
A Scalable Algorithm for Individually Fair K-means Clustering

MohammadHossein BateniVincent Cohen-Addad Alessandro Epasto Silvio Lattanzi
bateni@google.com
Google Research

cohenaddad@google.com
Google Research

aepasto@google.com
Google Research

silviol@cohengoogle.com
Google Research

Abstract

We present a scalable algorithm for the indi-
vidually fair (p, k)-clustering problem intro-
duced by Jung et al. (2020) and Mahabadi and
Vakilian (2020). Given n points P in a metric
space, let δ(x) for x ∈ P be the radius of the
smallest ball around x containing at least n/k
points. A clustering is then called individually
fair if it has centers within distance δ(x) of
x for each x ∈ P . While good approxima-
tion algorithms are known for this problem
no efficient practical algorithms with good
theoretical guarantees have been presented.
We design the first fast local-search algorithm
that runs in Õ(nk2) time and obtains a bi-
criteria (O(1), 6) approximation. Then we
show empirically that not only is our algo-
rithm much faster than prior work, but it also
produces lower-cost solutions.

1 Introduction

The (p, k)-clustering problems (with k-means, k-median
and k-center as special cases) are widely used in many
unsupervised machine-learning tasks for exploratory
data analysis, representative selection, data summa-
rization, outlier detection, social-network community
detection and signal processing, e.g., Lloyd (1982);
MacQueen (1967); Chawla and Gionis (2013); Klein-
dessner et al. (2019); Zhang et al. (2007); Bóta et al.
(2015).

With such ubiquity of applications, it is fundamental
to design fair algorithms for such problems. In this
paper we focus on the notion of individually fair clus-
tering Jung et al. (2020), which combines the `p cost
objective with a k-center-based concept of fairness: A

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

minimum level of treatment should be guaranteed for
every data point. To better understand this formula-
tion consider the case in which centers were chosen
randomly. In this case any subset of n/k points would
be expected to include one center. So each point desires
to be assigned to a center among its n/k closest points.
This notion can be captured by considering a different
radius δ(x) for each x in the dataset and by adding
the constraint that there should be a center within
distance δ(x) for each x. Satisfying such constraints
amounts to (a special case of) the priority k-center
problem Plesník (1987); Alamdari and Shmoys (2017);
Bajpai et al. (2021).

Shortly after Jung et al. (2020) proposed this problem
and presented a 2-approximation for it, Mahabadi and
Vakilian (2020) generalized it to an optimization setting
where an `p norm cost function (such as k-means or
k-median) is optimized within the space of individually
fair solutions. In fact, they devise a local-search algo-
rithm with bicriteria (84, 7) approximation (for p = 1,
that is k-median).

In recent years, several attempts have been made to
improve these results, theoretically and practically.
Chakrabarty and Negahbani (2021) uses LP round-
ing to improve the guarantee to (2p+2, 8), i.e., cost
guarantee of 16 for k-means and 8 for k-median. In
simultaneous work, Humayun et al. (2021) presents an
SDP-based algorithm (without performance or runtime
analysis), and Vakilian and Yalçiner (2022) presents
LP-based bicriteria guarantees (16p + ε, 3) for any p
and (7.081 + ε, 3) for p = 1.

Three of the above—with the exception of Vakilian and
Yalçiner (2022)—present experimental studies. How-
ever, a major limitation of these algorithms is their
running times, having an exponent of at least 4 for
the number of points n, making them impractical for
real-world datasets of interest. Therefore, all prior ex-
periments were run on small samples of size at most
1000. As we will see in our empirical studies, our work
is the first to report experimental evaluation on 600×
larger datasets.

A Scalable Algorithm for Individually Fair K-means Clustering

Another related line of work is that of Chhaya et al.
(2022) (see also Braverman et al. (2022) for state-
of-the-art bounds) that introduced core-set based
algorithms for regression and clustering with indi-
vidual fairness. This work has a running time of
O(nkd + k8d4 + (k log n)4) for individually fair clus-
tering. While this reduces the running dependency
on n from prior work, it scales with a large polyno-
mial of k and d. This makes the work impractical for
large dimensional datasets and when many centers are
required. As we will show in the paper, our work im-
proves significantly the dependency on k, d and allows
us to report experiments with datasets with 5× more
points, 10× more dimensions and 3× more clusters
than all prior work.

Our contributions.

As mentioned, the previous algorithms (and our new
result above) have poor runtime guarantees, making
them impractical for real-world datasets of interest. To
address this shortcoming, we design a fast local-search
algorithm using ideas from the algorithm above as well
as from the fast k-means algorithm of Lattanzi and
Sohler (2019). For simplicity, we focus on k-means,
which is more commonly used in practice although
we notice that our approach can be generalized to all
p-norms.
Theorem 1.1. There is an Õ(nd+nk2)-time algorithm
for individually fair k-means with a 6-approximation
for radii and an O(1)-approximation on costs.

We complement our theoretical result with an experi-
mental study. In our experiments we use local search
with swaps of size one, building on the work of Lattanzi
and Sohler (2019) to find good swaps quickly (see also
Beretta Beretta et al. (2023)). Whereas our algorithm
scale to large datasets with 600,000 points dataset in
less than two hours, prior methods can process with at
most 4000–25000 points in one hour;1 see Figure 1a.

It is also interesting to note that despite the worse
approximation guarantees, we observe in Section 4 that
this algorithm outperforms prior algorithms on cost
and fairness objectives.2

Additional Related work. The k-means and k-
median problems are NP-Hard, even in Euclidean space
where they are hard to approximate within a factor

1Notice that the LP- or SDP-based algorithms require
Ω(n2) space, so those algorithms cannot scale to 100s of
thousand point datasets even with several hours of runtime,
as they run out of memory.

2Note that our algorithm, and some of the prior work Ma-
habadi and Vakilian (2020); Chakrabarty and Negahbani
(2021); Vakilian and Yalçiner (2022), work for any vector
δ of radius bounds so the results presented in the paper
are more general than the classic individual fair clustering
setting.

1.36 and 1.08 respectively (Cohen-Addad and Karthik
C. S. (2019); Cohen-Addad et al. (2022b, 2021) while
the state-of-the-art approximation algorithms achieve
a 5.94 and 2.40 approximation respectively Cohen-
Addad et al. (2022a). There is an extensive literature
on group fairness, where the goal is (in essence) to
curb under- and over-representation in certain slices
of the data (say, sensitive groups based on gender
or age group) Chierichetti et al. (2017); Rösner and
Schmidt (2018); Bera et al. (2019); Ahmadian et al.
(2019, 2020b,a); Hotegni et al. (2023); Gupta et al.
(2023); Froese et al. (2022). Another line of work con-
cerns two generalizations of k-clustering problems to
`p norm and ordered median objectives Byrka et al.
(2018); Chakrabarty and Swamy (2018, 2019); Kalhan
et al. (2019): Create a (non-increasingly) sorted vector
out of the distances of points to their closest centers,
and aim to minimize either the `p norm of this vector or
the inner product of the vector with some given weight
vector w. Note that p = 1, 2, log n yields k-median,
k-means and k-center through the first generalization,
whereas w = (1, 1, . . . , 1) and w = (1, 0, . . . , 0) yield
k-median and k-center objectives through the latter.
Chlamtác et al. (2022) combines the two generaliza-
tions into the notion of (p, q)-Fair Clustering problem,
which is also a generalization of Socially Fair k-Median
and k-Means Ghadiri et al. (2021); Abbasi et al. (2021);
Makarychev and Vakilian (2021). Some of the above re-
sults are also motivated from the standpoint of solution
robustness—the main motivation stated in Humayun
et al. (2021). The widely popular k-means clustering
implicitly assumes certain uniform Gaussian distribu-
tions for the data Raykov et al. (2016), and is known
to be sensitive to sampling biases and outliers Wang
et al. (2020). Beyond enforcing individual fairness
or cluster-level consistency constraints (the focus of
this work), researchers have tackled the above prob-
lem from various angles such as resorting to kernel
methods Dhillon et al. (2004), adding regularization
terms Georgogiannis (2016), and using trimming func-
tions Georgogiannis (2016); Deshpande et al. (2020);
Dorabiala et al. (2021).

2 Preliminaries

Let (X,dist) be a metric space, whereX is a finite set of
points and dist a distance function between the points
in X. We define the distance between a point p and a
finite set of points C as dist(p, C) = minc∈C dist(p, c);
if the set C is empty we define the distance to be ∞.
Let ∆ = maxp,q dist(p, q)/minp 6=q dist(p, q) denote the
aspect ratio of the instance. We also let µ(X) denote
the mean of a finite point set X.

Problem definition. Given a metric space (X,dist),
the input to our problem is a tuple (A,C, k, δ), where

MohammadHossein Bateni, Vincent Cohen-Addad, Alessandro Epasto, Silvio Lattanzi

A ⊆ X is a set of points of the metric space, C ⊆ X
is a set of points of the metric space, k is a positive
integer and δ : A 7→ R+ is the desired serving cost or
radius of points. The goal is to output a set S ⊆ C
that minimizes

∑
a∈A dist(a, S) under the constraints

that |S| ≤ k and ∀a ∈ A : dist(a, S) ≤ δ(a).

The elements of a solution S ⊆ C are called centers or
facilities. Given a set S of k centers, let cost(S)1 denote
the k-median cost of the set C for the centers S, i.e.,
cost(S)1 =

∑
c∈A dist(c, S). Similarly, we define the

cost of the set C for the centers S for the k-means prob-
lem as cost(S)2 =

∑
c∈A dist(c, S)2. In both setting

we denote with Optk the cost of an optimum solution
S∗. When it is clear from the context we will drop the
index 1 or 2 from the notation for the cost.

A solution is an (α, β) bicriteria approximation if the
k-median (or k-means) cost of the solution S is at most
α times that of the optimum, while the constraint that
each a should be at distance at most δ(a) from a center
of the solution S is violated by a factor at most β, i.e.:
∀a, dist(a, S) ≤ βδ(a).

