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Abstract

The effectiveness of stochastic gradient de-
scent (SGD) in neural network optimiza-
tion is significantly influenced by stochastic
gradient noise (SGN). Following the central
limit theorem, SGN was initially described as
Gaussian, but recently Simsekli et al. (2019)
demonstrated that the SαS Lévy distribu-
tion provides a better fit for the SGN. This
assertion was purportedly debunked and re-
bounded to the Gaussian noise model that
had been previously proposed. This study
provides robust, comprehensive empirical ev-
idence that SGN is heavy-tailed and is better
represented by the SαS distribution. Our ex-
periments include several datasets and multi-
ple models, both discriminative and genera-
tive. Furthermore, we argue that different
network parameters preserve distinct SGN
properties. We develop a novel framework
based on a Lévy-driven stochastic differential
equation (SDE), where one-dimensional Lévy
processes describe each parameter. This
leads to a more accurate characterization of
the dynamics of SGD around local minima.
We use our framework to study SGD prop-
erties near local minima; these include the
mean escape time and preferable exit direc-
tions.

1 Introduction

The tremendous success of deep learning (Bengio,
2009; Hinton et al., 2012; LeCun et al., 2015) can
be partly attributed to implicit properties of the opti-
mization tools, in particular, the popular SGD (Rob-
bins and Monro, 1951; Bottou, 1991) scheme. Despite
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its simplicity, i.e., being a noisy first-order optimiza-
tion method, SGD empirically outperforms gradient
descent (GD) and second-order methods. By evading
sharp basins and settling in wide minima, the stochas-
tic gradient noise of SGD can lead to improved gener-
alization (Ziyin et al., 2021; Smith et al., 2020). Based
on empirical evidence, the formation and amplitude of
SGD noise depend on the deep neural network (DNN)
architecture and data distribution. However, a com-
plete theoretical understanding of this interplay is still
lacking. A better understanding of the properties of
SGD can help break current barriers in the field.

Analyzing the behavior of SGD with non-convex cost
functions is ongoing research (Draxler et al., 2018;
Nguyen and Hein, 2017; He et al., 2019b; Li et al.,
2017; Smith et al., 2021; Ziyin et al., 2021; You et al.,
2019). The problem of analyzing SGD noise has been
recently gaining attention. Studies mainly examine
the distribution and nature of the noise, with its abil-
ity to escape local minima and generalize better (Hu
et al., 2017; He et al., 2019a; Wu et al., 2019; HaoChen
et al., 2020; Zhou et al., 2019; Keskar et al., 2016).

SGD is based on an iterative update rule, where the
ℓ-th step of the iterative update rule is formulated as:

wℓ+1 = wℓ −
ηℓ
B

∑
d∈Ωℓ

∇U (d)(wℓ) = wℓ − ηk∇U(wℓ) + ηℓζℓ,

where wk denotes the weights (parameters) of the
DNN at step ℓ. ∇U(wℓ) is the gradient of the ob-
jective function, B is the batch size, Ωℓ ⊂ {1, .., D},
is the randomly selected mini-batch. Thus |Ωℓ| = B,
D is the number of data points in the dataset, ζℓ is
the SGD noise, which is formulated as ζℓ = ∇U(wℓ)−
1
B

∑
d∈Ωℓ

∇U (d)(wℓ), i.e., the difference between the
gradient produced by GD and SGD, finally ηℓ depicts
the learning rate at step ℓ.

While gradient flow is a popular apparatus for under-
standing GD dynamics, continuous-time SDE is typ-
ically used to investigate the SGD optimization pro-
cess. By modeling SGD using an SDE, we can examine
the evolution of the dynamic system in the continuous
time domain (Zhu et al., 2018; Meng et al., 2020; Xie
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et al., 2020; Chaudhari and Soatto, 2018; Hu et al.,
2017; Sato and Nakagawa, 2014a).

There is an ongoing discussion on the characteristics of
SGN. Specifically, the majority of previous works (Zhu
et al., 2018; Mandt et al., 2016; Wu et al., 2020; Ziyin
et al., 2021) argue that SGN is better modeled using
the normal distribution, i.e., ζl ∼ N (0,Σ(wℓ)), where
Σ(wℓ) is the noise covariance matrix and formulated
as follows (Zhu et al., 2018):

1

B

[
1

D

D∑
d=1

∇U (d)(wℓ)∇U (d)(wℓ)
T −∇U(wℓ)∇U(wℓ)

T

]
.

Recently, (Zhu et al., 2018) demonstrated that mod-
eling the SGN as an anisotropic noise leads to an im-
proved approximation of SGD dynamics. Although
the SGN process is well modeled by a diffusion driven
by a Brownian motion(Sato and Nakagawa, 2014b; Ra-
ginsky et al., 2017; Zhang et al., 2017; Mandt et al.,
2017; Zhu et al., 2018; Mori et al., 2021), lately Sim-
sekli et al. (2019) argued that SGN obeys SαS Lévy
motion due to SGN’s heavy-tailed nature. This model
was allegedly refuted by Xie et al. (2020), claiming
that the experiments in (Simsekli et al., 2019) are in-
accurate.

In this study, we reclaim that SGN holds a long-tailed
distribution by conducting extensive experiments us-
ing datasets of multiple types, including images, text,
and tables; the evaluations were conducted using mul-
tiple architectures. Furthermore, we demonstrate that
the noise associated with distinct DNN parameters is
distributed differently. Following our empirical evi-
dence, we model the training process as Lévy-driven
stochastic differential equations (SDEs) in RN , where
each parameter i has a different αi. Within this frame-
work, we derive a more accurate expression for mean-
escape time, the probability of escaping the local min-
imum for axis i, and more.

Our contributions are: (1) Demonstrate that the SGN
of DNN parameters distributes differently. (2) Show
empirically that SGN has heavy-tail properties, mak-
ing SαS distribution more accurately characterize it
visually and numerically using both text, image, and
text-image models on multiple datasets. (3) Propose
a novel dynamical system in RN consisting of N one-
dimensional SαS processes, a more accurate and closer
to a real-world scenario. (4) Approximate the mean
escape time and the likelihood of escaping the local
minima using a particular parameter. We also ana-
lyze additional characteristics of the training process
near the local minima. (5) Demonstrate theoretically
(and empirically) that parameters with low values of
αi will likely assist the training process in leaving the
local minima.

Technical Remark A Symmetric α stable distribu-
tion (SαS or Lévy SαS) is a heavy-tailed distribution,
parameterized by the stability parameter α, where a
smaller α leads to a heavier tail (i.e., extreme events
are more frequent and have a greater amplitude), and
vice versa. In this work, α ∈ (0.5, 2).

2 Related Work

Stochastic optimization has been demonstrated effec-
tive for several applications, including generative mod-
eling (Li et al., 2020), support recovery (Lindenbaum
and Steinerberger, 2021, 2022; Jana et al., 2023), clus-
tering (Svirsky and Lindenbaum, 2023), and many
more. Studying dynamical systems using SDEs with
small random perturbations is a well-established field.
Early work used Gaussian noise to model the perturba-
tions (Kramers, 1940; Freidlin et al., 2012), which were
later replaced by Lévy noise with discontinuous tra-
jectories (Imkeller and Pavlyukevich, 2006a; Imkeller
et al., 2010; Imkeller and Pavlyukevich, 2008; Burghoff
and Pavlyukevich, 2015). Characterizing the noise as
Lévy perturbations has attracted interest in the con-
text of extreme events modeling, such as in climate
(Ditlevsen, 1999), physics (Brockmann and Sokolov,
2002) and finance (Scalas et al., 2000).

Modeling SGD using SDEs is a deep-rooted method.
Li et al. (2015) used an SDE to approximate SGD and
focused on momentum and adaptive parameter tuning
schemes to study the dynamical properties of stochas-
tic optimization. Mandt and Blei (2015) employed a
similar procedure to derive an SDE approximation for
the SGD dynamics to study the influence of the value
of the learning rate. Li et al. (2015) showed that an
SDE could approximate SGD in a first-order weak ap-
proximation. The early works in the field have approx-
imated SGD by Langevin dynamic with isotropic diffu-
sion coefficients (Sato and Nakagawa, 2014b; Raginsky
et al., 2017; Zhang et al., 2017). Later, more accurate
modeling suggested (Mandt et al., 2017; Zhu et al.,
2018; Mori et al., 2021) using an anisotropic noise co-
variance matrix. Finally, Simsekli et al. (2019) demon-
strated that SGN is better characterized by SαS noise,
which was refuted by Xie et al. (2020) (see more details
in Section 1).

3 Framework

Prior work that model SGN (Zhou et al., 2020; Sim-
sekli et al., 2019) assume that the noise of each pa-
rameter in the network has the same characteristics.
In contrast, we model the noise of each parameter us-
ing an SαS distribution with a distinct αi value. We
back this assumption with multiple experiments (see
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Section 6). This allows us to construct a framework
of an N -dimensional dynamic system, representing the
update rule of SGD as a Lévy-driven stochastic differ-
ential equation. We consider a DNN with N weights
(parameters), the domain G is the local environment
of a minimum, G ⊆ RN is a bounded and relatively
compact subspace, please see Sec. 13 in the Appendix
for more rigours and detailed definition of G.

The governing SDE that depicts SGDs dynamics inside
the domain G at time t is:

Wt = w−
∫ t

0

∇U(wp) dp+

N∑
l=1

s
αl−1

αl
t ϵl(1

TΣl(t))
1
αl rlL

l
t,

where Wt is the process that depicts the evolution of
DNN weights at time t. The derivation of this SDE
is presented in Sec. 14 of the Appendix. Ll

t ∈ R is
a mean-zero SαS Lévy processes with a stable pa-
rameter αl. Σl(t) ∈ RN is the l-th row of the noise
covariance matrix, 1 ∈ RN is a vector of ones, and
its purpose is to sum the l-th row of the noise covari-
ance matrix. rl ∈ RN is a unit vector and we demand
|⟨ri, rj⟩| ≠ 1, for i ̸= j, we will use ri as a one-hot vec-
tor. st represents the learning rate scheduler, and w

are the initial weights, ϵ = η
α−1
α , and η is the learning

rate.

Technical Remark Ll
t can be decomposed into a

small jump part ξlt, and an independent part with large
jumps ψl

t, i.e. Ll = ξlt + ψl
t, additional information on

the SαS process appears in Appendix 9.2.

4 Analysis

Let σG = inf{t ≥ 0 :Wt /∈ G} depict the first exit time
from G. τ lk denotes the time of the k-th largest jump of
parameter l, which is driven by the process ψl, where
we define τ0 = 0. The interval between large jumps
is denoted as Πl

k = τ lk − τ lk−1 and is exponentially

distributed with mean βl(t)
−1, while τ lk is gamma dis-

tributed Gamma(k, βl(t)); where βl(t) is the intensity
of the jump and will be defined in Sec 4.3.

We define the arrival time of the k-th jump of all
parameters combined as τ∗k , for k ≥ 1 we can write
τ∗k ≜

∧
τ l
j>τ∗

k−1
τ lj , following that Π

∗
k = τ∗k−τ∗k−1. Jump

heights are notated as: J l
k = ψl

τk
− ψl

τk− . We will de-
fine αν as the average αi value over all parameters,
and similarly for other parameters (e.g., βν); this will
help us describe the global properties of our network.

We denote the horizontal distance from the domain
boundary using d+l and d−l . We define two additional
processes to better understand the dynamics inside the
basin (between the large jumps). We present a com-
plete formulation of our assumptions about the domain

and processes in Appendix 13.

The deterministic process denoted as Yt is affected
by the drift alone, without any perturbations. This
process starts within the domain and does not escape
it as time proceeds (by the positively invariant set as-
sumption). The drift forces this process towards the
stable point W ∗ as t → ∞, i.e., the local minimum
of the basin; furthermore, the process converges to the
stable point exponentially fast and is defined for t > 0,
U is µ-strongly convex in the domain G, and w ∈ G
by:

Yt = w −
∫ t

0

∇U(Yt′) dt
′. (1)

The following Lemma shows how fast Yt converges to
the local minima from any starting point w inside the
domain.

Lemma 1. ∀w ∈ G, Ũ = U(w)− U(W ∗), the process
Yt converges to a minimizer W ∗ exponentially fast:

∥Yt −W ∗∥2 ≤ 2Ũ

µ
e−2µt. (2)

The complete proof appears in Appendix 10.6.

