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Abstract

Recent studies highlight the effectiveness of
Bayesian methods in assessing algorithm per-
formance, particularly in fairness and bias
evaluation. We present Uncertainty Matters,
a multi-objective uncertainty-aware algorith-
mic comparison framework. In fairness-
focused scenarios, it models sensitive group
confusion matrices using Bayesian updates
and facilitates joint comparison of perfor-
mance (e.g., accuracy) and fairness metrics
(e.g., true positive rate parity). Our ap-
proach works seamlessly with common eval-
uation methods like K-fold cross-validation,
effectively addressing dependencies among
the K posterior metric distributions. The in-
tegration of correlated information is carried
out through a procedure tailored to the clas-
sifier's complexity. Experiments demonstrate
that the insights derived from algorithmic
comparisons employing the Uncertainty Mat-
ters approach are more informative, reliable,
and less influenced by particular data par-
titions. Code for the paper is publicly avail-
able at https://github.com/abarrainkua/
UncertaintyMatters.

1 INTRODUCTION

In the realm of Machine Learning (ML) research, re-
cent studies have raised concerns about conventional
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Figure 1: Instability of 10-Fold CV Results. The value
of accuracy and fairness (Equality of opportunity-
EOp), for 100 different 10-fold CV configurations and
different fairness-enhancing methods (color in legend)
using the German Credit dataset (Dua et al., 2017)
with age as the sensitive attribute.

methods of evaluating model performance. For in-
stance, Aghbalou et al. (2023) study the bias inher-
ent in traditional K-fold cross-validation (CV). On
the other hand, Dwork et al. (2015) propose a gen-
eral strategy to reuse holdout sets in repeated eval-
uations while preserving the statistical guarantees of
fresh data, thereby ensuring the validity of adaptive
analyses. Orthogonal to these contributions, there
is a growing trend towards integrating uncertainty
into algorithmic evaluation. Notably, researchers such
as Benavoli et al. (2017) and Kruschke et al. (2018)
have advocated treating performance metrics as ran-
dom variables, employing Bayesian inference to update
their posterior distributions. When considering algo-
rithmic evaluation within a fairness-aware context, it
introduces additional complexity due to its inherent
multi-objective nature. Furthermore, this complexity
is magnified by the necessity to partition the limited
test data into sensitive groups for the evaluation of
fairness metrics.

https://github.com/abarrainkua/UncertaintyMatters
https://github.com/abarrainkua/UncertaintyMatters
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(a) Ground Truth (b) 10-fold CV (c) 10-fold CV + UM

(d) Ground Truth (e) 10-fold CV (f) 10-fold CV + UM

Figure 2: Performance Variability in Algorithmic Comparison. (a,d) The true probability distribution of al-
gorithmic comparison; (b,e) One outcome (average and standard deviation) from traditional 10-fold CV; (c,f)
Application of the Uncertainty Matters framework to the results obtained in (b) and (e), respectively. The top
row illustrates the comparison between Feldman et al. (2015) + SVM vs. Donini et al. (2018), while the bottom
row represents the comparison between LinearSVM + Hardt et al. (2016) and Donini et al. (2018). Fairness is
assessed by the EOp metric. Uncertainty Matters significantly improves the reliability of standard 10-fold CV
in algorithmic evaluation.

Ji et al. (2020), Friedler et al. (2019), and Qian et
al. (2021) demonstrated that fairness metrics exhibit
strong variability in hold-out evaluations or under dif-
ferent training-test splits. This trend extends to pop-
ular evaluation methods like 10-fold CV, as evidenced
in Figure 1, with fairness metrics displaying greater
variability than other metrics that evaluate predictive
performance on the whole population (e.g. accuracy).
This observation aligns with the presence of minority
groups that the classifier often struggles to properly
learn, resulting in increased instability in its perfor-
mance within these subgroups. Thus, we are driven by
the motivation to introduce uncertainty into fairness
assessment, noting that this framework is not limited
to fairness but can be applied in any scenario where
conducting a multi-objective uncertainty-aware algo-
rithmic comparison is desired.

When algorithmic comparison results display signifi-
cant fluctuations depending on the selected data split,
making a conclusive determination about the superi-
ority of one algorithm over another through a single
evaluation becomes inappropriate. Instead, by taking
into account all the potential K-fold CV results, the

situation suggests the existence of a true probability
that one method might excel in certain objectives. The
traditional method of K-fold CV, which provides only
average and standard deviation values, fails to fully en-
capsulate this nuanced reality (note the difference be-
tween the outcomes in the first and the second columns
of Figure 2). Obtaining the precise estimation of such
probabilities necessitates consideration of all possible
K-fold CV results, each obtained with different data
splits, which is practically infeasible. Therefore, our
primary aim is to precisely estimate these probabili-
ties through a single evaluation with any random data
split, by accounting for the uncertainty inherent in the
evaluation process (see Figures 2(c) and 2(f)).

There have been several attempts to address the prob-
lem of accurately evaluating the uncertainty of fairness
metrics in a supervised scenario. Early approaches
focused mainly on a single fairness metric, typically
Demographic Parity (DP). In Besse et al. (2018) and
Besse et al. (2021), confidence intervals were built us-
ing the traditional Delta method, based on the asymp-
totic distribution of Disparate Impact, one of the most
commonly used indexes for quantifying DP. Later, Ji
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et al. (2020) considered a Bayesian framework and a
calibration procedure to reduce such uncertainty by
employing unlabeled data. However, these propos-
als share two main limitations. Firstly, simultaneous
comparison of multiple metrics that account for the
predictive performance and fairness guarantees of the
learning algorithm is not possible. Secondly, metric
uncertainty can only be addressed for already trained
predictors or learning algorithms under hold-out eval-
uation and not for more intricate and popular evalua-
tion frameworks such as K-fold CV, where the K re-
sults obtained are not independent due to the overlap
of training instances between each of the K training
sets.

To address these limitations, we leverage Bayesian in-
ference and propose the Uncertainty Matters (UM)
framework to quantify the uncertainty inherent in al-
gorithmic evaluations by adopting a probabilistic rep-
resentation of the confusion matrix (CM). Any metric
expressed as a function of the CM is then a random
variable. The main advantage of UM is that it en-
ables the computation of any multi-dimensional joint
posterior distribution. This allows a comparison of
fair learning algorithms across multiple objectives. Im-
portantly, we develop the statistical framework to be
employed in the hold-out and K-fold CV evaluation
settings. For K-fold CV, that generates correlated
results, we introduce an effective CM (Wang et al.,
2019), which unlike previous approaches, is dependent
on the complexity and generalization capability of the
algorithm. Assembling all components together, we
end up with a multi-objective and uncertainty-aware
scheme for algorithmic comparison.

We conducted extensive experiments, encompassing
different fairness-enhancing algorithms, to evaluate
our UM framework against traditional evaluation set-
tings. These experiments revealed that UM yields
more stable and informative conclusions compared to
conventional evaluation methods (see, for instance,
Figure 2). Specifically, it reduces dependence on the
specific partition of the K-fold CV, enhancing result
stability, informativeness, and reliability.

The rest of the paper is organized as follows. We de-
scribe our statistical framework UM in Section 2 and
propose a strategy based on it for algorithmic compar-
ison in Section 3. The related works are outlined in
Section 4. The empirical evaluation of our proposal
and the obtained results are described in Section 5.
Finally, Section 6 provides a concise summary of the
key findings, engages in a comprehensive discussion,
and outlines potential avenues for future research.

2 THE UM FRAMEWORK

2.1 Notation and Problem Statement

Our approach is built upon a bias-aware supervised
learning scenario. Let A be the predictive algorithm
trained using a finite set of examples i.i.d. from an un-
known distribution P (X×S×Y), where every instance
is represented by a set of d (non-sensitive) attributes
x ∈ X ⊂ Rd, a sensitive attribute s ∈ S = {1, . . . , r}
(e.g., gender, age, marital status) and a class label
y ∈ Y. The outcome of the classification made by A
will be denoted by ŷ. For explanatory purposes, we
will refer to the binary classification problem where
Y = {−1,+1}, but UM works for multiclass Y.

If the distribution P (X×S×Y) were explicitly known,
any metric could be evaluated precisely on A at popu-
lation level by different combinations of the true prob-
abilities P (Ŷ = i|Y = j) or P (Ŷ = i|Y = j, s), s ∈ S,
for i, j ∈ {−1,+1}. However, only an approximation
of these theoretical values can be generally obtained
from the relative frequencies of a finite i.i.d. sample
from such distribution. Hence, we employ a probabilis-
tic representation of the CM and capture the inherent
uncertainty in the evaluation process. This approach
allows us to provide reliable information regarding al-
gorithmic comparisons. Under this framework, the
metrics will consist of random variables whose distri-
bution would be derived from the probabilistic model
of the CM.

Consider a test sample {(x1, s1, y1), . . . , (xN , sN , yN )},
where N =

∑r
s=1Ns and Ns is the size of the sen-

sitive group s. Let C = {C1, ...,Cr} be the set of
confusion matrices obtained as a result of the pre-
diction given by algorithm A on subgroup s ∈ S,
namely Cs = (TPs, TNs, FPs, FNs), consisting of the
number of true positives TPs, true negatives TNs,
false positives FPs and false negatives FNs, satisfy-
ing Ns = TPs + TNs + FPs + FNs. Then the overall
CM of A, say C, is obtained as C =

∑r
s=1 Cs. It is

worth noting that, even though performance and fair-
ness metrics of A serve distinct purposes, they both
rely on essentially the same information. Indeed, fair-
ness metrics are estimated from the counts of the pro-
tected groups in C, while global predictive performance
(e.g. accuracy) is generally calculated from the over-
all C. In other words, fairness is generally quantified
in terms of the values of certain performance metric
θ (could be multi-dimensional θ) restricted to the dif-
ferent sensitive groups. In this sense, a classifier A is
said to be (almost) fair (w.r.t. θ) if θ is similar across
the different subgroups s ∈ S. The quantification of
fairness (w.r.t. θ) is obtained by comparing these val-
ues, typically by means of differences or ratios. For
instance, in the particular case of S = {0, 1}, a one-
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dimensional fairness metric for DP would be the dif-
ference in acceptance rate AR across groups, namely
θ(C0,C1) = AR(C1) − AR(C0). Other multidimen-
sional metrics such as Equalized Odds (EO), that
compares the true positive rate (TPR) and the false
positive rate (FPR) across groups, would be quan-
tified as θ(C0,C1) = (∆TPR,∆FPR)(C0,C1) =
(TPR(C1)− TPR(C0), FPR(C1)− FPR(C0)). Al-
though these examples focus on a binary sensitive at-
tribute S = {0, 1}, UM can be applied to multivalue
S, since any metric describing the behavior of A can
be written as a function θ(C1, . . . ,Cr). See Verma et
al. (2018) for an extensive review on fairness metrics.