3 Fast algorithm

In this section we focus on the k-means problem and
we show how to modify the local-search algorithm pre-
sented in Lattanzi and Sohler (2019) to obtain a bi-
criteria approximation for our problem, Theorem 1.1.
The key intuition is to use the concept of anchor zones
introduced below to allow only the swaps that preserve
our fairness guarantees. To fit the page limit, the proof
of the lemmas of this section have been postponed
to Appendix C.

Algorithm 1: Scalable algorithm for individually
fair k-means
Require: an input point set X, a desired number of

cluster k, a target number of iterations Z, an
approximation parameter γ

1: C ← ∅, S0 ← ∅
2: S0 ← Seeding(X, δ(·), γ)
3: Define each point p ∈ S0 as an anchor point, and

the ball B(p) of radius γδ(p) around p as an
anchor zone.

4: Let T ⊆ X \ S0 be a set of k − |S0| randomly
selected points

5: S ← S0 ∪ T
6: for i← 2, 3, . . . , Z do
7: S ←

ConstrainedLocalSearch++(X,S,B(·))
8: return S

For simplicity of exposition in this section we consider
the classic setting where A = C = X, we refer the

Algorithm 2: ConstrainedLocalSearch++
Require: X, S, S0, B(·)
1: Sample p ∈ X with probability cost({p},S)∑

q∈X cost({q},S)

2: Q← {q ∈ S|∀x ∈ S0 : (S \ {q} ∪ {p}) ∩B(x) 6= ∅}
3: q∗ ← arg minq∈Q cost(X,S \ {q} ∪ {p})
4: if cost(X,S \ {q∗} ∪ {p}) < cost(X,S) then
5: S ← S \ {q∗} ∪ {p}
6: return S

Algorithm 3: Seeding
Require: A, δ(·), γ
1: S = ∅
2: while ∃p ∈ A : dist(p, S) > γδ(p) do
3: p∗ ← arg minp′∈{p∈A|dist(p,S)>γδ(p)} δ(p

′)
4: S ← S ∪ {p∗}
5: Output S

interested reader to Appendix D for how the result can
be extended to the more general case where A,C ⊆ X.

Toward this end, we need to change both the initial-
ization and the swapping procedure of the local-search
algorithm to take into account the radius constraints.
As for initialization we first add a new center as long
as there exists a point p at distance greater than γδ(p)
from the current set of centers, namely we use Algo-
rithm 3 (whose correctness is proven in Appendix B).
We refer to the obtained set of centers as S0. If |S0| is
larger than k, then we know that the input is infeasible;
otherwise we add additional points as centers until we
obtain a set of k centers S. We say that a point is an
anchor point if it is in S0. Furthermore we define the
ball B(p) of radius γδ(p) centered at p as the anchor
zone for p.

As for the swaps, we choose a random point q us-
ing D2-sampling as in Lattanzi and Sohler (2019).
If there is a subset S′ obtained by swapping an el-
ement of S with q, such that (i) |S′| = k, (ii) every
anchor zone contains at least one point in S′, and (iii)∑
p∈X dist(p, S)2 >

∑
p∈X dist(p, S′)2, then we change

our current solution from S to S′. Interestingly we show
that after O(k log n∆) iterations, the solution will have
constant-factor expected approximation for cost and
moreover it violates the radius constraints by at most
a factor of 2γ. See the pseudocode in algorithm 1.

Now we show that our algorithm obtains a constant
bicriteria approximation for individually fair k-means.

Our proof uses many ingredients of the proof in Lattanzi
and Sohler (2019) with careful modifications to handle
the additional constraints imposed by the algorithm.
In the remaining part of this section we prove our main

A Scalable Algorithm for Individually Fair K-means Clustering

theorem focusing on the novel part of our proofs.

3.1 Analysis (Proof of Theorem 1.1)

As in Lattanzi and Sohler (2019), the main observation
behind our proof is that every step of our algorithm
in expectation reduces the solution cost by a factor
O
(
1− 1

k

)
. In the following, given an input set of

points X containing at least 2 distinct points we will
let ∆ = maxp,q∈X dist(p, q)/minp,q : p 6=q dist(p, q).

Considering that the cost of the initial solution is at
most ∆2n, this implies that O(k log n∆) iterations suf-
fice to obtain a constant approximation.

To simplify the exposition we assume that every cluster
in the optimal solution has non-zero cost.3

Next we state two lemmas outlining the algorithm’s
analysis that are central in our proof of Theorem 1.1.
Theorem 1.1 itself is proven in Appendix C.1.
Lemma 3.1. Let X be the set of points from a fea-
sible instance, γ ≥ 3, and S a set of centers with
cost cost(X,S) > 2000Optk. With probability 1

1000 ,
for S′ = ConstrainedLocalSearch++(X,S), we
have cost(X,S′) ≤ (1− 1

100k)cost(X,S).
Lemma 3.2. Let X be the set of points from a feasible
instance, and Ŝ

a set of centers with cost(X, Ŝ) ≤ γn∆2. After running
Z ≥ 200000k log(γn∆) rounds of Algorithm 2 on Ŝ out-
puts a solution S such that E[cost(X,S)] ∈ O(Optk).

3.2 Proof of Lemma 3.1

The proof in this section follows the structure of the
proofs in Lattanzi and Sohler (2019) with some fun-
damental modification to carefully handle the anchor
zones constraints.

Before proving the lemma we recall two well-known
results. The following lemma is folklore:
Lemma 3.3. Let X ⊆ Rd be a set of points and let
c ∈ Rd be a center. Then we have cost(X, {c}) =
|X| · ‖c− µ(X)‖2 + cost(X,µ(X)).

We will also use the following lemma (rephrased from
Corollary 21 in Feldman et al. (2018)).
Lemma 3.4. Let ε > 0. Let p, q ∈ Rd and let
C ⊆ Rd be a set of k centers. Then |cost({p}, C) −
cost({q}, C)| ≤ ε · cost({p}, C) + (1 + 1

ε)‖p− q‖2.

We assume that the optimal solution S∗ = {c∗1, . . . , c∗k}
is unique (this can be enforced using proper tie break-
ing) and use X∗1 , . . . , X∗k to denote the corresponding

3Note that this is w.l.o.g., since we can artificially in-
crease the cost of every cluster by adding for each point a
copy at distance minp,q∈X dist(p, q)/n.

optimal partition. We will also use S = {c1, . . . , ck} to
refer to our current clustering with corresponding par-
titions X1, . . . , Xk. When the indices are not relevant,
we will drop the index and write, for example, c ∈ S.

We use a notation and proof strategy similar to Ka-
nungo et al. (2002). We start by partitioning the opti-
mal centers into anchor centers, A∗, and unconstrained
centers, U∗.

An optimal center is in A∗ if it is the closest optimal
center to an anchor point (breaking ties arbitrarily),
the remaining centers form the set of unconstrained
centers. We say that an optimal center c∗ ∈ U∗ is
captured by a center c ∈ S if c is the nearest center to
c∗ among all centers in S. Also we say that an optimal
center c∗ ∈ A∗ with corresponding anchor point a is
captured by a center c ∈ S if c is the nearest center to
c∗ among all centers in the anchor zone defined by a.
Note that a center c ∈ S may capture more than one
optimal center and every optimal center is captured by
exactly one center from S (ties are broken arbitrarily).
Some centers in c may not capture any optimal center.
Similarly to Kanungo et al. (2002) we call these centers
lonely and we denote them with L. Finally, let H be
the index set of centers capturing exactly one cluster.
W.l.o.g., we assume that for h ∈ H we have that ch ∈ S
captures c∗h ∈ S∗, i.e., the indices of the clusters with
a one-to-one correspondence are identical.

Note that the above definition is slightly different from
the classic definition in Kanungo et al. (2002). In fact,
an optimal center may not be captured by its closest
center but by its closest center in the anchor zone.
Nevertheless we can show that it is still possible to
recover a similar result to the one in Lattanzi and Sohler
(2019) in this setting. Note one useful proposition of
our definition, whose proof is deferred to the appendix.

Proposition 3.5. Let c∗ ∈ A∗ be an optimal center
with corresponding anchor point a, and let c′ be the
closest point in S to c∗, and let c∗ be captured by the
center c ∈ S. Then dist(c∗, c) ≤ ((γ+1)/(γ−1))dist(c∗, c′)

We will use the above definition as in Lattanzi and
Sohler (2019). Intuitively, if a center c captures exactly
one cluster of the optimal solution, we think of it as a
candidate center for this cluster. In this case, if c is far
away from the center of this optimal cluster, we argue
that with good probability we sample a point close to
the center. In order to analyze the change of cost, we
will argue that we can assign all points in the cluster
of c that are not in the captured optimal cluster to a
different center without increasing their contribution
by too much. This will be called the reassignment cost
and is formally defined in the definition below. We
will show that with good probability we sample from
a cluster such that the improvement for the points

MohammadHossein Bateni, Vincent Cohen-Addad, Alessandro Epasto, Silvio Lattanzi

in the optimal cluster is significantly bigger than the
reassignment cost.

If a center is lonely, we think of it as a center that can
be moved to a different cluster. Again, we will argue
that with high probability we can sample points from
other clusters such that the reassignment cost is much
smaller than the improvement for this cluster.

Now we start to analyze the cost of reassignment of
the points due to a center swap. We would like to
argue that the cost of reassigning the points currently
assigned to a cluster center with index from H or L to
other clusters is small. As discussed above, for h ∈ H,
we will assign all points from Xh that are not in X∗h
to other centers. For l ∈ L we will consider the cost
of assigning all points in Xi to other clusters. We
use the following definition to capture the cost of this
reassignment introduced in Lattanzi and Sohler (2019).