The small jumps process Zt is composed of the de-
terministic process Yt and a stochastic process with
infinite small jumps denoted as ξt (see more details in
9.2). Zt describes the system’s dynamic in the inter-
vals between the large jumps; hence we add an index
k that represents the index of the jump, for instance,
Zt,k represent the time t between the jump k and k+1.
Due to strong Markov property, ξlt+τ − ξlτ , t ≥ 0 is also
a Lévy process with the same law as ξl. Hence, for
t ≥ 0 and k ≥ 0: ξlt,k = ξlt+τk−1

− ξlτk−1
. The full small

jumps process for ∀t ∈ [0,Πk] is defined as:

Zt,k = w−
∫ t

0

∇U(Zs)ds+

N∑
l=1

s
αl−1

αl
t ϵl(1

TΣl(t))
1
αl rlξ

l
t,k.

In the following proposition, we estimate the devia-
tion in the l-th parameter between the SDE solution
driven by the process of the small jumps Zl

t,k, and the
deterministic trajectory.

Proposition 1. Let Tϵ > 0 exponentially distributed
with parameter βl and ρ ∈ (0, 1), ∀w ∈ G, and
θ̄l ≜ −ρ(1 − αl) + 2 − 2θl, s.t. θl ∈ (0, 2−αl

4 ), the
following holds:

P

(
sup

t∈[0,Tϵ]

|Zl
t,k − Y l

t,k| ≥ cϵ̄θl

)
≤ Cθl ϵ̄

θ̄l . (3)

Where Cθl > 0 and c > 0 are constants, and ϵ̄l =

s
αl−1

αl
t ϵl.
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Proposition 1 describes the distance between the de-
terministic process Yt,k and the process of small jumps
Zt,k at time t that occurs in the interval after jump
k and before k + 1. It indicates that between large
jumps, the processes are close to each other with high
probability between large jumps. The complete proof
appears in Appendix 10.3.

Summary Thus far, we have presented an SDE that
controls the training dynamics (Eq. 3), which consist
of three components: the deterministic process (Eq. 1),
the process of small jumps Eq. 4, which is mostly near
the deterministic process as shown in Prop. 1, thus will
not aid the training to escape the minimum, the third
component is the large jump process.

Additional notations H() and ∇U are the Hessian
and the gradient of the objective function. To denote
different mini-batches, we use subscript d. That is,
Hd() and ∇Ud(W

∗) are the Hessian and gradient of
the d-th mini-batch. To represent different parame-
ters, we use subscript l; for example, ∇ud,l, is the
gradient of the l-th parameter after a forward pass
over mini-batch d. Furthermore, hl,j represents the
l-th row and j-th column of H(W ∗), which is the
Hessian after a forward pass over the entire dataset
D, i.e., the Hessian when performing standard gradi-
ent descent. Finally, h̃l,m,p,j := 1

B

∑B
b=1 hb,l,mhb,p,j ,

hl,m,p,j := hl,mhp,j and h̄l,m,p,j := h̃l,m,p,j − hl,m,p,j

are used in the next proposition.

4.1 Small jump interactions

We turn our attention to another property of the pro-
cess of the small jumps Zl

t,k. Using stochastic asymp-

totic expansion, we can approximate Zl
t,k using the

deterministic process and a first-order approximation
of Zl

t,k.

Lemma 2. For a general scheduler st, ρ ∈ (0, 1),
∀wl, wj ∈ G, starting point after a big jump at time
τ∗k + p where p → 0, and Al,j(t) ≜ ϵ̄lw

je−hj,jtµl
ξ(2t +

1
hl,l

(1− e−hl,lt)), for t ∈ [0,Π∗
k) the following fulfills:

E[Zl
t,kZ

j
t,k] = wlwje−(hl,l+hj,j)t +Aj,l(t) +Al,j(t) +O(ϵ2).

(4)

Where µl
ξ = 2t

[
ϵ̄l

−ρ(1−αl)−1
1−αl

]
, ϵ̄l = s

αl−1

αl
t ϵl. w

j , wl are

the weight value of parameters j and l respectively at
time t.

Lemma 2 depicts the dynamics between two parame-
ters in the intervals between the large jumps; this helps
us to express the covariance matrix of the noise accu-
rately; the complete derivation of this result appears
in Appendix 10.4.

4.2 Noise covariance matrix

The covariance of the noise matrix holds a vital role in
modeling the training process; in this subsection, we
use the stochastic process (presented in Section 13) to
derive the expression of the noise covariance matrix.
Toward this goal, we use stochastic Taylor expansion
near the basin W ∗.

Proposition 2. Let us define ũl,j =
1
D

∑D
d=1 ∇ud,l∇ud,j, then for any t ∈ [0,Π∗

k),
the sum of the l-th row of the covariance matrix:

1TΣk
l (Wt) =

1

B

N∑
j=1

ũl,j +
1

B

N∑
j,m,p=1

h̄l,m,p,j (5)

(
wmwpe−(hm,m+hp,p)t +Am,p(t) +Apm(t)

)
+O(ϵ̄2),

where Am,p(t) and Ap,m(t) are defined in lemma 2. We

note that hl,m,p,j and h̃l,m,p,j represent the interaction
of two terms in the Hessian matrix when performing
GD and SGD respectively, and h̄l,m,p,j is the differ-
ence between them (see details in the previous nota-
tions paragraph). The approximation consists mainly
of two parts: the first is gradient-based and not time-
dependent, and the second is Hessian-based, which de-
cays in time. The proof of the proposition appears in
Appendix 10.5. The influence of the batch size B on
the noise appears in the denominator of Eq. 5. Sug-
gesting that larger values of B will attenuate the ab-
solute values in the covariance matrix, as expected.

4.3 Jump Intensity

We use βl(t) to denote the jump intensity of the com-
pound Poisson process Ψl. βl(t) simultaneously re-
sponsible for scaling the jump frequency and size.
Jumps are distributed according to the law βl(t)

−1λΨl
,

where λ is the levy measure, and the jump intensity is
formulated as:

βl(t) = λΨl
(R) =

∫
R/[−O,O]

λΨl
(dy) =

2

αi
s
ρ(αl−1)
t ϵραl

l ,

where the integration boundary is O ≜ ϵ−ρs
−ρ

αl−1

αl
t ,

which is time-dependent, due to the learning rate
scheduler, which decreases the size and frequency of
the large jumps, thus the jump intensity is not station-
ary. Hence, changing the learning rate during training
enables us to increase and decrease the frequency and
amplitude of the jumps. The entire DNN jump inten-
sity as βS(t) ≜

∑N
l=1 βl(t).

The probability of escaping the local minima in the
first jump, in a single parameter perspective, is ex-
pressed by:

P (stϵ(1
TΣl(t))

1
αl J l

1 /∈ [d−l , d
+
l ]) =

ml(t)Φls
αl−1
t

βl(t)
,
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Model B Gauss SαS SαS Wins
EfficientNet-b2 32 0.0180 0.0009 99.74%
EfficientNet-b3 32 0.0241 0.0010 99.63%
EfficientNet-b4 32 0.0344 0.0021 99.68%

FlexVit 32 0.0340 0.0021 99.62%
Vit base 32 0.0649 0.0066 99.74%
Vit small 32 0.0287 0.0030 99.56%

EfficientNet-b2 64 0.0108 0.0010 99.58%
EfficientNet-b3 64 0.0139 0.0013 99.46%
EfficientNet-b4 64 0.0206 0.0019 99.56%

FlexVit 64 0.0250 0.0039 99.13%
Vit base 64 0.0458 0.0042 99.59%
Vit small 64 0.0208 0.0021 99.30%

Table 1: The fitting error between the empirical SGN
and Gaussian or SαS distributions. We evaluate six
models on a subset of ImageNet with 200k images
and average the error over 10,000 network parameters.
Lower values indicate a better fit. SαS Wins- counts
the numbers of parameters that are better fitted by
SαS distribution. B is the batch size. See Appendix 9
for the standard deviations.

where ml(t) =
(1TΣl(t))

1
αl ϵ

αl
l

αl
, and Φl = (−d−l )−αl +

(d+l )
−αl .

5 Theorems

The following section provides a theoretical analysis
of SGD dynamics during DNN training. Our analysis
is based on two empirical pieces of evidence demon-
strated in this work; the first is that SGN is indeed
heavy-tailed (Tables 1,2,3). The second is that each
parameter in the DNN’s training process has a dif-
ferent stability parameter α (Figures 1,5), which can
significantly affect the noise properties.

Our work assumes that the training process can exit
from the domain only at times that coincide with
large jumps; please see Sec. 9 for the mathemati-
cal evidence. Following this assumption, we analyze
the escaping time for the exponential and multi-step
schedulers; expanding our framework for more LRde-
cay schemes is straightforward. Let us define a con-
stant used in the remainder of the paper: Al,ν ≜
(1 − m̄ν β̄

−1
ν Φν)(1 − β̄lβ̄

−1
S ), for the next theorem we

denote: Cl,ν ≜ 2+(γ−1)(αl−1+ρ(αl−αν))
1+(γ−1)(αl−1) , where Cl,ν de-

pends on αl, γ, and on the difference αl − αν . The
following theorem describes the approximated mean
escape time for the exponential scheduler:

Theorem 1. Given Cl,ν and Al,ν , let st be an expo-
nential scheduler st = tγ−1, the mean transition time

Model B Gauss SαS SαS Wins
Clip-b 32 0.0038 0.0028 96.60%
Clip-b 64 0.0034 0.0029 96.80%
Clip-b 256 0.0040 0.0036 96.88%
Clip-l 32 0.0033 0.0028 96.67%

Table 2: Fitting experiment on Clip-l (Clip large)
and Clip-b (clip-base). SGN is estimated on a subset
of Laion400M, and we average the fitting error over
10,000 parameters. SαS Wins- counts the portion of
network parameters that are better fitted by SαS dis-
tribution.

Model B Gauss SαS SαS Wins
SD2.0 4 0.0073 0.0068 94.92%

SDXL1.0 2 0.0056 0.0050 96.58%
SDXL DDPO 2 0.0046 0.0041 88.41%

Table 3: The fitting error between the empirical of
SGN and SαS or Gaussian parametric distribution.
The table shows SD2 and SDXL1.0 (Podell et al., 2023)
are finetuned using, and SDXL DDPO is finetuned
using the DDPO (Black et al., 2023) . The empirical
distribution of SGN is the average of at least 10,000
parameters. Note the B = 4 is the largest batch size
that can be processed by our hardware.

from the domain G:

E[σG ] ≤
N∑
l=0

A−1
l,ν

βl(m̄lΦl)
1−Cl,ν

βS(1 + (γ − 1)(αl − 1))
Γ (Cl,ν) .

Where Γ is the gamma function, m̄l =
Σ̄

αl
l ϵ

αl
l

αl
and

β̄l =
2ϵ

ραl
l

αl
is the time independent jump intensity. See

Appendix 10.1 for the full proof.

It can be observed from Thm. 1 that as γ decreases,
i.e., faster learning rate decay, the mean transition
time increases. Interestingly, when αl → 2 (nearly
Gaussian) and γ → 0, the mean escape time goes to
infinity, which means the training process is trapped
inside the basin.

Corollary 1. Using Thm. 1, if the cooling rate is neg-
ligible, i.e γ → 1, the mean transition time:

E[σG ] ≤
N∑
l=0

A−1
l,ν

1

βS(1TΣl)
1
αl ϵαl(1−ρ)Φl

.

Col. 1 shows that the mean escape time is not affected
by the basin height but the basin width which is rep-
resented by Φl. Further, since local minima in DNNs
are mostly asymmetric, in 1d perspective, we can note
that the edge (max(−d−i , d

+
i )) of the domain G does
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not affect the mean escape time. Furthermore, one can
note that the escape time dependency on the learning
rate is polynomial.

Figure 1: Each dot represents the distribution pa-
rameter αi of a single weight in the DNN. Values on
the x-axis represent five different DNNs, left to right:
ResNet20/110/18/34/50 He et al. (2015); this plot
confirms that distinct weights in a DNN lead to differ-
ent noise distributions during training.

The framework presented in this work enables us to
understand in which direction ri the training process
is more probable to exit the basin G, i.e., which param-
eter is more liable to help the process escape; this is a
crucial feature for understanding the training process.
The following theorems will be presented for the expo-
nential scheduler but can be expanded for any sched-
uler.