2.2 Probabilistic Model

To accommodate multiple behavioral guarantees of a
learning algorithm A, we introduce UM, a method
to derive the joint posterior probability distribution
P (Θ) for a vector of user-defined metrics of interest
Θ = (θ1, . . . ,θM ). In general, deriving a closed form
expression for P (Θ) is challenging. That being the
case, we propose to compute its empirical counterpart
on a set of T samples obtained through a posterior
hierarchical sampling procedure outlined in (1).

Remark 2.1. Although representing multi-dimensional
distributions in a closed form is typically infeasible,
there are circumstances where simplification is possi-
ble. Specifically, if the metrics in question are defined
in terms of distinct counts of the CM, they become
independent, allowing for the joint distribution to be
expressed as the product of their individual marginal
distributions. For example, the posterior distribution
of the 2-dimensional metric EO can be computed as
the product of the marginal distributions of ∆TPR
and ∆FPR.

The UM approach is grounded in the probabilistic
modeling of the CM, from which the estimation of per-
formance metrics Θ could be derived. Following Cae-
len (2017), we propose to adopt a Bayesian framework
on the CM, assuming that its values are drawn from a
multinomial distribution, denoted by MLT(·; ·). More
precisely, for each group s ∈ S, we consider Cs =
(TPs, TNs, FPs, FNs) ∼ MLT(Ns;πs). The multi-
nomial parameter πs = (πTPs , πTNs , πFPs , πFNs) ∈
[0, 1]

4
, which conforms a simplex, is assumed to

follow a Dirichlet distribution, as it is the conju-
gate of the multinomial distribution. Hence, start-
ing from the prior distribution πs ∼ Dir(αs) =
Dir((αs

1, α
s
2, α

s
3, α

s
4)), by Bayesian inference, the pos-

terior distribution of the multinomial parameter will
be πs|Cs ∼ Dir((αs

1 + TPs, α
s
2 + TNs, α

s
3 + FPs, α

s
4 +

FNs)). In other words, the CM for each sensitive
group Cs is assumed to conform to a multinomial dis-
tribution, with the parameter πs being adjusted based

on Cs. This serves as the fundamental technique to
generate joint posterior distributions of fairness and
performance metrics, which can then be utilized to
develop uncertainty-aware algorithmic evaluation pro-
cedures.

It is worth noting that there is no supporting ev-
idence for elevated values in specific entries of the
CM, leading us to adopt non-informative priors. Be-
sides, the influence of the chosen prior varies among
different protected groups when the number of in-
stances differs significantly across those groups. As
the number of instances decreases, the effect of the
prior becomes more pronounced. To address this is-
sue, we employed a uniform prior πs ∼ Dir(αs) =
Dir((1, 1, 1, 1)), ∀s ∈ S. Supplementary experiments
in Appendix 15.3 demonstrate that selecting alterna-
tive common non-informative priors has minimal im-
pact on the final outcomes.

Once the posterior distribution of the CM is defined,
it is possible to assess the uncertainty-aware fairness
and performance guarantees of a learning algorithm
by means of a hierarchical sampling procedure. Us-
ing the test instances for each group s, the trained
model makes predictions, which are then used to ob-
tain the empirical CM denoted by Ĉs. This matrix is
subsequently utilized to update the distribution of πs.
Then, we calculate the samples t = 1, . . . , T that ap-
proximate the distribution P (Θ) by drawing a sample
(i) πt

s of the multinomial parameter from its corre-
sponding posterior Dirichlet distribution, which serves
as the basis for the probabilistic model of the CM.
Following this, (ii) a sample Ct

s is drawn from the dis-
tribution of the CM, enabling us to (iii) compute the
values of any metric θti based on Ct

s.
(i) πt

s ∼ P (πs|Ĉs), for s = 1, . . . , r

(ii) Ct
s ∼ P (Cs|πt

s), for s = 1, . . . , r

(iii) θti(C
t
1, . . . ,C

t
r), for i = 1, . . . ,M

(1)

In hold-out evaluation, where data is randomly sepa-
rated into two independent sets for training and eval-
uation, we can straightforwardly derive the posterior
distributions by plugging the obtained CM into (1).
However, in the case of K-fold CV, a common eval-
uation framework for limited data scenarios involv-
ing resampling, we obtain K CMs to estimate the
posterior distributions. When applying (1) to the
CM from each fold, we obtain K distinct joint pos-
terior distributions. Nevertheless, the ultimate objec-
tive is to derive a single joint posterior distribution
that accurately characterizes the learning algorithm’s
assessments. Merely averaging these posterior distri-
butions would yield inaccurate uncertainty estimates
due to correlations among the K results. Therefore,
addressing this correlation is crucial to present a more
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precise representation of the algorithm’s uncertainty-
aware performance. In the following section, we detail
how we address these correlations to achieve a more
accurate representation of the algorithm’s uncertainty-
aware performance.

2.3 K-Fold Cross-Validation

Inspired by Wang et al. (2019), we propose to address
this issue by introducing the concept of effective confu-
sion matrix of a sequence of correlated matrices. This
matrix is such that the expectation, denoted by E, and
variance of any function of it is the same as that ob-
tained from the correlated matrices.

Definition 2.2. Let C(1), . . . ,C(K) be a sequence
of correlated confusion matrices. A matrix Ce

is said to be effective if for any function f
such that ψ = Var(f(C(k))), ∀k, and ρ =
Corr(f(C(k)), f(C(k′))), ∀k ̸= k′, it holds that

Var(f(Ce)) =
ψ(1 + (K − 1)ρ)

K
.

The following proposition provides an effective CM for
a K-fold CV.

Proposition 2.3. Let C(k)
s be the CM obtained in

the k-th train/test split configuration of the K-fold CV
process for subgroup s, for k ∈ {1, ...,K}. Then, the
following matrix:

Ce
s =

1

1 + (K − 1)ρs

K∑
k=1

C(k)
s , (2)

is a effective confusion matrix for the K-fold CV,
where ρs denotes the correlation between the results
obtained for every train/test configuration in one K-
fold cross-validation for subgroup s.

The proof of this proposition can be found in Ap-
pendix 9. The true value of the correlation ρs is un-
known and varies for different problems, thus accu-
rately quantifying this parameter constitutes one of
the primary challenges of this approach. Several ap-
proaches have already been proposed in the literature.
For instance, Nadeau et al. (2003) propose to approxi-
mate it as ρs = 1/K, which is accurate when the Vap-
nik–Chervonenkis (VC) dimension of the algorithms is
not too large compared to the size of the training set,
or for algorithms that are robust to perturbations in
the training set. Other works, such as the one by Wang
et al. (2019) assume that ρs ∈ [0, 1/K] (for K = 2, in
their case). Even if such approximations are easy to
compute, their main limitation is that they assume ρs
is equal for all algorithms and all the subgroups. In
other words, they assume the unlikely case that every
algorithm has equal complexity and generalization ca-
pability. Indeed, in Figure 1 we clearly observe that

different algorithms have different stabilities with re-
spect to data partition. In order to overcome such
drawback we propose an alternative complexity and
subgroup-aware method to estimate the correlation ρ
and its corresponding joint posteriors, described in the
following section. Once the correlation is quantified,
the joint posterior distributions can be calculated for
the K-fold CV procedure using the hierarchical pro-
cess from (1) for the effective confusion matrix Ce

s.

2.3.1 Complexity and Subgroup-Dependent
Approximation of the Correlation

Consider a reference algorithm A0 in the particular
setting under consideration, with correlation ρ0s (e.g.
SVM, whose ρ0s can be approximated as 1/K as stud-
ied in Nadeau et al. (2003)). Then, the estimated cor-
relation ρ1s of any algorithm A1 under a K-fold CV
framework is described with respect to the reference
ρ0s by:

ρ1s =
(rs − 1) + rs(K − 1)ρ0s

K − 1
, (3)

where rs ≡ r(A0,A1, s) =
Var[θ̄K,A0,s]

Var[θ̄K,A1,s]
is the ratio be-

tween the variances of both algorithms on a given met-
ric θ in a K-fold CV, for subgroup s.

We note that those variances cannot be directly cal-
culated and need to be approximated. Nonetheless,
Nadeau et al. (2003) propose an ultra-conservative
overestimation of the variance from which the ratio
rover(A0,A1, s) =

Varover[θ̄K,A0,s]

Varover[θ̄K,A1,s]
can be concluded.

We refer to Appendix 10 for a detailed explanation of
Equation (3) and the variance overestimation proce-
dure. Here, we assume such an overestimation is pro-
portional for all the methods, that is, r(A0,A1, s) =
Var[θ̄K,A0,s]

Var[θ̄K,A1,s]
≈ rover(A0,A1, s). Furthermore, note that

this approximation is given in terms of the reference
correlation ρ0, for which generally a good approxima-
tion or a range of possible values is available as men-
tioned above (typically ρ0s = 1/K or ρ0s ∈ [0, 1/K]).
Thus, Equation (3) provides not only a pointwise es-
timation of ρs, but also an upper bound.

3 ALGORITHMIC COMPARISON

In this section we propose a new criterion for the com-
parison of two different algorithms, say A and B, in
terms of their performance and fairness guarantees,
described respectively through the sequence of M dif-
ferent metrics ΘA and ΘB. For this, we denote by
δ(∆Θ) the density function of ∆Θ = ΘA − ΘB the
difference of the metrics of the two algorithms.

In order to compare A and B, we generalize the notion
of Region of Practical Equivalence (RoPE; Benavoli
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et al., 2017, Kruschke, 2014) as the volume around
the origin that will represent the values of ∆Θ that
are considered negligibly indifferent from 0 ∈ RM . It
is important to note that, in a binary setup, fairness
metrics are usually measured by differences in perfor-
mance in the favored group minus that of the unfa-
vored group, with 0 being the ideal value and 1 the
worst. By contrast, the sense for measuring accuracy
is the opposite. Therefore, for these differences to be
in the same direction, we shall consider −θj , for any
fairness metric θj and some index j ∈ {1, . . . ,M}. In
this way, for comparison purposes, we can treat fair-
ness and performance metrics interchangeably.

Definition 3.1. Given ε ∈ RM
+ , the Region of Prac-

tical Equivalence (RoPE) of size ε is:
RoPE(ε) = {x ∈ RM : |xi| ≤ εi, i = 1, . . . ,M}.

The size of the RoPE will depend on the parameter
ε, whose values will be set according to the applica-
tion domain. Then, the comparison between A and B
is based in the relative position between ∆Θ, or its
highest density region (HDR) (Hyndman, 1996), and
the RoPE (see Figure 3). Mainly, we are interested in
estimating the posterior probabilities that:

(a) A and B are practically equivalent, meaning that
they behave similarly in every objective. This refers
precisely to the probability that ∆Θ is included in the
RoPE; that is, P (A ≈ B) = P (∆Θ ∈ RoPE(ε))
=
∫ ε1
−ε1

· · ·
∫ εM
−εM

δ(∆Θ) dθ1 · · · dθM .