Definition 3.6. Let X ⊆ Rd be a point set and S ⊆
Rd be a set of k cluster centers and let H be the subset
of indices of cluster centers from S = {c1, . . . , ck} that
capture exactly one cluster center of an optimal solution
S∗ = {c∗1, . . . , c∗k}. Let Xi, X

∗
i , 1 ≤ i ≤ k, be the

corresponding clusters. Let h ∈ H be an index with
cluster Xh and w.l.o.g. let X∗h be the cluster in the
optimal solution captured by ch. The reassignment
cost of ch is defined as

reassign(X,S, ch) = cost(X \X∗h, S \ {ch})−

cost(X \X∗h, S).

For ` ∈ L we define the reassignment cost of c` as

reassign(X,S, c`) = cost(X,S \ {c`})− cost(X,S).

We will now prove the following bound on reassignment
costs. We note that this proof is similar to the proof
in Lattanzi and Sohler (2019) but it includes key differ-
ences to handle the fact that optimal centers may not
be assigned to the closest center in the current solution.
The proof is provided in Appendix C.5.

Lemma 3.7. For r ∈ H ∪ L we have

reassign(X,S, cr) ≤
13

100
cost(Xr, S) + 332cost(Xr, S

∗).

Now that we have a good bound on the reassignment
cost we make a case distinction. Recall that we assume
that for every h ∈ H the optimal center captured by ch
is c∗H , i.e., the indices are identical. We first consider
the case that

∑
h∈H cost(X∗h, S) > 1

3cost(X,S).

With the previous lemma at hand, we can focus on
the centers h ∈ H where replacing h by an arbitrary
point close to the optimal cluster center of the optimal

cluster captured by h greatly improves solution cost.
As in Lattanzi and Sohler (2019) we call such clusters
good and make this notion precise in the following
definition.

Definition 3.8. A cluster index h ∈ H is called good
if

cost(X∗h, S)− reassign(X,S, ch)− 9cost(X∗h, {c∗h}) >
1

100k
· cost(X,S).

The above definition estimates the gain of replacing
ch by a point close to the center of X∗h by considering
a clustering that reassigns the points in Xh that do
not belong to X∗h and assigns all points in X∗h to the
new center. Now we want to show that we have a good
probability to sample a good cluster. In particular, we
first argue that the sum of the cost of good clusters
is large. We note that the following proof is a simple
adaptation of Lattanzi and Sohler (2019); its proof is
deferred to the appendix.

Lemma 3.9. If 3
∑
h∈H cost(X∗h, S) > cost(X,S) ≥

2000Optk, then∑
h∈H,h is good

cost(X∗h, S) ≥ 9

400
cost(X,S).

Now we present a lemma from Lattanzi and Sohler
(2019) that whenever a cluster has high cost w.r.t. C,
it suffices to consider the points close to the optimal
center to get an approximation of cluster cost. We will
then use this fact to argue that we sample with good
probability a point close to the center.

Lemma 3.10 (Lemma 6 from Lattanzi and Sohler
(2019) restated). Let Q ⊆ Rd be a point set and let S ⊆
Rd be a set of k centers and let α ≥ 9. If cost(Q,S) ≥
α · cost(Q, {µ(Q)}) then

cost(R,S) ≥
(
α− 1

8

)
· cost(Q, {µ(Q)}),

where R ⊆ Q is the subset of Q at squared distance at
most 2

|Q| · cost(Q, {µ(Q)}) from µ(Q).

Now we can argue that sampling according to the
sum of squared distances will provide us with constant
probability with a good center. Consider any index
h ∈ H with h being good. We will apply lemma 3.10
with Q = X∗h and α = cost(Q,S)/cost(Q,µ(Q)).
Note that by the definition of good, we have that
α ≥ 9. Now let us define R∗h to be the set R
guaranteed by lemma 3.10. We have cost(R∗h, S) ≥
α−1

8 cost(X∗h, {c∗h}) = α−1
8α cost(X∗h, S) ≥ 1

9cost(X
∗
h, S)

by our choice of α (observe that c∗h equals µ(X∗h)). Since
the sum of squared distances of points in good clusters

A Scalable Algorithm for Individually Fair K-means Clustering

is at least 9/400cost(X,S) by lemma 3.9, we conclude
that

∑
h∈H,h is good cost(R

∗
h, S) ≥ 9

9·400cost(X,S).
Thus, the probability to sample a point from∑

h∈H,h is good cost(R
∗
h, S) is more than 1/400. By the

definition of good, if we sample such a point c ∈ R∗h we
can swap it with ch to get a new clustering of cost at
most cost(X,S\{ch}∪{c}) ≤ cost(X,S)−cost(X∗h, S)+
reassign(X,S, {ch}) + cost(X∗h, {c}). By lemma 3.3 we
know that cost(X∗h, {c}) ≤ 9cost(X∗h, {c∗h}). Hence,
with probability at least 1/400 the new clustering has
cost at most

cost(X,S)− (cost(X∗h, S)− reassign(X,H, ch)

−9cost(X∗h, {c∗h}) ≤ (1− 1

100k
) · cost(X,S).

To check that the swap is feasible we only need to make
sure that the swap is feasible if {c∗h} ∈ A∗. Otherwise
we already know that the anchor balls are covered by
other centers. If {c∗h} ∈ A∗, let a be the anchor point
corresponding to c∗h. Note that from the definition
of good cluster, cost(X∗h, S) − 9cost(X∗h, {c∗h}) > 0 so
by lemma 3.3 we have d({c∗h}, S) ≥ 9d({c∗h}, c). So
given that the radius of the anchor ball is 3δ(a) and
the distance between c∗h and a is bounded by δ(a) by
triangle inequality we have that c is inside the anchor
ball. This proves our lemma in the first case.

In the second case, we have
∑
h∈H cost(X∗h, S) <

1/3cost(X,S). Now let R = {1, . . . , k} \ H, so we
get

∑
r∈R cost(X∗r , S) ≥ 2/3cost(X,S). Observe that

R equals the index set of optimal cluster centers that
were captured by centers that capture more than one
optimal center. This is because every optimal center is
captured by one center and R does not include H. In
this case, if the index of a center of our current solution
is in R \ L we cannot easily move the cluster center
without having impact on other clusters. What we do
instead is to use the centers in L as candidate centers
for a swap. Note that those swaps are always feasible
because inside each anchor ball we also have a center
not in L. Similar to the case above we will argue that
we can swap a center from L with a point that is close
to an optimal center of a cluster X∗r for some r ∈ R.

Recall that we have already bound the cost of reas-
signing a center in L so we just need to argue that the
probability of sampling a good center is high enough.

In particular, we focus on the centers r ∈ R and swap
an arbitrary center ` ∈ L with an arbitrary point close
to one of the centers in R to improve the cost of the
solution. Slightly overloading notation, we call such
cluster centers good and make this notion precise in
the following definition.

Definition 3.11. A cluster with index i ∈ {1, . . . , k}

is called good, if there exists a center ` ∈ L such that

cost(X∗i , S)− reassign(X,S, `)− 9cost(X∗i , {c∗i }) >
1

100k
· cost(X,S).

The above definition estimates the cost of removing `
and inserting a new cluster center close to the center
of X∗i by considering a clustering that reassigns the
points in X∗i and assigns all points in X∗i to the new
center. In the following we will now argue that the
sum of cost of good clusters is large, this will be useful
to show that the probability of sampling such a cluster
is high enough. The proof of the following lemma is
deferred to the Appendix.
Lemma 3.12. If 3

∑
h∈H cost(X∗h, S) ≤ cost(X,S)

and cost(X,S) ≥ 2000Optk we have∑
r∈R,r is good

cost(X∗r , S) ≥ 1

20
cost(X,S).

Note that also in this case we can now argue similarly
as in the other case that sampling according to sum of
squared distances will provide us with constant prob-
ability with a good center using lemma 3.10. In fact,
since the sum of squared distances of points in good
centers is at least 1/20cost(X,S) by lemma 3.12, it fol-
lows together with lemma 3.10 that we sample a point
from a good cluster X∗r that is within distance two
times the average cost of the cluster with probability

1
1000 . By the definition of a good cluster, we know that
such a point improves the cost of the current clustering
by at least a factor of (1 − 1

100k). Thus, Lemma 3.1
follows.

4 Empirical analysis

In this section we evaluate empirically the algorithms
presented and we compare them with state-of-the-
art methods from the literature. In our analysis, all
datasets used are publicly available. We implemented
our algorithms, and the other baselines in Python,
and we ran each instance of our experiments indepen-
dently using a single-core from machines within our
institution’s cloud with x86-64 architecture, 2.25GHz
and using less than 32GB of RAM. To foster the re-
producibility of our experiments we released our code
open source.4

Datasets. We used several real-world datasets from
the UCI Repository Dheeru and Karra Taniskidou

4Our code is available open source at the fol-
lowing link: https://github.com/google-research/
google-research/tree/master/individually_fair_
clustering/.

https://github.com/google-research/google-research/tree/master/individually_fair_clustering/
https://github.com/google-research/google-research/tree/master/individually_fair_clustering/
https://github.com/google-research/google-research/tree/master/individually_fair_clustering/

MohammadHossein Bateni, Vincent Cohen-Addad, Alessandro Epasto, Silvio Lattanzi

(2017) and from the SNAP library, that are standard
in the clustering literature. This includes: adult Ko-
havi et al. (1996) n = 32561, d = 6, bank Moro
et al. (2014) n = 45211, d = 3, diabetes Dheeru
and Karra Taniskidou (2017) n = 101766, d = 2,
gowalla Cho et al. (2011), n = 100000, d = 2,
skin Bhatt and Dhall (2010), n = 245057, d = 4, shut-
tle5 n = 58000, d = 9, and covertype Blackard and
Dean (1999), n = 581012, d = 54. For consistency with
prior work, for adult, bank and diabetes we use the
same set of columns used in the analysis of Mahabadi
and Vakilian (2020). We preprocess each dataset to
have zero mean and unit standard deviation in every
dimension. All experiments use the Euclidean distance.
The effect of the value of k is discussed in Appendix A.

