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Abstract

In federated learning, most existing robust
aggregation rules (AGRs) combat Byzantine
attacks in the IID setting, where client data
is assumed to be independent and identically
distributed. In this paper, we address la-
bel skewness, a more realistic and challenging
non-IID setting, where each client only has
access to a few classes of data. In this set-
ting, state-of-the-art AGRs suffer from selec-
tion bias, leading to significant performance
drop for particular classes; they are also more
vulnerable to Byzantine attacks due to the
increased variation among gradients of hon-
est clients. To address these limitations, we
propose an efficient two-stage method named
BOBA. Theoretically, we prove the conver-
gence of BOBA with an error of the opti-
mal order. Our empirical evaluations demon-
strate BOBA’s superior unbiasedness and ro-
bustness across diverse models and datasets
when compared to various baselines. Our
code is available at https://github.com/

baowenxuan/BOBA.

1 INTRODUCTION

Federated learning (FL) (McMahan et al., 2017) is a
machine learning system where multiple clients col-
laboratively train a global model under the orches-
tration of a central server, without sharing their own
private and sensitive data. It has wide applications
in sales, finance, healthcare (Yang et al., 2019), etc.
However, FL systems are vulnerable to attacks and
failures (Kairouz et al., 2021; Lyu et al., 2020). No-
tably, Byzantine attacks can send arbitrary gradi-
ents to the server, causing sub-optimal convergence
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or even divergence (Blanchard et al., 2017). To de-
fend against Byzantine attacks, a common approach
is to replace gradient averaging with robust aggrega-
tion rules (AGRs) (Chen et al., 2017; Yin et al., 2018).
These methods have demonstrated their effectiveness
in achieving Byzantine-robustness when client data ad-
heres to the independent and identically distributed
(IID) assumption. However, in practical applications,
client data often deviate from the IID pattern (McMa-
han et al., 2017; Wang et al., 2021; Kairouz et al.,
2021). This non-IIDness introduces increased varia-
tion among honest clients’ gradients, posing challenges
in detecting and excluding Byzantine clients.

Our work mainly focuses on label skewness, a typical
non-IID setting where each client only has access to
a few classes of data (Li and Zhan, 2021; Shen et al.,
2022). In this setting, while clients share the same con-
ditional data distribution given labels, their label dis-
tributions can vary a lot. For instance, in animal image
classification, users from various regions may capture
images of distinct species prevalent in their areas, even
though these species share similar visual characteris-
tics. Label skewness introduces two key challenges for
model performance. First, it introduces a selection
bias of clients, causing robust AGRs to favor certain
clients over others, thus biasing the model. Secondly,
it amplifies the variation among gradients of honest
clients, making AGRs more vulnerable to Byzantine
attacks. Thus more advanced techniques are required
to tackle these challenges.

Focusing on label skewness, we find that the gradi-
ents of honest clients distribute near a (c−1)-simplex,
where c is the number of classes. Leveraging this in-
sight, we introduce BOBA (Byzantine-rObust and un-
Biased Aggregator), a two-stage AGR to estimate this
simplex effectively. In the first stage, we robustly es-
timate the low dimensional affine subspace containing
the simplex and project all gradients onto the sub-
space. In the second stage, we use a few data sam-
ples on the server to estimate the (c − 1)-simplex
and further filter out potential Byzantine gradients.
As a result, BOBA ensures that honest gradients re-
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main largely unaffected, with only minor perturba-
tions, while Byzantine gradients are either discarded
or significantly weakened. Our contributions can be
summarized as follows:

• We make a systematic analysis of FL robustness
challenges in the presence of label skewness, in-
cluding the identification of two key challenges:
selection bias and increased vulnerability (Sec. 3).

• We introduce BOBA, which incorporates an ob-
jective addressing label skewness and robustness,
along with an efficient optimization algorithm
(Sec. 4).

• We provide theoretical analysis that derives gra-
dient estimation error and convergence guarantee,
demonstrating BOBA’s unbiasedness and optimal
order robustness (Sec. 5).

• We empirically evaluate the unbiasedness and
robustness of BOBA across diverse models,
datasets, and attack scenarios, outperforming var-
ious baseline AGRs and extending to more com-
plex non-IID settings (Sec. 6).

2 RELATED WORKS

Robust AGRs with IID clients Extensive re-
search has been conducted on robust AGRs tailored for
IID clients. These AGRs modify the server’s gradient
averaging step, and can be categorized into two main
groups: majority-based and reference-based methods.
Majority-based AGRs operate under the assumption
that the gradients of honest clients tend to cluster to-
gether. They employ robust mean estimators, includ-
ing coordinate-wise median (Yin et al., 2018), geomet-
ric median (Chen et al., 2017; Pillutla et al., 2022),
and Krum (Blanchard et al., 2017), to identify a vec-
tor close to the majority of gradients. While these
methods have been theoretically proven to perform
well in IID settings, our analysis reveals that they ex-
hibit issues such as selection bias and increased vul-
nerability when confronted with label skewness sce-
narios. In many FL systems, the server possesses a
limited amount of data (Zhao et al., 2018; Lin et al.,
2020). Although this data may be insufficient to inde-
pendently train a satisfactory model, reference-based
AGRs leverage server data to assess each client’s up-
date and adjust their contributions to enhance robust-
ness. Loss-based rejections (Fang et al., 2020) evalu-
ate client updates with their loss on server data, and
drop clients whose updates are the most harmful. Zeno
(Xie et al., 2019b) extends this approach by consider-
ing both loss and gradient scales. FLTrust (Cao et al.,
2021) computes a server gradient using server data and
reweighs client gradients based on their similarity to
the server gradient. ByGARS (Regatti et al., 2022)

optimizes the aggregation weights for client gradients
using server data in a meta-learning framework. How-
ever, it is worth noting that these methods are not
specifically designed to address the non-IID challenges
inherent in FL scenarios.

Robust AGRs with non-IID clients A few works
have studied robustness with non-IID clients. Karim-
ireddy et al. (2022) combine IID AGRs with bucketing
to enhance homogeneity in AGR inputs, albeit with
a trade-off in robustness. Similar to BOBA, RAGE
(Data and Diggavi, 2021) also uses singular value de-
composition (SVD) for robust aggregation. However,
it uses SVD to remove Byzantine clients iteratively,
whereas our work focuses on applying SVD to model
the distribution of honest clients’ gradients. Ghosh
et al. (2019) group clients into IID clusters and train
global models in each group. A topic related to se-
lection bias is performance fairness, where each client
should have similar accuracy. Hu et al. (2020) intro-
duce a multi-task learning framework to learn a robust
and fair global model. However, it is not robust to
Byzantine attacks and can only guarantee Pareto opti-
mal. Ditto (Li et al., 2021) learns personalized models
to achieve fairness and robustness, but still requires
training a robust global model.

For additional related works on FL with label skewness
and non-IIDness, please refer to Appendix A.

3 FL WITH LABEL SKEWNESS

Setup We study the FedSGD (McMahan et al.,
2017) system consisting of one central server and n
clients. Each client is either honest (in honest set H)
or Byzantine (in Byzantine set B), with |H| and |B|
representing the real number of honest and Byzantine
clients, respectively. In each communication round,
the server broadcasts the parameter wG ∈ Rd to all
clients. Each honest client i ∈ H computes the gradi-
ent with its own data {ξij}

mi
j=1 sampled from Pi and

sends back the honest gradient gi = ∇wG
Li(wG),

where Li(wG) =
1
mi

∑mi

j=1 ℓ(wG; ξij) and ℓ is the loss
function. Each Byzantine client can send arbitrary
Byzantine gradient to the server. Finally, the server
aggregates all n gradients µ̂ = Agg({gi}ni=1) and up-
dates the parameter wG ← wG − ηµ̂, where Agg(·) is
the aggregation rule (AGR), and η is the learning rate.

For each honest client i ∈ H, let Egi be its expected
gradient, where the expectation is taken on data sam-
pling from Pi. During training, the system minimizes
the empirical risk, 1

|H|
∑

i∈H Li(wG). FL aims to train

a model with low population risk, 1
|H|
∑

i∈H ELi(wG).

Let µ = 1
|H|
∑

i∈H gi denote the gradient of empirical

risk and Eµ = 1
|H|
∑

i∈H Egi denote its expectation,
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Figure 1: PCA of honest gradients on MNIST (c =
10). Over 99% of the variance concentrate on the first
(c−1) principal components, verifying that honest gra-
dients distribute near the honest subspace.

which is also the gradient of population risk.

Byzantine attack In each round, Byzantine clients
can send arbitrary vectors to the server, which may de-
pend on current global modelwG and honest gradients
{gi}i∈H. They can also collude to perform stronger
attacks, e.g., by sending the same vector.

Robust AGRs aim to find a robust estimation of Eµ.
Since the server has no prior knowledge about the ex-
act number of Byzantines, we let f be the Byzantine
tolerance, a hyperparameter such that AGRs guaran-
tee to be robust when |B| ≤ f . Similar to previ-
ous works (Xie et al., 2019b; Cao et al., 2021; Lin
et al., 2020), we assume the AGR has access to small
amount of clean data to improve robustness. Notice
that such data are collected and labeled by the server,
rather than uploaded by clients (Cao et al., 2021). Fi-
nally, since Byzantines in FL can change their index
over rounds, the AGR can only use the information
from the current round, including the global model,
all clients’ uploaded gradients, and server data.

3.1 Distribution of Honest Gradients

This subsection analyzes the distribution of honest
gradients with label skewness. We start with some
definitions.

Definition 3.1 (Inner, outer and total variations).
For an honest client i ∈ H, its inner variation is E∥gi−
Egi∥22; its outer variation is ∥Egi−Eµ∥22, and its total
variation is E∥gi − Eµ∥22.

Inner variation measures the randomness of sampling
data from client i’s local distribution Pi, while outer
variation measures the difference between local distri-
bution Pi and global distribution 1

|H|
∑

i∈H Pi, with-

out randomness.

In the IID setting, the outer variation is zero, implying
that honest gradients {gi}i∈H are distributed around
the same center Eµ. However, this implication does
not hold under label skewness, since the outer varia-
tions are non-zero. We formally define label skewness
and analyze the distribution of honest gradients.

Definition 3.2 (c-label skew distribution). The data
distributions {Pi}i∈H of honest clients are considered
c-label skew distributions if they can be expressed as

Pi(ξ) =

c∑
z=1

pizQz(ξ), ∀i ∈ H

where Pi(ξ) is the data distribution of client i, the
label z can take c finite values, piz ≥ 0 is the label
distribution of client i subject to

∑c
z=1 piz = 1, and

Qz(ξ) = Pi(ξ|z) represents the conditional distribu-
tion given label z. Different clients share the same
{Qz(ξ)}cz=1 while having distinct label distributions
pi = [pi1, · · · , piz]⊤.

The c-label skew distribution assumes the heterogene-
ity among honest clients can be characterized by their
divergence in label distribution. With this condition,
we can analyze the distribution of honest gradients.

Proposition 3.3 (Expectation of honest gradients).
With c-label skew distribution, ∀i ∈ H, we have

Egi =
∑
ξ

Pi(ξ)∇wL(w; ξ) =
∑
ξ

c∑
z=1

pizQz(ξ)∇wL(w; ξ)

=

c∑
z=1

piz∇w

∑
ξ

Qz(ξ)L(w; ξ) =

c∑
z=1

pizEγz

where Eγz = ∇w

∑
ξ Qz(ξ)L(w; ξ) is the expected

gradient computed with data from class z.

Proposition 3.3 shows that each expected honest gra-
dient is a convex combination of {Eγz}cz=1, forming
a (c − 1)-simplex in its range. We define the honest
simplex as {

∑c
z=1 pzEγz :

∑c
z=1 pz = 1, pz ≥ 0}, and

the honest subspace as {
∑c

z=1 pzEγz :
∑c

z=1 pz = 1}.

As honest gradients are perturbations of their expec-
tations, they distribute near the honest simplex, ap-
proximately forming a (c − 1)-dimensional affine sub-
space. Thus, if we conduct principal component anal-
ysis (PCA) on honest gradients, the variance should
concentrate on the first (c− 1) principal components.
Figure 1 verifies our finding on MNIST (Lecun et al.,
1998). Appendix C.7 gives details of this experiment.

3.2 Challenges of Label Skewness

In the IID scenario, each honest gradient serves as an
unbiased estimator of Eµ, simplifying the design of
robust AGRs which merely require the identification
of one honest gradient (or a close Byzantine gradient).
However, in label skewness settings, each honest gradi-
ent can exhibit substantial deviations from Eµ, giving
rise to two key challenges: selection bias and increased
vulnerability.



BOBA: Byzantine-Robust Federated Learning with Label Skewness

GeoMed

honest
true center
aggr. result w.o. Byz

Krum CooMed BOBA

100

101

102

103

104

105

106

Figure 2: Comparison of aggregation results. (1) Selection bias: Without attacks, the aggregation results ( )
for GeoMed, Krum and CooMed are biased toward the majority class in the lower-right corner and deviate
from the honest gradient center (•), indicating their large biases. Meanwhile, BOBA is unbiased. (2) Increased
vulnerability : With different attacks, the aggregation results will be different. The orange region represents the
heatmap (2D histogram) of possible aggregation results given various attacks, where larger radius indicates worse
robustness. BOBA has smallest radius, showing its stronger robustness than IID AGRs.

Selection bias Many robust AGRs, e.g., Krum
(Blanchard et al., 2017), select a subset of gradients for
aggregation. With label skewness, these AGRs tend to
select some clients more frequently, often discarding
clients with higher outer variations or deviates from
the majority. This selection bias introduces bias into
the aggregation results, even in the absence of any at-
tacks. In Figure 2, where honest gradients form two
clusters, each representing a different class of samples,
baseline AGRs consistently choose the majority class.
This results in the FL model exclusively training on
one class of samples, converging to a trivial solution.

Increased vulnerability With label skewness, base-
line AGRs are more vulnerable to attacks, resulting in
larger variations in the aggregation results, primarily
due to the increased total variation. In Figure 2, the
aggregation results of baseline AGRs exhibit a con-
siderable range, much larger than the inner variation
(variation of each cluster). Interestingly, this vulnera-
bility occurs not only on the direction of outer varia-
tion, but also its orthogonal direction.

In summary, IID AGRs are neither unbiased nor suffi-
ciently robust in the more realistic label skewness set-
ting. It is necessary to design a new robust AGR.

4 PROPOSED BOBA ALGORITHM

In this section, we propose BOBA and explain its two
stages in detail. In stage 1, we robustly find the honest
subspace, and project all gradients to this subspace.
In stage 2, we estimate the vertices of the honest sim-
plex, reconstruct the label distribution for each client,
and drop clients with abnormal label distribution (i.e.,
with strongly negative entries). Intuitively, all honest
gradients will be kept with small perturbation, while
all Byzantine gradients will either be weakened (pro-
jected to the honest simplex in stage 1) or discarded
(in stage 2). Therefore, the negative impact of Byzan-

Algorithm 1 BOBA Framework

Input: G = [g1, · · · , gn], Γ = [γ1, · · · ,γc], n, f, c, pmin

Output: Aggregation result µ̂

1: Initialize subspace P̂: m,U ,Σ,V = TrSVDc−1(Γ)
2: while not converge do
3: Update r: G[n−f ] = {n − f gradients in G with

smallest ∥gi−ΠP̂(gi)∥2} where ΠP̂(gi) = UU⊤(gi−
m) +m

4: Update P̂: m,U ,Σ,V = TrSVDc−1(G[n−f ])

5: Encode: g̃i = U⊤(gi −m),∀i; Γ̃ = U⊤(Γ−m1⊤)

6: Estimate: p̂i =

[
Γ̃
1⊤

]−1 [
g̃i

1

]
, ∀i

7: Filter: a = A({p̂i}ni=1)
8: Aggregate: µ̃ =

∑n
i=1 aig̃i/

∑n
i=1 ai

9: Decode: µ̂ = Ug̃G +m

tine gradients can be largely mitigated.

4.1 Stage 1: Fitting the Honest Subspace

The goal of stage 1 is to find a (c − 1)-dimensional
affine subspace close to all honest gradients under the
influence of Byzantine gradients. When there are no
Byzantines, a standard way to find the subspace is
TrSVD, i.e., truncated singular value decomposition
on centralized gradients,

m,U ,Σ,V = TrSVDc−1(G), s.t. UΣV ⊤ ≈ G−m1⊤

where G = [g1, · · · , gn] ∈ Rd×n is the client gra-
dient matrix, m = 1

nG1 ∈ Rd is their average,

U ∈ Rd×(c−1),V ∈ Rn×(c−1) are column-orthogonal
and Σ ∈ R(c−1)×(c−1) is diagonal. TrSVD fits a (c−1)-
dimensional affine subspace P = {Uλ+m : λ ∈ Rc−1}
minimizing the reconstruction loss

ℓ(P) =
n∑

i=1

∥gi −ΠP(gi)∥
2
2

where ΠP(gi) = UU⊤(gi −m) + m is a projection
function that projects vectors to P.
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However, vanilla TrSVD is not robust to Byzantine at-
tacks. When there are Byzantine gradients deviating
from the honest subspace, the fitted subspace will be
dragged to these Byzantine gradients at the cost of
underfitting honest ones. For example in R2, when n
honest gradients are uniformly distributed on a seg-
ment of {(x, y) : x ∈ [−1, 1], y = 0}. TrSVD will fit a
subspace of {y = 0}. However, one Byzantine gradient
of (100n, 100n) can alter the fitted subspace to about
{y = x}. Therefore, we design a new objective.

Objective We design trimmed reconstruction loss to
robustify TrSVD:

ℓt(P) = min
r∈{0,1}n∑n
i=1 ri=n−f

n∑
i=1

ri ∥gi −ΠP(gi)∥
2
2

BOBA stage 1 fits an affine subspace P̂ by minimizing
the trimmed reconstruction loss above, which selects
the n−f nearest neighbors (ri = 1) and ignores f gra-
dients furthest from P̂ (ri = 0). Intuitively, if Byzan-
tines are far from the P̂, they will be ignored so P̂ is
not affected; if Byzantines are close to P̂, the n − f
nearest neighbors of P̂ still includes at least n − 2f
honest gradients, which are enough to reconstruct the
honest subspace (by Assumption 5.3 in Section 5). We
show in Appendix B.2.5 that stage 1 is theoretically
guaranteed to estimate the honest subspace robustly.

The strongest colluding Byzantines may focus on an-
other dimension different from the c − 1 honest di-
mensions. But BOBA stage 1 will not identify the
Byzantine dimension as honest. If it makes such a
mistake, the n − f nearest neighbors will form a c-
dimensional affine subspace, including one Byzantine
dimension and c−1 honest dimensions (since there are
at least n − 2f honest gradients in the n − f nearest
neighbors). Conducting TrSVD on these n − f near-
est neighbors results in large loss proportional to the
outer variation, which is clearly sub-optimal. Mean-
while, correctly identifying all honest dimensions re-
sults in a loss unrelated to outer variations, which is
much smaller. In our experiments, we also show that
BOBA can resist such colluding Byzantines, e.g. IPM
(Xie et al., 2019a) and LIE (Baruch et al., 2019).

