0.60 0.53 0.57 0.33 1.00 1.00 1.00 0.84 0.61 0.66

Log-
Norm

1.00 0.85 0.60 0.53 0.59 0.33 1.00 1.00 1.00 0.84 0.62 0.65

ERTPP 1.00 0.55 0.60 0.53 0.58 0.32 1.00 1.00 1.00 0.84 0.61 0.65

WeibMix 1.00 0.54 0.68 0.53 0.57 0.25 1.00 1.00 1.00 0.84 0.59 0.49

FNNInt 1.00 0.91 0.60 0.53 0.58 0.33 1.00 1.00 1.00 0.84 0.61 0.66

SAHP 1.00 0.95 0.60 0.53 0.59 0.32 1.00 1.00 1.00 0.84 0.62 0.65

THP 1.00 0.95 0.59 0.52 0.59 0.33 1.00 1.00 1.00 0.84 0.62 0.65

TCDDM 1.00 0.55 0.60 0.53 0.59 0.33 1.00 1.00 1.00 0.84 0.62 0.66

TCVAE 1.00 0.57 N/A 0.53 0.58 0.33 1.00 1.00 1.00 0.84 0.61 0.66

TCGAN 1.00 0.52 N/A 0.53 0.58 0.40 1.00 1.00 1.00 0.83 0.62 0.72

TCCNF 1.00 0.57 0.60 0.53 0.59 0.33 1.00 1.00 1.00 0.84 0.61 0.66

TCNSN 1.00 0.55 0.60 0.53 0.59 0.33 1.00 1.00 1.00 0.84 0.61 0.66

Table 3: Test set model evaluation. Top-1 accuracy (TOP1) and top-3 accuracy (TOP3). Best value is bold and
second-best is underlined.
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Figure 5: Q-Q plot: expected versus predicted mark-specific quantiles distinguished by colors. We only show
quantiles of marks with at least 50 observations in the test set, so not all marks are represented in SO (18 out
22 marks), MIMIC (1 out of 75 marks), and MOOC (81 out of 97 marks).
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Figure 5: Q-Q plot: expected versus predicted mark-specific quantiles distinguished by colors. We only show
quantiles of marks with at least 50 observations in the test set, so not all marks are represented in SO (18 out
22 marks), MIMIC (1 out of 75 marks), and MOOC (81 out of 97 marks).



7 MISCELLANEOUS

Figure 6: Convergence of validation losses with different initial random seeds. Both MultiMRP and MultiTriTPP
are initialized with non-random parameters which follows Shchur et al. (2020b), so we do not observe any variation
in the training routine.
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Figure 7: Predicted versus true intensity rate, Hawkes process. Sequence chosen at random from the test set.
For illustration purposes, we only depict the evolution of the first mark. Marks at the bottom represent the true
event timestamps only for the first mark. Only models whose source code implements the conditional intensity
shown.
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Figure 8: Predicted intensity rate, retweets. Sequence chosen at random from the test set. For illustration
purposes, we only depict the evolution of the second mark. Marks at the bottom represent the true event
timestamps only for the second mark. The plot is truncated at 70, 000, while the true sequence ends at 499, 915.
Only models whose source code implements the conditional intensity shown.
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Figure 8: Predicted intensity rate, retweets. Sequence chosen at random from the test set. For illustration
purposes, we only depict the evolution of the second mark. Marks at the bottom represent the true event
timestamps only for the second mark. The plot is truncated at 70, 000, while the true sequence ends at 499, 915.
Only models whose source code implements the conditional intensity shown.
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