Algorithms. We consider the following algorithms.
– VanillaKMeans. Standard non-fair k-means imple-
mentation from sklearn. This baseline represents the
k-means cost achievable neglecting fairness.
– ICML20 Mahabadi and Vakilian (2020): We imple-
mented the algorithm following the recommendation of
the paper (i.e., using a single swap in the local search
and a factor 3δ(p) instead of 6δ(p) in the initialization).
We set ε = 0.01 in the algorithm.
– NeurIPS21 Chakrabarty and Negahbani (2021):
We use the Python code provided by the au-
thors.6 We use both the more accurate algorithm
NeurIPS21 and the faster algorithm using sparsifica-
tion (NeurIPS21Sparsify).
– Greedy: Similarly to prior work we consider the exe-
cution of the greedy seeding algorithm as a baseline.
– LSPP: We implemented our local-search algorithm
with modifications similar to that of ICML20 (a single
swap and µ = 3 factor in seeding algorithm). We also
modified the algorithm to run only a fixed number of
local-search iterations (namely 500) in all experiments.

Moreover, we also design a fairness preserving Lloyd’s
method, the F-Lloyd’s method, that we add as a post-
processing of our algorithm. In the F-Lloyd’s method
we assign each point to the nearest center. Then we
obtain the mean of the clusters. Notice that the mean
minimizes the k-means cost, but it may not be a feasible
solution for the distance bound. For this reason, we
use the anchor points obtained by our algorithm to
find the next center approximating, with binary search,
the closest feasible point to the mean (respecting the
anchor points constraints), on the line between the
current center and the mean. Though this procedure
does not alter the theoretical guarantees, it improves
the results empirically. We use 20 iterations of the

5Thanks to NASA for releasing the dataset.
6The code was obtained from https://github.

com/moonin12/individually-fair-k-clustering and
adapted.

F-Lloyd’s method at the end of our algorithm.7

Metrics. We focus on three key metrics: the k-means
cost of clustering, the average runtime of algorithm and
the bound ratio maxp

dist(p,S)
δ(p) where S is the solution

of the algorithm. We repeat each experiment config-
uration 10 times and report the mean and standard
deviation of the metrics.

Comparison with other baselines. In this section
we report a comparison of our algorithm with the other
baselines. For all experiments, unless otherwise speci-
fied, we replicate the setting of individual fairness Ma-
habadi and Vakilian (2020) for δ(p), by setting δ(p) as
the distance to the n/k-th nearest point.

Notice that the ICML20 algorithm evaluates, for
each iteration of local search, all possible swaps of
one center with a non-center while NeurIPS21 and
NeurIPS21Sparsify both depend on computing all-pairs
distances in O(dn2) time. This makes these algorithms
not scalable to large datasets, unlike our algorithm.
Therefore all prior experiments Mahabadi and Vakil-
ian (2020); Chakrabarty and Negahbani (2021) used
a subsample of ≈1000 elements from the datasets to
run their algorithm. In this section we use a similar
approach for consistency.

In Figure 1a, 1b, 1c, we report the results of the vari-
ous algorithms for different sizes of the sample on the
gowalla dataset, fixing k = 10.

The main message of the paper is summarized in Fig-
ure 1a. We allowed each algorithm to run for up to 1
hour on increasingly large samples of the data. Notice
how our algorithm is orders of magnitude faster than
all fair baselines including the faster NeurIPS21Sparsify
variant. ICML20 does not complete in 1 hour past size
∼ 5000, NeurIPS21 past ∼ 7000, NeurIPS21Sparsify
past ∼ 25000 while our algorithm’s running time is
not highly affected by scale. This will allow us to run
on 500, 000 sized datasets, orders of magnitude larger
than SOTA algorithms.

Then we focus on the k-means cost of the solution in
Figure 1b. Notice that our algorithm (LSPP) has a cost
better (or comparable) than that of all fair baselines
and close to the unfair VanillaKMeans.

Finally, Figure 1c shows the max ratio of distance of
a point p to centers vs δ(p). We observe that Vanil-
laKMeans has a bound ratio between 60 and 90 (out
of the plot scale), confirming the need for fair algo-
rithms. For the remainder of the paper we will ignore
VanillaKMeans.

Now we focus on the fair algorithms. Notice that the

7Later, we discuss the applicability of this improvement
to other prior baselines.

https://github.com/moonin12/individually-fair-k-clustering
https://github.com/moonin12/individually-fair-k-clustering

A Scalable Algorithm for Individually Fair K-means Clustering

(a) Time (secs) (b) Cost (c) Bound ratio

Figure 1: Mean completion time, cost, and bound ratio for the algorithms on Gowalla dataset subsampled
to different sizes, k = 10. The shades represent the 95% confidence interval (notice that some algorithms are
deterministic). Runs that did not complete in 1 hour on the sample are not reported. VanillaKMeans bound
ratio is > 60 in all runs and not show in the plot as out of scale).

(much slower) ICML20 has statistically comparable
bounds with LSPP (and both significantly better than
their worst case guarantees), while NeurIPS21 and
NeurIPS21Sparsify have slightly better bounds.

Experiments on the full datasets. The scalability
of our algorithm allows us to run it on the full datasets
with up to 1/2 million elements. In this section, we
run our algorithm and the fast Greedy baseline on
all complete datasets, using k = 10. Our algorithm
completed all runs in less than 2 hours on the full
datasets.

To compare with all the slower baselines we allow
ICML20, NeurIPS21 and NeurIPS21Sparsify to run
on a subsample of the data containing 4000 points (but
we evaluate the solution on the entire dataset). This
of course has no theoretical guarantee and can perform
especially poorly in case of outliers. In the supplemen-
tary material we report the standard deviation for the
metrics in Table 1.

For this large-scale experiment, the input bound δ(p)
for each point p is set using the n/k-th closest point in
a random sample of 1000 elements.

In all but one dataset, our algorithm has a significantly
lower k-means cost than that of all other baselines.
Similarly to the above results, our algorithm has a
similar or better ratio bound than that of ICML20
(with the sampling heuristic), while the ratio bound of
NeurIPS21 and NeurIPS21Sparsify is sometimes lower.
In any instance our algorithm has a much better ratio
that the worst-case theoretical guarantees. The results
are reported in Table 1.

Finally, we focus on the impact of our novel F-Lloyd’s

dataset algorithm k-means cost bound ratio

adult Greedy 1.56E+05 1.8
ICML20 6.59E+04 1.4
NeurIPS21 1.14E+05 1.2
NeurIPS21Sparsify 1.02E+05 1.2
LSPP 6.14E+04 1.4

bank Greedy 8.57E+04 1.9
ICML20 3.23E+04 1.6
NeurIPS21 5.68E+04 1.2
NeurIPS21Sparsify 5.70E+04 1.2
LSPP 3.02E+04 1.6

covtype Greedy 3.33E+07 1.3
ICML20 2.84E+07 1.1
NeurIPS21 2.76E+07 1.1
NeurIPS21Sparsify 2.80E+07 1.1
LSPP 2.50E+07 1.1

diabetes Greedy 6.60E+04 2.7
ICML20 3.00E+04 1.3
NeurIPS21 N/A N/A
NeurIPS21Sparsify 3.36E+04 1.2
LSPP 2.66E+04 1.4

gowalla Greedy 1.17E+04 1.6
ICML20 N/A N/A
NeurIPS21 8.65E+03 1.1
NeurIPS21Sparsify 1.63E+04 1.2
LSPP 6.93E+03 1.6

shuttle Greedy 4.89E+05 2.3
ICML20 1.91E+05 2.0
NeurIPS21 2.60E+05 1.0
NeurIPS21Sparsify 2.72E+05 1.1
LSPP 1.79E+05 2.1

skin Greedy 1.80E+05 2.1
ICML20 7.47E+04 1.8
NeurIPS21 9.36E+04 1.1
NeurIPS21Sparsify 1.03E+05 1.1
LSPP 9.27E+04 3.1

Table 1: Mean Cost and max bound ratio for all full-
sized datasets and k=10 with ICML20, NeurIPS21 and
NeurIPS21Sparsify ran on a sample of 4000 points.

MohammadHossein Bateni, Vincent Cohen-Addad, Alessandro Epasto, Silvio Lattanzi

fair improvement method. We observe that this step
can only be applied to algorithms based on anchor
points (like ours and ICML20) and that (of course) can-
not improve the efficiency of the slow ICML20 baseline.
For this reason we tested ICML20 with our F-Lloyd
method on a sample of size 1000 points where such
an algorithm can run. The full analysis is reported
in the supplemental material and confirms all prior
experiments. We observe that adding F-Lloyd steps
improves the cost of ICML20 baseline as well, but does
not change the overall trend reported, i.e., that our
algorithm has comparable (or better cost) than all fair
baselines while scaling to orders of magnitude larger
datasets. We believe that the F-Lloyd algorithm could
benefit other work in the future.

5 Conclusions and Future Works

We present a new scalable algorithm for individually fair
clusters, with strong theoretical guarantees and good ex-
perimental performances. An interesting open question
is to use the more recent analysis of LocalSearch++
by Choo et al. (2020) to improve the running time of
our algorithm to O(dnk2). However, it is not clear how
to obtain the necessary strong guarantees similar to
the one in Lemma 12 of Choo et al. (2020).

References

Abbasi, M., Bhaskara, A., and Venkatasubramanian,
S. (2021). Fair clustering via equitable group repre-
sentations. In Elish, M. C., Isaac, W., and Zemel,
R. S., editors, FAccT, pages 504–514. ACM.