Theorem 2. Let st be an exponential scheduler st =

tγ−1, Cl ≜
(γ−1)(αl−1+ρ(2αl−αν−αl))+2

(γ−1)(αl−1)+1 , for δ ∈ (0, δ0),

the probability of the training process to exit the basin
through the l-th parameter is as follows:

P (Wσ ∈ Ω+
i (δ)) ≤

N∑
l=0

A−1
l,ν

m̄iΦi

β̄i
(d+i )

−αi (6)

β2
l (m̄lΦl)

−Cl

βS((γ − 1)(αl − 1) + 1)
Γ (Cl) .

Let us focus on the term that describes the i-th pa-
rameter:

P (Wσ ∈ Ω+
i (δ)) ≤

m̄i

β̄i
(d+i )

−αi

N∑
l=0

C̃l,

where C̃l encapsulate all the terms that do not depend
on i in Eq. 6. When considering SGN as Lévy noise,
we can see that the training process needs only polyno-
mial time to escape a basin. The following result helps
us evaluate the escaping ratio of two parameters.

Corollary 2. The ratio of probabilities for exiting the
local minima from two different DNN parameters is:

P (Wσ ∈ Ω+
l (δ))

P (Wσ ∈ Ω+
j (δ))

≤ 1TΣl

1TΣj
η(αl−αj)(1−ρ) (d

+
l )

−αl

(d+j )
−αj

.

We remind the reader that (d+i ) is a function of the
horizontal distance from the domain’s edge. There-
fore, we conclude that the higher (d+l ) is, the lower the
probability of exiting from the l-th direction. How-
ever, the dominant term is η(αl−αj)(1−ρ), combining
both factors, parameters with lower α will have more
chance of being in the escape path. It can also be seen
from the definition of βl that parameters with lower
α jump earlier and contribute more significant jump
intensities. We can conclude by writing:

P (Wσ ∈ Ω+
l (δ))

P (Wσ ∈ Ω+
j (δ))

∝ η∆l,j ,

where ∆l,j = αl −αj . Our experimental findings indi-
cate that parameters from layers closer to the output,
particularly the classifier, display a heavier-tailed SGN
distribution. This observation suggests a higher prob-
ability of exiting from one of the final layers than from
others. More details and experiments are presented in
Section 6

The next theorem evaluates the probability of exiting
the basin after time u.

Theorem 3. Let the scheduler be st = tγ−1, where
γ is the cooling rate; let us denote two constants that
express the effect of the scheduler: γl ≜ 1+(γ−1)(αl−
1) and κ ≜ 1+(γ−1)(αl−1+ρ(αl−αν))

γl
, for u > 0:

P (σ > u) ≤
N∑
l=0

A−1
l,ν

β̄lm̄lΦl

β̄Sγl(m̄lΦl)κ
Γ (κ, m̄lΦlu

γl) .

In the following corollary, we now show that the prob-
ability of exiting a basin after u iterations decay expo-
nentially with respect to u, m̄l, and Φl.

Corollary 3. Using Thm. 3, for γ → 1:

P (σ > u) ≤
N∑
l=0

A−1
l,ν

β̄l
β̄S
e−m̄lΦlu .

The value Φl describes the horizontal width of the
basin, and m̄l is a function of the learning rate and
the noise covariance matrix. Our proof appears in Ap-
pendix 11.4.

6 Experiments

This section presents the core experimental results
supporting our analysis; additional experiments can
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Figure 2: The mean escape time of SGD on Breastw (left), Cardio (middle), and Satellite (right) datasets. The
dots represent the empirical mean escape time for different learning rates. The fitted curves are based on our
model (orange) and (Xie et al., 2020) (blue) with a batch size of 32. Each dot represents an average of over
100 random seeds for each learning rate. Our theory better explains the empirical results for all three datasets
examined.

be found in Appendix 8. To demonstrate the heavy-
tailed nature of SGN, we have explored multiple
datatypes and architectures, including multi-layer per-
ception (MLP), residual NN (ResNet), CLIP (Radford
et al., 2021), latent diffusion models (von Platen et al.,
2022), Bert (Devlin et al., 2018), vision transformers
(Fan et al., 2021), and more.

Stochastic gradient noise distribution We em-
pirically show that SGN is better characterized using
the SαS Lévy distribution. Our evaluation follows Xie
et al. (2020), calculating the noise of each parameter
separately using multiple mini-batches, as opposed to
(Simsekli et al., 2019) that calculated the noise of mul-
tiple parameters on one mini-batch and averages over
all parameters and batches to characterize the distri-
bution of SGN. We use four extensive experiments to
provide solid empirical evidence that SGN is indeed
heavy-tailed. To quantify the goodness of fit of our
noise model, we present the fitting error of the empiri-
cal distribution of SGN to Gaussian and SαS distribu-
tions. In each experiment, we also quantify the portion
of NN parameters that are better characterized by the
SαS distribution (SαS Wins).

The first experiment is based on an image recognition
task using a subset of the ImageNet Krizhevsky et al.
(2012) dataset. Here, we evaluate six different models
and two different batch sizes. Our results are presented
in Tab. 1.

In the second experiment, we use Clip (Radford et al.,
2021) variants on the Laion400M (Schuhmann et al.,
2021) dataset; this task involves both text and images
as input data. Two variants of Clip are used: Clip base
(3 batch size variations) and Clip-large. In Tab. 2, we
present the results.

The third experiment examines the SGN for gener-
ative models. We use two Latent diffusion models:
Stable Diffusion2 1(SD2) and latest SDXL1.0 (Podell

1https://huggingface.co/stabilityai/stable-diffusion-2

et al., 2023) model, both finetuned on ”pokemon-blip-
captions” dataset 2 using Diffusers (von Platen et al.,
2022) regimes, Finally, evaluate SDXL1.0(Podell et al.,
2023) (Podell et al., 2023) finetuned using denoising
diffusion policy optimization (DDPO) (Black et al.,
2023). The results are presented in Tab. 3.

Our numeric results (Tables 1-3), which cover many
commonly used architectures, datasets, and tasks,
strongly support that SGN is heavy-tailed. Specif-
ically, in all our evaluations, the fitting error was
smaller for the SαS distribution than for the Gaus-
sian model. Moreover, SαS led to a better fit in most
individual parameter evaluations.

In the fourth experiment, we trained three ResNet
variants and a Bert-based architecture that were
trained on CINIC10 (Darlow et al., 2018), CIFAR100
(Krizhevsky, 2009), and the CoLA (Warstadt et al.,
2018) dataset. In this experiment, we further compare
to an SαS distribution with different values of α for
distinct parameters. In Fig. 3 we show qualitative re-
sults and numeric results of this evaluation appear in
Tab. 6. Our results demonstrate that our proposed
SGN model of an SαS distribution with parameters
specific αi values leads to the best fit. More technical
details appear in Appendix 8.1.

Different parameters hold different noise dis-
tributions? In this section, we perform two exper-
iments; the first demonstrates that distinct DNN pa-
rameters lead to different SGN properties. The second
shows how the nature of SGN can change for different
layers. We randomly sampled 10,000 parameters from
five different DNNs in the first experiment. Then, we
calculated the SGN and estimated αi for each param-
eter; Fig. 1 depicts the results. We observe that differ-
ent parameters have noise that distributes differently
during training. We can further notice that the vari-

2https://huggingface.co/datasets/lambdalabs/pokemon-
blip-captions
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Figure 3: Histograms of the stochastic gradient noise for a single parameter in ResNet34 for the first (left) and
second (right) layers. The plots qualitatively show that SGN presents a heavy tail nature.

Figure 4: Validation of Thm.3. x-axis represents the number of iterations,y-axis represents the probability of
exiting the basin. We train the same model, 1000 seeds, and store the iteration that corresponds to a basin
escape. The left plot shows results on the Cardio dataset with different mini-batch sizes, and the right plot
shows the same on the Speech dataset. The exponential decay predicted by our theorem (lines) coincides with
the empirical results (dots).

ability of the heavy-tail indicator is stretched on large
segments of αi values; this is another evidence that
strengthens the heavy-tail hypothesis.

In the second experiment, we randomly sampled 20
parameters from each layer in the DNN, calculated
the noise, and fitted αi. Then, we averaged the αi

values over a specific layer. The plots of α as a func-
tion of the layer index can be seen in the appendix 8.6.
The plots illustrate two interesting phenomenons; first,
DNN’s final layers exhibit heavier-tail SGN. Second, in
the mobilenetV3 (Koonce and Koonce, 2021) experi-
ments, it can be seen the Squeeze-and-Excite layers
have much lower α, one element that may cause this
effect is the ”Hard Sigmoid” activation, which consists
with clipping.

This implies that building a framework that considers
the DNN as one homogeneous system is insufficient;

each parameter in the DNN has its characteristics,
and we should consider this when modeling the noise.
Models were trained as detailed in Appendix 8.1.

Mean escape time The following experiment val-
idates Thm 1. We trained a three-layer neural net-
work with Relu activation on ”BreastW,” ”Satellite,”
and ”Cardio” datasets (Dua and Graff, 2017). We first
train the model using SGD with a batch size of 256 un-
til reaching a local minimum (see discussion Appendix
9.3). After reaching the critical point, we decrease the
mini-batch size to 32 and try to escape the critical
minimum, Fig 2 shows the escape time using different
learning rates. The number of iterations measures the
escape time, averaged over 100 seeds. We fit empiri-
cal results to two theories, ours and (Xie et al., 2020),
with the same amount of free parameters. The results
in Fig 2 show the mean escape time using a batch size
of 32; we observe that our theory better explains the
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Figure 5: All plots show the heavy-tail level of the SGN per layer, where low index are layers closer to the input.
The left image shows ResNet18 on both CINIC10 and CIFAR10 datasets; a clear pattern is that layers closer
to the prediction layer hold heavier SGN, suggesting that those layers are more likely to escape local minima.
The right image shows Mobilenet trained on CIFAR100; unlike ResNet18, there are a few layers with high αi,
interestingly those layers contain a unique activation function HardSigmoid, which performs clipping, thus could
explain the larger value of α.

empirical results on all three datasets. Our method
shows limitations when using small batch sizes, as de-
picted in Appendix 8.4.

Probability of escaping after time u. The follow-
ing experiment validates Thm. 3. We trained a three-
layer neural network with Relu activation on Speech,
Cardio, and dataset (Dua and Graff, 2017) using SGD
with a learning rate of 0.05 and batch size of 128 until
convergence to local minima. We measure the time to
escape the local minimum on 1000 seeds and plot the
probability distribution to exit as a function of time in
Fig. 4. These results demonstrate that our theoretical
results coincide with the empiric evidence.

Learning rate decay The heavy tail behavior of
SGN may prevent the training process from converg-
ing to a critical point due to the large jump process;
hence, reducing the frequency and size of the large
jumps may be crucial for good convergence. This ex-
periment demonstrates that learning rate decay can
improve generalization by attenuating the SGN. We
show that the performance gain stems from attenuat-
ing the noise magnitude and variance and not from
reducing the deterministic step towards −∇U . The
details and results are presented in Appendix. 8.2.

Escape Axis In this experiment, we demonstrate
that the optimization process is more probable to es-
cape from the axis with lower αi, as proposed in Col. 2.
The details of and result of this experiment are pre-
sented in Appendix 8.7.

7 Conclusions
We revisit the noise model of SGD and present exten-
sive systematic evaluations demonstrating that SGN

is indeed heavy-tailed. We further show that distinct
parameters are characterized by different distribution
parameters, namely α values. Our experiments corrob-
orate that the SαS better characterized SGN qualita-
tively and quantitatively. Furthermore, we show that
distinct parameters are better characterized by differ-
ent distribution parameters, αi.

Based on our experiments, we constructed a frame-
work in RN consisting of N one-dimensional Lévy pro-
cesses with αi-stable components. This framework
enables us to better characterize the nature of DNN
training with SGD, such as the escaping properties
from different local minima, a learning rate scheduler,
and other parameters’ effects in the DNN. We also pre-
sented experiments that support the claim that a sig-
nificant feature of LR schedulers comes from reducing
the fluctuations of the SGN. Finally, we show that pa-
rameters in the DNN that hold noise that distributes
with low αi have a unique role in the training process,
helping the training process escape local minima.

Limitations and Future Research The presented
framework is valid once the training process is near a
local minimum; our work does not address the dynam-
ics and noise characteristics of SGD at an early train-
ing stage. Furthermore, the evolution of α in time is
still unclear and demands future research. Another
interesting question for future work involves analyzing
what causes specific parameters to have smaller α val-
ues than others. We believe that addressing such ques-
tions could improve the architectural design of DNNs.