(b) A practically outperforms B, meaning that A is at
least better than B in one of the objectives but they
are equivalent in the rest of them; i.e., P (A >> B) =
P (∆Θ ∈ RoPE(ε)c∩(−ε1,+∞)×· · ·×(−εM ,+∞)) =∫∞
−ε1

· · ·
∫∞
−εM

δ(∆Θ) dθ1 · · · dθM − P (A ≈ B).

(c) B practically outperforms A; P (B >> A) =
P (∆Θ ∈ RoPE(ε)c ∩ (−∞, ε1) × · · · × (−∞, εM )) =∫ ε1
−∞ · · ·

∫ εM
−∞ δ(∆Θ) dθ1 · · · dθM − P (A ≈ B).

Analogously, it is possible to calculate the probabilities
of all the other potential events (such as A, resp. B,
outperforming B, resp. A, only in a subset of the
objectives, while being outperformed by B, resp. A,
in the others) as the probability of ∆Θ within the
corresponding area.

4 RELATED WORK

On the assessment of fairness results. Despite
the vast amount of work that has been developed in
the field of algorithmic fairness, there is no consen-
sus on the optimal assessment of fairness results. In
most cases, the fairness and accuracy of various mod-
els are reported separately based on average values of
repeated experiments (Qian et al., 2021), but the in-

Figure 3: Display of a general bi-objective comparison
of methods A and B w.r.t. metrics Θ = (Θ1,Θ2).

formation provided is rather limited and oftentimes
unstable (Friedler et al., 2019). Furthermore, experi-
mental results are shown for specific choices of accu-
racy and fairness trade-offs that are not particularly
well justified. A fair sample from the Pareto frontier
is really what is needed to be able to confidently make
statements about how different approaches compare.
Agarwal et al. (2018) produced the convex envelope of
the classifiers obtained on training data at various ac-
curacy–fairness trade-offs. Ji et al. (2020) propose to
use unlabeled data to get better estimates of fairness
metrics, whereas Romano et al. (2020) make use of
randomization tests. Some of the assessment schemes
are context dependent and are only suitable to draw
conclusions in those particular scenarios. Instead, we
propose to assess the results in a context-independent
manner by means of posterior distributions, similar to
the work by Ji et al. (2020), but further extending
their approach in two ways: on the one hand, with
the possibility of defining a N -dimensional joint pos-
terior distribution of any combination of performance
and fairness metrics, and not limiting the analysis to
marginal distributions; and on the other hand, by al-
lowing more complex frameworks to evaluate learning
algorithms, such as K-fold CV, where K correlated
results are obtained.

On Bayesian methods in fairness. The incorpo-
ration of uncertainty in the fairness-aware context has
mainly been concentrated on model uncertainty (Dim-
itrakakis et al., 2019; Foulds et al., 2020), consider-
ing a probabilistic distribution over model parameters.
This concern has most popularly been addressed by
means of Bayesian Neural Networks (BNNs) (Bhatt et
al., 2021) recently, treating model weights as random
variables whose probability distributions are updated
by means of Bayesian inference. Several ensemble-
based approaches have also been proposed (Foulds et
al., 2020). The uncertainty modeled in those cases is
related to the confidence of the algorithms on their
predictions. However, our work is different in that it
instead models the uncertainty inherent in the perfor-
mance and fairness metrics used to report the behavior
of the algorithms.
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5 EXPERIMENTS

In this section, we present numerical experiments to
validate UM's effectiveness and highlight its primary
advantages in fairness-aware contexts over conven-
tional evaluation methods. For these experiments,
we opted for the German Credit dataset (Dua et al.,
2017), which possesses two beneficial characteristics
for our analysis, primarily due to its moderate size:
(1) it permits the computation of numerous 10-fold
CVs in a manageable time frame, enabling the estima-
tion of a ‘ground truth’, and (2) the dataset's limited
scale naturally introduces increased uncertainty into
the metrics under evaluation. Specifically, we estab-
lish the ground truth through empirical probabilities
obtained from 10,000 distinct 10-fold CV procedures.

We carry out a series of experiments to validate sev-
eral key aspects. Firstly, we assess how our proposed
estimation of the correlation (ρs) enables complexity-
aware uncertainty estimations (Section 5.1). Secondly,
we investigate the most likely uncertainty estimations
(Section 5.2) and the worst-case uncertainty estima-
tions (Section 5.3) across a broad range of algorithmic
comparison scenarios. We present additional exper-
iments in Appendix 14 that demonstrate how incor-
porating uncertainty can alter the conclusions drawn
from some benchmark published results. A compre-
hensive description of the specific algorithms and the
dataset is available in Appendix 11.

5.1 Best Approximation for ρs

First, we compare the existing alternatives to approx-
imate ρs to find the most accurate strategy. We ex-
amine four alternatives, consisting of two state-of-the-
art approaches that are not influenced by model com-
plexity (1-2), along with two complexity-dependent
approaches proposed in this study (3-4): (1) ρs =
1/K (Nadeau et al., 2003; Benavoli et al., 2017);
(2) ρs ∈ [0, 1/K] (Wang et al., 2019); (3) ρs =
ρrel: the relative ρs assuming that ρ0s = 1/K and

M0 = SVM (non-linear); and (4) ρs = ρ↑rel: the
relative ρs assuming that ρ0s ∈ [0, 1/K] and M0 =
SVM (non-linear). When assuming that ρs belongs
to a specific range [a, b], the estimation of the ef-
fective CM involves calculating the average contribu-
tion of each potential correlation value., i.e., Ce

s =
1

b−a

∫ b

a
1

1+(K−1)·ρs
dρs

∑K
k=1 C

(k)
s .

The strategy that yields the posterior distribution with
the highest alignment w.r.t. the empirical distribution
of repeated 10-fold CV results is considered as the opti-
mal approach for approximating ρs. This agreement is
measured by the proportion of repeated 10-fold CV re-
sults that fall within the 95% HDR (%RES) of the pos-

terior distribution. Among the approaches that have
equivalent agreement, we will favor the ones that de-
rive the narrowest posterior, measured by the area of
the 95% HDR. For each strategy to estimate the cor-
relation, we repeat the experiment over 10,000 initial
10-fold CV configurations to derive the posteriors and
report the averaged results. Further details about the
experimental setup can be found in Appendix 11.

The results, presented in Table 1, indicate that the
methods we suggest for estimating correlation (3-4),
which take into account model complexity, yield re-
sults similar to those obtained with approaches (1-2)
when the classifier’s stability closely resembles that of
SVM. Notably, our approach delivers the most accu-
rate uncertainty estimations, surpassing the estima-
tions of (1-2), particularly when the classifier’s sta-
bility significantly deviates from that of SVM. For a
more comprehensive version of the table that includes
a broader range of methods, please refer to Appendix
12.1.

5.2 Most Probable Case

This section evaluates the effectiveness of UM for the
10-fold CV partition whose value of the performance
difference (among the sample of 10,000 CV results) is
the closest to the average value within the empirical
distribution of differences in terms of Euclidean dis-
tance. We explore two distinct algorithmic evaluation
scenarios: (a) when two methods exhibit similar sta-
bility with respect to data splits, and (b) when the
methods display significantly different stability levels.
For scenario (a) we utilize the pre-processing method
proposed by Feldman et al. (2015) in conjunction with
SVM, and the in-processing method by Donini et al.
(2018) (see first row of Figure 2). In scenario (b)
we employ the post-processing method introduced by
Hardt et al. (2016) combined with Linear SVM, along
with the in-processing method by Donini et al. (2018)
(see second row of Figure 2). We specifically exam-
ine how well the framework estimates the probabil-
ities of the following events: A practically outper-
forms B (P (A >> B)), B practically outperforms A
(P (A << B)), A and B are practically equivalent
(P (A ≈ B)), A practically outperforms B in accuracy
but is outperformed by B in fairness (P (Aacc,Bfair))
and B practically outperforms A in accuracy but is
outperformed by A in fairness (P (Bacc,Afair)). For
these experiments, we consider the correlation approx-
imations discussed in the previous section, employ a
RoPE with dimensions (0.01, 0.01), and adopt the fair-
ness notion of EOp. The results are presented in Table
2, showcasing the effectiveness of the UM approach in
both scenarios. These findings affirm UM's capacity to
deliver accurate event probability estimates, thereby
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Table 1: Evaluation of the Different Approximations for ρs. The area of the 95% HDR of the posterior distribution
and the proportion of 10,000 different 10-fold CV results it encloses (%RES) for different algorithms (rows) and
approximations (1-4) of ρs (columns). An extended version can be found in Appendix 12.1.

ρs = 1/K ρs ∈ [0, 1/K] ρs = ρrel ρs = ρ↑
rel

METHOD AREA % RES AREA % RES AREA % RES AREA % RES

SVM 0.0201 100.0 0.0148 99.99 0.0201 100.0 0.0148 99.99
Kamiran et al. (2012) + SVM 0.0201 100.0 0.0149 99.96 0.0196 99.95 0.0148 99.64
FERM (Donini et al., 2018) 0.0107 100.0 0.0079 99.74 0.0110 100.0 0.0080 99.86
LFERM (Donini et al., 2018) 0.0109 99.97 0.0078 99.60 0.0129 100.0 0.0087 99.81
LR + Hardt et al. (2016) 0.0210 90.32 0.0156 82.08 0.0414 99.04 0.0232 92.77
SVM + Hardt et al. (2016) 0.0203 94.09 0.0151 88.67 0.0413 99.48 0.0230 95.84

Table 2: UM’s Predictive Performance Applied to the Most Likely 10-fold CV Outcomes. Conventional 10-fold
CV provides a single deterministic conclusion (Aacc,Bfair) for the first comparison and (B >> A) for the second,
but lacks the ability to estimate probabilities. The probabilities assigned to these events by uncertainty-aware
frameworks are shaded in gray. The ground truth probabilities are highlighted in bold blue, with the closest
probabilities indicated in bold. By implementing UM, we can obtain probabilities that closely align with the
true probabilities of the evaluation outcomes, thus providing a more accurate representation of the ground truth.

METHODS P (A >> B) P (B >> A) P (A ≈ B) P (Aacc,Bfair) P (Bacc,Afair)

Ground truth 0.04 0.15 0.01 0.80 0.00
A : Feldman et al. (2015) SOTA (ρs = 1/K) 0.01 0.27 0.00 0.73 0.00

+ SVM vs. SOTA (ρs ∈ [0, 1/K]) 0.00 0.23 0.00 0.77 0.00
B : Donini et al. (2018) UM (ρs = ρrel) 0.00 0.20 0.00 0.80 0.00

UM (ρs = ρ↑rel) 0.01 0.17 0.00 0.82 0.00

Ground truth 0.02 0.83 0.04 0.00 0.11
A : LinearSVM + SOTA (ρs = 1/K) 0.08 0.64 0.03 0.03 0.22

Hardt et al. (2016) vs. SOTA (ρs ∈ [0, 1/K]) 0.06 0.68 0.03 0.02 0.21
B : Donini et al. (2018) UM (ρs = ρrel) 0.03 0.78 0.02 0.01 0.15

UM (ρs = ρ↑rel) 0.02 0.83 0.03 0.01 0.11

strengthening the trustworthiness of the conclusions
drawn from employing UM compared to solely depend-
ing on 10-fold CV. Furthermore, these results empha-
size the significance of integrating uncertainty quan-
tification that takes classifier complexity into account.
Additional results with different HDR and RoPE di-
mensions can be found in Appendix 12.2.