Ahmadian, S., Epasto, A., Knittel, M., Kumar, R.,
Mahdian, M., Moseley, B., Pham, P., Vassilvitskii,
S., and Wang, Y. (2020a). Fair hierarchical clustering.
In Larochelle, H., Ranzato, M., Hadsell, R., Balcan,
M., and Lin, H., editors, NeurIPS.

Ahmadian, S., Epasto, A., Kumar, R., and Mahdian, M.
(2019). Clustering without over-representation. In
Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
pages 267–275.

Ahmadian, S., Epasto, A., Kumar, R., and Mahdian,
M. (2020b). Fair correlation clustering. In Chiappa,
S. and Calandra, R., editors, AISTATS, volume 108
of Proceedings of Machine Learning Research, pages
4195–4205. PMLR.

Alamdari, S. and Shmoys, D. B. (2017). A bicriteria ap-
proximation algorithm for the k-center and k-median
problems. In WAOA.

Bajpai, T., Chakrabarty, D., Chekuri, C., and Negah-
bani, M. (2021). Revisiting priority k-center: Fair-
ness and outliers. arXiv preprint arXiv:2103.03337.

Becchetti, L., Bury, M., Cohen-Addad, V., Grandoni,
F., and Schwiegelshohn, C. (2019). Oblivious dimen-
sion reduction for k -means: beyond subspaces and
the johnson-lindenstrauss lemma. In Proceedings of
the 51st Annual ACM SIGACT Symposium on The-
ory of Computing, STOC 2019, Phoenix, AZ, USA,
June 23-26, 2019, pages 1039–1050.

Bera, S. K., Chakrabarty, D., Flores, N., and Negah-
bani, M. (2019). Fair algorithms for clustering. In
Wallach, H. M., Larochelle, H., Beygelzimer, A.,
d’Alché-Buc, F., Fox, E. B., and Garnett, R., editors,
Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pages 4955–4966.

Beretta, L., Cohen-Addad, V., Lattanzi, S., and Parot-
sidis, N. (2023). Multi-swap k-means++. In Ad-
vances in Neural Information Processing Systems
(Neurips) 2023.

Bhatt, R. and Dhall, A. (2010). Skin segmentation
dataset. UCI Machine Learning Repository.

Blackard, J. A. and Dean, D. J. (1999). Comparative
accuracies of artificial neural networks and discrimi-
nant analysis in predicting forest cover types from
cartographic variables. Computers and electronics
in agriculture, 24(3):131–151.

Borassi, M., Epasto, A., Lattanzi, S., Vassilvitskii,
S., and Zadimoghaddam, M. (2020). Sliding win-
dow algorithms for k-clustering problems. Advances
in Neural Information Processing Systems, 33:8716–
8727.

Braverman, V., Cohen-Addad, V., Jiang, S. H.,
Krauthgamer, R., Schwiegelshohn, C., Toftrup,
M. B., and Wu, X. (2022). The power of uniform
sampling for coresets. In 63rd IEEE Annual Sympo-
sium on Foundations of Computer Science, FOCS
2022, Denver, CO, USA, October 31 - November 3,
2022, pages 462–473. IEEE.

Byrka, J., Sornat, K., and Spoerhase, J. (2018).
Constant-factor approximation for ordered k-median.
In Diakonikolas, I., Kempe, D., and Henzinger, M.,
editors, STOC, pages 620–631. ACM.

Bóta, A., Krész, M., and Zaválnij, B. (2015). Adapta-
tions of the k-means algorithm to community detec-
tion in parallel environments. In 2015 17th Interna-
tional Symposium on Symbolic and Numeric Algo-
rithms for Scientific Computing (SYNASC), pages
299–302.

Chakrabarty, D. and Negahbani, M. (2021). Better algo-
rithms for individually fair k-clustering. In NeurIPS.

Chakrabarty, D. and Swamy, C. (2018). Interpolating
between k-median and k-center: Approximation al-
gorithms for ordered k-median. In Chatzigiannakis,

A Scalable Algorithm for Individually Fair K-means Clustering

I., Kaklamanis, C., Marx, D., and Sannella, D., edi-
tors, ICALP, volume 107 of LIPIcs, pages 29:1–29:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

Chakrabarty, D. and Swamy, C. (2019). Approximation
algorithms for minimum norm and ordered optimiza-
tion problems. In Charikar, M. and Cohen, E., edi-
tors, Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2019,
Phoenix, AZ, USA, June 23-26, 2019, pages 126–137.
ACM.

Chawla, S. and Gionis, A. (2013). k-means-: A unified
approach to clustering and outlier detection. In Pro-
ceedings of the 13th SIAM International Conference
on Data Mining, May 2-4, 2013. Austin, Texas, USA,
pages 189–197. SIAM.

Chhaya, R., Dasgupta, A., Choudhari, J., and Shit, S.
(2022). On coresets for fair regression and individu-
ally fair clustering. In AISTATS, pages 9603–9625.

Chierichetti, F., Kumar, R., Lattanzi, S., and Vassil-
vitskii, S. (2017). Fair clustering through fairlets.
In Guyon, I., von Luxburg, U., Bengio, S., Wallach,
H. M., Fergus, R., Vishwanathan, S. V. N., and Gar-
nett, R., editors, Advances in Neural Information
Processing Systems 30: Annual Conference on Neu-
ral Information Processing Systems 2017, December
4-9, 2017, Long Beach, CA, USA, pages 5029–5037.

Chlamtác, E., Makarychev, Y., and Vakilian, A. (2022).
Approximating fair clustering with cascaded norm
objectives. In SODA.

Cho, E., Myers, S. A., and Leskovec, J. (2011). Friend-
ship and mobility: user movement in location-based
social networks. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge dis-
covery and data mining, pages 1082–1090.

Choo, D., Grunau, C., Portmann, J., and Rozhon,
V. (2020). k-means++: few more steps yield con-
stant approximation. In International Conference
on Machine Learning, pages 1909–1917. PMLR.

Cohen-Addad, V., Esfandiari, H., Mirrokni, V. S., and
Narayanan, S. (2022a). Improved approximations for
euclidean k -means and k -median, via nested quasi-
independent sets. In Leonardi, S. and Gupta, A.,
editors, STOC ’22: 54th Annual ACM SIGACT
Symposium on Theory of Computing, Rome, Italy,
June 20 - 24, 2022, pages 1621–1628. ACM.

Cohen-Addad, V. and Karthik C. S. (2019). Inapprox-
imability of clustering in lp metrics. In Zuckerman,
D., editor, 60th IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2019, Baltimore,
Maryland, USA, November 9-12, 2019, pages 519–
539. IEEE Computer Society.

Cohen-Addad, V., Karthik C. S., and Lee, E. (2021).
On approximability of clustering problems without

candidate centers. In Marx, D., editor, Proceedings
of the 2021 ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2021, Virtual Conference, January
10 - 13, 2021, pages 2635–2648. SIAM.

Cohen-Addad, V., Karthik C. S., and Lee, E. (2022b).
Johnson coverage hypothesis: Inapproximability of
k-means and k-median in lp-metrics. In Naor,
J. S. and Buchbinder, N., editors, Proceedings of
the 2022 ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2022, Virtual Conference / Alexan-
dria, VA, USA, January 9 - 12, 2022, pages 1493–
1530. SIAM.

Deshpande, A., Kacham, P., and Pratap, R. (2020).
Robust k-means++. In Adams, R. P. and Gogate,
V., editors, Proceedings of the Thirty-Sixth Confer-
ence on Uncertainty in Artificial Intelligence, UAI
2020, virtual online, August 3-6, 2020, volume 124
of Proceedings of Machine Learning Research, pages
799–808. AUAI Press.

Dheeru, D. and Karra Taniskidou, E. (2017). UCI
machine learning repository.

Dhillon, I. S., Guan, Y., and Kulis, B. (2004). Kernel
k-means: spectral clustering and normalized cuts. In
Kim, W., Kohavi, R., Gehrke, J., and DuMouchel,
W., editors, Proceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, Seattle, Washington, USA, August
22-25, 2004, pages 551–556. ACM.

Dorabiala, O., Kutz, J. N., and Aravkin, A. Y. (2021).
Robust trimmed k-means. CoRR, abs/2108.07186.

Feldman, D., Schmidt, M., and Sohler, C. (2018). Turn-
ing big data into tiny data: Constant-size coresets
for k-means, PCA and projective clustering. CoRR,
abs/1807.04518.

Froese, V., Kellerhals, L., and Niedermeier, R. (2022).
Modification-fair cluster editing. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 36, pages 6631–6638.

Georgogiannis, A. (2016). Robust k-means: a theoreti-
cal revisit. In Lee, D. D., Sugiyama, M., von Luxburg,
U., Guyon, I., and Garnett, R., editors, Advances in
Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Sys-
tems 2016, December 5-10, 2016, Barcelona, Spain,
pages 2883–2891.

Ghadiri, M., Samadi, S., and Vempala, S. S. (2021).
Socially fair k-means clustering. In Elish, M. C.,
Isaac, W., and Zemel, R. S., editors, FAccT, pages
438–448. ACM.

Gonzalez, T. F. (1985). Clustering to minimize the
maximum intercluster distance. Theoretical computer
science, 38:293–306.

MohammadHossein Bateni, Vincent Cohen-Addad, Alessandro Epasto, Silvio Lattanzi

Gupta, S., Ghalme, G., Krishnan, N. C., and Jain, S.
(2023). Efficient algorithms for fair clustering with a
new notion of fairness. Data Mining and Knowledge
Discovery, pages 1–39.

Hochbaum, D. S. and Shmoys, D. B. (1985). A best
possible heuristic for the k -center problem. Math.
Oper. Res., 10(2):180–184.

Hotegni, S. S., Mahabadi, S., and Vakilian, A. (2023).
Approximation algorithms for fair range clustering.
In International Conference on Machine Learning,
pages 13270–13284. PMLR.