Acknowledgments LW was supported by a grant
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Supplementary Material

8 Experimental Section

This section includes further experiments, details on the experiments presented in the main paper, and more
results and visual evidence.

8.1 Full Technical details

We trained several CNNs on the CINIC dataset Darlow et al. (2018) and the BERT base model on
CoLA Warstadt et al. (2018) dataset. All models are trained until reaching convergence. Using the pre-trained
weights, we sample 10, 000 random parameters; for each parameter, we estimate the noise by computing the
gradients of all of the mini-batches in the dataset without updating the weights. Then, we fitted the empiric
stochastic gradient noise to multiple distributions; the Sum of square error (SSE) is used to evaluate the quality
of our fit. In Xie et al. (2020), the authors estimate SGN on a DNN with randomly initialized weights; we, on the
other hand, estimate the properties of SGN based on a pre-trained DNN. Specifically, since we want to estimate
the escape time, we argue that a pre-trained DNN would better characterize this property.

We trained four ResNet variants Resnet18/34/50. Those models were trained using SGD optimizer, a learning
rate of 0.01, and a batch size of 400. We examine the SGD noise of the BERT model, which was fine-tuned on
CoLA Warstadt et al. (2018) dataset using Adam optimizer with a learning rate of 2e-05 and batch size of 32 for
20 epochs. This is the standard Bert fine-tuning procedure. The results are shown in Tab. 8.1. Visual examples
for the heavy-tailed nature of SGN can be seen in Fig. 3, and additional results are presented in Sec. 8.3.

In the ImageNet experiments, we examined the SGN using six image recognition models trained on the full
ImageNet dataset, and the SGN was estimated using a set of 200k images (200 images from each class) with
batch sizes 32 and 64. We use the timm (Wightman, 2019) package for the pre-trained models. The complete
tables, including standard deviations, can be found in tables. 4 5

In the text-image experiments we use Clip (Radford et al., 2021) variants on the Laion400M (Schuhmann et al.,
2021) dataset; this task involves both text and images as input data. Two variants of Clip are used: Clip base
(3 batch size variations) and Clip-large. In Tab. 7, we present the full results, including the standard deviation.

The third experiment examines the SGN for generative models. We use two Latent diffusion models: Stable
Diffusion2 3(SD2), with batch size of 4, and latest SDXL1.0 model (Podell et al., 2023) with batch size of 2 ,
both finetuned on ”pokemon-blip-captions” dataset 4 using Diffusers von Platen et al. (2022) regimes. In the
above experiments, 13k and 17k parameters were sampled, all of them from the Unet, which is the only part
that is finetuned(which is the common practice). Finally, evaluate SDXL1.0Podell et al. (2023) Podell et al.
(2023) finetuned using denoising diffusion policy optimization (DDPO) Black et al. (2023). The full results are
presented in Tab. 8.

3https://huggingface.co/stabilityai/stable-diffusion-2
4https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions
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Model Gauss SαS SαS Wins
EfficientNet-b2 0.0180± 0.0049 0.00092± 0.0001 99.74%
EfficientNet-b3 0.02410± 0.0058 0.00096± 0.0001 99.63%
EfficientNet-b4 0.03439± 0.0089 0.00213± 0.0006 99.68%

FlexVit 0.03399± 0.0156 0.00211± 0.0003 99.62%
Vit base 0.06495± 0.0264 0.00656± 0.00126 99.74%
Vit small 0.02870± 0.0131 0.0030± 0.0009 99.56%

Table 4: Subset of ImageNet, 200k images, all models loaded using the timm package. Batch size 32. 10,000
parameters were sampled; lower mean is better. SαS Wins- defines numbers of parameters better fitted by SαS
distribution

Model Gauss SαS SαS Wins
EfficientNet-b2 0.01083± 0.0032 0.00101± 0.0002 99.58%
EfficientNet-b3 0.01385± 0.0034 0.00130± 0.0004 99.46%
EfficientNet-b4 0.02062± 0.0059 0.001936± 0.0006 99.56%

FlexVit 0.02497± 0.0102 0.00391± 0.0018 99.13%
Vit base 0.04576± 0.0191 0.00419± 0.0009 99.59%
Vit small 0.0208± 0.0095 0.00210± 0.0004 99.30%

Table 5: Subset of ImageNet, 200k images, all models loaded using the timm package. Batch size 64. 10,000
parameters were sampled. SαS Wins- defines numbers of parameters better fitted by SαS distribution

.

Model Gauss SαS Const α SαS
ResNet18 0.138± 0.040 0.156± 0.072 0.066± 0.026
ResNet34 0.157± 0.077 0.233± 0.115 0.114± 0.073
ResNet50 0.141± 0.072 0.147± 0.088 0.096± 0.061

Bert [B = 8] 0.214± 0.064 0.197± 0.087 0.071± 0.032
Bert [B = 32] 0.032± 0.027 0.036± 0.019 0.017± 0.013

Table 6: The fitting error between SGN and SαS/ Gaussian distribution. Averaged over 10, 000 randomly
sampled parameters. Top three tows, three different CNNs trained on the CINIC10 data with a batch size of
400. Bottom two rows, BERT Devlin et al. (2018) base model trained on the Cola dataset with different batch
sizes B. Sum of Squares Error (SSE) is used to evaluate the fitting error of each distribution. ”Gauss” represents
the Gaussian distribution. Our results demonstrate that SαS better depicts SGN.

Model Gauss SαS SαS Wins
Clip-b [B=32] 0.0038± 3.83e−6 0.0028± 2.76e−6 96.60%
Clip-b [B=64] 0.0034± 3.00e−6 0.0029± 2.44e−6 96.80%
Clip-b [B=256] 0.0040± 2.64e−6 0.0036± 2.08e−6 96.88%
Clip-l [B=32] 0.0033± 3.03e−6 0.0028± 2.41e−6 96.67%

Table 7: Fitting experiment on two variations of CLIP model: Clip-l represents clip large, Clip-b represents
clip-base. SGN calculation is on a subset of Laion400M (200k images). 10,000 parameters were sampled. SαS
Wins- defines numbers of parameters better fitted by SαS distribution

Model Gauss SαS SαS Wins
SD2.0 0.0073± 4.13e−6 0.0068± 3.67e−6 94.92%

SDXL1.0 0.0056± 3.60e−6 0.0050± 3.01e−6 96.58%
SDXL DDPO 0.0046± 3.12e−6 0.0041± 2.90e−6 88.41%

Table 8: The fitting error between SGN and SαS/ Gaussian distribution, on image generation task. The table
shows SD2.0 and SDXL1.0 are finetuned using, SDXL DDPO is finetuned using DDPO technique. The empirical
distribution of SGN is the average of at least 10,000 parameters.
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8.2 Learning rate decay

The heavy tail behavior of SGN may prevent the training process from converging to a critical point due to the
large jump process; hence reducing the frequency and size of the large jumps may be crucial for good convergence.
This paragraph aims to demonstrate that the LRdecay’s effectiveness may be due to the attenuation of SGN.
We show two experiments. First, we trained ResNet110 He et al. (2015) on CIFAR100 Krizhevsky (2009), on
epoch 280, the learning rate is decreased by a factor of 10. Fig. 6 shows that the learning rate decay results in
a lower noise amplitude and less variance. In the second experiment, a ResNet20 He et al. (2015) is trained in
three different variations for 90 epochs; the first variation had LRdecay at epochs 30 and 60, the second had
a batch-size increase at epochs 30 and 60, the third was trained with the same learning rate and batch size
for the entire training process, the results show almost identical results on the first two cases, (i.e., LRdecay
and batch increase) reaching a top-1 score of 66.7 and 66.4 on the validation set. In contrast, the third led to
worse performances reaching a top-1 score of 53. Smith et al. (2017) performed similar experiments to show
the similarity between decreasing the learning rate and increasing the batch size; however, their purpose was to
suggest a method for improving training speed without degrading the results.

LRdecay decreases the step size and the noise amplitude; however, increasing the batch size only decreases the
noise amplitude. Combining the results of the two experiments above, we may carefully deduce that the main
effect of LRdecay is reducing the fluctuation in the gradient update phase and not decreasing the step size (step
size is the movement of the deterministic process towards the minus of the gradient). SGN amplitude reduction
enables the training process to get easier localization in the current promising domain. In figure 6 we present the
results of the learning rate decay experiment described in the main text. Specifically, our result suggests that
reducing the noise magnitude plays an important role in the dynamics of learning rate decay.

8.3 Empirical evidence of the heavy tail nature of SGN

In figure 7 and 8 we present histograms demonstrating the heavy tail nature of SGN.

8.4 Additional escape time experiments

Please see Fig. 9.

8.5 αi Variability

Figure 1 shows how different SGNs attribute different parameters in the same DNN.

8.6 αi as a function of the layer in the DNN

Fig. 5 The caption explores the heavy-tail level of the SGN for each layer. The left figure depicts ResNet18 He
et al. (2015) on CINIC10 Darlow et al. (2018) and CIFAR10 Krizhevsky (2009) , revealing that layers closer to
the prediction layer exhibit a higher SGN, suggesting their propensity to escape local minima. The right figure
shows Mobilenet on CIFAR100, with multiple layers displaying high αi values. These layers employ a distinct
activation function, HardSigmoid, which involves clipping and contributes to the heavier tails observed.

8.7 Escape axis

In this section, we demonstrate that the optimization process is more probable to escape from the axis with
lower αi. We use a 2D Ackleys function; the escape process starts at the global minimum 0⃗. We apply Gradient
Descent with added SαS noise (SαS(αx1

),SαS(αx2
)), where α1 = α2 − ∆, learning rate of 1e − 4, with no

momentum or weight decay. Once the optimization process passes some predefined radius, we check which axis
is larger. Fig 10 shows how probable it is to exit from x1 based on 1000 different seeds. This result implies that
as the gap ∆ between the αi values increases, the axis with the smaller value of α is more probable to lead to
an escape from the local minimum.
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(a) (b)

(c) (d)

Figure 6: The stochastic gradient noise of a single parameter in ResNet110 He et al. (2015). (a) Before applying
learning rate decay, at epoch 279. (b) After applying learning rate decay, at epoch 281. (c) Without learning
rate decay, at epoch 280. (d) The training loss with and without learning rate decay applied at epoch 280.

9 Additional technical details

Here, we provide additional information required to reproduce our results and for the completeness of our
exposition.

9.1 Notations

9.2 SαS background

A Lévy process is random with independent and stationary increments, continuous in probability, and possesses
right-continuous paths with left limits. Except for special cases, its probability density does not generally have a
closed-form formula. Hence the process is characterized by the Lévy–Hincin formula. In this paper, the noise is
assumed to be best fitted by symmetric α stable Lévy distribution, also known as Lévy flights (LF), and mainly
parameterized using a stability parameter α, hence the characteristic function:

E[eiwLl
t ] = exp{−t

∫
R/{0}

[eiwy − 1− iwyI{|y| ≤ 1}] dy

|y|1+αl
}, (7)
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(a) (b)

(c) (d)

Figure 7: The stochastic gradient noise of a ResNet50 trained on CIFAR100 for four randomly sampled param-
eters, please zoom in in order to see the long tail behavior.

where I{B} denotes the indicator function of a set with the corresponding generating triplet (0, νl, 0) and the
Lévy measure νl(dy) = |y|−1−αl , y ̸= 0, αl ∈ (0, 2).In this work we assume αl ∈ (0.5, 2). Unlike Brownian motion
which almost surely holds continuous path, Lévy motion might obtain large discontinuous jumps. Using Lévy-
Itô-decomposition of Ll can be decomposed into a small jump part ξlt, and an independent part with large jumps
ψl
t, i.e., Li = ξlt + ψi

t.
The process ξlt has an infinite Lévy measure with support:{y|0 < ∥y∥ ≤ ϵ−ρ

l },∀ρ ∈ (0, 1), and makes infinitely
many jumps on any time interval. The absolute value of ξlt jumps is bounded by ϵ−ρ.
ψi
t is a compound Poisson process with finite Lévy measure, and is responsible on the big jumps, more details

about ψi
t in Sec. 4.3

9.3 Selecting minimum point

In order to find local minimum, we measure the loss of the entire data, i.e. loss when running GD; if the loss does
not change more then ϵ for more then 100 iterations, we exit the training process and select the checkpoint as a
minimum point. Since we do not know the domain boundary of the current minimum, we measure the number
of iterations until the training process passes a predefined loss delta (∆L) from the current local minimum.
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(a) (b)

(c) (d)

Figure 8: The stochastic gradient noise of a ResNet18 trained on CIFAR100 for four randomly sampled param-
eters, please zoom in in order to see the long tail behavior.