Optimization To minimize trimmed reconstruction
loss, we solve a joint minimization problem

P̂, r̂ = argmin
P,r∈{0,1}n∑n
i=1 ri=n−f

ℓt(P, r) =
n∑

i=1

ri ∥gi −ΠP(gi)∥
2
2

Fixing P, the optimal r selects the n−f nearest neigh-
bors of P; while fixing r, the optimal P can be fitted
by conducting TrSVD on the selected n− f gradients.
A naive way to minimize trimmed reconstruction loss
is exhaustive searching (BOBA-ES), which iterates ev-
ery possible value of r, conducts TrSVD to fit P, and

chooses the P with the smallest trimmed reconstruc-
tion loss. It can guarantee the global minimum but
have exponentially high computational complexity.

Instead, we use alternating optimization, with details
in lines 2 - 4 in Algorithm 1. It alternatively updates
P and r until convergence. Although the global mini-
mum may not be guaranteed, alternating optimization
can converge to a high-quality local minimum with just
a few steps. Thus, it is more efficient and practical for
large-scale FL.

After minimization, we project every gradient to the
fitted subspace P̂. The projection can weaken Byzan-
tine gradients by eliminating its components orthogo-
nal to P̂; meanwhile, it only introduces small bounded
perturbation to honest gradients. However, only ap-
plying stage 1 does not fully guarantee robustness: a
Byzantine may still have large components along P̂
that bias the aggregation. We design stage 2 to fur-
ther rule out such Byzantine gradients.

4.2 Stage 2: Finding the Honest Simplex

In stage 2, BOBA uses a small amount of server data
to estimate c vertices of the honest simplex, and esti-
mates the label distribution of each client. Gradients
with negative entries in the label distribution lie out-
side the honest simplex, and will be discarded.

Proposition 3.3 shows that each vertex of the hon-
est simplex is the expected gradient computed with
one class of data. Thus, we initialize c virtual clients
on the server, each with one class of data, and com-
pute server gradients {γz}cz=1 with the same process
of honest clients. To estimate the label distribution of
a client i, we solve for {p̂iz}nz=1, s.t.

c∑
z=1

p̂izΠP̂(γz) = ΠP̂(gi),

c∑
z=1

p̂iz = 1

Solving this linear system in the gradient space Rd is
inefficient. Instead, we split the projection into two
steps: encoding (g̃i = U⊤(gi − m)) and decoding
(ΠP̂(gi) = Ug̃i + m), and solve the linear system in
the latent space Rc−1, which has an explicit solution
(see line 6 in Algorithm 1).

If our estimation is perfect (e.g., when gi = Egi,γz =
Eγz), p̂i will lie in the probability simplex, i.e. {p :
1⊤p = 1,p ≥ 0} if client i is honest, while it can be
arbitrary if client i is Byzantine. So we can discard
clients with negative entries in p̂i, since they must be
Byzantines. However in practice, our estimation has a
bounded error (Appendix B.2.6). Thus, if an honest
client does not have data from a class, which is very
common, it can also have a slightly negative entry.
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Therefore, we design an acceptance criterion

a = A({p̂i}ni=1), where ai = I{min
z

piz ≥ pmin}

where I is the indicator function and pmin ≤ 0 is a
hyper-parameter deciding the threshold of rejecting
Byzantines. In our implementation, we will accept
n−f clients with largest mincz=1 piz if

∑n
i=1 ai ≤ n−f

(i.e., our acceptance criterion drops too many clients),
since there should be at least n− f honest clients. Af-
ter dropping Byzantines (ai = 0), we average the re-
maining projected gradients as the aggregation result
of BOBA.

4.3 Computational complexity

The computational complexity of BOBA is O(kcnd),
if it conducts TrSVD for k times. The complexity of
TrSVD is O(cnd) (Halko et al., 2011), where c is the
number of classes, n is the number of clients and d
is the dimension of gradients. When k, c are small
constants, BOBA has the same complexity as vanilla
averaging, which is very efficient. Practically we also
observe that k is very small. In our experiments with
MNIST, CIFAR-10 and AG-News, k = 3.29, 3.20, 4.77
on average, respectively. A detailed analysis of the
complexity for each step is provided in Appendix B.4.

5 THEORETICAL ANALYSIS

This section presents the convergence analysis of
BOBA. We first establish a connection between con-
vergence and gradient estimation error in Proposition
5.1. Subsequently, we demonstrate in Theorem 5.5
that BOBA has bounded gradient estimation error,
ensuring guaranteed convergence. Through our anal-
ysis, we confirm that the order of BOBA’s gradient
estimation error aligns with the lower bound of the
gradient estimation error in non-IID setting, surpass-
ing IID AGRs. This illustrates the unbiasedness and
optimal order robustness of BOBA. Detailed proofs are
deferred to Appendix B due to space limit.

Proposition 5.1 (Convergence). With non-negative
L-smooth population risk L(w), we conduct SGD with
noisy gradient µ̂ = ĝ(w) and step size η = 1

L . If the
gradient estimation error E∥µ̂ − Eµ∥22 = E∥ĝ(w) −
∇L(w)∥22 ≤ ∆2 for all w, then for any weight initial-
ization w(0), after T steps,

1

T

T−1∑
t=0

E
∥∥∥∇L(w(t))

∥∥∥2
2
≤ 2

L

T
L(w(0)) + ∆2

Proposition 5.1 shows that with a robust AGR fea-
turing bounded gradient estimation error, FedSGD
converges to a flat region with small gradient in ex-
pectation, with convergence rate 1

T and error rate

∆2. Essentially, a smaller gradient estimation error
contributes to improved model convergence. Subse-
quently, we proceed to derive the gradient estimation
error of BOBA. To facilitate this analysis, we intro-
duce the following assumptions:

Assumption 5.2 (Bounded variations). For all w,

1. Bounded honest client inner variations: ∃ϵ2 s.t.,
E∥gi − Egi∥22 ≤ ϵ2,∀i ∈ H.

2. Bounded honest client outer variations: ∃δ2 s.t.,
∥Egi − Eµ∥22 ≤ δ2,∀i ∈ H.

3. Bounded server inner variations: ∃ϵ2s s.t.,
E∥γz − Eγz∥22 ≤ ϵ2s,∀z = 1, · · · , c.

4. Bounded server outer variations: ∃δ2s s.t.,
∥Eγz − Eµ∥22 ≤ δ2s ,∀z = 1, · · · , c.

Assumption 5.2 is standard in FL (Wu et al., 2020;
Wang et al., 2021), and is applied to both honest
clients and server since they both have clean data.

Assumption 5.3 (Bounded client singular value).
There exists σ > 0 such that for all w, conducting
centralized SVD on any n− 2f expectations of honest
gradients, the (c− 1)-th singular value σc−1 ≥ σ.

Assumption 5.3 is a natural extension of the standard
“n−2f > 0” assumption prevalent in IID AGRs (Blan-
chard et al., 2017; Yin et al., 2018; Chen et al., 2017).
This extension entails that, with c-label skewness, it is
imperative for all honest components to simultaneously
outweigh the Byzantine component. To fulfill this re-
quirement, removing any arbitrary subset of f clients
from the set of n− f honest clients should still ensure
that the remaining n− 2f honest clients affinely span
the honest subspace, indicated by σc−1 ≥ σ, ∃σ > 0.
Failure to meet this condition could empower Byzan-
tines to form a cluster to replace an honest component.

Assumption 5.3 also reveals that the robustness of an
FL system with label skewness depends not only on
n, f and c, but also on the label distribution for each
honest client. Considering c = 2, when {Egi}i∈H dis-
tributes uniformly on the honest simplex (a line seg-
ment), Assumption 5.3 holds as long as n − 2f > 1
(i.e., f < n−1

2 ), closely resembling the IID setting.
However, when half of the honest clients have only
positive samples, while the other half have only neg-
ative samples, {Egi}i∈H will only be distributed at
the two vertices of the honest simplex. In this case,
Assumption 5.3 only holds when n − 2f > n−f

2 (i.e.,
f < n

3 ).

With label skewness, a gradient distributed around the
honest simplex can either be an honest gradient or
a Byzantine gradient mimicking honest gradients to
bias the aggregation without being detected. However,
it is impossible for any AGR to distinguish between
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the two scenarios. Consequently, this introduces an
inevitable component to the gradient estimation error
as demonstrated in Proposition 5.4.

Proposition 5.4 (Lower bound of gradient estima-
tion error for any AGR). Given any AGR, we can find
|H| honest gradients and |B| Byzantine gradients, such

that E∥µ̂− Eµ∥22 ≥ Ω(β2δ2), where β = |B|
n = |B|

|H|+|B|
is the fraction of Byzantine clients.

We finally derive BOBA’s gradient estimation error
and show that it matches with the error bound above.

Theorem 5.5 (Upper bound of gradient estimation
error for BOBA). With Assumptions 5.2 and 5.3,
BOBA has

E∥µ̂− Eµ∥22 ≤ C1ϵ
2 + C2ϵ

2
s + C3β

2δ2s

where β = |B|
n is the fraction of Byzantine clients,

C1 = 4+8( 1
n−2f +

δ2

σ2 )(2(n−f)+|H|), C2 = 16( 1
n−2f +

δ2

σ2 )(n−f)+16c(1+c|pmin|)2β2, C3 = 16(1+c|pmin|)2.

When the outer variation increases t times, both δ and
σ increase t times. When all clients are duplicated, δ2

does not change but σ2 is doubled. Thus generally

we have δ2

σ2 ∝ 1
n . When ϵs = O(ϵ), δs = O(δ), c =

O(1), 1
n−2f = O( 1n ), |H| = O(n), and |pmin| = O(1),

we have ∥µ̂−Eµ∥22 = O(ϵ2+β2δ2). We conclude that

• BOBA is unbiased. Without attacks, BOBA pre-
serves all honest gradients, resulting in a gradient
estimation error unaffected by outer variation δ.

• BOBA has optimal order robustness. With at-
tacks, BOBA’ gradient estimation error matches the
optimal order in Proposition 5.4 in terms of the
outer variation δ, while IID AGRs only guarantee
O(ϵ2 + δ2) even when β = 0 (see Appendix B.3.2).

A detailed comparison and analysis of the gradient es-
timation error is presented in Appendix B.2 and B.3.

6 EXPERIMENTS

In this section, we conduct experiments to answer the
following research questions.

• RQ1: Is BOBA unbiased and more robust to at-
tacks than baseline AGRs?

• RQ2: Is BOBA efficient?

• RQ3: How is BOBA affected by the quality and
quantity of server data, hyper-parameters, and
different label skewness settings?

• RQ4: Can BOBA be extended to more complex
non-IID settings and other FL frameworks?

Setup We conduct the experiments on a wide range
of models and datasets: a 3-layer MLP for MNIST

(Lecun et al., 1998), a 5-layer CNN for CIFAR-10
(Krizhevsky and Hinton, 2009), and a GRU network
for AG-News (Zhang et al., 2015). We partition train-
ing sets to |H| = 100/100/160 honest clients respec-
tively with pathological partition (McMahan et al.,
2017), where each client has data from at most two
classes. To evaluate unbiasedness, we use |B| = 0. To
evaluate robustness, we add |B| = 15/15/54 Byzan-
tine clients as supplements, not replacements, result-
ing in totally n = 115/115/214 clients. This design
simulates real-world FL systems where adversaries use
additional devices to participate in FL training, in-
stead of replacing existing users’ devices. Meanwhile,
since no data is removed from training, we can directly
compare the accuracy with/without Byzantine clients.
Appendix C.1 gives the detailed experimental settings.

Attacks We consider six representative attacks:
Gauss (Blanchard et al., 2017), IPM (Xie et al.,
2019a), LIE (Baruch et al., 2019), Mimic (Karimireddy
et al., 2022), MinMax, and MinSum (Shejwalkar and
Houmansadr, 2021).

Baseline AGRs We consider 15 baseline AGRs:

• Average (McMahan et al., 2017) simply averages
all gradients. It is unbiased but vulnerable to at-
tacks.

• Server only uses server data to fit a model. We
use it to verify that one cannot train a good model
with server data only.

• Majority-based IID AGRs: coordinate median
(CooMed), trimmed mean (TrMean) (Yin et al.,
2018), Krum, Multi-Krum (MKrum) (Blanchard
et al., 2017), and geometric median (GeoMed)
(Chen et al., 2017).

• Reference-based IID AGRs. SelfRej, AvgRej
(Fang et al., 2020), Zeno (Xie et al., 2019b),
FLTrust (Cao et al., 2021) and ByGARS (Regatti
et al., 2022).

• Non-IID AGRs. Bucketing (Karimireddy et al.,
2022) with Krum (B-Krum) or Multi-Krum (B-
MKrum), and RAGE (Data and Diggavi, 2021).

All AGRs are set to be robust to f = 16 Byzantines on
MNIST/CIFAR-10 and f = 60 on AG-News. BOBA
uses pmin = −0.5. We assume limited server data:
20 per class for MNIST/CIFAR-10 and 30 per class
for AG-News, much fewer than the samples on each
client.

Evaluation of unbiasedness (RQ1) We evaluate
the unbiasedness with |B| = 0. Besides accuracy, we
introduce max-recall-drop (MRD) as a complement.
It computes how the recall scores of each class differ
from the model trained with Average (with |B| = 0)
and picks the largest absolute drop. Smaller MRD in-
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Table 1: Evaluation of unbiasedness (mean (s.d.) %
over five random seeds, |H| = 100, 100, 160, |B| = 0)

Method
MNIST CIFAR-10 AG-News

Acc ↑ MRD ↓ Acc ↑ MRD ↓ Acc ↑ MRD ↓
Average 92.5 (0.1) - 71.7 (0.8) - 88.3 (0.1) -
Server 82.0 (0.5) 18.8 (1.9) 24.4 (2.0) 61.7 (1.9) 82.7 (1.4) 8.8 (3.5)

CooMed 73.4 (5.8) 62.9 (24.3) 18.0 (2.8) 79.8 (3.3) 80.4 (4.5) 18.6 (12.0)

TrMean 82.3 (2.7) 59.4 (20.9) 22.3 (11.3) 81.4 (2.2) 86.9 (0.5) 5.8 (3.6)

Krum 39.6 (4.3) 98.1 (0.2) 35.0 (3.0) 81.5 (1.9) 66.8 (2.9) 89.2 (7.0)

MKrum 91.7 (0.1) 10.0 (2.3) 70.5 (0.7) 11.1 (3.7) 88.0 (0.1) 4.6 (2.1)

GeoMed 91.9 (0.1) 3.1 (0.3) 71.6 (0.8) 5.1 (1.1) 88.4 (0.1) 0.4 (0.2)

SelfRej 91.7 (0.1) 9.6 (0.8) 70.1 (1.2) 13.5 (6.1) 86.6 (1.8) 13.5 (9.4)

AvgRej 91.1 (0.5) 18.1 (8.0) 71.0 (0.5) 11.2 (6.8) 85.8 (0.9) 15.6 (6.2)

Zeno 91.7 (0.1) 10.3 (2.0) 70.2 (0.8) 11.5 (4.1) 86.4 (1.5) 14.1 (8.6)

FLTrust 85.6 (0.6) 18.9 (3.5) 53.1 (0.9) 32.2 (2.7) 86.3 (0.4) 5.8 (1.0)

ByGARS 76.7 (1.4) 59.9 (10.2) 32.0 (1.7) 60.7 (6.4) 44.9 (6.5) 82.0 (4.3)

B-Krum 73.8 (4.8) 93.8 (3.1) 59.0 (1.0) 81.4 (2.2) 87.3 (0.6) 5.0 (2.8)

B-MKrum 92.0 (0.1) 2.9 (0.5) 70.9 (0.8) 6.2 (0.9) 87.8 (0.3) 3.3 (1.5)

RAGE 59.8 (0.5) 90.1 (0.5) 58.3 (1.5) 56.4 (10.0) 63.9 (6.1) 80.2 (5.2)

BOBA 92.5 (0.1) 1.3 (1.7) 70.9 (0.9) 4.0 (1.7) 88.3 (0.1) 0.2 (0.1)

dicates a less biased AGR. As selection bias may dra-
matically decrease some classes’ recalls while increas-
ing others, MRD can reflect selection bias better than
accuracy. As shown in Table 1, most baseline AGRs
suffer from significant selection bias, resulting in large
MRD. Among baselines, GeoMed and B-MKrum aim
to retain as many gradients as possible, consequently
achieving smaller MRDs. We observe that BOBA has
accuracy very close to Average, and the smallest MRD
among all robust AGRs. It verifies the superior unbi-
asedness of BOBA.

Evaluation of robustness (RQ1) We evaluate the
robustness with |B| = 15, 15, 54 on three datasets re-
spectively with results shown in Table 2. Considering
that Byzantines would select the attack strategy that
most effectively degrades model accuracy, we summa-
rize the worst-case accuracy for each defense in the
“Wst” column for a clear comparison. BOBA sig-
nificantly improves the worst-case accuracy by 6.1%,
18.3%, 1.6% on three datasets, respectively, showing
that BOBA has better robustness than baselines. Inter-
estingly, we observed that some AGRs (e.g., Mkrum
and SelfRej) achieve higher accuracy under certain
attacks (e.g., Gauss) compared to no attack condi-
tions. This phenomenon arises from these AGRs re-
lying on accurate estimates of the number of attack-
ers. Without attacks, these AGRs overestimate the
number of attackers (f ≫ |B|), leading to dropping
honest clients. However, with attacks (f ≈ |B|), these
AGRs drop fewer honest clients, resulting in higher
accuracy. Considering that majority-based AGRs do
not use server data, we also study whether server data
can further improve their robustness in Appendix C.2.
We show that server data cannot enhance the most
competitive of these AGRs.

Byzantines within the honest simplex Byzan-
tine clients can upload vectors on the boundary of the
honest simplex, thereby maximizing the bias in the ag-

0 2 4 6 8 10 12 14 16
Aggregation Time (s)

20

40

60

80

W
or

st
-c

as
e 

Te
st

 A
cc

ur
ac

y

defense
boba
average
coomed
trmean
krum

mkrum
bkrum
bmkrum
selfrej
avgrej

bygars
rage
fltrust
geomed
zeno

Figure 3: Running time of AGRs on MNIST

No Attack Gauss IPM LIE Mimic MinMax MinSum
attack

0.4

0.5

0.6

0.7

0.8

Te
st

 A
cc

ur
ac

y

noise
no noise
shot

gaussian
speckle

impulse

Figure 4: BOBA is robust to corrupted server data

gregation results without being detected. The Mimic
attack is an example of this type of attack. Although
this attack cannot be detected by any AGRs, including
BOBA, we found that this attack has a limited impact
on model accuracy.

Efficiency (RQ2) We compare the aggregation time
of BOBA with baselines on MNIST. Figure 3 shows
that BOBA is faster than half of the baseline AGRs.

Effect of server data (RQ3) We investigate how
the performance of BOBA is influenced by both the
quality and quantity of server data. To simulate
low-quality data, we introduce four types of random
noises to the server data, following the approach pro-
posed by (Hendrycks and Dietterich, 2019). As illus-
trated in Figure 4, BOBA exhibits remarkable consis-
tency across various noise types, highlighting its ro-
bustness to variations in server data quality. Addi-
tionally, as demonstrated in Appendix C.3, BOBA ex-
hibits greater resilience to label skewness in server data
compared to baseline reference-based AGRs. More-
over, BOBA proves to be effective even with a minimal
amount of server data, surpassing all baseline AGRs
with just 5 samples per class on CIFAR-10.

Effect of hyper-parameters (RQ3) We show in
Appendix C.4 that BOBA is robust to a wide range
of f and pmin under multiple fractions of Byzantines
β = |B|/n.