5.3 Worst-Case: Uncommon Events

This section assesses the performance of UM for the
10-fold CV partition (among the 10,000 CV partitions
considered) where the performance difference leads to
a conclusion that differs from what is implied by the
average value within the empirical distribution and ex-
hibits the highest deviation from that average value.
We explore the same algorithmic evaluation scenar-
ios, correlation approximations, RoPE dimensions and
fairness notions discussed in the previous section, and
the results are detailed in Table 3. Additional re-
sults with different HDR and RoPE dimensions, in-
cluding scenarios without HDR and/or RoPE, can be
found in Appendix 12.3. The outcomes reveal that
relying solely on conventional 10-fold CV leads to in-
correct conclusions. Nonetheless, UM effectively mit-
igates the issue: although the probability in favor of
the ‘incorrect’ conclusion increases, it remains low and
does not significantly surpass the probabilities of other

events. Importantly, UM consistently prioritizes the
event with the highest true probability. It’s impor-
tant to emphasize that this is not observed in scenario
(b) with SOTA approximations to estimate the corre-
lation. The discrepancy in results within scenario (b)
can be attributed to the fact that SOTA approaches
are generally more suitable for algorithms with stabil-
ity levels similar to SVM. Consequently, in the case of
A, whose stability significantly deviates from that of
SVM, SOTA methods prove inadequate for precisely
estimating the correlation among A’s outcomes.

6 CONCLUSION AND
DISCUSSION

A wealth of literature underscores the effectiveness of
Bayesian inference in dealing with non-repeatability
issues, as it provides a more robust approach to rea-
soning in uncertain situations. Within the framework
of Bayesian inference, we have introduced Uncertainty
Matters (UM), a probabilistic approach designed to
conduct uncertainty-aware multi-objective algorithmic
comparisons. This includes, for instance, estimating
uncertainty-aware disparities in performance and fair-
ness guarantees between two algorithms. UM can
be effectively applied in various algorithmic evalua-
tion scenarios, such as hold-out and K-fold CV. Our
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Table 3: Worst-Case Predictive Performance of UM. Conventional 10-fold CV suggests a single deterministic
outcome of algorithmic comparison, whose true probability is negligible (bold red). Uncertainty-aware frame-
works assign probabilities to these rare outcomes, highlighted in gray, and we identify the event with the highest
true probability in bold blue. Even when applied to rare 10-fold CV results, UM consistently prioritizes the
event with the highest true probability and refrains from assigning a high probability to an incorrect conclusion.

METHODS P (A >> B) P (B >> A) P (A ≈ B) P (Aacc,Bfair) P (Bacc,Afair)

Ground truth 0.04 0.15 0.01 0.80 0.00
A : Feldman et al. (2015) SOTA (ρs = 1/K) 0.32 0.18 0.04 0.44 0.01

+ SVM vs. SOTA (ρs ∈ [0, 1/K]) 0.30 0.16 0.04 0.50 0.00
B :Donini et al. (2018) UM (ρs = ρrel) 0.31 0.09 0.04 0.56 0.00

UM (ρs = ρ↑rel) 0.22 0.10 0.04 0.64 0.00

Ground truth 0.02 0.83 0.04 0.00 0.11
A : Linear SVM + SOTA (ρs = 1/K) 0.36 0.32 0.05 0.13 0.13

Hardt et al. (2016) vs. SOTA (ρs ∈ [0, 1/K]) 0.36 0.33 0.07 0.12 0.12
B :Donini et al. (2018) UM (ρs = ρrel) 0.10 0.56 0.04 0.02 0.28

UM (ρs = ρ↑rel) 0.17 0.51 0.07 0.05 0.19

numerical experiments have demonstrated that the
UM framework offers enhanced informativeness and a
broader perspective on algorithmic evaluation since it
captures the inherent instability in results.

Despite the strengths of this study, it is important to
acknowledge several limitations. In scenarios where
the 10-fold CV outcome suggests a rare event in al-
gorithmic comparison, UM probabilities may not pre-
cisely reflect the true probabilities but will effectively
prevent the derivation of erroneous conclusions with
a high degree of confidence. Additionally, the main
source of computational complexity in UM arises from
estimating ρs, which necessitates performing 2× J it-
erations of 10-fold CV on a half-sized dataset (see Ap-
pendix 10 for details). Our empirical research has ver-
ified that for small datasets, consistently reliable re-
sults can be obtained by setting J to 5, whereas for
larger datasets, J = 1 suffices. Furthermore, while the
selection of the RoPE may have a minor influence on
the likelihood of events, it does not alter the principal
finding of the algorithmic comparison. The underly-
ing concept of RoPE is to allow users to define a range
around the null value that includes values considered
practically equivalent to the null value. Moreover,
with an increasing number of objectives (metrics), the
probability of one method being dominated by an-
other method significantly decreases and becomes al-
most negligible (for experiments with more than 2 ob-
jectives refer to Appendix 13). Consequently, with a
significant number of objectives, all methods may be-
come Pareto-optimal. Therefore, in reality, employing
more than three objectives becomes impractical, even
though there is no theoretical constraint in the UM
framework.

Future research should prioritize the development of
techniques to reduce outcome uncertainty in scenarios
with limited sample sizes (see detailed discussions in
Appendix 15). One promising direction is to inves-
tigate approaches that integrate unlabeled data with

test data to enhance the reliability of outcomes. Fur-
thermore, we aim to extend our research to encompass
a broader range of real-world scenarios, including those
with noisy or corrupted sensitive information in test
data, as well as situations where sensitive information
may be missing for some instances due to legal restric-
tions or individual choice. We are also interested in
exploring other multi-objective comparison scenarios,
such as, privacy-aware evaluations (Yeom et al., 2018).
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7 UNSTABLE 10-FOLD CV RESULTS OF FAIRNESS-ENHANCING
INTERVENTIONS

Figure 7.1: Instability of 10-Fold CV Results. The average values resulting from 100 different 10-fold cross-
validation for accuracy and fairness, measured by means of (left) demographic parity (DP) and (right) predictive
parity (PP). Each point refers to one averaged results of the 10-fold cross-validation, and the colors refer to
different benchmark fairness-enhancing methods. These results were obtained using the German dataset with
age as the sensitive attribute. This figure presents equivalent information to Figure 1 in the main text, albeit
with distinct fairness metrics.

8 MULTI-CLASS CASE

In this section, we clarify the adaptation of our methodology to encompass the multi-class scenario. Within this
context, we encounter two primary challenges: (a) determining the suitable formulation of the confusion matrix
for each subgroup when dealing with more than two classes, and (b) devising a framework to quantify fairness
metrics within this context. We provide solutions to both challenges in the following discussion.

The CM in Multi-Class Classification. Let us contemplate a scenario where the classification task at hand
encompasses a total of J classes, meaning that |Y| = J . In this case, we will consider one 2× 2 confusion matrix
for each subgroup and class label pair, i.e., Cs,j = (TPs,j , TNs,j , FPs,j , FNs,j), where s = 1, ..., r and j = 1, ..., J ,
which will be defined as:

(∑N
i=1 I[yi = j, ŷi = j, s]

∑N
i=1 I[yi ̸= j, ŷi = j, s]∑N

i=1 I[yi = j, ŷi ̸= j, s]
∑N

i=1 I[yi ̸= j, ŷi ̸= j, s]

)
. (4)
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Fairness Metrics in Multi-Class Classification. Scant attention has been devoted to quantifying fairness
infringements in the context of multi-class classification. In this work we propose three alternatives:

(i) Micro-averaging:

DPmicro = max
s,s′

∣∣∣∣∣
∑J

j=1 TPs,j + FPs,j∑J
j=1 TPs,j + FPs,j + TNs,j + FNs,j

−
∑J

j=1 TPs′,j + FPs′,j∑J
j=1 TPs′,j + FPs′,j + TNs′,j + FNs′,j

∣∣∣∣∣ (5)

DPmicro = max
s,s′

∣∣∣∣∣ARmicro,s −ARmicro,s′

∣∣∣∣∣ (6)

EOpmicro = max
s,s′

∣∣∣∣∣
∑J

j=1 TPs,j∑J
j=1 TPs,j + FNs,j

−
∑J

j=1 TPs′,j∑J
j=1 TPs′,j + FNs′,j

∣∣∣∣∣ (7)

EOpmicro = max
s,s′

∣∣∣∣∣TPRmicro,s − TPRmicro,s′

∣∣∣∣∣ (8)

(ii) Macro-averaging:

DPmacro =

J∑
j=1

p(y = j)

{
max
s,s′

∣∣∣∣∣ TPs,j + FPs,j

TPs,j + FPs,j + TNs,j + FNs,j
− TPs′,j + FPs′,j

TPs′,j + FPs′,j + TNs′,j + FNs′,j

∣∣∣∣∣
}
(9)

DPmacro =

J∑
j=1

p(y = j)DPy=j (10)

EOpmacro =

J∑
j=1

p(y = j)

{
max
s,s′

∣∣∣∣∣ TPs,j

TPs,j + FNs,j
− TPs′,j

TPs′,j + FNs′,j

∣∣∣∣∣
}

(11)

EOpmacro =

J∑
j=1

p(y = j)EOpy=j (12)

(iii) Macro-micro averaging:

DP = max
s,s′

∣∣∣∣∣
J∑

j=1

p(y = j|s) TPs,j + FPs,j

TPs,j + FPs,j + TNs,j + FNs,j
−

J∑
j=1

p(y = j|s′) TPs′,j + FPs′,j

TPs′,j + FPs′,j + TNs′,j + FNs′,j

∣∣∣∣∣
(13)

DP = max
s,s′

∣∣∣∣∣ARmacro,s −ARmacro,s′

∣∣∣∣∣ (14)

EOp = max
s,s′

∣∣∣∣∣
J∑

j=1

p(y = j|s) TPs,j

TPs,j + FNs,j
−

J∑
j=1

p(y = j|s′) TPs′,j

TPs′,j + FNs′,j

∣∣∣∣∣ (15)

EOp = max
s,s′

∣∣∣∣∣TPRmacro,s − TPRmacro,s′

∣∣∣∣∣ (16)
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9 PROOFS OF SECTION 2

In order to proof Proposition 2.3 we first introduce the reader to an important lemma by Nadeau et al. (2003):

Lemma 9.1. Let U1,..., UK be random variables with common mean β and the following covariance structure

Var[Uk] = δ ∀k, Cov[Uk, Uk′
] = γ ∀k ̸= k′.