9.4 Assumption on the Potential near critical points

We assume that the potential U(Wt) is µ-strongly convex and can be approximated by a second order Taylor
approximation near critical points that will be noted as W ∗:

U(W ) = U(W ∗) +∇U(W ∗)(W −W ∗) +
1

2
(W −W ∗)TH(W ∗)(W −W ∗) (8)

This does not mean that U(W ) fulfills any of the assumptions above in general.

9.5 Exiting the potential using large jumps

We assume that the process is able to exit only when large jump occurs, this assumption is based on a few
realizations; first, the deterministic process Yt initialized in any point w ∈ Gδ, will converge to the local minima
of the domain by the positive invariance of the process, see assumptions in Appendix 13. Second, Yt converges
to the minimum much faster than the average temporal gap between the large jumps; third, using lemma 1, we
conclude that the small jumps are less likely to help the process escape from the local minimum. Next, we will
show evidence for the second realization mentioned above, the relaxation time T l

R is the time for the deterministic

process Y l
t , starting from any arbitrary w ∈ G, to reach an ϵ̄ζl -neighbourhood of the attractor. For some C1 > 0,
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Figure 9: The mean escape time of SGD on Breastw (left), Cardio (middle), and Satellite (right) datasets. The
plots show the fitting base on two methods: ours and Xie et al. (2020), on the upper row shows escaping with
batch size 32, while the bottom row with batch size 8. Each dot represents the mean escape time for a sweep of
learning rates. The dot is an average of over 100 random seeds for each learning rate. One can observe that the
empiric results are better explained by our theory for a batch size of 32 in all three datasets examined. On the
contrary, using batch size 8, our theory overshoot when predicting escape time for the Satellite dataset, which is
competitive on Cardio and better on the BreastW dataset.

Figure 10: Four different values of α1 and three values of ∆ are selected, and the y-axis shows the probability
of escaping from x1, which is the axis with lower α. For example, the top-left most dot (blue) shows that when
α1 = 0.55 and α2 = 1.05, the process’s probability of escaping from axis x1 is ∼ 82%.

the relaxation time is

T l
R = max

{∫ −ϵ̄ζl

d−
l

dy

−U ′(y)l
,

∫ d+
l

ϵ̄ζl

dy

U ′(y)l

}
≤ C1|lnϵ̄l|. (9)
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Symbol Description

t Train iteration

SαS Symmetric α stable

U Potential/ loss function

Wt The process that depicts DNN weights time evolution.

Yt The deterministic process.

Zt The small jumps process

Ll
t Mean-zero SαS Lévy processes in 1d- represent the SGN of the l-th parameter

ψt Large jump part of Lt

ξt Small jump part of Lt

η Learning rate

B Batch size

Ω Batch sample (|Ω| = B)

D Number of samples in training datasets

st LR scheduler at time t

γ Cooling rate

α Stability parameter of SαS dist.

Σ Noise covariance matrix

τ lk The time of the k-th large jump of parameter l

Sl
k The difference between the (k-1)-th large jump and k-th large jump of

parameter l

βl The jump intensity of the compound Poisson process ξl

J Large jumps height

Now, let us calculate the expectation of Π∗
k = τ∗k − τ∗k−1, i.e. the interval between the large jumps:

E[Πl
k] = E[τ lk − τ lk−1] = β−1

l =
αl

2
ϵ̄l

−ραl . (10)

Since ϵ̄ ∈ (0, 1), usually even ϵ̄ ≪ 1, it is easy to notice that E[Sl
k] ≫ TR; thus we can approximate that the

process Wt is near the neighborhood of the basin, right before the large jumps. This means that it is highly
improbable that two large jumps will occur before the training process returns to a neighborhood of the local
minima.

10 Proofs

10.1 Proof of Theorem 1

The first equality is true under the assumption that the process can exit the basin only when large jumps occur.

E[σG ] =
∞∑
k=1

E[τ∗k ]I{σG = τ∗k}] (11)

=

∞∑
k=1

E[τ∗k I{
N∑
l=0

stϵ(1
TΣl(t))

1
αl J l

1I{τ l1 = τ∗1 } ∈ G,
N∑
l=0

stϵ(1
TΣl(t))

1
αl J l

2I{τ l2 = τ∗2 } ∈ G

, ..,

N∑
l=0

stϵ(1
TΣl(t))

1
αl J l

kI{τ lk = τ∗k} /∈ G}]
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=

∞∑
k=1

E[τ∗k I{J∗
1 ∈ G, J∗

2 ∈ G, .., J∗
k /∈ G}] ≤

∞∑
k=1

E[τ∗k (1− I{J∗
k /∈ G})k−1I{J∗

k /∈ G}]

=

∞∑
k=1

N∑
l=1

E[τ lk(1− I{J l
k /∈ G})k−1I{J l

k /∈ G}I{τ lk = τ∗k}]

≤
∞∑
k=1

N∑
l=1

k∑
w=1

E[τ lw(1− I{s
αl−1

αl
t ϵ(1TΣl(t))

1
αl J l

w /∈ G})w−1(1− I{s
αν−1
αν

t ϵ(1TΣν(t)
1

αν Jm
w /∈ G})k−w

I{s
αl−1

αl
t ϵ(1TΣl(t))

1
αl J l

w /∈ G}I{τ lw = τ∗k}] .

I{τ lw = τ∗k} incorporates the probability that the k-th jump occurred by the l-th parameter, and the chance that
within a total of k jumps the parameter l, will respect the w-th jump:

I{τ lw = τ∗k} =
βl(t)

βS(t)

(
k − 1

w − 1

)(
βl(t)

βS(t)

)w−1(
1− βl(t)

βS(t)

)k−w

(12)

βl(t)

βS(t)

(k − 1)!

(w − 1)!(k − w)!

(
βl(t)

βS(t)

)w−1(
1− βl(t)

βS(t)

)k−w

We will estimate the average probability of the DNN to escape the basin i.e. the general expression: [1 −
sαν−1
t mν(t)

βν(t)
Φν ]

k−w, by using αν as the average α value of the network.

∞∑
k=1

N∑
l=0

k∑
w=1

∫ ∞

0

βl(t)

βS(t)

(k − 1)!

(w − 1)!(k − w)!

(
βl(t)

βS(t)

)w−1(
1− βl(t)

βS(t)

)k−w

βl(t)t (13)

e−βl(t)t
(βl(t)t)

w−1

(w − 1)!
[1− sαl−1

t ml(t)

βl(t)
Φl]

w−1[1− sαν−1
t mν(t)

βν(t)
Φν ]

k−w s
αl−1
t ml(t)

βl(t)
Φldt

=

∞∑
k=1

N∑
l=0

∫ ∞

0

βl(t)

βS(t)
te−βl(t)tsαl−1

t ml(t)Φl

k∑
w=1

[βl(t)t− sαl−1
t ml(t)Φlt]

w−1

(w − 1)!

(k − 1)!

(w − 1)!(k − w)!

(
βl(t)

βS(t)

)w−1 [(
1− sαν−1

t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]k−w

dt

=

∞∑
k=1

N∑
l=0

∫ ∞

0

βl(t)

βS(t)
te−βl(t)tsαl−1

t ml(t)Φl

[(
1− sαν−1

t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]k−1

Lk−1

 βl(t)
βS(t) (s

αl−1
t ml(t)Φlt− βl(t)t)[(

1− sαν−1
t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]


=

N∑
l=0

∫ ∞

0

βl(t)

βS(t)
te−βl(t)tsαl−1

t ml(t)Φl

[(
1− sαν−1

t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]−1

e

−
βl(t)
βS(t)

(s
αl−1
t ml(t)Φlt−βl(t)t)1−

1−
s
αν−1
t mν (t)

βν (t)
Φν

(
1− βl(t)

βS(t)

)
dt

=

N∑
l=0

∫ ∞

0

βl(t)

βS(t)
te−βl(t)tsαl−1

t ml(t)Φl

[(
1− sαν−1

t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]−1

e

−
βl(t)
βS(t)

(s
αl−1
t ml(t)Φlt−βl(t)t) s

αν−1
t mν (t)

βν (t)
Φν+

βl(t)
βS(t)

−
s
αν−1
t mν (t)Φν

βν (t)
βl(t)
βS(t)


dt

≤
N∑
l=0

∫ ∞

0

βl(t)

βS(t)
te−βl(t)tsαl−1

t ml(t)Φl
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[(
1− m̄ν

β̄ν
Φν

)(
1− β̄l

β̄S

)]−1

e−(s
αl−1
t ml(t)Φlt−βl(t)t)dt

≤
N∑
l=0

[(
1− m̄ν

β̄ν
Φν

)(
1− β̄l

β̄S

)]−1 ∫ ∞

0

βl
βS
ts

αl−1+ρ(αl−αν)
t m̄lΦle

−s
αl−1
t m̄lΦltdt

=

N∑
l=0

[(
1− m̄ν

β̄ν
Φν

)(
1− β̄l

β̄S

)]−1 ∫ ∞

0

βl
βS
t1+(γ−1)(αl−1+ρ(αl−αν))m̄lΦle

−t1+(γ−1)ρ(αl−1)m̄lΦldt

=

N∑
l=0

[(
1− m̄ν

β̄ν
Φν

)(
1− β̄l

β̄S

)]−1
βlm̄lΦl

βS(1 + (γ − 1)ρ(αl − 1))[
(m̄lΦl)

− 2+(γ−1)(αl−1+ρ(αl−αν ))

1+(γ−1)ρ(αl−1) Γ

(
2 + (γ − 1)(αl − 1 + ρ(αl − αν))

1 + (γ − 1)ρ(αl − 1)

)]
dt

=

N∑
l=0

A−1
l,ν

βlm̄lΦl

βS(1 + (γ − 1)ρ(αl − 1))
(m̄lΦl)

−Cl,ν,pΓ (Cl,ν,p) dt .

Where Al,ν ≜
[(

1− m̄ν

β̄ν
Φν

)(
1− β̄l

β̄S

)]
,Cl,ν,p ≜ 2+(γ−1)(αl−1+ρ(αl−αν))

1+(γ−1)ρ(αl−1) . Further to ease the calculation assumed

that the time dependency: βl(t)
βS(t) =

β̄l

β̄S
sρ(αl−αν). If the cooling rate is negligible, i.e. γ → 1, the mean transition

time:

E[σG ] ≤
N∑
l=0

A−1
l,ν

1

βS(1TΣl)
1
αl ϵαl(1−ρ)Φl

. (14)

10.2 Proof of Theorem 2

P (Wσ ∈ Ω+
i (δ)) =

∞∑
k=1

k−1∏
j=1

P (J∗
j ∈ G)P (J∗

k ∈ Ω+
i ) (15)

=

∞∑
k=1

k−1∏
j=1

P (J∗
j ∈ G)P (J∗

k > d+i )

=

∞∑
k=1

(1− P (J∗
k /∈ G))k−1P (J∗

k ≥ d+i )

≤
∞∑
k=1

N∑
l=1

k−1∑
w=1

(1− P (s
αl−1

αl
t ϵ(1TΣl(t))

1
αl J l

w /∈ G))w−1

(1− P (s
αν−1
αν

t ϵ(1TΣν(t))
1

αν Jv
w /∈ G))k−wP (J l

w ≥ d+i )P (τ
l
w = τ∗k )

=

∞∑
k=1

N∑
l=1

k−1∑
w=1

∫ ∞

0

βl(t)

βS(t)

(k − 1)!

(w − 1)!(k − w)!

(
βl(t)

βS(t)

)w−1(
1− βl(t)

βS(t)

)k−w

βl(t)

e−βl(t)t
(βl(t)t)

w−1

(w − 1)!
[1− sαl−1

t ml(t)

βl(t)
Φl]

w−1[1− sαν−1
t mν(t)

βν(t)
Φν ]

k−w s
αi−1
t mi(t)

βi(t)
(d+i )

−αi

=

∞∑
k=1

N∑
l=1

∫ ∞

0

βl(t)

βS(t)
βl(t)e

−βl(t)t
sαi−1
t mi(t)

βi(t)
(d+i )

−αi

k−1∑
w=1

[1− sαl−1
t ml(t)

βl(t)
Φl]

w−1 (k − 1)!