More label skewness settings (RQ3) In Ap-
pendix C.5, we evaluate BOBA under two more la-
bel skewness settings: step partition (Chen and Chao,
2021) and Dirichlet partition (Yurochkin et al., 2019).
We also test BOBA under different levels of non-
IIDness, and different participation rates. We observe
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Table 2: Evaluation of robustness (Accuracy, mean (s.d.) % over five random seeds)

Method
MNIST (|H| = 100, |B| = 15) CIFAR-10 (|H| = 100, |B| = 15) AG-News (|H| = 160, |B| = 54)

Gauss IPM LIE Mimic MinMax MinSum Wst Gauss IPM LIE Mimic MinMax MinSum Wst Gauss IPM LIE Mimic MinMax MinSum Wst

Average 9.8 (0.0) 9.8 (0.0) 92.4 (0.1) 92.1 (0.1) 90.0 (0.2) 90.8 (0.1) 9.8 10.0 (0.0) 10.0 (0.0) 68.2 (0.8) 70.3 (0.8) 33.2 (5.9) 33.1 (5.3) 10.0 25.4 (2.6) 25.0 (0.0) 87.5 (0.2) 87.2 (0.3) 35.9 (3.6) 30.5 (3.0) 25.0
CooMed 68.0 (6.9) 42.0 (3.7) 89.6 (0.3) 65.0 (6.2) 77.2 (3.1) 77.2 (3.1) 42.0 18.2 (0.8) 7.0 (1.3) 22.0 (0.8) 14.9 (1.9) 18.0 (2.3) 18.0 (2.3) 7.0 86.0 (0.3) 58.6 (9.9) 81.7 (0.3) 82.2 (1.7) 61.2 (17.6) 60.9 (17.4) 58.6
TrMean 91.7 (0.1) 63.8 (10.0) 88.9 (0.6) 83.2 (2.0) 88.8 (0.2) 88.8 (0.2) 63.8 57.3 (1.5) 14.4 (2.6) 30.6 (1.5) 30.1 (5.1) 22.4 (2.4) 23.2 (4.1) 14.1 88.1 (0.3) 57.5 (7.7) 85.2 (0.2) 82.4 (3.8) 67.5 (16.3) 74.4 (5.5) 57.5
Krum 42.6 (3.8) 42.6 (3.8) 91.3 (0.1) 37.2 (6.4) 44.0 (5.1) 42.9 (4.4) 37.2 38.4 (1.7) 35.9 (3.7) 40.1 (2.3) 31.8 (3.7) 34.0 (2.5) 39.1 (2.6) 31.8 66.3 (1.9) 66.8 (1.7) 80.3 (1.0) 46.6 (0.4) 66.2 (2.1) 65.7 (3.3) 46.6
MKrum 92.4 (0.2) 85.3 (5.3) 92.0 (0.2) 91.4 (0.2) 92.4 (0.1) 92.3 (0.1) 85.3 71.7 (0.8) 50.9 (11.2) 66.0 (1.1) 69.6 (0.5) 70.1 (0.3) 60.5 (3.0) 50.9 88.3 (0.2) 80.7 (6.0) 86.6 (0.2) 83.4 (0.6) 88.3 (0.1) 85.9 (0.3) 80.7
GeoMed 91.9 (0.1) 82.2 (0.5) 91.6 (0.1) 89.5 (0.3) 91.2 (0.1) 91.3 (0.1) 82.2 71.5 (0.6) 52.6 (2.5) 43.9 (2.3) 62.1 (0.6) 43.5 (3.0) 43.4 (2.3) 43.4 88.3 (0.1) 77.5 (2.9) 83.5 (0.2) 84.1 (0.2) 83.5 (0.3) 83.6 (0.3) 77.5
SelfRej 92.4 (0.2) 71.1 (2.5) 92.0 (0.1) 91.4 (0.1) 87.6 (1.1) 88.6 (0.7) 71.5 71.7 (0.9) 14.2 (3.3) 66.0 (1.2) 69.3 (0.9) 32.1 (2.3) 32.4 (1.9) 14.2 88.4 (0.1) 25.0 (0.0) 86.4 (0.3) 84.4 (0.8) 38.2 (10.8) 32.6 (2.3) 25.0
AvgRej 9.8 (0.0) 91.0 (0.4) 91.8 (0.2) 90.7 (0.4) 92.3 (0.1) 92.2 (0.1) 9.8 10.0 (0.0) 70.5 (0.7) 67.0 (1.2) 71.6 (0.5) 61.7 (5.2) 58.6 (4.6) 10.0 41.1 (7.7) 88.0 (0.3) 84.6 (0.4) 88.3 (0.1) 40.7 (7.3) 41.8 (12.1) 40.7
Zeno 92.4 (0.2) 71.1 (2.4) 92.0 (0.1) 91.4 (0.1) 87.6 (1.1) 88.6 (0.7) 71.1 71.5 (0.5) 14.1 (3.3) 65.8 (1.0) 69.4 (0.5) 32.3 (1.1) 31.3 (3.8) 14.1 88.3 (0.1) 25.0 (0.0) 86.5 (0.2) 85.9 (2.1) 53.9 (5.4) 61.6 (13.3) 25.0

FLTrust 85.6 (0.6) 85.6 (0.6) 88.4 (0.7) 85.5 (0.6) 85.8 (0.6) 85.6 (0.6) 85.5 53.0 (0.7) 52.6 (1.1) 48.9 (2.0) 53.3 (1.0) 52.0 (1.7) 51.9 (1.5) 48.9 86.2 (0.5) 86.2 (0.4) 86.2 (0.4) 85.7 (0.8) 85.8 (0.9) 85.8 (0.5) 85.7
ByGARS 76.7 (1.4) 87.5 (0.7) 85.0 (0.7) 77.1 (1.3) 76.6 (1.3) 76.6 (1.3) 76.6 31.9 (1.7) 53.6 (0.8) 30.8 (2.6) 32.2 (1.3) 26.9 (1.9) 26.9 (1.6) 26.9 45.4 (11.2) 48.0 (8.1) 44.5 (11.3) 77.2 (20.1) 59.0 (22.6) 40.7 (2.4) 40.7
B-Krum 78.8 (2.8) 80.0 (1.0) 90.9 (0.4) 61.3 (2.2) 79.3 (2.9) 77.6 (2.5) 61.3 58.1 (2.3) 58.1 (1.1) 42.4 (2.4) 46.0 (2.6) 58.8 (0.8) 57.8 (1.1) 42.4 88.3 (0.1) 51.1 (30.0) 87.0 (1.2) 81.6 (3.8) 86.9 (0.4) 86.2 (0.6) 51.1
B-MKrum 92.4 (0.1) 85.4 (1.8) 92.2 (0.1) 91.4 (0.0) 91.8 (0.2) 91.1 (0.1) 85.4 71.8 (0.6) 32.0 (2.3) 66.0 (0.7) 69.7 (0.8) 45.8 (4.9) 42.9 (2.7) 32.0 88.3 (0.2) 24.9 (12.6) 85.9 (0.2) 84.9 (0.2) 63.7 (14.2) 60.4 (28.3) 24.9
RAGE 82.6 (1.0) 60.5 (0.9) 80.6 (14.0) 63.9 (2.3) 60.4 (0.9) 59.8 (0.5) 59.8 71.7 (0.5) 63.7 (1.3) 48.3 (2.2) 60.2 (1.1) 59.6 (3.0) 56.8 (1.1) 48.3 28.5 (5.6) 69.5 (2.6) 61.2 (9.4) 48.8 (21.7) 70.6 (1.0) 65.5 (7.3) 28.5
BOBA 92.5 (0.1) 91.6 (0.2) 92.5 (0.2) 91.7 (0.4) 92.0 (0.3) 92.0 (0.6) 91.6 71.9 (0.5) 70.1 (0.6) 69.2 (0.7) 69.3 (1.1) 71.2 (0.5) 71.4 (0.5) 69.2 88.3 (0.1) 87.7 (0.7) 88.4 (0.1) 87.3 (0.3) 88.1 (0.1) 88.3 (0.2) 87.3

Table 3: Performance (mean (s.d.) % over five random
seeds) on CIFAR-10 with label skewness and image
corruptions (see full table in Appendix C.6)

Method
|B| = 0 |B| = 15 (Acc ↑)

Acc ↑ MRD ↓ Gauss IPM LIE Mimic MinMax MinSum Wst

Average 68.7 (0.4) - 10.0 (0.0) 10.0 (0.0) 64.6 (0.7) 67.5 (0.5) 27.9 (4.9) 21.6 (7.5) 10.0
MKrum 66.8 (1.1) 16.7 (11.7) 68.2 (0.7) 52.9 (10.2) 63.1 (1.1) 54.9 (25.1) 67.2 (0.4) 62.3 (2.1) 52.9
FLTrust 50.1 (0.9) 29.1 (2.1) 50.0 (1.1) 47.8 (1.7) 47.3 (2.5) 49.8 (0.9) 49.0 (1.8) 49.1 (1.9) 47.3
BOBA 66.5 (1.0) 6.7 (2.6) 68.5 (0.3) 66.0 (0.7) 62.8 (1.6) 66.2 (0.7) 67.7 (0.5) 67.5 (0.6) 62.8

Table 4: Ablation study (Accuracy, mean (s.d.) % over
five random seeds, AG-News with |H| = 16, f = 2)

Method |B| = 0
|B| = 2

Gauss IPM LIE Mimic MinMax MinSum

Average 88.3 (0.1) 25.8 (4.1) 25.0 (0.0) 88.3 (0.1) 88.1 (0.2) 82.7 (0.3) 84.7 (0.1)

BOBA-ES 88.3 (0.1) 88.3 (0.1) 86.3 (0.5) 88.3 (0.1) 88.1 (0.1) 88.3 (0.1) 88.2 (0.1)

BOBA 88.3 (0.1) 88.3 (0.1) 88.1 (0.3) 88.3 (0.1) 88.0 (0.1) 88.4 (0.2) 88.3 (0.2)

BOBA w.o. stage 1 83.0 (1.1) 82.8 (0.8) 82.2 (1.3) 82.8 (1.0) 82.6 (1.1) 82.7 (1.4) 82.7 (1.0)

BOBA w.o. stage 2 88.3 (0.1) 24.8 (0.4) 25.0 (0.0) 88.3 (0.1) 88.0 (0.1) 88.4 (0.2) 88.3 (0.2)

that BOBA has consistent performance across all set-
ting.

Beyond label skewness (RQ4) In a real FL sys-
tem, label skewness may not be the sole kind of dis-
tribution shifts. We consider a setting with both label
skewness and feature skewness on CIFAR-10, where we
additionally add different types of image corruption to
each client (Hendrycks and Dietterich, 2019). Results
in Table 3 shows that BOBA still achieves significantly
higher worst-case accuracy than baseline AGRs.

More FL frameworks (RQ4) We extend BOBA
to more FL frameworks, including FedAvg (McMahan
et al., 2017) and FedProx (Li et al., 2020b) in Ap-
pendix C.7. BOBA still remains effective for these
frameworks.

Ablation Study We study how each component
of BOBA contributes to the aggregation in Table 4.
BOBA w.o. stage 1 skips the subspace optimiza-
tion and uses the subspace initialized with server gra-
dients. Though being robust to attacks, it fails to
fully utilize clients’ data, and thus has a worse per-
formance. BOBA w.o. stage 2 averages all projected
gradients without discarding Byzantine gradients. It

is unbiased, but not robust to attacks. BOBA-ES
uses exhaustive searching instead of alternating op-
timization to fit the honest subspace, globally mini-
mizing the trimmed reconstruction loss. We observe
that BOBA has performance comparable to BOBA-
ES while calling TrSVD for much fewer times (≈ 3 v.s.(
n
f

)
), which reduces the computation time from 5.69s

to only 13.6ms. We can conclude that (1) both stages
in BOBA are necessary to guarantee performance and
robustness, and (2) alternating optimization signifi-
cantly improves the efficiency while maintaining the
performance.

7 CONCLUSION

This paper focuses on Byzantine-robustness in FL with
label skewness. We show that existing AGRs suffer
from selection bias and increased vulnerability, and
propose BOBA to alleviate these problems. We verify
the unbiasedness and robustness of BOBA theoreti-
cally and empirically.
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A DETAILED RELATED WORKS

Majority-based robust aggregator with IID clients Majority-based aggregators assume the gradients of
honest clients should cluster together, and find a vector near to the majority of the gradients with robust mean
estimators, including coordinate-wise median (CooMed) / trimmed mean (TrMean) (Yin et al., 2018), geometric
median (GeoMed) (Chen et al., 2017; Pillutla et al., 2022), and Krum (Blanchard et al., 2017). Specifically,
CooMed / TrMean use median and trimmed mean on each dimension of the gradient separately. GeoMed
minimizes the sum of L2 distances between each gradient and the aggregation result. Krum computes each
gradient’s sum of square L2 distances to its k nearest neighbors, and picks the gradients with the lowest score.
All these methods are robust mean estimators with bounded gradient estimation error, and are theoretically
proven not to fail arbitrarily in IID settings. However, as shown in our analysis, they suffer from selection bias
and increased vulnerability in label skewness settings. The bounds for gradient estimation error still hold, but
become vacuous under severe non-IIDness.

Reference-based robust aggregator with IID clients Another line of works utilize server data to evaluate
each client update, and reweigh these clients to achieve better robustness. Loss-based rejections (Fang et al.,
2020) evaluate client updates with their loss on server data, and drop clients whose updates are the most harmful.
Specifically, we consider SelfRej, which selects n− f clients whose local models wi = wG− ηgi have the smallest
loss, and AvgRej, which selects n−f clients that can lower the loss of averaged model the most. Zeno (Xie et al.,
2019b) generalizes this idea by considering both loss and gradient scales, believing that honest gradients should
lower the model loss with small gradient norm. FLTrust (Cao et al., 2021) uses server data to compute a server
gradient, and reweighs the client gradients with their cosine similarity to the server gradient. ByGARS (Regatti
et al., 2022) optimizes the aggregation weights of client gradients with server data in a meta-learning fashion.
However in each update step, it still relies on the inner product of (normalized) client gradients and server
gradient. Different from the original ByGARS which saves the aggregation weights as the initialization for the
next round, we use zero initialization for every round to avoid using historical information. These methods use
server data to improve aggregation, however, they are not specifically designed to tackle the non-IID challenge
in FL.

Robust aggregator with non-IID clients Recently, a few works have studied robustness with non-IID clients.
Karimireddy et al. (2022) combine IID aggregation with bucketing, using averages of random subset of client
gradients as inputs of an IID aggregator, e.g., Krum. It makes the inputs of the aggregator more homogeneous.
However, bucketing also increases the ratio of Byzantine gradients, which sacrifices some robustness. For example,
if there are |B| Byzantine gradients among totally n gradients, after bucketing with subset size s, there can be
as much as |B| corrupted gradients among totally n/s gradients fed to the aggregator, which increases the ratio

of Byzantines from |B|
n to s · |B|

n . Similar to BOBA, RAGE (Data and Diggavi, 2021) also uses singular value
decomposition (SVD) for robust aggregation. However, it uses SVD to remove Byzantine clients iteratively,
whereas our work focuses on applying SVD to model the distribution of honest clients’ gradients.

Robust aggregator using historical information Some works (Mhamdi et al., 2021; Karimireddy et al.,
2021) assume stateful clients or use historical information to improve robustness. They mainly focus on dis-
tributed learning, where the index for both honest and Byzantine clients remains the same across communication
rounds. However, such assumptions do not hold in FL, especially cross-device FL, where the training clients are
different across communication rounds. Therefore, we only focus on algorithms that do not use any historical
information.

Robust aggregator for personalized FL While our paper focuses on global FL, where all clients share
the same global model, robustness is also studied in personalized FL. Ghosh et al. (2019) divide clients into IID
groups and train global models in each group. Ditto (Li et al., 2021) learns personalized models to achieve fairness
and robustness, but still requires training a robust global model. Li et al. (2020a) propose a Byzantine-robust
multi-task learning system.

Non-IIDness in FL Besides robustness, non-IIDness also raises optimization challenges in FL. When clients
take multiple local steps, non-IIDness makes local updates diverge and thus degrades the model. A common
method to handle non-IIDness is to share a limited amount of data as augmentation (Zhao et al., 2018), which
can be collected in many real applications. To further protect privacy, some works replace the raw samples with
aggregated samples (Yoon et al., 2021), or synthetic samples (Zhang et al., 2021). Compared to them, our work
assumes very limited server data.
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Label Skewness and Mixture Distribution Plenty of works focus on label skewness, a particular sub-class
of non-IIDness. FedAwS (Yu et al., 2020) studies an extreme case where each client has only access to one class,
while FedRS (Li and Zhan, 2021) focuses on a general label skewness setting. A related non-IID setting is a
mixture distribution (Marfoq et al., 2021), where each client’s data distribution is a mixture of several shared
distributions with its own mixture weights. BOBA mainly focuses on label skewness and can be easily extended
to mixture distribution.
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B MISSING PROOFS

B.1 Convergence Analysis

In this subsection we provides classical convergence analysis which connects convergence to the gradient estima-
tion error. We consider two cases:

• Smooth and non-negative loss (Proposition 5.1)

• Smooth and strongly convex loss (Proposition B.4)

We start with formal definitions.

Definition B.1 (L-smoothness). A function f : Rd → R is L-smooth if for all x,y ∈ Rd,

∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥2

equivalently, for all x,y ∈ Rd,

f(y) ≤ f(x) +∇f(x)⊤(y − x) +
L

2
∥x− y∥22

Definition B.2 (µ-strong convexity). A function f : Rd → R is µ-strongly convex if for all x,y ∈ Rd,

f(y) ≥ f(x) +∇f(x)⊤(y − x) +
µ

2
∥x− y∥22

B.1.1 Convergence with Smooth and Non-Negative Loss

In Proposition 5.1, we provides convergence analysis with L-smooth and non-negative loss.

Proposition 5.1 (Convergence with smooth non-negative loss). With non-negative L-smooth population risk
L(w), conducting SGD with noisy gradient µ̂ = ĝ(w) and step size η = 1

L . If the gradient estimation error

E∥µ̂− Eµ∥22 = E∥ĝ(w)−∇L(w)∥22 ≤ ∆2 for all w, then for any weight initialization w(0), after T steps,

1

T

T−1∑
t=0

E
∥∥∥∇L(w(t))

∥∥∥2
2
≤ 2

L

T
L(w(0)) + ∆2

Proof. For any w(t),

L(w(t+1)) ≤ L(w(t)) +∇L(w(t))⊤(w(t+1) −w(t)) +
L

2

∥∥∥w(t+1) −w(t)
∥∥∥2
2

(L-smoothness)

= L(w(t)) +∇L(w(t))⊤
[
−η
(
ĝ(w(t))−∇L(w(t)) +∇L(w(t))

)]
+

L

2

∥∥∥−η (ĝ(w(t))−∇L(w(t)) +∇L(w(t))
)∥∥∥2

2

= L(w(t)) +

(
Lη2

2
− η

)∥∥∥∇L(w(t))
∥∥∥2
2
+
(
Lη2 − η

)
∇L(w(t))⊤

(
ĝ(w(t))−∇L(w(t))

)
+

Lη2

2

∥∥∥ĝ(w(t))−∇L(w(t))
∥∥∥2
2

= L(w(t))− 1

2L

∥∥∥∇L(w(t))
∥∥∥2
2
+

1

2L

∥∥∥ĝ(w(t))−∇L(w(t))
∥∥∥2
2

(η = 1
L )

Equivalently, ∥∥∥∇L(w(t))
∥∥∥2
2
≤ 2L

(
L(w(t))− L(w(t+1))

)
+
∥∥∥ĝ(w(t))−∇L(w(t))

∥∥∥2
2
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Average over t = 0, · · · , T − 1, we get

1

T

T−1∑
t=0

∥∥∥∇L(w(t))
∥∥∥2
2
≤ 2

L

T

(
L(w(0))− L(w(T ))

)
+

1

T

T−1∑
t=0

∥∥∥ĝ(w(t))−∇L(w(t))
∥∥∥2
2

≤ 2
L

T
L(w(0)) +

1

T

T−1∑
t=0

∥∥∥ĝ(w(t))−∇L(w(t))
∥∥∥2
2

Finally, take expectations at both sides

1

T

T−1∑
t=0

E
∥∥∥∇L(w(t))

∥∥∥2
2
≤ 2

L

T
L(w(0)) + ∆2

B.1.2 Convergence with Smooth and Strongly Convex Loss

Lemma B.3. Let f(w) be L-smooth and µ-strongly convex, conducting GD with exact gradient ∇f(w) and step
size η = 2

L+µ . For all t,

∥w(t+1) −w∗∥2 ≤
(
L− µ

L+ µ

)
∥w(t) −w∗∥2

Proof. See Theorem 3.12 in Bubeck (2015).