Let π = γ
δ be the correlation between Uk and Uk′

(k ̸= k′). Let Ū = k−1
∑K

k=1 U
k and S2

U = 1
K−1

∑K
k=1(U

k−Ū)2

be the sample mean and the sample variance respectively. Then:

1. Var[Ū ] = γ + (δ−γ)
K = δ

(
π + 1−π

K

)
.

2. If the stated covariance structure holds for all K (with γ and δ not depending on K), then:

• γ ≥ 0

• limK→∞ Var[Ū ] = 0 ⇐⇒ γ = 0

3. E[S2
U ] = δ − γ

Proof of Proposition 2.3

Proof. To characterize the form of the effective confusion matrix, our goal is to characterize the elements of
the effective CM, i.e., (TP e, TNe, FP e, FNe), that, when assuming our probabilistic approach for the CM, we
obtain the same uncertainty-aware description of the classifier's as that derived from the correlated K-fold CV
results. Our specific objective is to ensure that the expected value and variance of any function derived from the
CM are consistent between the effective procedure and the correlated results.

Let θ = f(Ce) be a statistic of interest that describes the behavior of the algorithm, θ̂ its mean value resulting
from the K-fold cross-validation and θk its value for the k-th train/test configuration of the cross-validation.
Since the partitioning is arbitrary, Var[θk] will be similar across all k, and the covariance between the results
of two different train/test configurations on the K-fold cross-validation will be similar for any two pairs, i.e.
Corr[θk, θk

′
] = ρ for k ̸= k′. Then, from Lemma 9.1 we know that:

Var[θ̂] =
Var[θk](1 + (K − 1)ρ)

K

Let us assume the case where the metric θ refers to the true positive rate (TPR). Then:

Var[θk] = Var

[
TP k

TP k + FNk

]
where TP k+FNk refers to the number of positive labeled instances in the k-th fold. If we assume that we adopt
an stratified strategy for the CV then, TP k + FNk = n+/K, where n+ refers to the number of positive labeled
instances in the whole dataset. Thus,

Var

[
TP k

TP k + FNk

]
=

(
K

n+

)2

Var[TP k]

Since we have described the probabilistic CM by means of a multinomial distribution, due to marginalization,
its elements will follow a binomial distribution. From Goutte et al. (2005) we know that for fixed TP k + FNk,
TP k follows a binomial distribution with parameters r and n+/K, that is, TP k|TP k + FNk ∼ Bin(r, n+/K).
Therefore, Var[TP k] = r(r − 1)n+

K and:

Var

[
TP k

TP k + FNk

]
=
Kr(1− r)

n+
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where r = p(ŷ = 1|y = 1) represents the expected value of such probability of models that are trained with
(K−1)N

K instances. With that, the variance of the estimation resulting from the K-fold cross-validation would
be:

Var[ ˆTPR] =
r(1− r)(1 + (K − 1)ρ)

n+
(17)

At the same time, we define the elements of the effective confusion matrix, TP e, FP e, TNe and FNe, as
random variables whose distribution is defined so that for any function of the confusion matrix, the variance of
such function is equivalent to the one that would be derived from the actual K correlated CV results. Therefore,
based on the effective CM, the variance of the expected value of TPR can be described as:

Var[ ˆTPR] = Var

[
TP e

TP e + FNe

]
In this case TP e + FNe is constant and TP e|TP e + FNe ∼ Bin(r, TP e + FNe). Thus,

Var[ ˆTPR] =
r(1− r)

TP e + FNe
(18)

Comparing equations (17) and (18) we get:

r(1− r)

TP e + FNe
=
r(1− r)(1 + (K − 1)ρ)

n+

and since n+ =
∑K

k=1(TP
k + FNk):

TP e + FNe =
1

1 + (K − 1)ρ

K∑
k=1

(TP k + FNk)

From which we can define:

TP e =
1

1 + (K − 1)ρ

K∑
k=1

TP k

FNe =
1

1 + (K − 1)ρ

K∑
k=1

FNk

If we repeat the procedure with the metric FPR and assuming that the value of the correlation ρ is equal for all
the metrics, we can derive equivalent formulations for the effective counts on FP and TN , eventually obtaining:

Ce =
1

1 + (K − 1)ρ

K∑
k=1

C(k) (19)

The expected value of a given statistic will be the same across each fold since the partition is randomized. Such

expectation refers to the expected value of a classifier trained with N(K−1)
K training samples. Therefore, due to

the linearity property of the expectation, the expected value obtained from the effective CM will be identical to
that obtained from K-fold CV.

10 THE RELATIVE VALUE OF THE CORRELATION ρ

In this section we provide a more detailed explanation about how we can conclude the correlation of the results
for a target method A1 for subgroup s, based on the correlation of a reference method A0 in that subgroup.
Moreover, we explain the method proposed by Nadeau et al. (2003) to obtain the over-estimations of the variance

which is used to compute the value of rs ≡ r(A0,A1, s) =
Var[θ̄K,A0,s]

Var[θ̄K,A1,s]
of our approximation.



Ainhize Barrainkua, Paula Gordaliza, Jose A. Lozano, Novi Quadrianto

From Lemma 9.1 we know that the variance of the expected value of a metric under a K-fold CV for subgroup
s can be written as:

Var[θ̄s,K ] =
Var[θks ](1 + (K − 1)ρs)

K

Thus, for two ML methods (A0 and A1) with correlations ρ0s and ρ1s, the ratio of their variances is:

r(A0,A1, s) =
Var[θks,1]

Var[θks,0]
· 1 + (K − 1)ρ1s
1 + (K − 1)ρ0s

We assume the variance of the results obtained for each fold will have the same variance for each k = 1, ...,K
(Lemma 9.1), and will be similar for different methods (which has been supported by different experiments);
that is, Var[θks,1] ≈ Var[θks,0] (note that, starting from the same Var[θks ], what makes the variance of the final
metric to be different is the correlation). Thus:

rs ≡ r(A0,A1, s) =
1 + (K − 1)ρ1s
1 + (K − 1)ρ0s

From which we can conclude:

ρ1s =
(rs − 1) + rs(K − 1)ρ0s

K − 1
,

The value r(A0,A1, s) =
Var[θ̄K,A0,s]

Var[θ̄K,A1,s]
cannot be estimated exactly. However, Nadeau et al. (2003) propose a

method to overestimate the variance Var[θ̄s,K ]. Assuming that such an overestimation is proportional for all

the methods, that is, r(A0,A1, s) =
Var[θ̄K,A0,s]

Var[θ̄K,A1,s]
≈ rover(A0,A1, s)

Varover[θ̄K,A0,s]

Varover[θ̄K,A1,s]
, we can obtain an approximate

value of r(A0,A1, s). With that, starting from a reference value ρ0s we can obtain the value of the correlation
for any method. But, how do we obtain the overestimations of the variances?

In what follows, we explain the approach by Nadeau et al., 2003 to overestimate the variance of a given perfor-
mance metric. Particularly, they propose to obtain independent observations of such statistic. To obtain such
independent measurements, the dataset must be split into two disjoint datasets D and Dc (where D∩Dc = ∅) of
size ⌊n

2 ⌋ (|D| = |Dc| = ⌊n
2 ⌋) (being n the size of the complete dataset). Let θ̂s and θ̂

c
s be the values of the statistic

of interest in group s when a K-fold CV is performed in D and Dc, respectively. Then, 1
2 (θ̂s− θ̂

c
s)

2 is an unbiased
estimate of Varover[θ̄K,A,s]. The step of splitting the dataset into two disjoint blocks can be repeated J times,

yielding the pairs (θ̂s,j , θ̂
c
s,j) for j = 1, ..., J . With that, the following unbiased estimation of Varover[θ̄K,A,s] is

concluded:

Varover[θ̄K,A,s] =
1

2J

J∑
j=1

(θ̂j − θ̂cj)
2 (20)

Thus this approximation requires performing 2J additional half-sized 10-fold CV procedures. Nonetheless, low
values of J provide stable result with respect to rover(A0,A1). In fact, Figure 10.1 suggests that, in the case
of the German Credit dataset (composed of 1,000 instances), J = 5 already constitutes a good approximation.
Furthermore, the value of J required to obtain an accurate estimation decreases considerably for increasing
dataset size. Thus, for big enough datasets J = 1 is sufficient. Nonetheless, in such cases, the conventional
approximation ρs = 1/K becomes accurate.

11 IMPLEMENTATION DETAILS

11.1 Licenses

In our code base we use packages installed via the Python Package Index (PyPI). A table of the used packages
and their associated licenses are available in Table 11.1.

11.2 Dataset

In the experimental section, we explore various algorithmic comparison scenarios for a specific classification task.
Now, let’s delve into the dataset utilized in these comparative scenarios.
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Figure 10.1: The Ratio Between the Overestimation of the Variances (rover(A0,A1)) Between FERM (A1) of
Donini et al. (2018) and Non-Linear SVM (A0). The value of rover(A0,A1) stabilizes for very low values for J .

Package License

EthicML GPL 3.0
AIF360 Apache License 2.0
Numpy BSD 3-Clause
Seaborn BSD 3-Clause
Sklearn BSD 3-Clause

Table 11.1: Licenses of Packages Installed from the Python Package Index (PyPi).

German Credit. The German Credit dataset collects information about several individuals created from a
German bank's data from 1994. It contains details about the socioeconomic situation of individuals: namely its
employment, housing, savings, etc. Besides, the set of features includes some sensitive information as well: the
gender and age. In this classification task, the objective is to predict whether an individual should obtain a good
or bad credit score. This dataset is considerably smaller than the previous, containing only 1,000 instances and
20 features, and it is publicly available in the UCI repository. In our experiments, age has been considered as
the sensitive attribute, and we have divided the instances into two groups based on whether their age is greater
than 25 or less than or equal to 25. This binarization of age results in two sensitive groups: one group consists
of individuals aged 25 or younger, representing 19% of the instances, and the other group consists of individuals
older than 25. We pre-process the dataset as in Donini et al., 2018.

We chose the German Credit dataset for its two advantageous characteristics, particularly well-suited to our
analysis. These benefits are primarily attributed to its moderate size: (1) it allows for the computation of
numerous 10-fold cross-validations within a reasonable timeframe, facilitating the estimation of a ’ground truth’,
and (2) the dataset's limited scale naturally introduces greater uncertainty into the metrics being evaluated.