(w − 1)!(k − w)!

(βl(t)t)
w−1

(w − 1)!(
(1− sαν−1

t mν(t)

βν(t)
Φν)

(
1− βl(t)

βS(t)

))k−w (
βl(t)

βS(t)

)w−1

dt
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=

∞∑
k=1

N∑
l=0

∫ ∞

0

βl(t)

βS(t)
βl(t)e

−βl(t)t
sαi−1
t mi(t)

βi(t)
(d+i )

−αi

[(
1− sαν−1

t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]k−1

Lk−1

 βl(t)
βS(t) (s

αl−1
t ml(t)Φlt− βl(t)t)[(

1− sαν−1
t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]
 dt

=

N∑
l=0

∫ ∞

0

βl(t)

βS(t)
βl(t)e

−βl(t)t
sαi−1
t mi(t)

βi(t)
(d+i )

−αi

[(
1− sαν−1

t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]−1

e

−
βl(t)
βS(t)

(s
αl−1
t ml(t)Φlt−βl(t)t) s

αν−1
t mν (t)Φν

βν (t)
+

βl(t)
βS(t)

−
s
αν−1
t mν (t)Φν

βν (t)
βl(t)
βS(t)


dt

≤
N∑
l=0

∫ ∞

0

βl(t)

βS(t)
βl(t)e

−βl(t)t
sαi−1
t mi(t)

βi(t)
(d+i )

−αi

[(
1− sαν−1

t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]−1

e−(s
αl−1
t ml(t)Φlt−βl(t)t)dt

=

N∑
l=0

[(
1− m̄ν

β̄ν
Φν

)(
1− β̄l

β̄S

)]−1
m̄iΦi

β̄i
(d+i )

−αi
β2
l

βS

∫ ∞

0

t(γ−1)(αi−1+ρ(2αl−αν−αi))+1e−t(γ−1)ρ(αl−1)+1m̄lΦldt

=

N∑
l=0

[(
1− m̄ν

β̄ν
Φν

)(
1− β̄l

β̄S

)]−1
m̄iΦi

β̄i
(d+i )

−αi
β2
l (m̄lΦl)

− (γ−1)(αi−1+ρ(2αl−αν−αi))+2

(γ−1)ρ(αl−1)+1

βS((γ − 1)ρ(αl − 1) + 1)

Γ

(
(γ − 1)(αi − 1 + ρ(2αl − αν − αi)) + 2

(γ − 1)ρ(αl − 1) + 1

)
.

Notating: Cl ≜
(γ−1)(αi−1+ρ(2αl−αν−αi))+2

(γ−1)ρ(αl−1)+1 ,Al,ν ≜
[(

1− m̄ν

β̄ν
Φν

)(
1− β̄l

β̄S

)]
N∑
l=0

A−1
l,ν

m̄iΦi

β̄i
(d+i )

−αi
β2
l (m̄lΦl)

−Cl

βS((γ − 1)ρ(αl − 1) + 1)
Γ (Cl) (16)

When γ → 1:

N∑
l=0

A−1
l,ν

m̄iΦi

β̄i
(d+i )

−αi
β2
l

βS(m̄lΦl)2
. (17)

10.3 Proof of Proposition 1

∀k ∈ N, let Πk ≥ 0, w ∈ G, CE < 1 , the following event can be defined:

Ei
t,k =

{
sup

t∈[0,Πk]

|ϵξit,k| < CE

}
. (18)

There exist ϵ̄0, s.t ∀ϵ̄ ≤ ϵ̄0, the following is true:{
sup

t∈[0,Πk]

|Zi
t,k(w)− Y i

t,k(w)| ≥ cϵ̄θ

}
=

{
sup

t∈[0,Πk]

|ϵ̄Xi
t,k(w) +Ri

t,k(w)| ≥ cϵ̄θ

}
(19)

⊆

{
sup

t∈[0,Πk]

|ϵ̄Xi
t,k(w)| ≥

c

2
ϵ̄θ

}
∪
{
|Ri

t,k(w)| ≥
c

2
ϵ̄θ
}

⊆

{
sup

t∈[0,Πk]

|ϵ̄ξit,k| ≥
c

2CZ
ϵ̄θ

}
∪
{{

|Ri
t,k(w)| ≥

c

2
ϵ̄θ
}
∩Ei

t,k

}
∪
{{

|Ri
t,k(w)| ≥

c

2
ϵ̄θ
}
∩Ec

t,ki

}
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⊆

{
sup

t∈[0,Πk]

|ϵ̄ξit,k| ≥
c

2CZ
ϵ̄θ

}
∪

{
sup

t∈[0,Πk]

|ϵ̄ξit,k| ≥
c

2CZ

√
CR

ϵ̄0.5θ

}
∪

{
sup

t∈[0,Πk]

|ϵ̄ξit,k| ≥ CE

}

⊆

{
sup

t∈[0,Πk]

|ϵ̄ξit,k| ≥
c

2CZ
ϵ̄θ

}
.

Using Kolmogorov’s inequality, for Cθ > 0:

P

(
sup

t∈[0,Πk]

|Zi
t,k(w)− Y i

t,k(w)| ≥ cϵ̄θ

)
≤ P

(
sup

t∈[0,Πk]

|ϵ̄ξit,k| ≥
c

2CZ
ϵ̄θ

)
(20)

≤ 4C2
Z

c2ϵ̄2θ
E[ϵ̄ξit,k]

2 =
8C2

Z

c2
ϵ̄2−2θ

[
ϵ̄−ρ(1−αl) − 1

1− αl

]
T ≤ 8C2

Z

c2

[
ϵ̄−ρ(1−αl)+2−2θ

1− αl

]
T

= C̄θ ϵ̄
−ρ(1−αl)+2−2θT .

Final step:

P

(
sup

t∈[0,T ]

|Zi
t,k(w)− Y i

t,k(w)| ≥ cϵ̄θ

)
=

∫ ∞

0

P

(
sup

t∈[0,τ ]

|Zi
t,k(w)− Y i

t,k(w)| ≥ cϵ̄θ

)
βie

−βiτdτ (21)

= C̄θ ϵ̄
−ρ(1−αl)+2−2θ

∫ ∞

0

τ1−ρ(1−αl)+2−2θβie
−βiτdτ

= C̄θ ϵ̄
−ρ(1−αl)+2−2θ Γ(2− ρ(1− αl) + 2− 2θ)

β
2−ρ(1−αl)+2−2θ
i

= Cθ ϵ̄
−ρ(1−αl)+2−2θ

.

10.4 Proof of Lemma 2

In this subsection we will show the full derivation of the approximation of Zl
t,k using stochastic asymptotic

expansion, the representation of Zt in powers of ϵ̄ = s
α−1
α

t ϵ:

Zi
t,k = Y i

t,k + ϵ̄Xi
t,k +Ri

t,k . (22)

Where Ri
t,k is the error term, we will not discuss this term, for more details see Imkeller and Pavlyukevich

(2006a). Xi
t,k is the first approximation of Zi

t,k in powers of ϵ̄ and Y i
t,k is the deterministic process. As we show

in 5, the relaxation time is much smaller than the interval between the large jumps, hence it’s effect on Zt is
negligible, thus we will assume: Zt,k ≈ ϵ̄Xt,k. X

i
t,k satisfying the following stochastic differential equation:

Xi
t,k =

∫ t

0

H(Yp(w))iiZ
i
p,kdp+ ξip,k . (23)

The solution to this equation:

Xi
t,k =

∫ t

0

e−
∫ t
p
H(Yu(w))iidudξip,k . (24)

Using integration by parts:

Xi
t,k = ξit,k −

∫ t

0

ξip,kH(Yp(w))ii)e
−

∫ t
p
H(Yu(w))ii)dudp (25)

E[X l
t,k] =

∗ µl
ξt−

∫ t

0

µl
ξtH(Yp(w)))lle

−
∫ t
p
H(Yu(w))ll)dudp (26)

= µl
ξt−

∫ t

0

µl
ξphlle

−
∫ t
p
hlldudp

= µl
ξt−

∫ t

0

µl
ξphlle

−hll(t−p)dp
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= µl
ξt− [µl

ξhll[(−
(hllp+ 1)

h2ll
)e−hll(t−p)]t0

= µl
ξt− [µl

ξhll[(−
(hllt+ 1)

h2ll
) + (

1

h2ll
)e−hll(t)]

= µl
ξt+ µl

ξ

(hllt+ 1)

hll
− µl

ξ

1

hll
e−hllt

= µl
ξ(2t+

1

hll
− 1

hll
e−hllt) .

* using Fubini.
Where µl

ξ ≜ µl
ξ(t) is the first moment of ξlt,k:

µl
ξ(t) ≜ E[ξlt,k] = 2t

∫ ϵ̄−ρ

1

dy

yαl
= 2t[

1

1− αl
y1−αl ]ϵ̄

−ρ

1 = 2t

[
ϵ̄−ρ(1−αl) − 1

1− αl

]
. (27)

We will keep the previous assumptions Imkeller and Pavlyukevich (2006b,a) on the geometry of the potential,

that near the basin:U(w) = hll
w2

2 + o(w2). Hence we can estimate the expected value of a product of the two
processes:

E[Zi
t,kZ

j
t,k] = E[Y i

t Y
j
t + ϵ̄jY

i
t X

j
t,k + ϵ̄iY

j
t X

i
t,k + ϵ̄j ϵ̄iX

j
t,kX

i
t,k] (28)

≈∗ E[Y i
t Y

j
t ] + ϵ̄jY

i
t E[X

j
t,k] + ϵ̄iY

j
t E[Xi

t,k]

= Y i
t Y

j
t + ϵ̄jY

i
t E[X

j
t,k] + ϵ̄iY

j
t E[Xi

t,k]

= Y i
t Y

j
t + ϵ̄jY

i
t µ

j
ξ(2t+

1

hjj
− 1

hjj
e−hjjt) + ϵ̄iY

j
t µ

l
ξ(2t+

1

hii
− 1

hii
e−hiit)

≈ wiwje
−(hii+hjj)t + ϵ̄jwie

−hiit2t

[
ϵ̄−ρ(1−αj) − 1

1− αj

]
(2t+

1

hjj
− 1

hjj
e−hjjt)

+ ϵ̄iwje
−hjjt2t

[
ϵ̄−ρ(1−αi) − 1

1− αi

]
(2t+

1

hii
− 1

hii
e−hiit) .

*Neglecting terms with order ϵ̄2.