Proposition B.4 (Convergence with smooth and strongly convex loss). With L-smooth and µ-strongly convex
population risk L(w), conducting SGD with noisy gradient µ̂ = ĝ(w) and step size η = 2

L+µ . If the gradient

estimation error E∥µ̂−Eµ∥22 = E∥ĝ(w)−∇L(w)∥22 ≤ ∆2 for all w, then for any weight initialization w(0), after
T steps,

∥∥∥w(T ) −w∗
∥∥∥
2
≤
(
L− µ

L+ µ

)T ∥∥∥w(0) −w∗
∥∥∥
2
+

1

µ
∆

Proof. For any w(t),∥∥∥w(t+1) −w∗
∥∥∥
2
=
∥∥∥w(t) − ηĝ

(
w(t)

)
−w∗

∥∥∥
2

=
∥∥∥w(t) − η∇L

(
w(t)

)
−w∗ + η

(
∇L

(
w(t)

)
− ĝ

(
w(t)

))∥∥∥
2

≤
∥∥∥w(t) − η∇L

(
w(t)

)
−w∗

∥∥∥
2
+ η

∥∥∥∇L(w(t)
)
− ĝ

(
w(t)

)∥∥∥
2

≤
(
L− µ

L+ µ

)∥∥∥w(t) −w∗
∥∥∥
2
+

2

L+ µ

∥∥∥∇L(w(t)
)
− ĝ

(
w(t)

)∥∥∥
2

(Lemma B.3 and η = 2
L+µ )

By induction,

∥∥∥w(T ) −w∗
∥∥∥
2
≤
(
L− µ

L+ µ

)T ∥∥∥w(0) −w∗
∥∥∥
2
+

T−1∑
t=0

(
L− µ

L+ µ

)t
2

L+ µ

∥∥∥∇L(w(t)
)
− ĝ

(
w(t)

)∥∥∥
2

Notice that for any w,

E∥µ̂− Eµ∥2 =
√
E∥µ̂− Eµ∥22 −Var (∥µ̂− Eµ∥2) ≤

√
E∥µ̂− Eµ∥22 ≤ ∆
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Finally, take expectations at both sides.

E
∥∥∥w(T ) −w∗

∥∥∥
2
≤
(
L− µ

L+ µ

)T ∥∥∥w(0) −w∗
∥∥∥
2
+

T−1∑
t=0

(
L− µ

L+ µ

)t
2

L+ µ
E
∥∥∥∇L(w(t)

)
− ĝ

(
w(t)

)∥∥∥
2

≤
(
L− µ

L+ µ

)T ∥∥∥w(0) −w∗
∥∥∥
2
+

T−1∑
t=0

(
L− µ

L+ µ

)t
2

L+ µ
∆

≤
(
L− µ

L+ µ

)T ∥∥∥w(0) −w∗
∥∥∥
2
+

∞∑
t=0

(
L− µ

L+ µ

)t
2

L+ µ
∆

=

(
L− µ

L+ µ

)T ∥∥∥w(0) −w∗
∥∥∥
2
+

1

1− L−µ
L+µ

2

L+ µ
∆

=

(
L− µ

L+ µ

)T ∥∥∥w(0) −w∗
∥∥∥
2
+

1

µ
∆

Remark. Some previous literature, including Yin et al. (2018), use 1
L as the step size, which results in the same

parameter estimation error but sub-optimal convergence rate

E
∥∥∥w(T ) −w∗

∥∥∥
2
≤
(
L− µ

L

)T ∥∥∥w(0) −w∗
∥∥∥
2
+

1

µ
∆

where 1 > L−µ
L > L−µ

L+µ . The proof can be found in Theorem 3.10 in Bubeck (2015). Instead, we choose step

size η = 2
L+µ which improves the convergence rate.
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B.2 Upper Bound of Gradient Estimation Error of BOBA

In this subsection we prove bounded gradient estimation error for BOBA. Since the full proof is long, we split it
to parts for clarity:

• Subsubsection B.2.1 summarizes the notation used in the proof.

• Subsubsection B.2.2 gives formal assumptions.

• Subsubsection B.2.3 provides useful lemmas used in the proof.

• Subsubsection B.2.4 proves that BOBA stage 1 can converge to an affine subspace with upper bounded
trimmed reconstruction loss in expectation.

• Subsubsection B.2.5 proves the robustness of BOBA stage 1, i.e., the fitted subspace is closed enough to the
honest subspace.

• Subsubsection B.2.6 proves the robustness of BOBA stage 2, i.e., all honest gradients will not be discarded.

• Subsubsection B.2.7 wraps up the previous subsubsections, and proves the robustness of BOBA.
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B.2.1 Notation

We summarize all notations we use in our proof in Table 5.

Table 5: Notation

Notation Description

d dimensionality of model parameters and gradient
c number of classes
n number of clients
H set of honest clients
|H| number of honest clients
B set of Byzantine clients
|B| real number of Byzantine clients
f declared number of Byzantine clients. The aggregator is robust when f ≥ |B|
gi gradient uploaded by client i, i = 1, · · · , n
µ average of all honest gradients, µ = 1

|H|
∑

i∈H gi. This is the gradient of empirical loss.

Egi expectation of honest gradient gi, i ∈ H. Note that Byzantine gradient does not have expectation.
Eµ expectation of µ. This is the gradient of population loss.
µ̂ aggregation result, µ̂ = Agg({gi}ni=1)

ϵ upper bound of client inner variation, formally defined in Assumption 5.2
δ upper bound of client outer variation, formally defined in Assumption 5.2
ϵs upper bound of server inner variation, formally defined in Assumption 5.2
δs upper bound of server outer variation, formally defined in Assumption 5.2
σ lower bound of client singular value, formally defined in Assumption 5.3
σs lower bound of server singular value, formally defined in Assumption 5.3

P an affine subspace
ΠP an affine projection function
F(P) n− f gradients used to fit P (among {gi}ni=1)
N (P) n− f nearest neighbors of P (among {gi}ni=1)
ℓt(P) trimmed reconstruction loss of P, ℓt(P) =

∑
i∈N (P) ∥gi −ΠP(gi)∥22

P∗ the honest subspace. It goes through the expectation of honest gradients {Egi}i∈H

P̂ the projection function fitted by BOBA

S n− 2f clients that is both honest and in n− f nearest neighbors of P̂, S = {s1, · · · , sn−2f} ⊂ (H ∩N (P̂))
∂S matrix of differences between projections to fitted and ideal affine subspaces of expected gradients in S,

∂S = [ΠP̂(Egs1
)−ΠP∗(Egs1

), · · · ,ΠP̂(Egsn−2f
)−ΠP∗(Egsn−2f

)] ∈ Rd×(n−2f)

∆gi difference between (fitted) projection and expectation of honest gradient gi, i ∈ H, ∆gi = ΠP̂(gi)− Egi

γz server gradient of class z, z = 1, · · · , c
Eγz expectation of server gradient γz, z = 1, · · · , c
Γ matrix of server gradients, Γ = [γ1, · · · ,γc]
EΓ matrix of expectations of server gradients, EΓ = [Eγ1, · · · ,Eγc]

ΠP̂(Γ) matrix of projections of server gradients, ΠP̂(Γ) = [ΠP̂(γ1), · · · ,ΠP̂(γc)]
∆Γ matrix of differences between (fitted) projection and expectation of server gradients,

∆Γ = ΠP̂(Γ)− EΓ = [ΠP̂(γ1)− Eγ1, · · · ,ΠP̂(γc)− Eγc]

pi true label distribution of honest client i ∈ H
p̂i estimated label distribution of client i
pmin hyperparameter of BOBA, pmin ≤ 0 in our case
p̂H average of all estimated label distributions of honest clients, p̂H = 1

|H|
∑

i∈H p̂i

p̂B average of all estimated label distributions of Byzantine clients that evading stage 2,
p̂B = 1

|B|
∑

b∈B p̂b when all Byzantine gradients evade stage 2
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B.2.2 Assumptions

In this part, we re-introduce the assumptions mentioned in the main text and provide more explanations in
remarks.

Assumption 5.2 (Bounded variations).

1. Honest client inner variation: E∥gi − Egi∥22 ≤ ϵ2,∀i ∈ H.

2. Honest client outer variation: ∥Egi − Eµ∥22 ≤ δ2,∀i ∈ H.

3. Server inner variation: E∥γz − Eγz∥22 ≤ ϵ2s,∀z = 1, · · · , c.

4. Server outer variation: ∥Eγz − Eµ∥22 ≤ δ2s ,∀z = 1, · · · , c.

Remark.

• Assumption 5.2(1) and 5.2(2) are standard assumptions in both FL and Byzantine-robust FL, e.g., Assump-
tion 6.1.1 (vi) and (vii) in Wang et al. (2021).

• Since server gradients are also ‘honest’, Assumption 5.2(3) and 5.2(4) simply rewrites Assumption 5.2(1)
and 5.2(2) with updated notation.

Assumption 5.3 (Bounded singular values).

1. Honest client singular value: conducting centralized SVD on any n − 2f expectations of honest gradients,
the (c− 1)-th singular value σc−1 ≥ σ > 0.

2. Server singular value: conducting centralized SVD on all c expectations of server gradients, the (c − 1)-th
singular value σc−1 ≥ σs > 0.

Remark.

• Assumption 5.3(1) is a natural extension of the standard “n− 2f > 0” assumption prevalent in IID AGRs
(Blanchard et al., 2017; Yin et al., 2018; Chen et al., 2017). This extension entails that, with c-label
skewness, it is imperative for all honest components to simultaneously outweigh the Byzantine component.
To fulfill this requirement, removing any arbitrary subset of f clients from the set of n − f honest clients
should still ensure that the remaining n− 2f honest clients affinely span the honest subspace, indicated by
σc−1 ≥ σ, ∃σ > 0. Failure to meet this condition could empower Byzantines to form a cluster to replace an
honest component.

Assumption 5.3(1) also reveals that the robustness of an FL system with label skewness depends not only
on n, f and c, but also on the label distribution for each honest client. Considering c = 2, when {Egi}i∈H
distributes uniformly on the honest simplex (a line segment), Assumption 5.3(1) holds as long as n−2f > 1
(i.e., f < n−1

2 ), closely resembling the IID setting. However, when half of the honest clients have only
positive samples, while the other half have only negative samples, {Egi}i∈H will only be distributed at the
two vertices of the honest simplex. In this case, Assumption 5.3(1) only holds when n − 2f > n−f

2 (i.e.,
f < n

3 ).

• Assumption 5.3(2) assumes that c server gradients form the vertices of a (c− 1)-honest simplex, while they
do not degrade, i.e., they are not on any (c− 2)-simplex. We omit Assumption 5.3(2) in the main text for
clarity, since Assumption 5.3(1) is a sufficient condition for Assumption 5.3(2).
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B.2.3 Useful Lemmas of Affine Projection

In our proof, we frequently use lemmas related to affine subspace and affine projection. For clarity, we formally
define these notions and summarize these lemmas.

Definition B.5 (Affine Subspace and Affine Projection). P is a c-dimensional affine subspace in Rd if there
exists a column-orthogonal U ∈ Rd×c and a bias vector m ∈ Rd, s.t.

P = {Uλ+m : λ ∈ Rc}

The corresponding affine projection function ΠP is an affine projection function orthogonally projecting vectors
to P.

ΠP(w) = P (w −m) +m, ∀w ∈ Rd

where P = UU⊤ ∈ Rd×d is a projection matrix whose eigenvalues have c ones and d− c zeros.

Then, we present useful lemmas of affine projection.

Lemma B.6 (Nearest neighbor projection). For any affine projection function ΠP : Rd → Rd and two vectors
u,v ∈ Rd,

∥ΠP(u)− u∥2 ≤ ∥ΠP(v)− u∥2

Proof. We first prove that ΠP(v)−ΠP(u) and ΠP(u)− u are orthogonal.

(ΠP(v)−ΠP(u))
⊤(ΠP(u)− u) = [(P (v −m) +m)− (P (u−m) +m)]⊤[P (u−m) +m− u]

= [P (v − u)]⊤[(P − I)(u−m)]

= (v − u)⊤[P⊤(P − I)](u−m)

= (v − u)⊤0(u−m)

= 0

With this result,

∥ΠP(v)− u∥2 =
√
∥ΠP(v)−ΠP(u)∥22 + ∥ΠP(u)− u∥22

≥ ∥ΠP(u)− u∥2

Lemma B.7 (1-contraction). For any projection function ΠP : Rd → Rd and two vectors u,v ∈ Rd,

∥ΠP(u)−ΠP(v)∥2 ≤ ∥u− v∥2

Proof.

∥ΠP(u)−ΠP(v)∥2 = ∥[P (u−m) +m]− [P (v −m) +m]∥2
= ∥P (u− v)∥2
≤ ∥P ∥2∥u− v∥2
≤ ∥u− v∥2

Lemma B.8 (Commutativity of affine projection and affine combination). For any projection function ΠP :
Rd → Rd, a set of n vectors {ui}ni=1 ∈ Rd and coefficients {λi}ni=1 subject to

∑n
i=1 λi = 1,

ΠP

(
n∑

i=1

λiui

)
=

n∑
i=1

λiΠP(ui)
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Proof.

ΠP

(
n∑

i=1

λiui

)
= P

(
n∑

i=1

λiui −m

)
+m

=

n∑
i=1

λi[P (ui −m) +m]

=

n∑
i=1

λiΠP(ui)

Remark. The sum-to-one constraint on coefficients is crucial as the projection is affine, not linear.

Lemma B.9. For any two projection functions ΠP1
,ΠP2

: Rd → Rd, a set of n vectors {ui}ni=1 ∈ Rd, coefficients
{λi}ni=1 subject to

∑n
i=1 λi = 1 and an affine combination v =

∑n
i=1 λiui,

∥∂v∥2 ≤ ∥∂U∥2 · ∥λ∥2

where λ = [λ1, · · · , λn]
⊤ ∈ Rn, ∂v = ΠP1

(v) − ΠP2
(v) ∈ Rd and ∂U = [ΠP1

(u1) − ΠP2
(u1), · · · ,ΠP1

(un) −
ΠP2(un)] ∈ Rd×n.

Proof.

∥∂v∥2 = ∥ΠP1
(v)−ΠP2

(v)∥2

=

∥∥∥∥∥ΠP1

(
n∑

i=1

λiui

)
−ΠP2

(
n∑

i=1

λiui

)∥∥∥∥∥
2

=

∥∥∥∥∥
n∑

i=1

λiΠP1
(ui)−

n∑
i=1

λiΠP2
(ui)

∥∥∥∥∥
2

(Lemma B.8)

=

∥∥∥∥∥
n∑

i=1

λi[ΠP1
(ui)−ΠP2

(ui)]

∥∥∥∥∥
2

= ∥∂Uλ∥2
≤ ∥∂U∥2 · ∥λ∥2

Remark. This lemma shows how to bound the projection error of another vector based on the “basis” vectors.
(Strictly speaking, {ui}ni=1 are not basis, as they can be dependent. In this case, we can find a λ with the
smallest norm to get the tightest bound of ∥ΠP1(v)−ΠP2(v)∥2. )
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B.2.4 Bounded Trimmed Reconstruction Loss

BOBA stage 1 minimizes the trimmed reconstruction loss among clients’ gradients. In this subsubsection, we
prove that for both BOBA-ES (which use exhaustive searching) and BOBA (which use more efficient alternating
optimization) can fit an affine subspace with upper bounded trimmed reconstruction loss in expectation, while
this loss is not affected by outer deviation. We first formally define trimmed reconstruction loss in Definition
B.10, and then derive upper bounds of the trimmed reconstruction losses for BOBA-ES and BOBA in Lemma
B.11 and B.12, respectfully. Finally, we empirically compare their trimmed reconstruction loss.

Definition B.10 (Trimmed reconstruction loss). Given gradients g1, · · · , gn and Byzantine tolerance f , the
trimmed reconstruction loss of an affine subspace P is

ℓt(P) = min
r∈{0,1}n∑n
i=1 ri=n−f

n∑
i=1

ri ∥gi −ΠP(gi)∥
2
2

which is the sum of squared distance from P to its n− f nearest neighbors.