In additional experiments presented in this Appendix, we employ various other datasets, which are described
below:

Adult Income. It is a dataset based on the data from the 1994 US Census, where the main goal is to predict
whether an individual earns more than 50,000$ per year. The 14 features used to describe the instances include
occupation, marital status and education. Furthermore, it contains sensitive information such as, age, gender and
race. In our experiments, we considered a single sensitive attribute: gender. This dataset is publicly available
in the UCI repository1 and it is already divided into a training and a test set. The former has 32,561 instances
and, the latter, 16,281. We pre-process the dataset as in Donini et al., 2018.

1http://archive.ics.uci.edu/ml/index.php
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11.3 Methods

In this section we provide a brief description of the fairness-enhancing interventions that are considered in the
experimental section. The considered approaches are grouped, according to the step in which fairness guarantees
are enforced within the algorithmic procedure, into pre-processing, in-processing and post-processing methods.
Pre-processing mechanisms aim to transform biased datasets so that, when conventional ML classifiers are
trained on them, the final outputs are fairer. In-processing interventions, modify existing algorithms to account
for fairness guarantees at training time. Lastly, post-processing methods alter algorithmic predictions to obtain
fairer final decisions.

11.3.1 Pre-Processing

Reweighing (RW). This pre-processing intervention proposed by Kamiran et al. (2012) aims to transform a
biased dataset so that when a conventional ML classifier is fed with such data the effects of it's outcomes are
not disproportionate for different sensitive groups. Such transformation constitutes of weighing the instances to
achieve equal prevalence across sensitive groups, i.e. to enforce statistical independence between the label and
the sensitive attribute.

Disparate Impact Remover (DIR). Feldman et al. (2015) developed a method to pre-process a biased
dataset in order to remove the disparate impact on the effects of the algorithm across different subgroups of
the population when the algorithm is fed with such dataset. The processed dataset is obtained by changing the
non-sensitive attributes of the dataset that could be employed to predict the sensitive information.

The code for both methods can be found within the AIF360 Python package, a comprehensive resource comprising
benchmark fairness-enhancing interventions and fairness metrics.

11.3.2 In-Processing

Fair Empirical Risk Minimization (FERM). FERM is an in-processing method developed by Donini et
al. (2018) which constitutes a modification of the conventional Empirical Risk Minimization (ERM) method.
In particular, they propose to introduce additional constraints into the optimization problem to enforce the
fulfillment of fairness guarantees by the learning algorithm. These constraints request the learning algorithm
to have approximately constant conditional risks with respect to the sensitive attribute. As in their work, we
consider SVM as the base learning method, using either a linear kernel (LFERM) or a non-linear kernel (FERM).
We have implemented this method using the code provided by the authors2.

Avoiding Disparate Mistreatment. Zafar et al. (2017) proposed an optimization problem to learn an
algorithm, by minimizing a general classification loss subject to fairness constraints. The latter forced the
algorithm to achieve similar FNR and FPR performances across the different sensitive groups (which would
mean that it does not show disparate mistreatment). In order to avoid tractability issue, they reformulate the
problem using a tractable proxy by defining the disparate mistreatment using the covariance between the sensitive
attributes of the individuals and the signed distance between the feature vectors of misclassified instances and the
classifier decision boundary. We implemented the code provided by the authors3 with a linear decision boundary.

11.3.3 Post-Processing

Hardt et al. (2016) Post-Processing. Hardt et al. (2016) propose a fairness-enhancing intervention that
modifies the outcomes of a given predictor in order to satisfy a given fairness property defined by either equality
of opportunity or equality of odds. In the case of binary predictors, their method flips the decisions with a given
probability to satisfy the fairness criteria. On the other hand, for score-based algorithms, they suggest to modify
the decision boundary to improve the fairness guarantees of the algorithm: in particular, they modify the decision
threshold, assuming different (possibly randomized) thresholds for the distinct sensitive groups. The code for
this method can also be found in the AIF360 Python package.

2https://github.com/jmikko/fair ERM
3https://github.com/mbilalzafar/fair-classification
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11.4 Experimental Setup to Choose the Optimal Approximation for ρ

10-fold CV results for different seeds for the splits

Ce
s

P (Θ) 95% HDR
% RES

Area

Figure 11.1: The Workflow Representing the Experimental Setup Used to Choose the Best Approximation for
ρs. Starting from an arbitrary 10-fold CV configuration and compute the effective CM. From the effective CM
we conclude the joint posterior distribution of accuracy and a fairness metric. Then, we estimate the 95% HDR
of the posterior distribution and calculate its area and proportion of repeated 10-fold CV results that fall within
such region (% RES). We repeat this procedure for 10,000 different initial 10-fold CV configurations.

This section presents a more comprehensive overview of the experimental setup discussed in Section 5.1. The
primary objective of this experiment is to identify the most accurate approximation for the correlation coefficient
ρ. To achieve this goal, we commence by initializing the process with a randomly selected 10-fold CV setup. We
then proceed to calculate the posterior distributions using a variety of approximation techniques, including the
state-of-the-art (SOTA) methods as well as our proposed approach. For each of these posterior distributions, we
calculate the 95% Highest Density Region (HDR) and determine the percentage of repeated 10-fold CV outcomes
that fall within this region (% RES). The narrowest posterior distribution capable of encompassing all potential
10-fold CV outcomes will be considered the optimal approach for approximating ρ. Figure 11.1 illustrates a
schematic representation of the experimental workflow. We repeat this experiment for 10,000 different initial
10-fold CV configurations and report the results as an average across all iterations.

11.5 Calculating the 95% HDR

In this section, we provide a formal definition of the (100−α)% HDR and outline existing alternatives to measure
it in practice.

The (100 − α)% highest density region (HDR) is the (100 − α)% density region with the smallest size, and it
constitutes the most compact summary of a probability distribution. Let f(x) be the probability density function
of a (possibly multivariate) random variable X ∈ Rd and 0 < α < 100. Following the definition by Hyndman
(1996), the (100 − α)% HDR refers to the subset {x : f(x) ≥ fα}, where fα is the highest constant for which
P (X ∈ {x : f(x) ≥ fα}) = (100− α)%:

P (X ∈ {x : f(x) ≥ fα}) =
∫
{x : f(x)≥fα}

f(u) du = (100− α)%

There are many alternatives to estimate the (100 − α)% HDR of a distribution. If the probability distribution
f(x) is known, the problem can be solved by numerical integration as in Hyndman, 1996. However, this procedure
becomes computationally hard with the increasing dimensionality of the sample space. Another popular approach
is the so-called ’quantile approach’ Hyndman, 1996. In this method, n samples i.i.d. from known f(x) are sorted

in descending order, and the
[ (100−α)

100 n
]
-th element of the sorted sample is considered an approximation of fα.
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The main advantage of this approach is that the computational complexity does not increase when the sample
space becomes higher-dimensional.

In the cases where f(x) is unknown and only observable through a set of samples, f(x) can be estimated from the
set of samples by, e.g., kernel smoothing Hyndman et al., 1996; Bashtannyk et al., 2001; Samworth et al., 2010.
In fact, this is the approach we have adopted in the experiments, based on the implementation of the package
hdrcde4 in R. However, there exists other non-parametric alternatives too, such as the heuristic approach by
Waltman (2014).

12 ADDITIONAL EXPERIMENTAL RESULTS

12.1 Full Results from Section 5.1

Table 12.1 provides the complete version of Table 1 from the main paper, with a more diverse set of algorithms.

Table 12.1: Evaluation of the Different Approximations for ρs. The area of the 95% HDR of the posterior
distribution and the proportion of 10,000 different 10-fold CV results it encloses (%RES) for different algorithms
(rows) and approximations (1-4) of ρs (columns). We use the German Credit dataset with age as the sensitive
attribute. It is the extended version of Table 1 from the main paper.

ρs = 1/K ρs ∈ [0, 1/K] ρs = ρrel ρs = ρ↑rel
Method Area % res Area % res Area % res Area % res

LR 0.0207 100.0 0.0153 100.0 0.0197 100.0 0.0150 99.96
SVM 0.0201 100.0 0.0148 99.99 0.0201 100.0 0.0148 99.99
Lin. SVM 0.0205 99.98 0.0154 99.86 0.0243 100.0 0.0168 99.87
KAMIRAN ET AL. Kamiran et al., 2012 + LR 0.0207 100.0 0.0153 100.0 0.0195 100.0 0.0148 100.0
KAMIRAN ET AL. Kamiran et al., 2012 + SVM 0.0201 100.0 0.0149 99.96 0.0196 99.95 0.0148 99.64
Feldman et al. (2015) + LR 0.0208 100.0 0.0154 100.0 0.0182 99.99 0.0143 99.91
Feldman et al. (2015) + SVM 0.0201 100.0 0.0149 99.99 0.0198 99.99 0.0147 99.93
Zafar et al. (2017) 0.0205 100.0 0.0153 100.0 0.0269 100.0 0.0178 99.99
FERM Donini et al., 2018 0.0107 100.0 0.0079 99.74 0.0110 100.0 0.0080 99.86
LFERM Donini et al., 2018 0.0093 99.99 0.0069 99.93 0.0112 100.0 0.0075 99.97
LR + Hardt et al. (2016) 0.0210 90.32 0.0156 82.08 0.0414 99.04 0.0232 92.77
SVM + Hardt et al. (2016) 0.0203 94.09 0.0151 88.67 0.0413 99.48 0.0230 95.84
Lin. SVM + Hardt et al. (2016) 0.0196 92.91 0.0145 86.94 0.0904 99.99 0.0381 99.00

4https://github.com/robjhyndman/hdrcde
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12.2 The Effect of HDR and RoPE in UM(ρ↑rel) Results From Section 5.2

12.2.1 Algorithms with Similar Stability

Table 12.2: Most Probable Predictive Performance of UM(ρ↑rel) in (A) Feldman et al. (2015) + SVM vs. (B)
Donini et al. (2018) Algorithmic Comparison for Varying HDR and RoPE. The objectives considered in the
algorithmic comparison are accuracy and the fairness notion EOp. Conventional 10-fold CV provides a single
deterministic conclusion: (Aacc,Bfair). The probabilities assigned to this event by UM(ρ↑rel) are shaded in gray.
The ground truth probabilities are highlighted in bold blue. By employing UM, along with commonly used HDR
values (e.g., 90% or 95%), we can consistently obtain probabilities that closely resemble the true probabilities of
the evaluation outcomes, regardless of the RoPE dimensions chosen.