Humayun, A. I., Balestriero, R., Kyrillidis, A., and
Baraniuk, R. (2021). No more than 6ft apart: robust
k-means via radius upper bounds. under submission.

Jung, C., Kannan, S., and Lutz, N. (2020). Service
in your neighborhood: Fairness in center location.
In Roth, A., editor, FORC, volume 156 of LIPIcs,
pages 5:1–5:15. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik.

Kalhan, S., Makarychev, K., and Zhou, T. (2019). Cor-
relation clustering with local objectives. In Wallach,
H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F.,
Fox, E., and Garnett, R., editors, Advances in Neural
Information Processing Systems, volume 32. Curran
Associates, Inc.

Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko,
C. D., Silverman, R., and Wu, A. Y. (2002). A
local search approximation algorithm for k-means
clustering. In Hurtado, F., Sacristán, V., Bajaj, C.,
and Suri, S., editors, Proceedings of the 18th Annual
Symposium on Computational Geometry, Barcelona,
Spain, June 5-7, 2002, pages 10–18. ACM.

Kleindessner, M., Awasthi, P., and Morgenstern, J.
(2019). Fair k-center clustering for data summa-
rization. In Chaudhuri, K. and Salakhutdinov, R.,
editors, Proceedings of the 36th International Confer-
ence on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA, volume 97 of
Proceedings of Machine Learning Research, pages
3448–3457. PMLR.

Kohavi, R. et al. (1996). Scaling up the accuracy of
naive-bayes classifiers: A decision-tree hybrid. In
Kdd, volume 96, pages 202–207.

Lattanzi, S. and Sohler, C. (2019). A better k-means++
algorithm via local search. In International Confer-
ence on Machine Learning, pages 3662–3671. PMLR.

Lloyd, S. P. (1982). Least squares quantization in PCM.
IEEE Trans. Inf. Theory, 28(2):129–136.

MacQueen, J. B. (1967). Some methods for classifica-
tion and analysis of multivariate observations. In
Cam, L. M. L. and Neyman, J., editors, Proc. of the
fifth Berkeley Symposium on Mathematical Statistics

and Probability, volume 1, pages 281–297. University
of California Press.

Mahabadi, S. and Vakilian, A. (2020). Individual fair-
ness for k-clustering. In ICML, volume 119 of Proceed-
ings of Machine Learning Research, pages 6586–6596.
PMLR.

Makarychev, K., Makarychev, Y., and Razenshteyn,
I. P. (2019). Performance of johnson-lindenstrauss
transform for k -means and k -medians clustering. In
Charikar, M. and Cohen, E., editors, Proceedings
of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2019, Phoenix, AZ,
USA, June 23-26, 2019, pages 1027–1038. ACM.

Makarychev, Y. and Vakilian, A. (2021). Approxima-
tion algorithms for socially fair clustering. In Belkin,
M. and Kpotufe, S., editors, Conference on Learning
Theory, COLT 2021, 15-19 August 2021, Boulder,
Colorado, USA, volume 134 of Proceedings of Ma-
chine Learning Research, pages 3246–3264. PMLR.

Moro, S., Cortez, P., and Rita, P. (2014). A data-driven
approach to predict the success of bank telemarketing.
Decision Support Systems, 62:22–31.

Plesník, J. (1987). A heuristic for the p-center problems
in graphs. Discret. Appl. Math., 17(3):263–268.

Raykov, Y. P., Boukouvalas, A., Baig, F., and Little,
M. A. (2016). What to do when k-means clustering
fails: A simple yet principled alternative algorithm.
PLOS ONE, 11(9):1–28.

Rösner, C. and Schmidt, M. (2018). Privacy preserving
clustering with constraints. In Chatzigiannakis, I.,
Kaklamanis, C., Marx, D., and Sannella, D., edi-
tors, 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July
9-13, 2018, Prague, Czech Republic, volume 107 of
LIPIcs, pages 96:1–96:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik.

Vakilian, A. and Yalçiner, M. (2022). Improved approx-
imation algorithms for individually fair clustering.
In AISTATS.

Wang, X., Fan, S., Kuang, K., Shi, C., Liu, J., and
Wang, B. (2020). Decorrelated clustering with data
selection bias. In Bessiere, C., editor, Proceedings of
the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI 2020, pages 2177–2183.
ijcai.org.

Zhang, S., Wang, R.-S., and Zhang, X.-S. (2007). Iden-
tification of overlapping community structure in com-
plex networks using fuzzy c-means clustering. Phys-
ica A: Statistical Mechanics and its Applications,
374:483–490.

A Scalable Algorithm for Individually Fair K-means Clustering

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
[Yes]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Not
Applicable]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. [Yes]

(b) The license information of the assets, if appli-
cable. [Not Applicable]

(c) New assets either in the supplemental material
or as a URL, if applicable. [Not Applicable]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. [Not Applicable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Not Applicable]

MohammadHossein Bateni, Vincent Cohen-Addad, Alessandro Epasto, Silvio Lattanzi

A Additional experimental results

Small scale datasets and effect of F-Lloyd improvement The results observed before are confirmed in
all datasets, as shown in Table 2, where we report the cost and bound ratio for all datasets, subsampled to 1000
elements, and k = 10.

In this experiment we report as well the results of using our novel F-Lloyd’s fair improvement method on top
of the ICML20 baseline (recall that this step can only be applied to algorithms based on anchor points such as
LSPP and ICML20). Even with this improvement, the picture remains unchanged LSPP has always the lowest
cost (or close to lowest cost, achieved by the improved ICML20+F-Lloyd) to all fair algorithms while scaling to 2
orders of magnitude larger datasets than ICML20 (even without the additional running time of F-Lloyd which
only makes ICML20 slower). For this reason, for the remainder of the paper we focus on the ICML20 baseline as
introduced by the authors.

Effect of k A similar overall picture appears in Figure 2a, 2b, where we report the results of the various
algorithms for different k’s on a sample of 1000 elements in the adult dataset. Notice that our algorithm has
lower or comparable cost to all fair baselines in cost in Figure 2a and the comparable or slightly higher bound
ratio in Figure 2b.

(a) Cost (b) Bound ratio

Figure 2: Mean completion cost and bound ratio for the algorithms on the adult dataset subsampled to 1000
elements and different k’s. The shades represent the 95% confidence interval.

Additional results on large-scale datasets As we mentioned before, our algorithm is the only one that
runs on the big datasets within reasonable time (and memory).

To compare with all the slower baselines we allow ICML20, NeurIPS21 and NeurIPS21Sparsify to run on a
subsample of the data containing 4000 points (but we evaluate the solution on the entire dataset). This of course
has no theoretical guarantee and can perform especially poorly in case of outliers.

For this large-scale experiment, the input bound δ(p) for each point p is set using the n/k-th closest point in a
random sample of 1000 elements.

The results in Table 1 shows that in all but one dataset, our algorithm has a significantly lower k-means cost than
that of all other baselines. Similarly to the above results, our algorithm has a similar or better ratio bound than
that of ICML20 (with the sampling heuristic), while the ratio bound of NeurIPS21 and NeurIPS21Sparsify is
sometimes lower. In any instance our algorithm has a much better ratio that the worst-case theoretical guarantees.

A Scalable Algorithm for Individually Fair K-means Clustering

dataset algorithm k-means cost bound ratio

adult Greedy 3832.6 (—) 2.0 (—)
ICML20 1854.9 (—) 1.2 (—)
ICML20+F-Lloyd 1733.2 (—) 1.3 (—)
NeurIPS21 2744.3(—) 1.1 (—)
NeurIPS21Sparsify 2745.5 (—) 1.2 (—)
LSPP 1726.0 (9.4) 1.2 (0)

bank Greedy 1081.8 (—) 1.8 (—)
ICML20 568.4 (—) 1.4 (—)
ICML20+F-Loyd 517.9 (—) 1.5 (—)
NeurIPS21 784.2 (—) 1.2 (—)
NeurIPS21Sparsify 761.2 (—) 1.2 (—)
LSPP 510.5 (6.9) 1.4 (0.1)

covtype Greedy 50629.8 (—) 1.3 (—)
ICML20 42121.5 (—) 1.1 (—)
ICML20+F-Lloyd 35211.3 (—) 1.0 (—)
NeurIPS21 47810.6 (—) 1.1(—)
NeurIPS21Sparsify 46078.6 (—) 1.1 (—)
LSPP 35860.4 (569) 1.0 (0.0)

diabetes Greedy 522.3 (—) 2.1 (—)
ICML20 266.4 (—) 1.1 (—)
ICML200+F-Loyd 231.8 (—) 1.1 (—)
NeurIPS21 N/A N/A
NeurIPS21Sparsify 299.8 (—) 1.1 (—)
LSPP 248.5 (8.5) 1.2 (0.2)

gowalla Greedy 41.4 (—) 1.6 (—)
ICML20 18.6 (—) 1.0 (—)
ICML200+F-Lloyd 17.3 (—) 1.0 (—)
NeurIPS21 44.3 (—) 1.0 (—)
NeurIPS21Sparsify 68.6 (—) 1.0 (—)
LSPP 20.3 (1.6) 1.3 (0.1)

shuttle Greedy 2647.4 (—) 2.0 (—)
ICML20 1335.0 (—) 1.8 (—)
ICML200+F-Lloyd 1272.1 (—) 1.8 (—)
NeurIPS21 2494.8 (—) 1.0(—)
NeurIPS21Sparsify 2477.1 (—) 1.2 (—)
LSPP 1219.1 (31.3) 1.8 (0.1)

skin Greedy 584.3 (—) 2.7 (—)
ICML20 292.8(—) 2.3 (—)
ICML200+F-Lloyd 276.2 (—) 2.4 (—)
NeurIPS21 379.4 (—) 1.1 (—)
NeurIPS21Sparsify 384.1 (—) 1.1 (—)
LSPP 314.3 (27.7) 2.5 (0.1)

Table 2: Cost and max bound ratio for all datasets subsampled for 1000 elements and k = 10 (stddev in parentheses for
the LSPP randomized algorithm). N/A indicates that the algorithm did not complete in 2 hours. In this table we also
report experiments with the F-Lloyd heuristic applied to ICML20.