Lemma B.11 (Trimmed reconstruction loss of BOBA-ES). Let P̂ denote the subspace fitted by BOBA-ES
(exhaustive searching) stage 1 and ℓt(P̂) be its corresponding trimmed reconstruction loss. We have

ℓt(P̂) ≤
n− f

|H|
∑
i∈H
∥gi − Egi∥22

Meanwhile, if we take expectation at both sides

Eℓt(P̂) ≤ (n− f)ϵ2

Proof. BOBA-ES iterates through all subsets of gradients with cardinality n − f , and pick the subset with we
it fits an affine subspace with smallest trimmed reconstruction loss. For any affine subspace P fitted by n − f
gradients, denote F(P) as the n− f gradients with which P is fitted, and N (P) as the n− f nearest neighbors
of P. Also, denote P∗ as the honest subspace. For any P ′ fitted by n − f honest gradients denoted as F(P ′)
(notice that n− f ≤ |H|),

ℓt(P̂) ≤ ℓt(P ′) (Optimality of BOBA-ES)

=
∑

i∈N (P′)

∥ΠP′(gi)− gi∥
2
2

≤
∑

i∈F(P′)

∥ΠP′(gi)− gi∥
2
2

≤
∑

i∈F(P′)

∥ΠP∗(gi)− gi∥
2
2 (Optimality of SVD)

≤
∑

i∈F(P′)

∥ΠP∗(Egi)− gi∥
2
2 (Lemma B.6)

=
∑

i∈F(P′)

∥Egi − gi∥
2
2

Finally, we iterate all subset of honest gradients with cardinality n− f . There will be
( |H|
n−f

)
subsets, while each

honest gradient is chosen for
( |H|−1
n−f−1

)
times. Therefore,(

|H|
n− f

)
ℓt(P̂) ≤

(
|H| − 1

n− f − 1

)∑
i∈H
∥Egi − gi∥

2
2 ⇒ ℓt(P̂) ≤

n− f

|H|
∑
i∈H
∥Egi − gi∥

2
2
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Lemma B.12 (Trimmed reconstruction loss of BOBA). Let P̂ denote the subspace fitted by BOBA (alternating
optimization) stage 1 and ℓt(P̂) be its corresponding trimmed reconstruction loss. We have

ℓt(P̂) ≤ 2
n− f

|H|

(∑
i∈H
∥gi − Egi∥22 +

∑
i∈H

c∑
z=1

piz∥Eγz − γz∥22

)
Meanwhile, if we take expectation at both sides

Eℓt(P̂) ≤ 2(n− f)(ϵ2 + ϵ2s)

Proof. We denote P̂0 as the affine subspace initialized by server gradients γ1, · · · ,γc. Since the trimmed recon-
struction loss is monotone non-increasing during the alternating optimization, we have

ℓt(P̂) ≤ ℓt(P̂0)

For each honest client i ∈ H, its expected gradient can be expressed as a convex combination of expected server
gradients, i.e.,

Egi =

c∑
z=1

pizEγz (Proposition 3.3)

where [pi1, · · · , piz]⊤ is the label distribution of client i. We have∥∥∥Egi −ΠP̂0
(Egi)

∥∥∥2
2
=
∥∥∥ΠP∗(Egi)−ΠP̂0

(Egi)
∥∥∥2
2

=

∥∥∥∥∥ΠP∗

(
c∑

z=1

pizEγz

)
−ΠP̂0

(
c∑

z=1

pizEγz

)∥∥∥∥∥
2

2

=

∥∥∥∥∥
c∑

z=1

piz

(
ΠP∗ (Eγz)−ΠP̂0

(Eγz)
)∥∥∥∥∥

2

2

(Lemma B.8)

≤
c∑

z=1

piz∥ΠP∗ (Eγz)−ΠP̂0
(Eγz) ∥22 (Convexity of ∥x∥22)

=

c∑
z=1

piz∥Eγz −ΠP̂0
(Eγz) ∥22

≤
c∑

z=1

piz∥Eγz −ΠP̂0
(γz) ∥22 (Lemma B.6)

=

c∑
z=1

piz∥Eγz − γz∥22

Therefore,

∥gi −ΠP̂0
(gi)∥22 ≤ ∥gi −ΠP̂0

(Egi)∥22 (Lemma B.7)

= ∥(gi − Egi) + (Egi −ΠP̂0
(Egi))∥22

≤ 2∥gi − Egi∥22 + 2∥Egi −ΠP̂0
(Egi)∥22

Finally, denote N (P̂0) as the n− f nearest neighbors of P̂0

ℓt(P̂) ≤ ℓt(P̂0)

=
∑

i∈N (P̂0)

∥gi −ΠP̂0
(gi)∥22

≤ n− f

|H|
∑
i∈H
∥gi −ΠP̂0

(gi)∥22

≤ 2
n− f

|H|

(∑
i∈H
∥gi − Egi∥22 +

∑
i∈H

c∑
z=1

piz∥Eγz − γz∥22

)
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Remark. When ϵs = O(ϵ), Eℓt(P̂) = O(nϵ2) for both BOBA-ES and BOBA.

Empirical comparison

In Lemma B.11 and B.12, we derive upper bounds of the trimmed reconstruction loss, and show that they
have the same order. Additionally, we empirically compare the trimmed reconstruction loss of two algorithms.
Specifically, for each type of attack, we employed both BOBA and BOBA-ES in every round and recorded their
respective trimmed reconstruction losses. Since BOBA always yield trimmed reconstruction losses greater than

or equal to those of BOBA-ES, we plotted the ratio of their losses, i.e. ℓt(BOBA)
ℓt(BOBA-ES) .

We have organized the results in Figure 5. It is noteworthy that when facing Gauss/IPM/MinMax/MinSum
attacks, BOBA can achieve the same trimmed reconstruction loss as BOBA-ES. However, when not subjected
to attacks or when facing LIE/Mimic attacks, due to the existence of multiple subspaces that can yield similar
trimmed reconstruction loss, BOBA converges to a slightly higher trimmed reconstruction loss compared to
BOBA-ES. Nevertheless, their convergence results are highly similar, with the loss ratio seldom exceeding 1.2.
This demonstrates that BOBA can yield very similar results to BOBA-ES. It is important to note that in the
main text, we also provide a comprehensive comparison of the performance of both algorithms.
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Figure 5: Comparison of trimmed reconstruction loss of BOBA and BOBA-ES
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B.2.5 Robustness of BOBA Stage 1

In BOBA stage 1, we fit an affine subspace close to all honest gradients, and project all gradient into this fitted
subspace. In this subsubsection, we prove the robustness of stage 1, i.e., honest gradients will only be slightly
perturbed in stage 1. Specifically

• Lemma B.13 proves that each honest gradient’s projection is close enough to its expectation.

• Lemma B.14 proves that the average of honest gradients’ projections is close enough to the expectation of
the average of honest gradients.

• Lemma B.15 proves that each server gradient’s projection is close enough to its expectation.

Lemma B.13 (Robustness of stage 1). Let P̂ denote the subspace fitted by BOBA stage 1 and ℓt(P̂) be its
corresponding trimmed reconstruction loss. For any honest gradient gh, ∀h ∈ H, we have

∥∥ΠP̂(gh)− Egh

∥∥2
2
≤ 2∥gh − Egh∥22 + 4

(
1

n− 2f
+

4δ2

σ2

)(
ℓt(P̂) +

∑
i∈H
∥gi − Egi∥

2
2

)

Meanwhile, if we take expectation at both sides,

E
∥∥ΠP̂(gh)− gh

∥∥2
2
≤ 2ϵ2 + 4

(
1

n− 2f
+

4δ2

σ2

)(
Eℓt(P̂) + |H|ϵ2

)
≤


(
2 + 4

(
1

n−2f + 4δ2

σ2

)
(n− f + |H|)

)
ϵ2 (BOBA-ES)(

2 + 4
(

1
n−2f + 4δ2

σ2

)
(2(n− f) + |H|)

)
ϵ2 + 8

(
1

n−2f + 4δ2

σ2

)
(n− f)ϵ2s (BOBA)

Proof. The core of the proof is Lemma B.9. We split the full proof into four steps.

• Step 1: Find n − 2f expected gradients Egs1 ,Egs2 , · · · ,Egsn−2f
that affinely span the honest subspace.

Their projections to the fitted subspace and the honest subspace are close.

• Step 2: Express Egh as a affine combination of Egs1 ,Egs2 , · · · ,Egsn−2f
with coefficient λ. Derive an upper

bound for ∥λ∥2.

• Step 3: Use Lemma B.9 to show that Egh’s projections to the fitted subspace and the honest subspace are
close.

• Step 4: Use triangle inequality to postprocess the inequality.

Step 1. LetN (P̂) denote the n−f nearest neighbors of P̂. Among these n−f gradients, at least n−2f gradients
are honest. We use gs1 , gs2 , · · · , gsn−2f

to denote these n − 2f honest gradients and S = {s1, s2, · · · , sn−2f}
denote their indices. Since S ⊂ N (P̂), we have

∑
i∈S

∥∥ΠP̂(gi)− gi

∥∥2
2
≤

∑
i∈N (P̂)

∥∥ΠP̂(gi)− gi

∥∥2
2
= ℓt(P̂)
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Let P∗ denote the honest subspace, i.e., the subspace on which expected gradients {Egi}i∈H lie. Then,∑
i∈S

∥∥ΠP̂(Egi)−ΠP∗(Egi)
∥∥2
2
=
∑
i∈S

∥∥ΠP̂(Egi)− Egi

∥∥2
2

≤
∑
i∈S

∥∥ΠP̂(gi)− Egi

∥∥2
2

(Lemma B.7)

≤
∑
i∈S

(∥∥ΠP̂(gi)− gi

∥∥
2
+ ∥gi − Egi∥2

)2
≤
∑
i∈S

(
2
∥∥ΠP̂(gi)− gi

∥∥2
2
+ 2 ∥gi − Egi∥

2
2

)
≤ 2

∑
i∈S

∥∥ΠP̂(gi)− gi

∥∥2
2
+ 2

∑
i∈H
∥gi − Egi∥

2
2

= 2ℓt(P̂) + 2
∑
i∈H
∥gi − Egi∥

2
2

Define ∂S = [ΠP̂(Egs1)−ΠP∗(Egs1), · · · ,ΠP̂(Egsn−2f
)−ΠP∗(Egsn−2f

)] ∈ Rd×(n−2f), we have

∥∂S∥22 ≤ ∥∂S∥2F =
∑
i∈S

∥∥ΠP̂(Egi)−ΠP∗(Egi)
∥∥2
2
≤ 2ℓt(P̂) + 2

∑
i∈H
∥gi − Egi∥

2
2

Step 2. By Assumption 5.2(1), Egs1 ,Egs2 , · · · ,Egsn−2f
can affinely span the honest subspace. Therefore we

can express Egh as an affine combination of them, i.e., there exists λ = [λ1, · · · , λn−2f ]
⊤ ∈ Rn−2f , s.t.,

Egh =

n−2f∑
i=1

λiEgsi ,

n−2f∑
i=1

λi = 1

With bounded singular values (Assumption 5.3(1)), we can find a λ with small bounded norm. Although the
solution of λ is usually not unique (when n − 2f > c), we only need one solution with small norm. We first

“centralize” gradients. Let Ems =
1

n−2f

∑n−2f
i=1 Egsi , we need to solve the following centralized linear system

Egh − Ems =

n−2f∑
i=1

θi(Egsi − Ems) = Asθ

where As = [Egs1 − Ems, · · · ,Egsn−2f
− Ems] ∈ Rd×(n−2f). One solution of θ is θ = A+

s (Egh − Ems), where

A+
s is the Moore-Penrose inverse of As. The norm of this solution is bounded by

∥θ∥2 = ∥A+
s (Egh − Ems)∥2

≤ ∥A+
s ∥2 · ∥Egh − Ems∥2

≤ 1

σ
· ∥Egh − Ems∥2 (Assumption 5.3(1))

≤ 1

σ
·

∥∥∥∥∥(Egh − Eµ)− 1

n− 2f

n−2f∑
i=1

(Egsi − Eµ)

∥∥∥∥∥
2

≤ 1

σ
·

(
∥Egh − Eµ∥2 +

1

n− 2f

n−2f∑
i=1

∥Egsi − Eµ∥2

)

≤ 2δ

σ
(Assumption 5.2(2))

Each solution of the centralized linear system θ corresponds to a solution of the original linear system

λ =
1

n− 2f
1+

(
I − 1

n− 2f
11⊤

)
θ
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Therefore,

∥λ∥2 =

∥∥∥∥ 1

n− 2f
1+

(
I − 1

n− 2f
11⊤

)
θ

∥∥∥∥
2

=

√∥∥∥∥ 1

n− 2f
1

∥∥∥∥2
2

+

∥∥∥∥(I − 1

n− 2f
11⊤

)
θ

∥∥∥∥2
2

(Orthogonality)

≤

√∥∥∥∥ 1

n− 2f
1

∥∥∥∥2
2

+

∥∥∥∥I − 1

n− 2f
11⊤

∥∥∥∥2
2

· ∥θ∥22

≤

√∥∥∥∥ 1

n− 2f
1

∥∥∥∥2
2

+ ∥θ∥22

≤

√
1

n− 2f
+

4δ2

σ2

It is also easy to verify that 1⊤λ = 1.

Step 3. Since then, we construct a λ satisfying the condition of Lemma B.9. Therefore∥∥ΠP̂(Egh)−ΠP∗(Egh)
∥∥2
2
≤ ∥∂S∥22 · ∥λ∥22 (Lemma B.9)

≤
(

1

n− 2f
+

4δ2

σ2

)(
2ℓt(P̂) + 2

∑
i∈H
∥gi − Egi∥

2
2

)

Step 4. Finally,

∥ΠP̂(gh)− Egh∥22 = ∥ΠP̂(gh)−ΠP∗(Egh)∥22
≤ 2∥ΠP̂(gh)−ΠP̂(Egh)∥22 + 2∥ΠP̂(Egh)−ΠP∗(Egh)∥22
≤ 2∥gh − Egh∥22 + 2∥ΠP̂(Egh)−ΠP∗(Egh)∥22 (Lemma B.7)

≤ 2∥gh − Egh∥22 + 2

(
1

n− 2f
+

4δ2

σ2

)(
2ℓt(P̂) + 2

∑
i∈H
∥gi − Egi∥

2
2

)

= 2∥gh − Egh∥22 + 4

(
1

n− 2f
+

4δ2

σ2

)(
ℓt(P̂) +

∑
i∈H
∥gi − Egi∥

2
2

)

Lemma B.13 shows that for each honest gradient, its projection is close to its expectation. Next, we demonstrate
in Lemma B.14 that a similar property holds for the average of honest gradients.

Lemma B.14. Let P̂ denote the subspace fitted by BOBA stage 1 and ℓt(P̂) be its corresponding trimmed
reconstruction loss. Denote µ = 1

|H|
∑

i∈H gi and µ̂H = 1
|H|
∑

i∈H ΠP̂(gi), we have

∥µ̂H − Eµ∥22 ≤ 2
1

|H|
∑
i∈H
∥gi − Egi∥

2
2 + 4

(
1

n− 2f
+

δ2

σ2

)(
ℓt(P̂) +

∑
i∈H
∥gi − Egi∥

2
2

)

Meanwhile, if we take expectation at both sides,

E ∥µ̂H − Eµ∥22 ≤ 2ϵ2 + 4

(
1

n− 2f
+

δ2

σ2

)(
Eℓt(P̂) + |H|ϵ2

)
≤


(
2 + 4

(
1

n−2f + δ2

σ2

)
(n− f + |H|)

)
ϵ2 (BOBA-ES)(

2 + 4
(

1
n−2f + δ2

σ2

)
(2(n− f) + |H|)

)
ϵ2 + 8

(
1

n−2f + δ2

σ2

)
(n− f)ϵ2s (BOBA)
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Proof. The average of honest gradients can also be seen as a honest gradient. Therefore, we can use the same
proof framework as Lemma B.13, while providing tighter bound.

Step 1. Omitted, identical to the step 1 in the proof of B.13.

Step 2. Similar to step 2 in the proof of B.13, while we can derive a tighter bound of ∥λ∥2

∥θ∥2 = ∥A+
s (Eµ− Ems)∥2

≤ ∥A+
s ∥2 · ∥Eµ− Ems∥2

≤ 1

σ
· ∥Eµ− Ems∥2 (Assumption 5.3(1))

≤ 1

σ
·

∥∥∥∥∥− 1

n− 2f

n−2f∑
i=1

(Egsi − Eµ)

∥∥∥∥∥
2

≤ 1

σ
· 1

n− 2f

n−2f∑
i=1

∥Egsi − Eµ∥2

≤ δ

σ
(Assumption 5.2(2))

And therefore ∥λ∥2 ≤
√

1
n−2f + δ2

σ2 .

Step 3. Also identical to the step 3 in the proof of B.13.

∥ΠP̂(Eµ)−ΠP∗(Eµ)∥22 ≤
(

1

n− 2f
+

δ2

σ2

)(
2ℓt(P̂) + 2

∑
i∈H
∥gi − Egi∥

2
2

)

Step 4. Finally,

∥µ̂H − Eµ∥22 =

∥∥∥∥∥ 1

|H|
∑
i∈H

ΠP̂(gi)− Eµ

∥∥∥∥∥
2

2

=

∥∥∥∥∥ΠP̂

(
1

|H|
∑
i∈H

gi

)
− Eµ

∥∥∥∥∥
2

2

(Lemma B.8)

=
∥∥ΠP̂(µ)− Eµ

∥∥2
2

= ∥ΠP̂(µ)−ΠP∗(Eµ)∥22
≤ 2∥ΠP̂(µ)−ΠP̂(Eµ)∥

2
2 + 2∥ΠP̂(Eµ)−ΠP∗(Eµ)∥22

≤ 2∥µ− Eµ∥22 + 2∥ΠP̂(Eµ)−ΠP∗(Eµ)∥22 (Lemma B.7)

= 2

∥∥∥∥∥ 1

|H|
∑
i∈H

(gi − Egi)

∥∥∥∥∥
2

2

+ 2∥ΠP̂(Eµ)−ΠP∗(Eµ)∥22

≤ 2
1

|H|
∑
i∈H
∥gi − Egi∥

2
2 + 2∥ΠP̂(Eµ)−ΠP∗(Eµ)∥22 (Convexity of ∥x∥22)

= 2
1

|H|
∑
i∈H
∥gi − Egi∥

2
2 + 4

(
1

n− 2f
+

δ2

σ2

)(
ℓt(P̂) +

∑
i∈H
∥gi − Egi∥

2
2

)

Lemma B.15 (Robustness of Stage 1 for server gradients). Let P̂ denote the subspace fitted by BOBA stage 1
and ℓt(P̂) be its corresponding trimmed reconstruction loss. For server gradients γ1, · · · ,γc,

∥∆Γ∥22 ≤ 2

c∑
z=1

∥γz − Eγz∥22 + 4c

(
1

n− 2f
+

(δ + δs)
2

σ2

)(
ℓt(P̂) +

∑
i∈H
∥gi − Egi∥

2
2

)
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where ∆Γ = [ΠP̂(γ1)− Eγ1, · · · ,ΠP̂(γc)− Eγc] ∈ Rd×c. Meanwhile, if we take expectation at both sides,

E∥∆Γ∥22 ≤ 2cϵ2s + 4c

(
1

n− 2f
+

(δ + δs)
2

σ2

)(
Eℓt(P̂) + |H|ϵ2

)
≤

4c
(

1
n−2f + (δ+δs)

2

σ2

)
(n− f + |H|)ϵ2 +

(
2c+ 4c

(
1

n−2f + (δ+δs)
2

σ2

)
(n− f)

)
ϵ2s (BOBA-ES)

4c
(

1
n−2f + (δ+δs)

2

σ2

)
(2(n− f) + |H|)ϵ2 +

(
2c+ 8c

(
1

n−2f + δ+δs)
2

σ2

)
(n− f)

)
ϵ2s (BOBA)

Proof. Each server gradient can also be seen as a honest gradients. Therefore, we can use the same proof
framework as Lemma B.13. We first derive upper bound of ∥ΠP̂(γz)− Eγz∥22 for each z ∈ {1, · · · , c}.

Step 1. Omitted, identical to the step 1 in the proof of B.13.

Step 2. Similar to step 2 in the proof of B.13, while the bound of ∥λ∥2 need to be updated:

∥θ∥2 = ∥A+
s (Eγz − Ems)∥2

≤ ∥A+
s ∥2 · ∥Eγz − Ems∥2

≤ 1

σ
· ∥Eγz − Ems∥2 (Assumption 5.3(1))

≤ 1

σ
·

∥∥∥∥∥(Eγz − Eµ)− 1

n− 2f

n−2f∑
i=1

(Egsi − Eµ)

∥∥∥∥∥
2

≤ 1

σ
·

(
∥Eγz − Eµ∥2 +

1

n− 2f

n−2f∑
i=1

∥Egsi − Eµ∥2

)

≤ δ + δs
σ

(Assumption 5.2(2) and (4))

And therefore ∥λ∥2 ≤
√

1
n−2f + (δ+δs)2

σ2 .

Step 3. Also identical to the step 3 in the proof of B.13.