RoPE P (A >> B) P (B >> A) P (A ≈ B) P (Aacc,Bfair) P (Bacc,Afair)

Ground truth 0.04 0.15 0.01 0.80 0.00
UM no HDR 0.01 0.20 0.00 0.79 0.00

(0.01, 0.01) UM 95%HDR 0.01 0.17 0.00 0.82 0.00
UM 90%HDR 0.00 0.19 0.00 0.81 0.00
UM 80%HDR 0.00 0.18 0.00 0.82 0.00

Ground truth 0.04 0.37 0.04 0.56 0.00
UM no HDR 0.02 0.40 0.01 0.57 0.00

(0.02, 0.02) UM 95%HDR 0.02 0.39 0.01 0.58 0.00
UM 90%HDR 0.02 0.38 0.00 0.60 0.00
UM 80%HDR 0.00 0.40 0.00 0.60 0.00

Ground truth 0.03 0.01 - 0.96 0.00
UM no HDR 0.01 0.06 - 0.93 0.00

None UM 95%HDR 0.00 0.06 - 0.94 0.00
UM 90%HDR 0.00 0.05 - 0.95 0.00
UM 80%HDR 0.00 0.04 - 0.96 0.00
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12.2.2 Algorithms with Different Stability

Table 12.3: Most Probable Predictive Performance of UM(ρ↑rel) in (A) Linear SVM + Hardt et al. (2016)
vs. (B) Donini et al. (2018) Algorithmic Comparison for Varying HDR and RoPE. The objectives considered
in the algorithmic comparison are accuracy and the fairness notion EOp. Conventional 10-fold CV provides a
single deterministic conclusion: (B >> A). The probabilities assigned to this event by UM(ρ↑rel) are shaded in
gray. The ground truth probabilities are highlighted in bold blue. By employing UM, along with commonly
used HDR values (e.g., 90% or 95%), we can consistently obtain probabilities that closely resemble the true
probabilities of the evaluation outcomes, regardless of the RoPE dimensions chosen.

RoPE P (A >> B) P (B >> A) P (A ≈ B) P (Aacc,Bfair) P (Bacc,Afair)

Ground truth 0.02 0.83 0.04 0.00 0.11
UM no HDR 0.02 0.82 0.02 0.01 0.13

(0.01, 0.01) UM 95%HDR 0.02 0.83 0.03 0.01 0.11
UM 90%HDR 0.01 0.87 0.02 0.00 0.10
UM 80%HDR 0.00 0.88 0.02 0.00 0.09

Ground truth 0.01 0.81 0.15 0.00 0.03
UM no HDR 0.01 0.85 0.08 0.00 0.06

(0.02, 0.02) UM 95%HDR 0.01 0.85 0.09 0.00 0.05
UM 90%HDR 0.01 0.86 0.09 0.00 0.04
UM 80%HDR 0.00 0.91 0.08 0.00 0.01

Ground truth 0.01 0.70 - 0.03 0.26
UM no HDR 0.01 0.72 - 0.03 0.24

None UM 95%HDR 0.01 0.74 - 0.03 0.23
UM 90%HDR 0.00 0.76 - 0.02 0.22
UM 80%HDR 0.00 0.81 - 0.01 0.18

12.3 The Effect of HDR and RoPE in UM(ρ↑rel) Results From Section 5.3

12.3.1 Algorithms with Similar Stability

Table 12.4: Worst Case Predictive Performance of UM(ρ↑rel) in (A) Feldman et al. (2015) + SVM vs. (B) Donini
et al. (2018) Algorithmic Comparison for Varying HDR and RoPE. The objectives considered in the algorithmic
comparison are accuracy and the fairness notion EOp. Conventional 10-fold CV suggests a single deterministic
outcome of algorithmic comparison (A >> B), whose true probability is negligible (bold red). Uncertainty-
aware frameworks assign probabilities to these uncommon outcomes, highlighted in gray, and we identify the
event with the highest true probability in bold blue. Even when applied to rare 10-fold CV results, UM(ρ↑rel)
consistently prioritizes the event with the highest true probability and refrains from assigning a high probability
to an incorrect conclusion, regardless of the chosen HDR and RoPE dimension.

RoPE P (A >> B) P (B >> A) P (A ≈ B) P (Aacc,Bfair) P (Bacc,Afair)

Ground truth 0.04 0.15 0.01 0.80 0.00
UM no HDR 0.25 0.13 0.04 0.58 0.00

(0.01, 0.01) UM 95%HDR 0.22 0.10 0.04 0.64 0.00
UM 90%HDR 0.22 0.09 0.04 0.65 0.00
UM 80%HDR 0.21 0.11 0.03 0.65 0.00

Ground truth 0.04 0.37 0.04 0.56 0.00
UM no HDR 0.28 0.21 0.17 0.34 0.00

(0.02, 0.02) UM 95%HDR 0.25 0.22 0.17 0.36 0.00
UM 90%HDR 0.27 0.21 0.19 0.33 0.00
UM 80%HDR 0.27 0.21 0.17 0.35 0.00

Ground truth 0.03 0.01 - 0.96 0.00
UM no HDR 0.14 0.03 - 0.82 0.01

None UM 95%HDR 0.11 0.03 - 0.85 0.01
UM 90%HDR 0.13 0.02 - 0.85 0.00
UM 80%HDR 0.08 0.01 - 0.90 0.00
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12.3.2 Algorithms with Different Stability

Table 12.5: Worst Case Predictive Performance of UM(ρ↑rel) in (A) Linear SVM + Hardt et al. (2016) vs. (B)
Donini et al. (2018) Algorithmic Comparison for Varying HDR and RoPE. The objectives considered in the
algorithmic comparison are accuracy and the fairness notion EOp. Conventional 10-fold CV suggests a single
deterministic outcome of algorithmic comparison (A >> B), whose true probability is negligible (bold red).
Uncertainty-aware frameworks assign probabilities to these uncommon outcomes, highlighted in gray, and we
identify the event with the highest true probability in bold blue. Even when applied to rare 10-fold CV results,
UM(ρ↑rel) consistently prioritizes the event with the highest true probability and refrains from assigning a high
probability to an incorrect conclusion, regardless of the chosen HDR and RoPE dimension.

RoPE P (A >> B) P (B >> P (A) P (P (A ≈ B) P (P (Aacc,Bfair) P (Bacc, P (Afair)

Ground truth 0.02 0.83 0.04 0.00 0.11
UM no HDR 0.18 0.50 0.08 0.04 0.20

(0.01, 0.01) UM 95%HDR 0.17 0.51 0.07 0.05 0.19
UM 90%HDR 0.18 0.50 0.08 0.04 0.21
UM 80%HDR 0.16 0.52 0.10 0.03 0.19

Ground truth 0.01 0.81 0.15 0.00 0.03
UM no HDR 0.17 0.47 0.25 0.01 0.10

(0.02, 0.02) UM 95%HDR 0.16 0.47 0.27 0.01 0.09
UM 90%HDR 0.15 0.48 0.28 0.01 0.08
UM 80%HDR 0.13 0.48 0.32 0.00 0.07

Ground truth 0.01 0.70 - 0.03 0.26
UM no HDR 0.13 0.38 - 0.12 0.37

None UM 95%HDR 0.13 0.38 - 0.12 0.37
UM 90%HDR 0.12 0.41 - 0.12 0.35
UM 80%HDR 0.12 0.39 - 0.11 0.38

12.4 Best and Worst 10-fold CV Configurations

(a) (b)

Figure 12.1: The Best and Worst 10-fold CV Partitions from Sections 5.2 and 5.3 for Algorithmic Comparison
Scenarios (a) and (b). We examine a sample of 10,000 unique 10-fold partitions and characterize the empirical
distribution of the difference based on this sample. The best 10-fold partition is the one where the performance
difference is nearest to the average value within the empirical distribution in terms of Euclidean distance. Con-
versely, the least optimal 10-fold partition is defined by a conclusion that diverges from the one suggested by
the average value and demonstrates the most significant deviation from that average. Comparison scenario (a)
considers (A) Feldman et al. (2015) + SVM vs. (B) Donini et al. (2018) and scenario (b) refers to (A) Linear
SVM + Hardt et al. (2016) vs. (B) Donini et al. (2018).
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13 3-OBJECTIVE ALGORITHMIC COMPARISON

In this section, we extend the experiments from Section 5.2 to encompass multi-objective algorithmic compar-
isons. Specifically, we examine algorithmic comparison between two algorithms, compared with respect to three
objectives: overall accuracy and 2 fairness notions (EOp and DP). While with three objectives there are 23 + 1
potential outcomes in the algorithmic comparison, we will primarily focus on the fundamental probabilities:
P (A ≫ B), P (A ≪ B), and P (A ≈ B) for the sake of simplicity. The results are shown in Table 13.1.

Analyzing these results, we observe a general trend wherein the probabilities P (A ≫ B), P (A ≪ B), and
P (A ≈ B) decrease as the number of objectives considered for comparison increases. This means that as we
consider more objectives, it becomes less likely for one algorithm to dominate the other across all objectives, or
for their performance to be equivalent. As discussed in Section 6, an increase in the number of objectives also
elevates the chances of a method being Pareto-optimal. Consequently, with a substantial number of objectives,
it is possible that all methods may achieve Pareto-optimality. In practical terms, utilizing more than three
objectives becomes unfeasible, despite the absence of a theoretical constraint within the UM framework.

Table 13.1: UM’s Predictive Performance Applied to the Most Likely 10-fold CV Outcomes, in 3-Objective
Algorithmic Comparison. The objectives considered in the algorithmic comparison are accuracy and two fairness
notions (EOp and DP). We emphasize the true event probabilities using bold blue. With regards to the
uncertainty-aware framework estimations (SOTA and UM), the best result is highlighted, and the second best
result is underlined. Through the application of UM, we obtain probabilities that closely match the actual
probabilities of the evaluation outcomes.

METHODS P (A >> B) P (B >> A) P (A ≈ B)

Ground truth 0.04 0.08 0.00
A : Feldman et al. (2015) SOTA (ρ = 1/K) 0.07 0.14 0.01

+ SVM vs. SOTA (ρ ∈ [0, 1/K]) 0.03 0.13 0.00
B : Donini et al. (2018) UM (ρrel) 0.07 0.14 0.01

UM (ρ↑rel) 0.04 0.11 0.00

Ground truth 0.01 0.78 0.01
A : LinearSVM + SOTA (ρ = 1/K) 0.02 0.59 0.01

Hardt et al. (2016) vs. SOTA (ρ ∈ [0, 1/K]) 0.01 0.66 0.01
B : Donini et al. (2018) UM (ρrel) 0.01 0.71 0.01

UM (ρ↑rel) 0.00 0.77 0.00

14 INTEGRATING UM INTO EXISTING RESULTS

In this section, we examine the potential impact of integrating UM into the findings of a previously published
papers. We compare the outcomes obtained from uncertainty-aware evaluation (UM) against those from the
standard result assessment process, where the traditional non-Bayesian evaluation serves as the baseline for
comparison. Specifically, we employ the study conducted by Donini et al. (2018) as our baseline, which evaluates
different fairness-enhancing interventions using conventional hold-out and 10-fold CV evaluation techniques.