10.5 Proof of Proposition 2

SGD’s covariance:

Σt =
1

D

[
1

B

Q∑
i=1

∇U(Wt)i∇U(Wt)
T
i −∇U(Wt)∇U(Wt)

T

]
. (29)

We can approximate the loss landscape near the basin using Taylor expansion:

U(Wt) = U(W ∗) +∇U(W ∗)(W −W ∗) +
1

2
(Wt −W ∗)T∇2U(W ∗)(Wt −W ∗) . (30)

Examining SGD’s gradient on the b-th data point, using the approximation in 30:

∇U(Wt)i ≈ ∇Ud(W
∗) +∇2Ud(W

∗)(Wt −W ∗) . (31)

The exact gradient (of GD) is:

∇U(Wt) ≈ ∇2U(W ∗)(Wt −W ∗) . (32)

As a result of empirical evidence in Meng et al. (2020) on the minimum of the covariance curve of SGD, we will
drop the first order from the approximation of ∇Ud(W )∇Ud(W )T . Hence Eq. 29 can be written as:

Σ(Wt) =
1

B

[
1

D

D∑
d=1

∇Ud(W
∗)∇Ud(W

∗)T +Hd(W
∗)WtW

T
t Hd(W

∗)−H(W ∗)WtW
T
t H(W ∗)

]
(33)
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D∑
d=1

Hd(W
∗)WtW

T
t Hd(W

∗) =
1

D

N∑
k=1

N∑
p=1

D∑
d=1

hd,i,kw̃k,phd,p,j

Where w̃ij = wiwj

Σi,j(t) =
1

B

[
N∑

k=1

N∑
p=1

(
1

D

D∑
d=1

hd,i,khd,p,j − hi,khp,j)w̃k,p +
1

D

D∑
d=1

∇ud,i∇ud,j

]
(34)

=
1

B

[
N∑

k=1

N∑
p=1

(
1

D

D∑
d=1

hd,i,khd,p,j − hi,khp,j)w̃k,p + ũd,i,j

]

ũi,j ≜ 1
D

∑D
d=1 ∇ud,i∇ud,j , the gradient of all samples in the dataset. Let us denote: h̄i,k,p,j ≜

1
D

∑D
d=1 hd,i,khd,p,j − hi,khp,j+

Σi,j(t) =
1

B

[
ũij +

N∑
k=1

N∑
p=1

h̄i,k,p,jWt,kWt,p

]
(35)

=
1

B

[
ũij +

N∑
k=1

N∑
p=1

h̄i,k,p,jZt,kZt,p

]

=
1

B
ũij +

N∑
k=1

N∑
p=1

h̄i,k,p,j E[Zt,kZt,p]

Σi,j(t) =
1

BD
ũij+

1

B
[

N∑
k=1

N∑
p=1

h̄i,k,p,j(wkwpe
−(hkk+hpp)t + ϵ̄pwke

−hkktµp
ξ(2t+

1

hpp
(1− e−hppt))

+ ϵ̄kwpe
−hpptµk

ξ (2t+
1

hkk
(1− e−hkkt)))] +O(ϵ̄2) (36)

10.6 Proof of Lemma 1

We will denote W ∗ as the optimal point in the basin, using the differential form, it is known that:

dYt
dt

= −∇U(Yt) . (37)

Let us denote:ζ(t) = U(Yt)− U(W ∗), directly from that notation:

dζ(t) = ⟨∇U(Yt), dYt⟩ = −∥∇U(Yt)∥2 . (38)

Since U(Yt) is µ−strongly convex near the basin W ∗:

U(Yt)− U(W ∗) ≤ 1

2µ
∥∇U(Yt)∥2 (39)

− 2µζ(t) ≥ dζ(t) .

Using Gronwall’s lemma Gronwall (1919)::

U(Yt)− U(W ∗) ≤ (U(w)− U(W ∗))e−2µt . (40)

Directly from strong convex propriety U(Yt)− U(W ∗) ≥ µ
2 ∥Yt −W ∗∥2 , we can achieve:

∥Yt −W ∗∥2 ≤ 2(U(w)− U(W ∗))

µ
e−2µt =

2ζ(t)

µ
e−2µt . (41)
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11 Additional Theorems

11.1 Mean Escape Time-Multistep scheduler

Next theorem deals with the mean transition time of a popular scheduler, the multi-step scheduler. Before

stating the theorem, let us define few constants first, νnn ≜
γαν−1
p m̄ν

β̄ν
Φν this term express the global attributes of

the DNN. Next constant C̃l,ν,p =
β̄l
β̄S

γ
ρ(αl−αν )
p (γ

αl−1
p m̄lΦl−γ

ρ(αl−1)
p β̄l)[

νnn+
β̄l
β̄S

γ
ρ(αl−αν )
p (1−νnn)

] utters global and single parameters attributes

, last: C̄l,p ≜ β̄lγ
ρ(αl−1)
p .

Theorem 4. Let st be a multi-step scheduler . Further, let us notate Cl,ν,p ≜ C̄l,ν,p + C̃l,ν,p, and Ep ≜
e−Cl,ν,pTpTp. The mean transition time with a multi-step scheduler satisfies:

E[σG ] ≈
N∑
l=0

P∑
p=0

β̄l
β̄SCl,ν,p

γαl(1−ρ)−1+ραν
p m̄lΦlA

−1
l,ν (Ep − Ep+1) .

Proof:

E[σG ] ≤
∞∑
k=1

E[τ∗k I{σG = τ∗k}] (42)

=

∞∑
k=1

E[τ∗k I{
N∑
l=0

stϵ(1
TΣl(t))

1
αl J l

1I{τ l1 = τ∗1 } ∈ G,

N∑
l=0

stϵ(1
TΣl(t))

1
αl J l

2I{τ l2 = τ∗2 } ∈ G, ..,
N∑
l=0

stϵ(1
TΣl(t))

1
αl J l

kI{τ lk = τ∗k} /∈ G}]

=

∞∑
k=1

E[τ∗k I{J∗
1 ∈ G, J∗

2 ∈ G, .., J∗
k /∈ G}]

≤
∞∑
k=1

E[τ∗k (1− I{J∗
k /∈ G})k−1I{J∗

k /∈ G}]

=

∞∑
k=1

N∑
l=1

E[τ lk(1− I{J l
k /∈ G})k−1I{J l

k /∈ G}I{τ lk = τ∗k}]

≤
∞∑
k=1

N∑
l=1

k∑
w=1

E[τ lw(1− I{s
αl−1

αl
t ϵ(1TΣl(t))

1
αl J l

w /∈ G})w−1(1− I{s
αν−1
αν

t ϵ(1TΣν(t))
1

αν Jm
w /∈ G})k−w

I{s
αl−1

αl
t ϵ(1TΣl(t))

1
αl J l

w /∈ G}I{τ lw = τ∗k}]

=

∞∑
k=1

N∑
l=0

k∑
w=1

∫ ∞

0

βl(t)

βS(t)

(k − 1)!

(w − 1)!(k − w)!

(
βl(t)

βS(t)

)w−1(
1− βl(t)

βS(t)

)k−w

βl(t)t

e−βl(t)t
(βl(t)t)

w−1

(w − 1)!
[1− sαl−1

t ml(t)

βl(t)
Φl]

w−1[1− sαν−1
t mν(t)

βν(t)
Φν ]

k−w s
αl−1
t ml(t)

βl(t)
Φldt

=

∞∑
k=1

N∑
l=0

∫ ∞

0

βl(t)

βS(t)
te−βl(t)tsαl−1

t ml(t)Φl

k∑
w=1

[βl(t)t− sαl−1
t ml(t)Φlt]

w−1

(w − 1)!

(k − 1)!

(w − 1)!(k − w)!

(
βl(t)

βS(t)

)w−1 [(
1− sαν−1

t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]k−w

dt

=

∞∑
k=1

N∑
l=0

∫ ∞

0

βl(t)

βS(t)
te−βl(t)tsαl−1

t ml(t)Φl

[(
1− sαν−1

t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]k−1

Lk−1

 βl(t)
βS(t) (s

αl−1
t ml(t)Φlt− βl(t)t)[(

1− sαν−1
t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]
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=

N∑
l=0

∫ ∞

0

βl(t)

βS(t)
te−βl(t)tsαl−1

t ml(t)Φl

[(
1− sαν−1

t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]−1

e

−
βl(t)
βS(t)

(s
αl−1
t ml(t)Φlt−βl(t)t)1−

1−
s
αν−1
t mν (t)

βν (t)
Φν

(
1− βl(t)

βS(t)

)
dt

=

N∑
l=0

∫ ∞

0

βl(t)

βS(t)
te−βl(t)tsαl−1

t ml(t)Φl

[(
1− sαν−1

t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]−1

e

−
βl(t)
βS(t)

(s
αl−1
t ml(t)Φlt−βl(t)t) s

αν−1
t mν (t)

βν (t)
Φν+

βl(t)
βS(t)

−
s
αν−1
t mν (t)Φν

βν (t)
βl(t)
βS(t)


dt =

N∑
l=0

P∑
p=0

∫ Tp+1

Tp

β̄l
β̄S
γ(αl−1+ρ(αl−αν)
p m̄lΦl

[(
1− m̄ν

β̄ν
Φν

)(
1− β̄l

β̄S

)]−1

t

e

−
β̄l
β̄S

γ
ρ(αl−αν )
p (γ

αl−1
p m̄lΦl−γ

ρ(αl−1)
p β̄l) γ

αν−1
p m̄ν

β̄ν
Φν+

β̄l
β̄S

γ
ρ(αl−αν )
p −

γ
αν−1
p m̄νΦν

βν (t)
β̄l
β̄S

γ
ρ(αl−αν )
p

−β̄lγ
ρ(αl−1)
p

t

dt

Let us notate:

Cl,ν,p ≜
β̄l
β̄S

γ
ρ(αl−αν )
p (γ

αl−1
p m̄lΦl−γ

ρ(αl−1)
p β̄l)[

γ
αν−1
p m̄ν

β̄nu
Φν+

β̄l
β̄S

γ
ρ(αl−αν )
p +

γ
αν−1
p m̄νΦν

βν (t)

β̄l
β̄S

γ
ρ(αl−αν )
p

] + β̄lγ
ρ(αl−1)
p ,Al,ν ≜

[(
1− m̄ν

β̄ν
Φν

)(
1− β̄l

β̄S

)]
N∑
l=0

P∑
p=0

∫ Tp+1

Tp

β̄l
β̄S
γ(αl−1+ρ(αl−αν)
p m̄lΦlA

−1
l,ν te

−Cl,ν,pt

=

N∑
l=0

P∑
p=0

β̄l
β̄SC2

l,ν,p

γαl−1+ρ(αl−αν)
p m̄lΦlA

−1
l,ν (e

−Cl,ν,pTp(Cl,ν,pTp + 1)− e−Cl,ν,pTp+1(Cl,ν,pTp+1 + 1))

≈
N∑
l=0

P∑
p=0

β̄l
β̄SCl,ν,p

γαl−1+ρ(αl−αν)
p m̄lΦlA

−1
l,ν (e

−Cl,ν,pTpTp − e−Cl,ν,pTp+1Tp+1)
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11.2 Trapping probability

Theorem 5. Let st be an exponential scheduler st = tγ−1, γ is the cooling rate. The probability of the process
to be trapped in the domain G is upper bounded by:

P (σ <∞) ≤
N∑
l=0

m̄lΦl

β̄S

[
β̄l
β̄S

− β̄l
β̄S

m̄ν

β̄ν
Φν

]−1

(43)

(2βl −mlΦl)
(γ−1)(αl−1+ρ(αν−1))+1

(γ−1)(ρ(αl−1))+1

(γ − 1)(ρ(αl − 1)) + 1
Γ(

(γ − 1)(αl − 1 + ρ(αν − 1)) + 1

(γ − 1)(ρ(αl − 1)) + 1
)

Proof:

P (σ <∞) =

∞∑
k=0

P (σ = τ∗k ) ≤
∞∑
k=0

P (J∗
1 ∈ G, J∗

2 ∈ G, .., J∗
k /∈ G) (44)

=

∞∑
k=1

k−1∏
j=1

P (J∗
j ∈ G)P (J∗

k /∈ G) =
∞∑
k=1

(1− P (J∗
k /∈ G))k−1P (J∗

k /∈ G)

=

∞∑
k=1

N∑
l=1

k−1∑
w=1

(1− P (s
αl−1

αl
t ϵ(1TΣl(t))

1
αl J l

w /∈ G))w−1(1− P (s
αν−1
αν

t ϵ(1TΣν(t))
1

αν Jv
w /∈ G))k−w

P (s
αl−1

αl
t ϵ(1TΣl(t))

1
αl J l

w /∈ G)P (τ lw = τ∗k )

=

∞∑
k=1

N∑
l=0

k∑
w=1

∫ ∞

0

βl(t)

βS(t)

(k − 1)!

(w − 1)!(k − w)!

(
βl(t)

βS(t)

)w−1(
1− βl(t)

βS(t)

)k−w

e−βl(t)t
(βl(t)t)

w−1

(w − 1)!
[1− sαl−1

t ml(t)

βl(t)
Φl]

w−1[1− sαν−1
t mν(t)

βν(t)
Φν ]

k−wsαl−1
t ml(t)Φldt

=

∞∑
k=1

N∑
l=0

∫ ∞

0

βl(t)

βS(t)
e−βl(t)tsαl−1

t ml(t)Φl

k∑
w=1

[βl(t)t− sαl−1
t ml(t)Φlt]

w−1

(w − 1)!

(k − 1)!

(w − 1)!(k − w)!