∥ΠP̂(Eγz)−ΠP∗(Eγz)∥22 ≤
(

1

n− 2f
+

(δ + δs)
2

σ2

)(
2ℓt(P̂) + 2

∑
i∈H
∥gi − Egi∥

2
2

)

Step 4. Finally,

∥ΠP̂(γz)− Eγz∥22 = ∥ΠP̂(γz)−ΠP∗(Eγz)∥22
≤ 2∥ΠP̂(γz)−ΠP̂(Eγz)∥22 + 2∥ΠP̂(Eγz)−ΠP∗(Eγz)∥22
≤ 2∥γz − Eγz∥22 + 2∥ΠP̂(Eγz)−ΠP∗(Eγz)∥22 (Lemma B.7)

= 2∥γz − Eγz∥22 + 4

(
1

n− 2f
+

(δ + δs)
2

σ2

)(
ℓt(P̂) +

∑
i∈H
∥gi − Egi∥

2
2

)
∥∆Γ∥22 ≤ ∥∆Γ∥2F

=

c∑
z=1

∥ΠP̂(γz)− Eγz∥22

≤ 2
c∑

z=1

∥γz − Eγz∥22 + 4c

(
1

n− 2f
+

(δ + δs)
2

σ2

)(
ℓt(P̂) +

∑
i∈H
∥gi − Egi∥

2
2

)
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B.2.6 Robustness of BOBA Stage 2

In BOBA stage 2, we estimate the label distribution for each client and discard abnormal clients with strongly
negative elements in their label distribution. We use a filtering strategy with a hyper-parameter pmin. In this
subsubsection, we show that we can find a hyper-parameter pmin such that |pmin| ≥ ∥p̂h − ph∥2, where ph is the
true label distribution and p̂h is the estimated label distribution, for a honest client h ∈ H.

Lemma B.16 (Weyl’s perturbation bound for singular values). Let A be a matrix with singular value σ1 ≥
· · · ≥ σn and Â = A+∆A be a perturbation of A, with corresponding singular value σ̂1, · · · , σ̂n, we have

|σ̂i − σi| ≤ ∥∆A∥2

Proof. See proof by Stewart (1990).

We re-introduce some useful notation. Let

EΓ = [Eγ1, · · · ,Eγc] ∈ Rd×c

ΠP̂(Γ) = [ΠP̂(γ1), · · · ,ΠP̂(γc)] ∈ Rd×c

∆Γ = ΠP̂(Γ)− EΓ = [ΠP̂(γ1)− Eγ1, · · · ,ΠP̂(γc)− Eγc] ∈ Rd×c

∆gh = ΠP̂(gh)− Egh ∈ Rd

The true and estimated label distributions of honest client h ∈ H are denoted as ph, p̂h, which follow

Egh = (EΓ)ph, ΠP̂(gh) = ΠP̂(Γ)p̂h

Lemma B.17 (Robustness of stage 2). For any honest gradient gh, we have

∥∆ph∥2 ≤
1

σs − ∥∆Γ∥2
·
[
∥∆gh∥2 +

√
2∥∆Γ∥2

]
where ∆ph = p̂h − ph.

Proof. We compare two linear systems:

(EΓ)ph = Egh, 1⊤ph = 1 (System 1)

(ΠP̂(Γ))p̂h = ΠP̂(gh), 1⊤p̂h = 1 (System 2)

Different from solving the affine combination at step 3 of Lemma B.13, the solutions here to both linear systems
are unique. Therefore, we can use any method to express ∆ph = p̂h − ph and then get a corresponding bound
of its 2-norm.

It is also worth noting that the linear system in the algorithm/code is solved in latent space Rc−1 instead of
original space Rd, which is much more efficient. However in this proof, we consider the problem in Rd to compare
the fitted projection with the ideal projection. We still get the same solution of ph and p̂h, thus the bound is
valid.

We first centralized both systems to remove the affine constraint. Let

A = EΓ
(
I − 1

c
11⊤

)
Â = ΠP̂(Γ)

(
I − 1

c
11⊤

)
∆A = Â−A

b = Egh − EΓ · 1
c
1 b̂ = ΠP̂(gh)−ΠP̂(Γ) ·

1

c
1 ∆b = b̂− b

Previously, we have bounded ∥∆gh∥2 and ∥∆Γ∥2 in Lemma B.13 and B.15, respectively. We use them to give
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bounds of ∥∆A∥2 and ∥∆b∥2.

∥∆A∥2 =
∥∥∥Â−A

∥∥∥
2

=

∥∥∥∥ΠP̂(Γ)

(
I − 1

c
11⊤

)
− EΓ

(
I − 1

c
11⊤

)∥∥∥∥
2

=

∥∥∥∥(ΠP̂(Γ)− EΓ
)(

I − 1

c
11⊤

)∥∥∥∥
2

≤
∥∥ΠP̂(Γ)− EΓ

∥∥
2
·
∥∥∥∥I − 1

c
11⊤

∥∥∥∥
2

≤
∥∥ΠP̂(Γ)− EΓ

∥∥
2

= ∥∆Γ∥2

and similarly,

∥∆b∥2 = ∥b̂− b∥2

=

∥∥∥∥(ΠΠP̂
(gh)−ΠP̂(Γ) ·

1

c
1

)
−
(
Egh − EΓ · 1

c
1

)∥∥∥∥
2

=

∥∥∥∥(ΠP̂(gh)− Egh

)
−
(
ΠP̂(Γ)− EΓ

)
· 1
c
1

∥∥∥∥
2

≤
∥∥ΠP̂(gh)− Egh

∥∥
2
+
∥∥ΠP̂(Γ)− EΓ

∥∥
2
·
∥∥∥∥1c1

∥∥∥∥
2

= ∥∆gh∥2 +
1√
c
∥∆Γ∥2

Then, instead of the original systems, we analyze the centralized systems

Ax = b, Âx̂ = b̂

with

x = ph −
1

c
1 x̂ = p̂h −

1

c
1 ∆x = x̂− x

By standard perturbation analysis of linear system,

Âx̂−Ax = b̂− b

Â(∆x) + (∆A)x = ∆b

Â(∆x) = ∆b− (∆A)x

On the left hand side, ∆x ∈ Rc but the rank of Â is only c − 1. Usually, this results in an unbounded norm
of ∆x, as it can grow arbitrarily in the direction of the c-th right singular vector of Â. However, the c-th right
singular vector of Â is 1√

c
1.

Â1 = ΠP̂(Γ)

(
I − 1

c
11⊤

)
1 = ΠP̂(Γ) (1− 1) = 0

But ∆x cannot grow in the direction of 1

1⊤∆x = 1⊤
[(

p̂h −
1

c
1

)
−
(
ph −

1

c
1

)]
= 1⊤p̂h − 1⊤ph = 1− 1 = 0

Thus, we can still bound ∆x with the (c− 1)-th singular value of Â (instead of the smallest singular value, 0).
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We have

σ̂c−1∥∆x∥2 ≤
∥∥∥Â(∆x)

∥∥∥
2

= ∥∆b− (∆A)x∥2
≤ ∥∆b∥2 + ∥∆A∥2 · ∥x∥2

∥∆x∥2 ≤
1

σ̂c−1
(∥∆b∥2 + ∥∆A∥2 · ∥x∥2)

∥∆A∥2 and ∥∆b∥2 are already bounded, we still need to bound 1
σ̂c−1

and ∥x∥2.

σ̂c−1 is the (c − 1)-th singular value of Â, and is perturbed from σc−1, the (c − 1)-th singular value of A. By
Assumption 5.3 and Weyl’s perturbation bound for singular value (Lemma B.16)

σ̂c−1 ≥ σc−1 − |σ̂c−1 − σc−1|
≥ σc−1 − ∥∆A∥2 (Lemma B.16)

≥ σs − ∥∆A∥2 (Assumption 5.3)

≥ σs − ∥∆Γ∥2

The 2-norm of x can also be bounded,

∥x∥2 =

∥∥∥∥ph −
1

c
1

∥∥∥∥
2

=

√(
ph −

1

c
1

)⊤(
ph −

1

c
1

)
=

√
p⊤
h ph −

1

c

≤
√
1− 1

c

Putting everything together, we have

∥∆ph∥2 = ∥∆x∥2

≤ 1

σ̂c−1
· (∥∆b∥2 + ∥∆A∥2 · ∥x∥2)

≤ 1

σs − ∥∆Γ∥2
·

(
∥∆gh∥2 +

1√
c
∥∆Γ∥2 +

√
1− 1

c
∥∆Γ∥2

)

=
1

σs − ∥∆Γ∥2
·

[
∥∆gh∥2 +

(√
1

c
+

√
1− 1

c

)
∥∆Γ∥2

]

≤ 1

σs − ∥∆Γ∥2
·
[
∥∆gh∥2 +

√
2∥∆Γ∥2

]
when σs − ∥∆Γ∥2 > 0.

Remark. We consider the case where ∥∆gh∥2 = O(ϵ) and ∥∆Γ∥2 = O(
√
cϵ) (see remarks of Lemma B.13 and

B.15). When the outer deviation dominates the inner deviation, σs ≫ ∥∆Γ∥2, thus ∥∆ph∥2 = O(
√
cϵ

σs
). This

means that we can set a small |pmin| and still preserve all honest gradients.
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B.2.7 Robustness of BOBA

So far, we have already proved two things.

• In stage 1, all honest gradients are only slightly perturbed.

• In stage 2, all honest gradients are preserved, given

In this subsubsection, we wrap up the theoretical results and provide the unbiasedness and robustness of BOBA.
Specifically,

• When there are no Byzantine attack, BOBA is unbiased.

• When there are Byzantine attack, BOBA is robust and has gradient estimation error of optimal order
matching with the theoretical lower bound.

Theorem 5.5. Let µ̂ denote the aggregation result of BOBA. We have,

∥µ̂− Eµ∥22 ≤ 4
1

|H|
∑
i∈H
∥gi − Egi∥

2
2 + 8

(
1

n− 2f
+

δ2

σ2

)(
ℓt(P̂) +

∑
i∈H
∥gi − Egi∥

2
2

)

+ β28(1 + c|pmin|)2
(
2

c∑
z=1

∥γz − Eγz∥22 + 2δ2s

)
Then we take expectation on both sides,

E∥µ̂− Eµ∥22 ≤ 4ϵ2 + 8

(
1

n− 2f
+

δ2

σ2

)(
Eℓt(P̂) + |H|ϵ2

)
+ 8β2(1 + c|pmin|)2(2cϵ2s + 2δ2s)

≤



(
4 + 8

(
1

n−2f + δ2

σ2

)
(n− f + |H|)

)
ϵ2 + 16c(1 + c|pmin|)2β2ϵ2s

+16(1 + c|pmin|)2β2δ2s (BOBA-ES)(
4 + 8

(
1

n−2f + δ2

σ2

)
(2(n− f) + |H|)

)
ϵ2

+
(
16
(

1
n−2f + δ2

σ2

)
(n− f) + 16c(1 + c|pmin|)2β2

)
ϵ2s

+16(1 + c|pmin|)2β2δ2s (BOBA)

Proof. When some Byzantine clients are accepted, they can affect the aggregation result via biasing the average
of estimated label distribution. Without loss of generality, we consider the worst case: all Byzantine gradients
are accepted by BOBA stage 2.

We first decompose the gradient estimation error into two parts. Define µ̂H = 1
|H|
∑

i∈H ΠP̂(gi), we have

∥µ̂− Eµ∥22 ≤ 2∥µ̂H − Eµ∥22 + 2∥µ̂− µ̂H∥22

The first term is already bounded in Lemma B.14. We further bound the second term. Notice that,

µ̂H =
1

|H|
∑
i∈H

ΠP̂(gi) =
1

|H|
∑
i∈H

ΠP̂(Γ)p̂i = ΠP̂(Γ)

(
1

|H|
∑
i∈H

p̂i

)

where p̂i is the estimated label distribution of client i. Similarly,

µ̂ = ΠP̂(Γ)

(
1

n

n∑
i=1

p̂i

)
We define

p̂H =
1

|H|
∑
i∈H

p̂i, p̂B =
1

|B|
∑
i∈B

p̂i, p̂ =
1

n

n∑
i=1

p̂i
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Then,

∥µ̂− µ̂H∥
2
2 =

∥∥ΠP̂(Γ) (p̂− p̂H)
∥∥2
2

=
∥∥(ΠP̂(Γ)−ΠP̂(Eµ)1

⊤) (p̂− p̂H)
∥∥2
2

=

∥∥∥∥∥
c∑

z=1

(p̂− p̂H)z ·
(
ΠP̂(γz)−ΠP̂(Eµ)

)∥∥∥∥∥
2

2

≤

(
c∑

z=1

|(p̂− p̂H)z| ·
∥∥ΠP̂(γz)−ΠP̂(Eµ)

∥∥
2

)2

≤
(
∥p̂− p̂H∥1 ·

(
max

z
∥ΠP̂(γz)−ΠP̂(Eµ)∥2

))2
= ∥p̂− p̂H∥21 ·

(
max

z
∥ΠP̂(γz)−ΠP̂(Eµ)∥

2
2

)
We first derive a bound for ∥p̂− p̂H∥1. In BOBA stage 2, a gradient will be accepted if and only if its estimated
label distribution lies in the (c− 1)-simplex of

p̂i ∈ {q : q ≥ pmin1,1
⊤q = 1}

Since both p̂H and p̂B are averages of some p̂i that lie inside the simplex above, we have

p̂H, p̂B ∈ {q : q ≥ pmin1,1
⊤q = 1}

Therefore, denote β = |B|
n , we have

∥p̂− p̂H∥1 =

∥∥∥∥ |H|n p̂H +
|B|
n

p̂B − p̂H

∥∥∥∥
1

=
|B|
n
∥p̂B − p̂H∥1

≤ |B|
n

(∥p̂B − pmin1∥1 + ∥p̂H − pmin1∥1)

= β2(1 + c|pmin|)

Then we derive a bound for maxz ∥ΠP̂(γz)−ΠP̂(Eµ)∥22. For each server gradient γz,

max
z
∥ΠP̂(γz)−ΠP̂(Eµ)∥

2
2 ≤ max

z
∥γz − Eµ∥22 (Lemma B.7)

≤ max
z

(
2∥γz − Eγz∥22 + 2∥Eγz − Eµ∥22

)
≤ 2

c∑
z=1

∥γz − Eγz∥22 +max
z

2∥Eγz − Eµ∥22

≤ 2

c∑
z=1

∥γz − Eγz∥22 + 2δ2s (Assumption 5.2)

Therefore,

∥µ̂− µ̂H∥
2
2 ≤ β24(1 + c|pmin|)2

(
2

c∑
z=1

∥γz − Eγz∥22 + 2δ2s

)
Put all together

∥µ̂− Eµ∥22 ≤ 4
1

|H|
∑
i∈H
∥gi − Egi∥

2
2 + 8

(
1

n− 2f
+

δ2

σ2

)(
ℓt(P̂) +

∑
i∈H
∥gi − Egi∥

2
2

)

+ β28(1 + c|pmin|)2
(
2

c∑
z=1

∥γz − Eγz∥22 + 2δ2s

)
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Then we take expectation on both sides,

E∥µ̂− Eµ∥22 ≤ 4ϵ2 + 8

(
1

n− 2f
+

δ2

σ2

)(
Eℓt(P̂) + |H|ϵ2

)
+ 8β2(1 + c|pmin|)2(2cϵ2s + 2δ2s)

≤



(
4 + 8

(
1

n−2f + δ2

σ2

)
(n− f + |H|)

)
ϵ2 + 16c(1 + c|pmin|)2β2ϵ2s

+16(1 + c|pmin|)2β2δ2s (BOBA-ES)(
4 + 8

(
1

n−2f + δ2

σ2

)
(2(n− f) + |H|)

)
ϵ2

+
(
16
(

1
n−2f + δ2

σ2

)
(n− f) + 16c(1 + c|pmin|)2β2

)
ϵ2s

+16(1 + c|pmin|)2β2δ2s (BOBA)

Remark. We analyze the order of the gradient estimation error. When the outer variation increases t times, i.e.,
Egi ← Etgi, both δ and σ increase t times. When all clients are duplication, i.e., G← [G,G], and f ← 2f , we

have that δ2 does not change but σ2 is doubled. Thus generally we have δ2

σ2 ∝ 1
n . When ϵs = O(ϵ), δs = O(δ),

c = O(1), 1
n−2f = O( 1n ), |H| = O(n), and |pmin| = O(1), we have ∥µ̂− Eµ∥22 = O(ϵ2 + β2δ2). We can conclude

that

E∥µ̂− Eµ∥22 = O(ϵ2 + β2δ2)

Especially, when β = 0, we have

E∥µ̂− Eµ∥22 = O(ϵ2)

Comparison to Bucketing Karimireddy et al. (2022) also have a similar claim in their Theorem II. However,
their theorem heavily relies on the assumption that AGR is aware of β, the real fraction of Byzantine clients, as
defined in their Definition A. (Their paper use δ.) However, in practical FL systems, the fraction of Byzantine
clients can be dynamic, and the AGR usually do not have precise knowledge of it. On the contrary, our BOBA
algorithm does not require exact estimation of β; it only needs to satisfy Assumption 5.3 and the condition
f ≥ |B|. We also show in Appendix C.4 that BOBA has consistent performance under a wide range of f and
|B|.
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B.3 Lower Bounds of Gradient Estimation Error

B.3.1 Lower Bounds of Gradient Estimation Error for Any AGR

In the IID setting, as the inner variation approaches zero (i.e., ϵ → 0), the gradient estimation error of robust
AGR typically also tends to zero (i.e., ∥µ̂ − Eµ∥22 → 0). Consider the extreme case where each honest client
uploads the same vector. In this scenario, robust AGR only needs to select the mode, i.e., the vector with the
highest frequency from the collected vectors. This implies that the aggregation result is entirely immune to the
influence of Byzantine clients.

However, this intuition does not hold in non-IID settings, including cases with label skewness. On the contrary,
for any AGR, as long as it remains unaware of the identity of Byzantine clients (i.e., which clients are honest
and which are Byzantine), the best-case gradient estimation error can only be guaranteed to be O(β2δ2), rather
than approaching zero, even when ϵ is zero. We rigorously state the above proposition as Proposition 5.4.

Proposition 5.4 (Lower bound of gradient estimation error for any AGR). Given any AGR, we can find |H|
honest gradients and |B| Byzantine gradients, such that E∥µ̂− Eµ∥22 ≥ Ω(β2δ2).

Proof. W.l.o.g., we assume n = |H|+ |B| is even. We consider the following two sets of gradients, both with |H|
honest clients, |B| Byzantine clients, zero inner variation, and outer variation bounded by δ

Gradient set 1:

gi =

{
+ |H|

n δ, i = 1, · · · , n
2

− |H|
n δ, i = n

2 + 1, · · · , n
, H = 1, · · · , |H|, B = |H|+ 1, · · · , n

Gradient set 2:

gi =

{
+ |H|

n δ, i = 1, · · · , n
2

− |H|
n δ, i = n

2 + 1, · · · , n
, H = |B|+ 1, · · · , n, B = 1, · · · , |B|

For the gradient set 1,

Eµ(1) =
1

|H|

(
n

2

(
|H|
n

δ

)
+
(
|H| − n

2

)(
−|H|

n
δ

))
=
|B|
n

δ

while for the gradient set 2, Eµ(2) = − |B|
n δ.