14.1 Hold-Out Evaluation in Adult Income Dataset

This section shows how the conclusions drawn from a hold-out framework vary when performance metrics are
assumed to be random variables. The experiments are performed with the Adult Income dataset which has a
given train/test partition, and is the one used by Donini et al. (2018). The algorithms are compared in terms
of accuracy and equality of opportunity (EOp) and we consider a RoPE with parameters ϵΘ = (0.01, 0.01).
As mentioned in Section 3, we have computed the opposite of EOp for the estimation of ∆Θ. Specifically, we
present two case studies where the inclusion of uncertainty leads to a different conclusion than the deterministic
evaluation, and one case study where the uncertainty-aware evaluation aligns with the deterministic conclusion.

Case study 1: (A) Non-linear SVM and (B) FERM (Donini et al., 2018). Under the classic procedure,
method (A) obtains an accuracy of 0.84 and its EOP is of 0.07; while method (B) shows a predictive accuracy of
0.83 and the value of EOp is 0.09. Based on these results, method (A) outperforms (B). However, the analysis
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(a) Case study 1 (b) Case study 1

(c) Case study 2 (d) Case study 2

(e) Case study 3 (f) Case study 3

Figure 14.1: Visual Representation of the Three Case Studies Associated with the Hold-out Evaluation Method
for the Adult Income Dataset. Each row corresponds to a unique case study and displays a comparison between
the posterior distributions (left column) and the distribution of δ(∆Θ) (right column).

based on UM (see Figure 1(b)) suggests more fine-grained conclusions: the probability of such dominance is only
of 0.54.

Case study 2: (A) Linear SVM and (B) Linear FERM (Donini et al., 2018). Based on the classic
hold-out results, method (A) has a better predictive performance (0.805 vs. 0.801), but provides worse fairness
guarantees in terms of EOp (0.05 vs. 0.01). Thus, the classical evaluation setting suggests that no algorithm
outperforms the other. However, with regards the UM analysis (see Figure 1(d)), there is a probability of 0.77
that algorithm (B) outperforms (A).

Case study 3: (A) Linear SVM and (B) Non-linear SVM + Hardt et al. (2016) According to the
classic result, both methods have an accuracy of 0.805, but (A) provides better fairness guarantees than (B):
method (A) obtains an EOp value of 0.05 while (B) achieves 0.14. With that, (A) would be preferred to (B)
since, for equivalent accuracy, it provides better fairness guarantees. Furthermore, based on the UM framework
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analysis (see Figure 1(f)), the likelihood that A will outperform B is 0.93. This outcome serves as evidence that
the conclusions drawn from the classic and probabilistic perspectives are consistent with each other.

In addition, we offer a comprehensive visual analysis of the UM approach in the context of the classification task
outlined in the Adult Income dataset when using the hold-out evaluation method. Figure 14.1 presents each
case study in a separate row, depicting a comparison between the posterior distributions (left column) and the
distribution of δ(∆Θ) (right column).

14.2 10-fold CV Evaluation in German Credit Dataset

This section highlights the difference between the conclusions drawn under the classic and UM evaluation frame-
works in the case of the 10-fold CV. Different methods were compared in terms of accuracy and EOp, considering
a squared RoPE with parameters ϵΘ = (0.01, 0.01). The posterior distributions will be calculated using ρ↑rel as
the approximation for the correlation with ρ0s ∈ [0, 1/K] and M0 = SVM (non-linear), which has shown to
provide the most precise uncertainty estimations.

(a) Case Study 1 (b) Case Study 2

Figure 14.2: The Result of the 10-fold CV Partition Used in Donini et al. (2018) for German Credit Dataset.
The partition employed in Donini et al. (2018) is marked by a blue diamond, while the empirical distribution of
10,000 CV results is represented by the orange area.

Case study 1: (A) Non-linear SVM + Hardt et al. (2016) and (B) Linear SVM + Hardt et al.
(2016). Based on the classical empirical results, it could be argued that utilizing a non-linear kernel for SVM
in conjunction with the post-processing method by Hardt et al. (2016) not only yields more accurate predictions
(0.71 vs. 0.61) but also results in fairer outcomes in terms of EOp (0.11 vs. 0.15). This suggests that A
significantly outperforms B. However, according to the empirical distribution, P (A >> B) = 0.46. Even though
this event has the highest probability, there are other likely events as well, such as P (Aacc,Bfair) = 0.32, which
is the second most probable outcome. In fact, it’s important to note that this result falls within the tail end of
the empirical distribution, as shown in Figure 2(a). If we apply UM to this cross-validation result, we obtain
P (A >> B) = 0.78 and P (Aacc,Bfair) = 0.21. Therefore, we would not conclude that A absolutely dominates
B.

Case study 2: (A) Linear SVM + Hardt et al. (2016) and (B) Linear FERM Donini et al., 2018.
Classical results suggest that the linear version of the FERM method significantly outperforms the combination
between the SVM with linear kernel and the post-processing method by Hardt et al. (2016): the predictive
performance and the fairness guarantees are considerably better (0.61 vs. 0.69 in accuracy and 0.15 vs. 0.05 in
EOp). While the obtained outcome is relatively unusual, as illustrated in Figure 2(b), it favors the conclusion
with the highest true probability (B >> A), which is precisely 0.83, as detailed in Table 2. When we employ UM
on this outcome, it yields P (B >> A) = 0.91. This implies that although it is the most probable event, there
are also other likely outcomes. This added level of detail makes the conclusions more informative and enables
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more confident inferences to be drawn.

(a) Case study 1 (b) Case study 1

(c) Case study 2 (d) Case study 2

Figure 14.3: Visual Representation of the Case Studies Associated with the 10-fold CV Evaluation Method for
the German Credit Dataset. Each row corresponds to a unique case study and displays a comparison between
the posterior distributions (left column) and the distribution of δ(∆Θ) (right column).
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15 FURTHER DISCUSSION

15.1 Uncertainty of the Majority and the Minority Groups

In the presence of an underrepresented group, the classifier often exhibits a tendency to perform well with the
majority group while struggling with the minority population, as it becomes more adept at learning the patterns
exhibited by the majority. Additionally, there is less confidence in the algorithm's actual performance on the
underrepresented population. Figures 15.1 and 15.2 show that the posterior distributions corresponding to the
minority groups are wider that those of the majority group, in the German Credit and Adult Income datasets,
respectively. Those graphical results confirm that the uncertainty surrounding the performance of different
classifiers is higher for the minority groups.

Figure 15.1: Majority vs. Minority in German Credit Dataset. The joint posterior distribution of the true
positive rate (TPR) and false positive rate (FPR) for both the majority (purple) and minority (green) groups
with the German Credit dataset, using age as the sensitive attribute, where instances corresponding to those
aged ≤ 25 account for 19% of the total. The posterior distributions for the minority group are wider than those
of the majority group across all methods. This suggests that there is greater uncertainty about how well the
model will perform on the minority population.
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Figure 15.2: Majority vs. Minority in Adult Income Dataset. The joint posterior distribution of the true positive
rate (TPR) and false positive rate (FPR) for both the majority (purple) and minority (green) groups with the
Adult Income dataset, with gender as the sensitive attribute, where Females represent the 32% of the instances.
The posterior distributions for the minority group are wider than those of the majority group across all methods.
This suggests that there is greater uncertainty about how well the model will perform on the minority population.
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15.2 Can Data-Augmentation Reduce the Uncertainty?

To decrease the uncertainty concerning the model's performance on the target population, it is necessary to
increases the information available about the true underlying distribution, by gathering more independent and
identically distributed (i.i.d.) samples from the distribution. Note that the number of samples required to achieve
a given degree of certainty depends on the model.

One approach to reducing the uncertainty of the posterior distribution is to randomly upsample the number of
instances in the test set, but this method has its limitations. Although this can make the uncertainty arbitrarily
small, the resulting value may not necessarily converge to that obtained from the true distribution. This is
because the instances would be i.i.d. from the empirical distribution, rather than i.i.d. from the true distribution.
We empirically verify such statement through an experiment, in which we compare the posterior distribution
obtained from the augmented dataset and the posterior distribution derived from the ’true’ distribution. We
consider the Adult Income dataset, which is randomly divided into a train set with 50% of instances and a test
set with the remaining instances, which will be used to represent the ’true’ distribution. A reduced test set is
constructed by randomly selecting 5% of the instances from this test set. Subsequently, we augment this reduced
dataset by randomly upsampling the instances from the reduced test set until the augmented test set contains
the same number of instances as the ’true’ test set. The posterior distributions obtained from the ’true’ test set,
the reduced test set, and the augmented test set are shown in Figure 15.3.

However, a data-augmentation technique that provides guarantees achieving i.i.d samples of the true distribution
would be beneficial in decreasing such uncertainty.
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(a) Non-linear SVM + Hardt et al. (2016) (b) Linear SVM + Hardt et al. (2016)

(c) Linear FERM Donini et al., 2018 (d) Linear SVM

(e) SVM

Figure 15.3: The Effect of Randomly Upsampling the Instances of the Test Set. Even though this strategy can
make the uncertainty arbitrarily small, the resulting value may not necessarily converge to that obtained from
the true distribution. This is because the instances would be i.i.d. from the empirical distribution, rather than
i.i.d. from the true distribution.

15.3 The Effect of the Prior

The experiments in this section are designed to assess the influence of the prior chosen for the multinomial param-
eter πs on the outcomes presented in Section 5.2. We will specifically concentrate on one of the configurations
from Table 2, which exhibited strong performance indicators (e.g., UM (ρrel↑) with a 95% HDR), and analyze
how various non-informative priors affect the reported probabilities. The results can be found in Tables 15.1
and 15.2. We notice minimal fluctuations, indicating that the impact of the prior (especially when considering
typical non-informative priors) on the obtained results and the performance of UM is negligible.
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Table 15.1: Impact of Prior Selection on Feldman et al. (2015) + SVM vs. Donini et al. (2018). Predicted

probabilities using the UM (ρ↑rel) 95%HDR configuration with various non-informative priors and a RoPE of
dimensions (0.01,0.01). Minimal variation in probabilities observed.

P (A >> B) P (B >> A) P (A ≈ B) P (Aacc, Bfair) P (Bacc, Afair)

Dir(1,1,1,1) 0.01 0.17 0.00 0.82 0.00
Dir( 1

2
, 1
2
, 1
2
, 1
2
) 0.00 0.19 0.00 0.81 0.00

Dir(0,0,0,0) 0.00 0.20 0.00 0.80 0.00

Table 15.2: Impact of Prior Selection on Linear SVM + Hardt et al. (2016) vs. Donini et al. (2018). Predicted

probabilities using the UM (ρ↑rel) 95%HDR configuration with various non-informative priors and a RoPE of
dimensions (0.01,0.01). Minimal variation in probabilities observed.

P (A >> B) P (B >> A) P (A ≈ B) P (Aacc, Bfair) P (Bacc, Afair)

Dir(1,1,1,1) 0.02 0.83 0.03 0.01 0.11
Dir( 1

2
, 1
2
, 1
2
, 1
2
) 0.01 0.84 0.03 0.01 0.11

Dir(0,0,0,0) 0.01 0.84 0.03 0.01 0.11
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