MohammadHossein Bateni, Vincent Cohen-Addad, Alessandro Epasto, Silvio Lattanzi

dataset algorithm cost stddev bound ratio stddev

adult ICML20 6.81E+02 1.00E-01
NeurIPS21 1.34E+04 0.00E+00
NeurIPS21Sparsify 7.65E+03 0.00E+00
LSPP 8.84E+02 0.00E+00

bank ICML20 1.04E+03 1.00E-01
NeurIPS21 5.95E+03 0.00E+00
NeurIPS21Sparsify 6.57E+03 0.00E+00
LSPP 6.85E+02 1.00E-01

covtype ICML20 2.23E+05 0.00E+00
NeurIPS21 1.85E+05 0.00E+00
NeurIPS21Sparsify 3.83E+05 0.00E+00
LSPP 4.51E+05 0.00E+00

diabetes ICML20 8.19E+02 2.00E-01
NeurIPS21 N/A N/A
NeurIPS21Sparsify 1.22E+03 1.00E-01
LSPP 9.58E+02 1.00E-01

gowalla ICML20 N/A N/A
NeurIPS21 2.07E+03 0.00E+00
NeurIPS21Sparsify 4.05E+03 1.00E-01
LSPP 1.32E+03 0.00E+00

shuttle ICML20 1.25E+04 2.00E-01
NeurIPS21 6.57E+03 0.00E+00
NeurIPS21Sparsify 1.37E+04 0.00E+00
LSPP 1.05E+04 3.00E-01

skin ICML20 3.51E+03 3.00E-01
NeurIPS21 1.60E+03 1.00E-01
NeurIPS21Sparsify 1.31E+04 0.00E+00
LSPP 4.80E+02 2.00E-01

Table 3: Standard deviation of cost and max bound ratio for all full-sized datasets and k=10 with ICML20, NeurIPS21
and NeurIPS21Sparsify ran on a sample of 4000 points .

Standard deviation of the metrics in large datasets. In Table 3 we report the standard deviation for the
metrics in Table 1. Notice that in this experiment, the input to ICML20, NeurIPS21 and NeurIPS21Sparsify
algorithms are run on a random subsample, so this makes the algorithm non-deterministic. Notice that our
algorithm has statistically significantly lower cost than the other baselines in almost all datasets.

Effect of the normalization of the points. In our experiments, we applied two preprocessing steps that
are common in the clustering literature Borassi et al. (2020): each point in the dataset is shifted so that the
dataset has zero mean; and each dimension is scaled to have unit standard deviation. We have observed that
such pre-processing has no significant effect on the experimental conclusion of our work. In Table 4 we report
results for the same experiments previously reported in Table 1, this time executed on the adult dataset without
normalization.

As observed before, our algorithm has a significantly lower (or comparable) k-means cost than that of other
baselines, better ratio than the worst-case theoretical guarantees and a much faster runtime than all fair algorithms.

B Seeding Strategy for Local Search

We describe the seeding procedure outlined in algorithm 3 to initialize our local-search approach. The proof of
this lemma can be found in Section B.

A Scalable Algorithm for Individually Fair K-means Clustering

k-means-cost max-fairness-cost
dataset algorithm

adult (no norm.) Greedy 5.0E+13 2.9E+00
ICML20 1.2E+13 1.8E+00
NeurIPS21 N/A N/A
NeurIPS21Sparsify 5.2E+13 1.8E+00
LSPP 1.3E+13 2.3E+00

Table 4: Mean Cost and max bound ratio for all full-sized datasets and k=10 with ICML20, NeurIPS21 and
NeurIPS21Sparsify ran on a sample of 4000 points on the Adult datasets without normalization.

Lemma B.1. If the problem is feasible, Algorithm 3 with parameter γ > 2 returns a set of points S of size at most
k such that each point p is at distance at most γδ(p) from the closest point in S, i.e., ∀p ∈ A : dist(p, S) ≤ γδ(p).

Proof of Lemma B.1. The proof is similar to the proof of correctness of Gonzales’ algorithm for k-center Gonzalez
(1985) and of Hochbaum and Shmoys’ algorithm Hochbaum and Shmoys (1985). Observe first that by feasibility,
there cannot be k + 1 points p′1, . . . , p′k+1 such that the balls δ(p′i) are all pairwise disjoint (since otherwise the
optimum solution would need k + 1 centers to satisfy the δ(p′) constraints).

Let p1, . . . , pk∗ be the sequence of points picked by the algorithm. We have that δ(pi) ≤ δ(pj) for any i ≤ j.
Note that at the end of the algorithm, each point p is at distance at most γδ(p) from one of p1, . . . , pk∗ so
what remains to be shown is that k∗ ≤ k. We claim that the collection of balls centered at the pi and of
radii δ(pi) are all pairwise disjoint and so if the problem is feasible, the algorithm does not return more than
k points (i.e.: k∗ ≤ k). Consider a pair i, j and without loss of generality i > j. We have that pi is at
distance at least γδ(pi) from pj by the definition of the algorithm. Since γ > 2 and δ(pi) ≥ δ(pj), we have that
δ(pi) + δ(pj) ≤ 2δ(pi) < γδ(pi) ≤ dist(pi, pj) and so the ball of radius δ(pj) around pj cannot intersect the ball of
radius δ(pi) around pi.

C Proof of Section 3

The proof in this section follows closely the structure of the proofs in Lattanzi and Sohler (2019) with some
modification to carefully handle the anchor zones constraints.

C.1 Proof of Theorem 1.1

Proof of Theorem 1.1. Observe that the dimension can be reduced to O(log k/ε−2) using the Johnson-
Lindenstrauss transform Becchetti et al. (2019); Makarychev et al. (2019). Hence, in Õ(nd) time one can
find a projection to a space of dimension O(log k) that preserves the k-means cost of all solutions up to an O(1)
factor and execute the algorithm in this space. The claimed running time then follows immediately.

The algorithm returns infeasible only if it finds k + 1 disjoint individual fairness balls. But in that case, the
problem is infeasible (their fairness constraints cannot be satisfied with k points).

Let Ŝ be the set S before calling ConstrainedLocalSearch++. In this set, every point p has distance at
most γδ(p) from a center so cost(X, Ŝ) ≤ γn∆2. lemma 3.2 then shows that after Z calls to ConstrainedLo-
calSearch++, we obtain a constant approximation.

Now we show that at any point in time during the execution of the algorithm maxp∈X dist(p, S) ≤ 2γδ(p). The
algorithm guarantees to keep at least one point in every anchor ball. Moreover every point p is at distance at
most γδ(p) from an anchor point p′ with δ(p) > δ(p′). The anchor ball B(p′) must have a center c ∈ S, so
dist(c, p′) ≤ γδ(p′). Thus by triangle inequality dist(c, p) ≤ 2γδ(p).

It takes O(dnk) time to compute the initial set Ŝ. To implement the local search, we need to compute the cost of
swapping the new sample point with an old center. This requires iterating over all clusters and for each cluster we

MohammadHossein Bateni, Vincent Cohen-Addad, Alessandro Epasto, Silvio Lattanzi

need to compute the distance to all other centers and to check that there is at least one center in each anchor ball.
Thus, a local search step requires O(dkn+ dk) time in the worst case, resulting in a total runtime of O(dnkZ).
The Theorem follows.

C.2 Proof of Lemma 3.2

Proof. By Lemma 3.1 we know that if before any call of ConstrainedLocalSearch++ the cost of the centers
is bigger than 2000Optk then with probability 1

1000 we reduce the cost by a (1− 1
100k) multiplicative factor.

Now consider another random process Y with initial value equal to cost(X, Ŝ), which for Z = 100000k log n∆(X)2

iterations, it reduces the value by a
(
1− 1

100k

)
multiplicative factor with probability 1/1000, and finally increases

the value by an additive 2000Optk. It is not hard to see that the final value of Y stochastically dominates the
cost of the solution our algorithm produces.

So the final expected value of Y is larger than the expected value of cost(X,S) conditioned on the initial clustering
Ŝ. Furthermore,

E[Y] = 2000Optk + cost(X, Ŝ) ·
Z∑
i=0

(
Z

i

)(
1

1000

)i(
999

1000

)Z−i(
1− 1

100k

)i
= cost(X, Ŝ)

(
1− 1

100000k

)Z
+ 2000Optk

≤ cost(X, Ŝ)

n∆(X)2
+ 2000Optk.

This implies that E[cost(X,S)|Ŝ] ≤ cost(X,Ŝ)
n∆(X)2 + 2000Optk. Our upper-bound on the cost of Ŝ is deterministic,

hence E[cost(X,S)] ≤ cost(X,Ŝ)
n∆(X)2 + 2000Optk ≤ 2001Optk.

This section contains the proofs of the lemmas of Section 3.

C.3 Proof of Lemma 3.2

The proof in this section follows closely the structure of the proofs in Lattanzi and Sohler (2019) and we include
it for completeness.

Proof of Lemma 3.2. By Lemma 3.1 we know that if before any call of ConstrainedLocalSearch++ the cost
of the centers is bigger than 2000Optk then with probability 1

1000 we reduce the cost by a (1− 1
100k) multiplicative

factor.