Notice that the two gradient sets have the same gradient values; the only difference is the identity of Byzantine
clients. Since the input is identical, any AGR will give identical aggregation result for both gradient sets. Thus,

max{∥µ̂− Eµ(1)∥2, ∥µ̂− Eµ(2)∥2} ≥
1

2

(
∥µ̂− Eµ(1)∥2, ∥µ̂− Eµ(2)∥2

)
≥ 1

2
∥Eµ(1) − Eµ(2)∥2

=
|B|
n

δ

= βδ

equivalently,

max{∥µ̂− Eµ(1)∥22, ∥µ̂− Eµ(2)∥22} ≥ β2δ2

which means that there exists one gradient set among set 1 and 2, such that the gradient estimation error is at
least β2δ2.

Remark. Notice that this result is not in contradiction with Theorem III in Karimireddy et al. (2022). Theorem
III in Karimireddy et al. (2022) gives an lower bound of Ω(δζ2), where δ represents the fraction of Byzantines
(equivalent to our β) and ζ represents the expected norm of outer variation (similar to our δ). The discrepancy
arises from a slight difference in the definition of outer variation. We define δ as the maximum norm of outer
variation, while Karimireddy et al. (2022) define ζ as the expected norm of outer variation.
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B.3.2 Lower Bounds of Gradient Estimation Error for Krum, CooMed and GeoMed

In this subsubsection, we prove that the gradient estimation error for Krum (Blanchard et al., 2017), CooMed
(Yin et al., 2018) and GeoMed (Chen et al., 2017) cannot be better than O(ϵ2+ δ2). To prove this, we construct
example where the gradient estimation error for the above three AGRs are all Ω(ϵ2 + δ2), even when β = 0 (no
attacks).

We construct a simple 3-client setting:

g1 =
δ

2
· 1√

2

[
−1
1

]
+ ϵ(2Z1 − 1) · 1√

2

[
1
1

]
, where Z1 ∼ Bernoulli(0.5)

g2 =
δ

2
· 1√

2

[
−1
1

]
+ ϵ · 1√

2
(2Z2 − 1)

[
1
1

]
, where Z2 ∼ Bernoulli(0.5)

g3 = −δ · 1√
2

[
−1
1

]
Their expectations:

Eg1 = Eg2 =
δ

2
· 1√

2

[
−1
1

]
, Eg3 = −δ · 1√

2

[
−1
1

]
, Eµ =

Eg1 + Eg2 + Eg3

3
=

[
0
0

]
Moreover, we consider δ > 2ϵ. We can easily verify the bounded inner/outer variations.

Krum No matter how Z1, Z2 are chosen, we always have ∥g1−g2∥2 < ∥g1−g3∥2 and ∥g1−g2∥2 < ∥g2−g3∥2.
Therefore, Krum will always choose from g1 and g2. In both case, ∥µ̂− Eµ∥22 = ϵ2 + δ2

4 .

CooMed

µ̂ =



[
− δ−2ϵ

2
√
2
, δ−2ϵ

2
√
2

]⊤
, (Z1, Z2) ∈ {(1, 0), (0, 1)}[

− δ−2ϵ
2
√
2
, δ+2ϵ

2
√
2

]⊤
, (Z1, Z2) = (1, 1)[

− δ+2ϵ
2
√
2
, δ−2ϵ

2
√
2

]⊤
, (Z1, Z2) = (0, 0)

Therefore,

E∥µ̂− Eµ∥22 =
1

2
· 2
(
δ − 2ϵ

2
√
2

)2

+
1

2
·

[(
δ + 2ϵ

2
√
2

)2

+

(
δ − 2ϵ

2
√
2

)2
]

=
(δ − 2ϵ)2

8
+

δ2

8
+

ϵ2

2

>
δ2

8
+

ϵ2

2

GeoMed

µ̂ =


−( δ2 −

ϵ√
3
) · 1√

2
[−1, 1]⊤, (Z1, Z2) ∈ {(1, 0), (0, 1)}[

− δ−2ϵ
2
√
2
, δ+2ϵ

2
√
2

]⊤
, (Z1, Z2) = (1, 1)[

− δ+2ϵ
2
√
2
, δ−2ϵ

2
√
2

]⊤
, (Z1, Z2) = (0, 0)

Therefore,

E∥µ̂− Eµ∥22 =
1

2
·
(
δ

2
− ϵ√

3

)2

+
1

2
·

[(
δ + 2ϵ

2
√
2

)2

+

(
δ − 2ϵ

2
√
2

)2
]

=
1

2
·
(
δ

2
− ϵ√

3

)2

+
δ2

8
+

ϵ2

2

>
δ2

8
+

ϵ2

2
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B.3.3 Impossible Unbiasedness and Robustness without Server Data

As mentioned in Subsection 3.2, AGR in label skewness faces two challenges: selection bias and increased
vulnerability. In other words, we aim for AGR to possess unbiasedness and robustness, which are rigorously
defined in Definition B.18 and B.19,

Definition B.18 (Unbiasedness). An AGR is unbiased if for any wG, ∥µ̂ − Eµ∥22 → 0 when ϵ → 0 and β = 0
(i.e., no attacks).

Definition B.19 (Robustness). An AGR is robust if there exist ∆ > 0 such that for any wG, ∥µ̂−Eµ∥22 ≤ ∆2.

Proposition B.20 (Trade-Off Between Unbiasedness and Robustness). For any AGR, if it can only utilize n
gradients without relying on any other information, then it is impossible for it to be both unbiased and robust.

Proof. We consider the following machine learning task:

min
b∈R
L = E(x,y)ℓ(x, y|w), where ℓ(x, y|w) = [y − (x− w)]2

whose gradient w.r.t. w is ∂ℓ
∂w = 2(w − (x− y)). We let x,w ∈ R and y ∈ {−1,+1}. We start with w

(0)
G = 0.

We consider the following two sets of gradients.

Gradient set 1:

• Client 1 and 2 are honest, with data (x, y) = (0.5, 1)

• Client 3 and 4 are honest, with data (x, y) = (−0.5,−1)

• Client 5 is Byzantine

This results in the following gradients:

g1 = g2 = +1, g3 = g4 = −1, g5 = k, H = {1, 2, 3, 4}, B = {5}

Gradient set 2:

• Client 5 is honest with (x, y) = (1− k
2 , 1)

• Client 3 and 4 are honest, with data (x, y) = (−0.5,−1)

• Client 1 and 2 are honest, with 1
k+1 of their data as (x, y) = (1 − k

2 , 1) amd k
k+1 of their data as (x, y) =

(−0.5,−1)

This results in the following gradients:

g1 = g2 = +1, g3 = g4 = −1, g5 = k, H = {1, 2, 3, 4, 5}, B = ∅

For gradient set 1, we have inner variation upper bound ϵ = 0, outer variation bound δ = 1; for gradient set 2,
we have inner variation upper bound ϵ = 0, outer variation bound δ = 4

5k.

Notice that the two gradient sets have the same gradient values; the only difference is the identity of Byzantine
clients. Therefore, any AGR only utilizing n gradients will give identical aggregation results for two gradient
sets. To achieve unbiasedness in gradient set 2, for all k > 1, the aggregation result must be µ̂(1) = 1

5k. Its

aggregation result on gradient set 1 will also be µ̂(2) = 1
5k. Let k → ∞, then the gradient estimation error on

gradient set 1 will be unbounded, which violates robustness.

Remark. This unbiasedness-robustness trade-off can be circumvented by using additional server data. Consider
that the two server gradients are γ1 = +1.5, γ2 = −1.5, then for any k ≫ 1.5, the AGR can guarantee that it
must be a Byzantine gradient, i.e., gradient set 2 is not valid.
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B.4 Computation Complexity of BOBA

Algorithm 1 BOBA Framework

Input: G = [g1, · · · , gn], Γ = [γ1, · · · ,γc], n, f, c, pmin

Output: Aggregation result µ̂

1: Initialize subspace P̂: m,U ,Σ,V = TrSVDc−1(Γ)
2: while not converge do
3: Update r: G[n−f ] = {n− f gradients in G with smallest ∥gi −ΠP̂(gi)∥2} where ΠP̂(gi) = UU⊤(gi −m) +m

4: Update P̂: m,U ,Σ,V = TrSVDc−1(G[n−f ])

5: Encode: g̃i = U⊤(gi −m),∀i; Γ̃ = U⊤(Γ−m1⊤)

6: Estimate: p̂i =

[
Γ̃
1⊤

]−1 [
g̃i

1

]
, ∀i

7: Filter: a = A({p̂i}ni=1)
8: Aggregate: µ̃ =

∑n
i=1 aig̃i/

∑n
i=1 ai

9: Decode: µ̂ = Ug̃G +m

In this subsection, we provide a detail analysis of the complexity of BOBA (Algorithm 1). We use the results
that the complexity of TrSVD is O(cnd) (Halko et al., 2011).

• Line 1: The complexity is O(cnd).

• Line 3: The complexity is O(cnd + n log n), where O(cnd) comes from computing ∥gi − ΠP̂(gi)∥2 for n
gradients g1, · · · , gn, and O(n log n) comes from sorting all n distances and select the smallest n− f .

• Line 4: The complexity is O(cnd).

• Line 5: The complexity is O(cnd).

• Line 6: The complexity is O(c3 + c2n), where O(c3) comes from computing the inverse matrix

[
Γ̃
1⊤

]−1

and

O(c2n) arises from computing p̂i for i = 1, · · · , n.

• Line 7: The complexity is O(cn + n log n), where O(cn) comes from computing minz piz for each client i,
and O(n log n) arises from computing the quantile.

• Line 8: The complexity is O(cn).

• Line 9: The complexity is O(cd).

Assuming that c < n < d, the overall complexity is dominated by Line 3 and 4, which are conducted by k times.
Therefore, the total complexity is O(kcnd).



Wenxuan Bao, Jun Wu, Jingrui He

C ADDITIONAL EXPERIMENTS

C.1 Experimental Setup

In this part, we provide detailed experimental setup.

Table 6: Experimental settings summary

MNIST CIFAR-10 AG-News AG-News (Ablation Study)

# Training Samples 60,000 50,000 120,000 120,000
# Testing Samples 10,000 10,000 7,600 7,600
# Classes c 10 10 4 4
# Rounds 200 2,000 200 200
Initial LR η0 0.1 0.2 1.0 1.0
LR Decay (Ts;Ti;α) (100; 10; 0.95) (1,000; 100; 0.8) (100; 10; 0.95) (100; 10; 0.95)
# Honest Clients |H| 100 100 160 16
Real # Byzantine Clients |B| 0 or 15 0 or 15 0 or 54 0 or 2
Declared # Byzantine Clients f 16 16 60 2
# Server Samples Per Class 20 20 30 30

Training setup The setup for FL training is summarized in Table 6. Specifically,

• Data partition. We use the pathological data partitioning proposed by McMahan et al. (2017). We first sort
data samples based on labels and evenly divided the training set into ns · |H| shards. As a result, each shard
only contains one class of data 1. We then assign ns shards to each honest client, so that most clients have
only ns classes of samples. We let ns = 2 for MNIST, CIFAR-10 and AG-News.

• Models. For MNIST (Lecun et al., 1998), we train a 3-layer MLP with hidden layers of width 200. This
network is the same as “2NN” in (McMahan et al., 2017). For CIFAR-10 (Krizhevsky and Hinton, 2009), we
train a 5-layer CNN model as it in the TensorFlow tutorial 2. For AG News (Zhang et al., 2015), we train a
RNN model containing a uni-directional GRU layer with 32 hidden units followed by a global pooling layer
and a linear layer.

• Learning rate strategy. We use a constant learning rate at the early stage, and exponential learning rate
decay at the end to stabilize the training. In detail, we start with an initial learning rate η = η0 until the
Ts round, and then exponentially decrease it with η ← αη every Ti rounds.

Attacks We consider six types of attacks.

• Gauss (Blanchard et al., 2017), a non-colluding attack uploading large-scale vectors from Gaussian distri-
bution N (0, 200I).

• IPM (Xie et al., 2019a), a colluding attack uploading gk = −γ · 1
|H|
∑

i∈H gi. While Xie et al. (2019a) test

γ ∈ {−10, 0, 0.1, 10}, we choose the strongest γ = 10, making Average to perform gradient ascent.

• LIE (Baruch et al., 2019), a colluding attack uploading vectors within the scope of honest ones to bias
the model while avoiding being detected. We set the hyper-parameter according to the original paper, i.e.,
z = ϕ−1 ((n− ⌊n/2 + 1⌋)/(n− |B|)).

• Mimic (Karimireddy et al., 2022), a colluding attack inserting consistent bias by always copying the gradient
from a particular client with biased label distribution. This attack is on the

• MinMax and MinSum (Shejwalkar and Houmansadr, 2021), a colluding attack that maximize the effect of
attack while not being detected. We use coordinate-wise standard deviation as the perturbation vector ∇p,
and optimize the magnitude according to Algorithm 1 with γinit = 10 and τ = 10−5.

1For MNIST, since the dataset is not strictly balanced, the size of each shard is slightly different to ensure that each
shard only contains one class of data.

2https://www.tensorflow.org/tutorials/images/cnn
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Baseline AGRs We consider 15 baseline AGRs

• Average (McMahan et al., 2017) simply averages all gradients. It is unbiased but vulnerable to attacks.

• Server only uses server data to fit a model. We use it to verify that one cannot train a good model with
server data only.

• CooMed and TrMean (Yin et al., 2018) use coordinate-wise median or trimmed mean as the aggregation.
For TrMean we trimmed the largest and smallest f entries.

• Krum and Multi-Krum (Blanchard et al., 2017) find the one or m gradients that is closest to its k nearest
neighbors. We use k = n− f − 2 and m = n− f , according to the original paper.

• GeoMed (Chen et al., 2017; Pillutla et al., 2022) computes the geometric median as the aggregation. We
use the implementation in hdmedians Python package.

• SelfRej and AvgRej (Fang et al., 2020) evaluate client gradients with their loss on server data. SelfRej
selects n−f clients whose local models wi = wG−ηgi have smallest loss, while AvgRej selects n−f clients
whose gradients can lower the loss of averaged model the most.

• Zeno (Xie et al., 2019b) considers both loss and gradient scales, select n− f gradients with small loss and
small gradient. We optimize ρ on MNIST, and finally use ρ = 5× 10−4 for all experiments.

• FLTrust (Cao et al., 2021) uses server data to estimate one server gradient, and use each gradient’ clipped
cosine similarity as the weight to re-weight each gradient and aggregate.

• ByGARS (Regatti et al., 2022) optimizes the aggregation weights of client gradients with server data as
training set. Different from the original implementation, we optimize the aggregation weight q for each
communication round independently. We optimize hyperparameters on MNIST and finally use k = 3 and
α = 0.05.

• Bucketing (Karimireddy et al., 2022). We consider bucketing (s = 2) with Krum (B-Krum) / MKrum
(B-MKrum).

• RAGE (Data and Diggavi, 2021). Considering that C is usually unknown to the server, we run the while
loop for fixed f iterations, to make sure it successfully mitigate the Gauss attack.

Image corruptions We simulate feature skewness by applying different image corruptions to each client. For
each client, we randomly choose one kind of corruption (severity = 3) for its local training dataset. We do not
add corruptions to the server data and the testing data, in order to make comparison with the corruption-free
setting.

Computation We did our experiments with single NVIDIA Tesla V100 GPU.

AGR running time (RQ2) In the main text, we record the running time for all AGRs. For a fair comparison,
we run all AGRs with an Intel Core i9-11900 Processor. Specifically,

• For BOBA and FLTrust, we do not include the time taken to compute the server gradient because this
computation can be finished simultaneously with the client-side gradient computations.

• However, for SelfRej, AvgRej, Zeno, and ByGARS, we include the time to perform inference or compute
gradients using server data, because these computations must occur after the server receives the gradient
from each client.
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C.2 Majority-based AGRs with Additional Server Data (RQ1)

Reference-based AGRs, including BOBA, use additional server data for aggregation. However, majority-based
AGRs do not require server data. To make a fair comparison, we study whether server data can further enhance
baseline majority-based AGRs, especially the strongest ones. Specifically, we enhance the baselines majority-
based AGRs with

µ̂ = (1− λ)Agg({gi}ni=1) + λ

(
1

c

c∑
z=1

γz

)

where Agg({gi}ni=1) is the aggregation given by baseline majority-based AGRs, 1
c

∑c
z=1 γz is the averaged server

gradient, and λ ∈ [0, 1] is the hyperparameter for convex combination. The underlying intuition here is that
the AGR’s output has a smaller variance (due to computing gradients using more data from clients), while the
server gradient has a smaller bias (as it is not affected by selection bias). By combining these two outputs, a
potentially better bias-variance tradeoff can be achieved, leading to improved aggregation results.

We test λ ∈ {0, 0.25, 0.5, 0.75, 1.0}. Notice that λ = 0 refers to vanilla baseline AGRs without server data, and
λ = 1 refers to training with server data only. We test these enhanced AGRs with MNIST dataset.
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Figure 6: Performance of baseline majority-based AGRs when they use additional server data.

Figure 6 shows that TrMean has better performance when it is combined with server data (λ = 0.25, 0.5).
However, the most competitive baseline majority-based AGRs (MKrum, BMKrum, GeoMed) get no performance
improvement in most settings. We also notice that using additional server data can improve the worst-case test
accuracy for most robust AGRs (usually under IPM attack). However, they are still significantly worse than
BOBA, whose worst-case test accuracy is 91.6%.
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C.3 Effect of Server Data (RQ3)

BOBA relies on server data for aggregation. In this subsection, we investigate how the quality and quantity
of server data impact BOBA. Specifically, regarding data quality, we examine whether BOBA’s performance is
affected when server data contains noise (skewed feature distribution) or skewed label distribution. Concerning
data quantity, we explore how much server data is sufficient for BOBA to perform robust aggregation.

C.3.1 Server Data with Feature Skewness

We first investigate whether the performance of BOBA is robust to feature skewness of server data. To simulate
low-quality data, we introduce four types of random noises to the server data, following the approach proposed
by (Hendrycks and Dietterich, 2019). As illustrated in Figure 7, BOBA exhibits remarkable consistency across
various noise types, highlighting its robustness to variations in server data quality.
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Figure 7: BOBA is robust to corrupted server data
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C.3.2 Server Data with Label Skewness

In our experiments in the main text, the server dataset and testing dataset share the same label distribution.
This assumption may be violated in real-world FL systems. In this subsubsection, we investigate the impact on
reference-based AGR methods, including BOBA, when the server data also exhibits label skewness.

We conducted experiments on the AG-News dataset, and the results are presented in Figure 8. The “balanced”
setting corresponds to the one in the main text, where the server has 30 samples for each class. In the “unbal-
anced” setting, the server has 40 samples for classes 0 and 1, and 20 samples for classes 2 and 3, thus introducing
label skewness between the server data and test data, while the total amount of server data remains the same.

selfrej avgrej zeno fltrust boba
defense

0.80

0.82

0.84

0.86

0.88

0.90

ac
c

No attack

balanced
unbalanced

selfrej avgrej zeno fltrust boba
defense

0.80

0.82

0.84

0.86

0.88

0.90

ac
c

Gauss

balanced
unbalanced

selfrej avgrej zeno fltrust boba
defense

0.80

0.82

0.84

0.86

0.88

0.90

ac
c

IPM

balanced
unbalanced

selfrej avgrej zeno fltrust boba
defense

0.80

0.82

0.84

0.86

0.88

0.90

ac
c

LIE

balanced
unbalanced

selfrej avgrej zeno fltrust boba
defense

0.80

0.82

0.84

0.86

0.88

0.90

ac
c

Mimic

balanced
unbalanced

Figure 8: Comparison between aggregators using server data when server data is biased.

As shown in Figure 8, the performance of baseline AGRs generally degrades when the server data becomes
unbalanced. However, the performance of BOBA remains almost the same across non-attack settings and four
attacks, showing that BOBA is also robust to the label skewness of server data.
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C.3.3 Quantity of Server Data

Finally, we investigate the impact of the quantity of the server dataset on BOBA. We test on CIFAR-10 data
set when the number of server data per class varies from 1 to 320, with |B| = 15 IPM attackers.
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Figure 9: Effect of server data quantity. Error bars represent the s.d. of test accuracy over 5 random seeds.

As depicted in Figure 9, we observe that the test accuracy of our method increases as the number of server data
per class rises from 1 to 20. It stabilizes once we have more than 20 samples per class. When the server data
is limited to just one sample per class, our method’s performance is suboptimal. However, with only 5 samples
per class, our method already surpasses the highest-performing baseline AGR (MKrum with accuracy of 50.9%).
This demonstrates that our method demands only a small quantity of server data, which is readily achievable in
real-world applications.
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C.4 Effect of Hyperparameters (RQ3)

C.4.1 Effect of f and |B|

Similar to many robust AGRs (e.g., Krum (Blanchard et al., 2017) and TrMean (Yin et al., 2018)), BOBA
incorporates a hyperparameter denoted as f , which signifies Byzantine tolerance, i.e., the maximum number of
attackers that the AGR is designed to withstand. Theoretically, an appropriate choice of f should satisfy both
f ≥ |B| and Assumption 5.3 simultaneously to achieve robustness. In this section, we empirically evaluate the
performance of BOBA under various combinations of f ∈ 0, 20, 40, 60, 80, 100 and |B| ∈ 0, 18, 36, 54 using the
AG-News dataset and the IPM attack. The results are depicted in Figure 10.
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Figure 10: Effect of real number of Byzantines |B| and Byzantine tolerance f .

Effect of |B| (given fixed f) In the main text, we investigate the influence of |B| while keeping f constant.
Specifically, we examine two extreme scenarios: when |B| = 0 (where AGRs are most susceptible to selection
bias) and when |B| ≈ f (where the AGRs are most susceptible to vulnerability). As depicted in Figure 10 (left),
our findings reveal that, within a reasonable range of f (f ∈ [0, 80]), the test loss remains minimal across all
|B| ∈ [0, f ]. This demonstrates that BOBA exhibits robustness to the actual number of Byzantines |B| as long
as |B| ≤ f .

Effect of f In Figure 10 (right), our observations indicate the following:

• For small values of f , BOBA exhibits robustness to only a limited number of Byzantine clients. For instance,
when f = 20, BOBA demonstrates robustness when |B| = 0 and |B| = 18 but not when |B| = 36 or |B| = 54.

• As f increases moderately, BOBA becomes more resilient to Byzantine clients while preserving its unbiased-
ness in scenarios with few or no Byzantines.

• However, when f becomes excessively large (e.g., f = 100 in the context of |H| = 160), BOBA loses its
unbiasedness in scenarios with small |B|. It’s important to note that, when |H| = 160 and |B| = 0, we
have f = 100 > 80 = n

2 , implying an assumption that over half of the clients are Byzantine. Achieving
optimal-order robustness under these conditions becomes impossible.

In summary, BOBA exhibits robustness across a broad range of f values, and we recommend selecting a mod-
erately larger f to avoid underestimating |B|.
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C.4.2 Effect of pmin

In addition to the hyperparameter f , BOBA incorporates another parameter, pmin, which is a slightly negative
number intended to prevent excessive removal of honest clients during stage 2. In all experiments presented in
the main text, spanning various datasets and models, we maintain a consistent value of pmin = −0.5. In this
section, we explore a range of pmin values to assess the sensitivity of BOBA to this hyperparameter. Specifically,
we conduct experiments on the CIFAR-10 dataset with pmin ∈ {−1.0,−0.7,−0.5,−0.2,−0.1, 0.0} under two
scenarios: no-attacks and |B| = 15 IPM attackers.
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Figure 11: Effect of hyperparameter pmin.

The results displayed in Figure 11 illustrate that BOBA consistently delivers robust performance across a wide
range of pmin values within the interval [−0.5, 0.0]. However, large absolute value for pmin, such as pmin = −1.0,
fails to discard attackers and thus compromise the robustness of BOBA. Therefore, in practical applications, we
recommend opting for a small absolute value for pmin to ensure robustness.
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C.5 More Label Skewness Settings (RQ3)

In the main test, we focus on pathological partition (McMahan et al., 2017), a very challenging non-IID setting
where each client only has two classes of data. In this setting, BOBA has state-of-the-art unbiasedness and
robustness. In this part, we test BOBA with two more label skewness settings: step partition (Chen and Chao,
2021) and Dirichlet partition (Yurochkin et al., 2019). We also test BOBA under partial participation.

C.5.1 Step Partition with Various Degrees of Non-IIDness

In this part, we study how the performances of BOBA and other baseline AGRs change when the non-IID degree
varies. We focus on the MNIST dataset with step partition (Chen and Chao, 2021): each client has 8 minor
classes (with less data) and 2 major classes (with more data). We use a parameter α to control the ratio of major
and minor class data size. Therefore, larger α indicates a larger non-IID degree. We test α ∈ {1, 2, 4, 8,+∞}.
Notice that α = 1 refers to the IID setting, and α = +∞ refers to pathological partition in the main text.
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Figure 12: Effect of non-IIDness. Larger α indicates a larger non-IID degree.

We show the test accuracy for both BOBA and selected baselines in Figure 12.

• When the non-IID degree is small (e.g., α = 1), almost all the robust AGRs have satisfactory performance
under all kinds of attacks. This observation matches the theoretical analysis of their Byzantine-robustness
under the IID assumption.

• However, when the non-IID degree (α) increases, all the baseline AGRs degrade rapidly, especially under
the IPM attack. This observation matches our claim that IID AGRs degrade under label skewness.

• Finally, we notice that BOBA has almost constant performance under all attacks and non-IID degrees. This
verifies our claim that BOBA has superior robustness and unbiasedness under label skewness.
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C.5.2 Dirichlet Partition

In this part, we use Dirichlet partition (α = 0.01) and compare BOBA to the strongest baselines. As shown in
Table 7, BOBA consistently outperforms baselines in both unbiasedness and robustness.

Table 7: Performance (mean (s.d.) %) under Dirichlet distribution (α = 0.01)

Dataset Method
|B| = 0 |B| = 15 (for MNIST and CIFAR-10) or 54 (for AG-News) (Acc ↑)

Acc ↑ MRD ↓ Gauss IPM LIE Mimic MinMax MinSum Wst

Average 92.3 (0.1) - 9.8 (0.0) 9.8 (0.0) 92.3 (0.1) 92.1 (0.2) 90.4 (0.1) 90.5 (0.3) 9.8
MNIST MKrum 90.0 (1.1) 24.0 (7.6) 92.4 (0.0) 85.5 (3.5) 91.0 (0.8) 89.5 (1.4) 83.8 (7.9) 85.4 (4.1) 83.8

(|H| = 100) FLTrust 85.3 (1.0) 20.1 (3.5) 85.3 (1.0) 85.3 (1.0) 87.9 (0.5) 85.5 (0.6) 85.2 (1.0) 85.4 (0.6) 85.2
BOBA 92.3 (0.1) 1.9 (1.9) 92.3 (0.1) 92.6 (1.1) 91.7 (0.4) 92.1 (0.3) 91.8 (0.4) 91.8 (0.4) 91.7

Average 71.6 (0.4) - 10.0 (0.0) 10.0 (0.0) 35.6 (2.6) 70.3 (0.7) 35.3 (3.5) 34.0 (2.4) 34.0
CIFAR-10 MKrum 68.3 (0.4) 27.3 (7.8) 71.7 (0.5) 64.3 (2.7) 43.6 (2.5) 67.2 (1.1) 54.1 (6.9) 41.1 (3.5) 41.1
(|H| = 100) FLTrust 49.1 (0.4) 36.9 (6.0) 49.1 (0.5) 47.9 (0.7) 48.2 (0.8) 49.5 (0.7) 48.4 (0.8) 48.3 (0.9) 47.9

BOBA 69.5 (1.2) 9.8 (4.3) 71.7 (0.9) 70.9 (0.5) 71.1 (0.8) 67.2 (2.0) 71.3 (0.9) 71.2 (0.9) 67.2

Average 88.3 (0.1) - 24.3 (4.0) 25.0 (0.0) 87.0 (0.1) 87.5 (0.5) 36.0 (5.0) 31.1 (3.9) 24.3
AG-News MKrum 80.8 (4.2) 38.4 (19.8) 88.4 (0.1) 30.6 (9.2) 83.2 (0.8) 75.4 (7.3) 85.7 (3.9) 81.7 (1.7) 30.6
(|H| = 160) FLTrust 85.3 (0.6) 7.8 (3.0) 85.5 (0.6) 85.3 (0.6) 85.3 (0.2) 85.5 (0.5) 85.3 (0.4) 85.3 (0.4) 85.3

BOBA 88.2 (0.2) 1.3 (2.4) 88.3 (0.1) 88.1 (0.2) 88.3 (0.1) 87.6 (0.4) 88.1 (0.2) 88.3 (0.2) 87.6

C.5.3 Partial Participation

BOBA also works under partial participation, i.e., only a subset of clients are selected for each round. We
conduct experiments with AG-News dataset, under participation rate in {0.25, 0.50, 0.75, 1.00}. As shown in
Table 8, BOBA consistently outperforms baselines across different participation rates.

Table 8: Performance (mean (s.d.) %) under partial participation on AG-News (|H| = 160)

Participation Rate Method
|B| = 0 |B| = 54 (Acc ↑)

Acc ↑ MRD ↓ Gauss IPM LIE Mimic MinMax MinSum Wst

0.25

Average 88.0 (0.2) - 25.7 (1.9) 25.0 (0.0) 87.9 (0.2) 86.9 (0.5) 33.8 (5.0) 81.3 (0.7) 25.0
MKrum 87.3 (0.8) 6.0 (2.9) 88.1 (0.1) 86.2 (0.6) 87.8 (0.1) 82.6 (0.7) 87.9 (0.2) 86.1 (0.4) 82.6
FLTrust 86.2 (0.4) 7.6 (1.8) 86.2 (0.6) 86.2 (0.5) 87.1 (0.4) 86.0 (0.4) 85.8 (0.4) 85.9 (0.5) 85.8
BOBA 87.9 (0.2) 3.2 (1.5) 88.1 (0.2) 87.7 (0.3) 87.7 (0.3) 86.8 (0.5) 87.7 (0.4) 87.8 (0.3) 86.8

0.50

Average 88.2 (0.2) - 23.3 (1.9) 25.0 (0.0) 87.9 (0.3) 87.2 (0.4) 36.4 (4.6) 41.7 (21.1) 23.3
MKrum 87.6 (0.5) 5.1 (3.1) 88.2 (0.2) 84.4 (1.2) 87.4 (0.5) 83.2 (1.9) 88.1 (0.1) 85.8 (0.3) 83.2
FLTrust 86.3 (0.3) 4.9 (1.5) 86.3 (0.4) 86.0 (1.0) 86.7 (0.7) 86.0 (0.9) 85.7 (0.9) 85.6 (0.9) 85.6
BOBA 88.2 (0.2) 2.9 (2.5) 88.1 (0.3) 87.8 (0.2) 88.0 (0.2) 87.1 (0.6) 88.1 (0.2) 88.1 (0.2) 87.1

0.75

Average 88.3 (0.1) - 25.2 (3.6) 25.0 (0.0) 87.9 (0.1) 87.3 (0.4) 30.5 (3.3) 29.8 (4.7) 25.0
MKrum 87.8 (0.2) 4.9 (1.6) 88.3 (0.0) 48.8 (32.6) 87.1 (0.6) 83.2 (1.1) 88.2 (0.1) 86.2 (0.4) 48.8
FLTrust 86.3 (0.4) 5.4 (1.6) 86.3 (0.5) 86.2 (0.4) 86.4 (0.3) 85.9 (0.7) 86.0 (0.4) 85.9 (0.5) 85.9
BOBA 88.3 (0.1) 1.7 (0.3) 88.4 (0.1) 88.0 (0.2) 88.3 (0.1) 87.1 (0.5) 88.0 (0.3) 88.1 (0.3) 87.1

1.00

Average 88.3 (0.1) - 25.4 (2.6) 25.0 (0.0) 87.5 (0.2) 87.2 (0.3) 35.9 (3.6) 30.5 (3.0) 25.0
MKrum 88.0 (0.1) 4.6 (2.1) 88.3 (0.2) 80.7 (6.0) 86.6 (0.2) 83.4 (0.6) 88.3 (0.1) 85.9 (0.3) 80.7
FLTrust 86.3 (0.4) 5.8 (1.0) 86.2 (0.5) 86.2 (0.4) 86.2 (0.4) 85.7 (0.8) 85.8 (0.9) 85.8 (0.5) 85.7
BOBA 88.3 (0.1) 0.2 (0.1) 88.3 (0.1) 87.7 (0.7) 88.4 (0.1) 87.3 (0.3) 88.1 (0.1) 88.3 (0.2) 87.3
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C.6 Experiments with Both Label and Feature Skewness (RQ4)

BOBA is motivated by label skewness, where each honest client possesses a different label distribution and the
same label-conditioned data distribution. However, practical FL systems may have more complex non-IIDness,
with both label and feature distribution potentially varying. For example, as mentioned in our introduction
with the example of animal image classification, different users may not only capture different prevalent species
in their region but also exhibit variations in image appearance due to different camera settings. To validate
whether BOBA remains effective in such a more complex non-IID setting, alongside generating label skewness
using pathological partition, we inject different image corruption to each client.

Specifically, each client randomly selects one from the 15 common image corruptions (Hendrycks and Dietterich,
2019) and applies it to all of their training data. Consequently, even for images of the same class, there will be
varying feature distributions across different clients. To facilitate a comparison with results obtained without
image corruption, we do not add image corruptions to the testing data.

Table 9: Performance (mean (s.d.) %) on CIFAR-10 with label skewness and image corruptions

Method
|B| = 0 |B| = 15 (Acc ↑)

Acc ↑ MRD ↓ Gauss IPM LIE Mimic MinMax MinSum Wst

Average 68.7 (0.4) - 10.0 (0.0) 10.0 (0.0) 64.6 (0.7) 67.5 (0.5) 27.9 (4.9) 21.6 (7.5) 10.0
CooMed 19.1 (4.9) 78.4 (2.0) 20.1 (1.5) 9.4 (1.8) 24.0 (2.1) 17.8 (1.8) 17.7 (1.2) 17.7 (1.2) 9.4
TrMean 24.1 (2.9) 78.8 (2.7) 53.8 (1.8) 14.2 (4.4) 30.6 (1.1) 20.1 (5.4) 20.5 (0.6) 22.2 (2.0) 14.2
Krum 33.4 (2.9) 79.3 (3.7) 34.4 (3.0) 33.1 (2.0) 38.7 (2.3) 31.0 (3.2) 34.1 (1.8) 33.2 (2.6) 31.0
MKrum 66.8 (1.1) 16.7 (11.7) 68.2 (0.7) 52.9 (10.2) 63.1 (1.1) 54.9 (25.1) 67.2 (0.4) 62.3 (2.1) 52.9
GeoMed 68.2 (0.6) 5.3 (1.5) 67.9 (0.9) 55.8 (4.6) 42.5 (2.7) 53.6 (5.0) 42.7 (3.0) 42.6 (2.9) 42.5
SelfRej 66.3 (1.4) 21.8 (13.4) 67.8 (0.4) 26.6 (6.5) 63.1 (1.1) 65.9 (0.8) 25.0 (2.5) 25.0 (2.8) 25.0
AvgRej 67.1 (1.7) 25.2 (20.3) 10.0 (0.0) 66.5 (0.8) 63.6 (0.8) 68.1 (0.6) 54.5 (6.2) 53.4 (4.7) 10.0
Zeno 66.3 (1.6) 23.8 (15.6) 67.8 (0.6) 26.7 (6.5) 63.2 (1.3) 66.2 (1.4) 23.8 (4.0) 23.5 (2.3) 23.5

FLTrust 50.1 (0.9) 29.1 (2.1) 50.0 (1.1) 47.8 (1.7) 47.3 (2.5) 49.8 (0.9) 49.0 (1.8) 49.1 (1.9) 47.3
ByGARS 29.2 (2.0) 57.7 (4.2) 29.1 (2.0) 50.9 (0.8) 27.3 (2.8) 29.7 (1.7) 24.4 (0.9) 24.4 (0.7) 24.4
B-Krum 52.4 (2.1) 69.6 (10.0) 58.1 (1.2) 55.8 (1.2) 41.1 (1.2) 43.5 (2.3) 57.7 (1.7) 57.9 (1.1) 41.1
B-MKrum 68.1 (0.4) 6.1 (3.0) 68.2 (0.8) 50.2 (6.6) 63.1 (1.1) 65.6 (2.2) 49.7 (3.4) 45.3 (6.7) 45.3
RAGE 57.2 (4.4) 45.6 (17.6) 65.7 (0.5) 57.5 (2.0) 45.3 (2.8) 59.3 (2.1) 58.5 (3.7) 58.2 (4.9) 45.3
BOBA 66.5 (1.0) 6.7 (2.6) 68.5 (0.3) 66.0 (0.7) 62.8 (1.6) 66.2 (0.7) 67.7 (0.5) 67.5 (0.6) 62.8

We have summarized the experimental results in Table 9. Due to the introduction of perturbation in our training
data, the performance of virtually all aggregators has deteriorated. It is worth noting that even in the absence
of attacks, the accuracy of the average aggregator has decreased from 71.7 to 68.7. However, in this scenario,
BOBA still exhibits better robustness than all the baseline methods, while also being more unbiased than the
majority of baselines. This suggests that BOBA can generalize to more complex non-IID settings that exhibit
both feature and label skewness.
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C.7 Extension to More FL Frameworks (RQ4)

In this part, we empirically show that our BOBA can be integrated with more FL algorithms with different local
update function. Specifically, we consider FedAvg (McMahan et al., 2017) with E = 5 local epochs (instead of
E = 1 for FedSGD) and FedProx (Li et al., 2020b) with E = 5 and local regularization hyperparameter µ = 0.01.

With multiple local gradient descent steps, slightly abusing notation, we define the pseudo-gradient as follows:

gi = −(wi −wG)

where wG is the global parameter send to client i (before local update), and gi is the local parameter after local
update.

First of all, we empirically verify that Proposition 1 still approximately holds, even when using different local
update functions. With random initialization, we save all 100 honest (pseudo-)gradients and conduct principal
component analysis on them, under both IID and label skew settings. We sort all principal components with
their explained variance (from large to small), and plot them in Figure 13.
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Figure 13: PCA of honest gradients on MNIST (c = 10)

It shows that (1) the total variance for label skewness setting is much larger than IID setting, and (2) most of
the variances among honest gradients concentrate in the first c − 1 = 9 principal components. It verifies that
Proposition 3.3 still approximately holds for FedAvg and FedProx.

Then, we evaluate whether BOBA can generalize these two FL frameworks. We run experiments with MNIST
data set.
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Figure 14: Applying BOBA on more FL frameworks

Figure 14 shows that BOBA can generalize FedAvg and FedProx. With the same number of communication
rounds, BOBA + FedAvg/FedProx achieve higher accuracy, indicating their faster convergence. Meanwhile,
BOBA remains its unbiasedness and robustness across all attacks.
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