We next use another random process Y to handle dependencies between rounds. In this way we can have a
coupling with an independent process that is easier to analyze. We let Y be a random process with initial value
equal to cost(X, Ŝ), which for Z = 100000k log n∆2 iterations, it reduces the value by a

(
1− 1

100k

)
multiplicative

factor with probability 1/1000, and finally increases the value by an additive 2000Optk. It is not hard to see that
the final value of Y stochastically dominates the cost of the solution our algorithm produces. So the final expected
value of Y is larger than the expected value of cost(X,S) conditioned on the initial clustering Ŝ. Furthermore,

E[Y] = 2000Optk + cost(X, Ŝ) ·
Z∑
i=0

(
Z

i

)(
1

1000

)i(
999

1000

)Z−i(
1− 1

100k

)i
= cost(X, Ŝ)

(
1− 1

100000k

)Z
+ 2000Optk

≤ cost(X, Ŝ)

n∆2
+ 2000Optk.

This implies that E[cost(X,S)|Ŝ] ≤ cost(X,Ŝ)
n∆2 + 2000Optk. Our upper-bound on the cost of Ŝ is deterministic,

hence E[cost(X,S)] ≤ cost(X,Ŝ)
n∆2 + 2000Optk ≤ 2001Optk.

A Scalable Algorithm for Individually Fair K-means Clustering

C.4 Proof of Proposition 3.5

Proof of Proposition 3.5. If c′ is within distance γδ(a) to a, the lemma follows from dist(c∗, c) = dist(c∗, c′) by
definition of c and anchor ball. Otherwise we know that c∗ is at distance at most δ from a, c is at distance at
most γδ from a, and c′ is at distance at least γδ from a. The lemma follows the triangle inequality.

C.5 Proof of Lemma 3.7

Proof of Lemma 3.7. We only present the case r ∈ H. The case r ∈ L is almost identical (in fact, simpler). We
observe that reassign(X,S, cr) = cost(Xr \X∗r , S \ {r})− cost(Xr \X∗r , S) since vertices in clusters other than
Xr will still be assigned to their current center. If r ∈ H, we assign every point in Xr ∩X∗i , i 6= r, to the center
that captured the center of X∗i . While this assignment may not be optimal, its cost provides an upper bound on
the cost of reassigning the points: We move every point in Xr ∩X∗i , i 6= r, to the center of X∗i . Now the closest
center of S to these points is a center with distance close to the one that captured the center of X∗i , which, for
points not in X∗r , cannot be r, since r is in H. The fact that the squared moved distance of each point equals its
contribution to the optimal solution allows us to get an upper bound on the cost change using lemma 3.4. After
this, we move the points back to their original location while keeping their cluster assignments fixed. Again we
can use the bound on the overall moved distance together with lemma 3.4 to obtain a bound on the change of
cost. Combining the two gives an upper bound on the increase of cost that comes from reassigning the points.
Details follow.

Let Qr be the (multi)set of points obtained from Xr \X∗r by moving each point in X∗i ∩Xr, i 6= r, to c∗i . We
apply lemma 3.4 with ε = 1/100 to get an upper bound for the change of cost with respect to S that results from
moving the points to Qr. For p ∈ Xr \X∗r let qp ∈ Qr be the point of Qr to which p has been moved. We have:

|cost({p}, S)− cost({qp}, S)| ≤ 1

100
cost({p}, S) + 101 · cost({p}, S∗).

Summing up over all points in Xr \X∗r yields

|cost(Xr \X∗r , S)− cost(Qr, S)| ≤ 1

100
cost(Xr \X∗r , S) + 101 · cost(Xr \X∗r , S∗).

Let Qr,i be the points in Qr that are nearest to center ci ∈ S and let Xr,i be the set of their original locations.
For p ∈ Xr,i that has been moved to qp ∈ Qr,i with qp let c′i be the closest point to qp not equal to r. Note that
the only case in which ci 6= c′i is when ci = r. Furthermore, qp is not captured by r because r captures c∗r and is
in H. So by proposition 3.5 we know cost({qp}, {c′i}) ≤

µ+1
µ−1cost({qp}, {ci}). Thus we have:

|cost({qp}, {ci})− cost({p}, {c′i})|
= |cost({qp}, {ci})− cost({qp}, {c′i})|+ |cost({qp}, {c′i})− cost({p}, {c′i})|

≤ 2

µ− 1
cost({qp}, {ci}) +

1

100
cost({qp}, {c′i}) + 101 · cost({p}, {qp})

≤ 1

µ− 1

(
2 +

µ+ 1

100

)
cost({qp}, {ci}) + 101 · cost({p}, {qp}),

where in the first inequality we used lemma 3.4 with ε = 1/100.

Summing up over all points in Xr \X∗r and the corresponding points in Qr yields

|cost(Qr, S)−
∑
i

cost(Xr,i, S \ {r})|

≤ 1

µ− 1

(
2 +

µ+ 1

100

)
cost(Qr, S) + 101 · cost(Xr \X∗r , S∗)

≤ 26

25

(
11

100
cost(Xr \X∗r , S) + 101 · cost(Xr \X∗r , S∗)

)
+

101 · cost(Xr \X∗r , S∗)

≤ 3

25
cost(Xr, S) + 231 · cost(Xr, S

∗),

MohammadHossein Bateni, Vincent Cohen-Addad, Alessandro Epasto, Silvio Lattanzi

where the second inequality uses the bound on µ ≥ 3. Hence,

reassign(X,S, cr)

= |cost(Xr \X∗r , S)−
∑
i

cost(Xr,i, S \ {r}|

≤ |cost(Xr \X∗r , S)− cost(Qr, S)|+ |cost(Qr, S)−
∑
i

cost(Xr,i, S \ {r})|

≤ 13

100
cost(Xr, S) + 332cost(Xr, S

∗).

C.6 Proof of Lemma 3.9

Proof of Lemma 3.9. We have
∑
h∈H cost(X∗h, C) ≥ 1

3cost(X,S) and by the definition of good and lemma 3.7∑
h∈H,h is not good

cost(X∗h, S) ≤
∑
h∈H

reassign(X,S, ch) + 9Optk +
1

100
cost(X,S)

≤ 14

100
cost(X,S) + 341Optk.

Using that cost(X,S) ≥ 2000Optk we obtain that∑
h∈H,h is not good

cost(X∗h, S) ≤ 621

2000
· cost(X,S).

So
∑
h∈H,h is good cost(X

∗
h, S) ≥ 9

400 · cost(X,S). The lemma follows.

C.7 Proof of Lemma 3.12

Proof of Lemma 3.12. We have
∑
r∈R cost(X∗r , S) ≥ 2/3cost(X,S). Note that |R| ≤ 2|L|. By the definition of

good and lemma 3.7 ∑
r∈R,r is not good

cost(X∗r , S)

≤ 2|L|min
`∈L

reassign(X,S, `) + 9Optk +
1

100
cost(X,S)

≤ 2
∑
`∈L

reassign(X,S, `) + 9Optk +
1

100
cost(X,S)

≤ 27

100
cost(X,S) + 673Optk.

Using that
∑
i∈{1,...,k} cost(X

∗
i , S) ≥ 2000Optk we obtain that

∑
r∈R,r is not good

cost(X∗r , S) ≤ 1213

2000
cost(X,S)

Now the bound follows by combining the previous inequality with
∑
r∈R cost(X∗r , S) ≥ 2/3cost(X,S).

D Further Theoretical Considerations

Our algorithms can be used to obtain an O(1)-approximation for the case where C 6⊆ X, using the following
argument. Given an instance A,C where C 6⊆ X, consider running our algorithm on the instance A,C ′ where
C ′ := A – hence looking at the metric induced by the points in A and falling back to the setting considered in
our paper. This will give a solution whose centers are in A. We show that we can then transform this solution
into a solution whose centers are in C without losing much in the approximation guarantee. To do this, we need
to show the following two statements: (1) the cost of the optimum solution in the instance A,C ′ is at most O(1)

A Scalable Algorithm for Individually Fair K-means Clustering

times the cost of the optimum solution in the instance A,C; and (2) the cost of turning the solution for A,C ′
into a solution for A,C only loses a constant factor in the approximation guarantee.

(1) Take the optimum solution OPT for the instance A,C and turn it into a solution for the instance A,C ′ of
cost at most O(1) times higher. Replace each center in Opt with the closest element in A. This yields a solution
for A,C ′ (since C ′ = A). Note that by the triangle inequality, replacing each element in Opt with the closest
point in A only increases the cost by a factor 4. Thus, the cost of the optimum solution for A,C ′ is only 4 times
higher than the cost of Opt. Hence, running our algorithm on the instance A,C ′ yields a solution of cost O(Opt).
We next show how to convert the solution obtained for A,C ′ to a solution for A,C.

(2) Let’s now show that we can transform any α-approximate solution for the instance A,C ′ to a solution for A,C
without losing more than a constant factor. Indeed, for each cluster S of the solution for A,C ′, pick the center uS
in C that is the closest to S current center c′ in A′. For each cluster S, the cost obtained is by triangle inequality
is at most

∑
s∈S dist(s, uS) ≤

∑
s∈S dist(s, c

′) + dist(c′, uS) ≤
∑
s∈S dist(s, c

′) + |S|dist(c′, uS). Moreover, by the
choice of uS and the triangle inequality, we have that dist(c′, uS) ≤ (1/|S|)

∑
s∈S(dist(s, c′)+OPTs)), where OPTs

is the cost of s in the optimum solution for A,C. Thus the overall cost is bounded by
∑
s∈S(2dist(s, c′) + OPTs).

Summing over all clusters, we have that the total cost is at most (18α+ 1) times higher than the optimum cost for
the instance A,C. Since we prove that our algorithm is an O(1)-approx, the resulting solution is an O(1)-approx
too.

	Introduction
	Preliminaries
	Fast algorithm
	Analysis (Proof of th:ls++)
	Proof of lem:main

	Empirical analysis
	Conclusions and Future Works
	Additional experimental results
	Seeding Strategy for Local Search
	Proof of Section 3
	Proof of th:ls++
	Proof of Lemma 3.2
	Proof of Lemma 3.2
	Proof of proposition:dist
	Proof of Lemma 3.7
	Proof of Lemma 3.9
	Proof of Lemma 3.12

	Further Theoretical Considerations