(
βl(t)

βS(t)

)w−1 [(
1− sαν−1

t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]k−w

dt

=

∞∑
k=1

N∑
l=0

∫ ∞

0

ml(t)Φl

βS(t)
e−βl(t)tsαl−1

t

[(
1− sαν−1

t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]k−1

Lk−1

 βl(t)
βS(t) (s

αl−1
t ml(t)Φlt− βl(t)t)[(

1− sαν−1
t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]


=

N∑
l=0

∫ ∞

0

ml(t)Φl

βS(t)
e−βl(t)tsαl−1

t

[
1−

(
1− sαν−1

t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]−1

e

−

1−
s
αν−1
t mν (t)

βν (t)
Φν

(
1− βl(t)

βS(t)

) βl(t)
βS(t)

(βl(t)t−s
αl−1
t ml(t)Φlt)1−

1−
s
αν−1
t mν (t)

βν (t)
Φν

(
1− βl(t)

βS(t)

)
dt

=

N∑
l=0

∫ ∞

0

ml(t)Φl

βS(t)
e−βl(t)tsαl−1

t

[
1−

(
1− sαν−1

t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]−1

e

−
βl(t)
βS(t)

(βl(t)t−s
αl−1
t ml(t)Φlt) s

αν−1
t mν (t)

βν (t)
Φν+

βl(t)
βS(t)

−
s
αν−1
t mν (t)

βν (t)
Φν

βl(t)
βS(t)

− βl(t)

βS(t)
(βl(t)t−s

αl−1
t ml(t)Φlt)

dt

=

N∑
l=0

∫ ∞

0

ml(t)Φl

βS(t)
e−βl(t)tsαl−1

t

[
1−

(
1− sαν−1

t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]−1
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e

− βl(t)

βS(t)
(βl(t)t−s

αl−1
t ml(t)Φlt)

 1

s
αν−1
t mν (t)

βν (t)
Φν+

βl(t)
βS(t)

−
s
αν−1
t mν (t)

βν (t)
Φν

βl(t)
βS(t)

−1


dt

N∑
l=0

∫ ∞

0

ml(t)Φl

βS(t)
e−βl(t)tsαl−1

t

[
1−

(
1− sαν−1

t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]−1

(45)

e

− βl(t)

βS(t)
(βl(t)t−s

αl−1
t ml(t)Φlt)

 1

s
αν−1
t mν (t)

βν (t)
Φν+

βl(t)
βS(t)

−
s
αν−1
t mν (t)

βν (t)
Φν

βl(t)
βS(t)

−1



≤
N∑
l=0

∫ ∞

0

m̄lΦl

β̄S
s
αl−1+ρ(αν−1)
t[

β̄l
β̄S

− β̄l
β̄S

m̄ν

β̄ν
Φν

]−1

e−(2βl−mlΦl)s
ρ(αl−1)
t tdt

=
m̄lΦl

β̄S

[
β̄l
β̄S

− β̄l
β̄S

m̄ν

β̄ν
Φν

]−1

∫ ∞

0

t(γ−1)(αl−1+ρ(αν−1))e−(2βl−mlΦl)t
(γ−1)(ρ(αl−1))+1

dt

=

N∑
l=0

m̄lΦl

β̄S

[
β̄l
β̄S

− β̄l
β̄S

m̄ν

β̄ν
Φν

]−1

(2βl −mlΦl)
(γ−1)(αl−1+ρ(αν−1))+1

(γ−1)(ρ(αl−1))+1

(γ − 1)(ρ(αl − 1)) + 1
Γ(

(γ − 1)(αl − 1 + ρ(αν − 1)) + 1

(γ − 1)(ρ(αl − 1)) + 1
) .

11.3 Trapping probability - Multi step scheduler

Theorem 6. Let st be a multistep scheduler, γ is the cooling rate. The probability of the training process to be
trapped in the domain G, namely P (σ <∞) is upper bounded by:

N∑
l=0

P∑
p=0

[
β̄l
β̄S

(1− m̄ν

β̄ν
Φν)

]−1
m̄lΦl

β̄S
γρ(1−αν)+αl−1−ρ(αl−1)
p

e−(2β̄l−m̄lΦl)γ
ρ(αl−1)
p Tp(1− e−(2β̄l−m̄lΦl)γ

ρ(αl−1)T
p )

(2β̄l − m̄lΦl)
.

(46)

Proof:

P (σ <∞) ≈
∞∑
k=0

P (σ = τ∗k ) ≤
∞∑
k=0

P (J∗
1 ∈ G, J∗

2 ∈ G, .., J∗
k /∈ G) (47)

=

∞∑
k=1

k−1∏
j=1

P (J∗
j ∈ G)P (J∗

k ∈ Ω+
i ) =

∞∑
k=1

(1− P (J∗
k /∈ G))k−1P (J∗

k /∈ G)

=

∞∑
k=1

N∑
l=1

k−1∑
w=1

(1− P (s
αl−1

αl
t ϵ(1TΣl(t))

1
αl J l

w /∈ G))w−1(1− P (s
αν−1
αν

t ϵ((1TΣν(t))
1

αν )
1

αν Jv
w /∈ G))k−w

P (s
αl−1

αl
t ϵ(1TΣl(t))

1
αl J l

w /∈ G)P (τ lw = τ∗k )

=

∞∑
k=1

N∑
l=0

k∑
w=1

∫ ∞

0

βl(t)

βS(t)

(k − 1)!

(w − 1)!(k − w)!

(
βl(t)

βS(t)

)w−1(
1− βl(t)

βS(t)

)k−w

e−βl(t)t
(βl(t)t)

w−1

(w − 1)!
[1− sαl−1

t ml(t)

βl(t)
Φl]

w−1[1− sαν−1
t mν(t)

βν(t)
Φν ]

k−w s
αl−1
t ml(t)

βl(t)
Φldt

=

∞∑
k=1

N∑
l=0

∫ ∞

0

βl(t)

βS(t)
e−βl(t)tsαl−1

t ml(t)Φl
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k∑
w=1

[βl(t)t− sαl−1
t ml(t)Φlt]

w−1

(w − 1)!

(k − 1)!

(w − 1)!(k − w)!

(
βl(t)

βS(t)

)w−1 [(
1− sαν−1

t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]k−w

dt

=

∞∑
k=1

N∑
l=0

∫ ∞

0

ml(t)Φl

βS(t)
e−βl(t)tsαl−1

t

[(
1− sαν−1

t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]k−1

Lk−1

 βl(t)
βS(t) (s

αl−1
t ml(t)Φlt− βl(t)t)[(

1− sαν−1
t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]


=

N∑
l=0

∫ ∞

0

ml(t)Φl

βS(t)
e−βl(t)tsαl−1

t

[
1−

(
1− sαν−1

t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]−1

e

−

1−
s
αν−1
t mν (t)

βν (t)
Φν

(
1− βl(t)

βS(t)

) βl(t)
βS(t)

(βl(t)t−s
αl−1
t ml(t)Φlt)1−

1−
s
αν−1
t mν (t)

βν (t)
Φν

(
1− βl(t)

βS(t)

)
dt

=

N∑
l=0

∫ ∞

0

ml(t)Φl

βS(t)
e−βl(t)tsαl−1

t

[
1−

(
1− sαν−1

t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]−1

e

−
βl(t)
βS(t)

(βl(t)t−s
αl−1
t ml(t)Φlt) s

αν−1
t mν (t)

βν (t)
Φν+

βl(t)
βS(t)

−
s
αν−1
t mν (t)

βν (t)
Φν

βl(t)
βS(t)

− βl(t)

βS(t)
(βl(t)t−s

αl−1
t ml(t)Φlt)

dt

N∑
l=0

∫ ∞

0

ml(t)Φl

βS(t)
e−βl(t)tsαl−1

t

[
1−

(
1− sαν−1

t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]−1

(48)

e

+

βl(t)
βS(t)

(βl(t)t−s
αl−1
t ml(t)Φlt) s

αν−1
t mν (t)

βν (t)
Φν+

βl(t)
βS(t)

−
s
αν−1
t mν (t)

βν (t)
Φν

βl(t)
βS(t)

− βl(t)

βS(t)
(βl(t)t−s

αl−1
t ml(t)Φlt)

dt

=

N∑
l=0

∫ ∞

0

ml(t)Φl

βS(t)
e−βl(t)tsαl−1

t

[
1−

(
1− sαν−1

t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]−1

e

− βl(t)

βS(t)
(βl(t)t−s

αl−1
t ml(t)Φlt)

 1

s
αν−1
t mν (t)

βν (t)
Φν+

βl(t)
βS(t)

−
s
αν−1
t mν (t)

βν (t)
Φν

βl(t)
βS(t)

−1


dt

≤
N∑
l=0

∫ ∞

0

m̄lΦl

β̄S
s
αl−1+ρ(αν−1)
t

[
β̄l
β̄S

(1− m̄ν

β̄ν
Φν)

]−1

e−(2βl−mlΦl)s
ρ(αl−1)
t tdt

=

N∑
l=0

P∑
p=0

[
β̄l
β̄S

(1− m̄ν

β̄ν
Φν)

]−1
m̄lΦl

β̄S
γρ(1−αν)+αl−1
p

∫ Tp+1

Tp

e−(2β̄l−m̄lΦl)γ
ρ(αl−1)
p tdt

=

N∑
l=0

P∑
p=0

[
β̄l
β̄S

(1− m̄ν

β̄ν
Φν)

]−1
m̄lΦl

β̄S
γρ(1−αν)+αl−1
p

e−(2β̄l−m̄lΦl)γ
ρ(αl−1)
p Tp − e−(2β̄l−m̄lΦl)γ

ρ(αl−1)
p Tp+1

(2β̄l − m̄lΦl)γ
ρ(αl−1)
p

=

N∑
l=0

P∑
p=0

[
β̄l
β̄S

(1− m̄ν

β̄ν
Φν)

]−1
m̄lΦl

β̄S
γρ(1−αν)+αl−1
p

e−(2β̄l−m̄lΦl)γ
ρ(αl−1)
p Tp − e−(2β̄l−m̄lΦl)γ

ρ(αl−1)
p T (p+1)

(2β̄l − m̄lΦl)γ
ρ(αl−1)
p

=
N∑
l=0

P∑
p=0

[
β̄l
β̄S

(1− m̄ν

β̄ν
Φν)

]−1
m̄lΦl

β̄S
γρ(1−αν)+αl−1−ρ(αl−1)
p

e−(2β̄l−m̄lΦl)γ
ρ(αl−1)
p Tp(1− e−(2β̄l−m̄lΦl)γ

ρ(αl−1)T
p )

(2β̄l − m̄lΦl)
.

11.4 Probability of escaping after time u

We further investigate the probability of exiting before time u:

Theorem 7. Let st = tγ−1, where γ is the cooling rate,let us denote two constants that express the effect of the
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scheduler: γl ≜ 1 + (γ − 1)(αl − 1) and κ ≜ 1+(γ−1)(αl−1+ρ(αl−αν))
γl

, for u > 0:

P (σ > u) ≤
N∑
l=0

A−1
l,ν

β̄lm̄lΦl

β̄Sγl(m̄lΦl)κ
Γ (κ, m̄lΦlu

γl) . (49)

In order to further investigate this expression, let us temporally neglect the cooling effect.

Corollary 4. Using Thm. 2, for γ → 1:

P (σ > u) ≤
N∑
l=0

A−1
l,ν

β̄l
β̄S
e−m̄lΦlu . (50)

As in 1d Imkeller and Pavlyukevich (2006a,b), it can be seen that for small ϵ, the probability depends exponen-
tially on time u.

P (σ > u) =

∞∑
k=0

P (τ∗k > u)P (σ = τ∗k ) ≤
∞∑
k=0

P (τ∗k > u)P (J∗
1 ∈ G, J∗

2 ∈ G, .., J∗
k /∈ G) (51)

=

∞∑
k=1

P (τ∗k > u)

k−1∏
j=1

P (J∗
j ∈ G)P (J∗

k /∈ G)

=

∞∑
k=1

P (τ∗k > u)(1− P (J∗
k /∈ G))k−1P (J∗

k /∈ G)

≈
∞∑
k=1

N∑
l=1

k−1∑
w=1

(1− P (s
αl−1

αl
t ϵ(1TΣl(t))

1
αl J l

w /∈ G))w−1(1− P (s
αν−1
αν

t ϵ(1TΣν(t)
1

αν Jv
w /∈ G))k−w

P (s
αl−1

αl
t ϵ(1TΣl(t))

1
αl J l

w /∈ G)P (τ lw = τ∗k )P (τ
l
w > u)

=

∞∑
k=1

N∑
l=0

k∑
w=1

∫ ∞

u

βl(t)

βS(t)

(k − 1)!

(w − 1)!(k − w)!

(
βl(t)

βS(t)

)w−1(
1− βl(t)

βS(t)

)k−w

e−βl(t)t
(βl(t)t)

w−1

(w − 1)!
[1− sαl−1

t ml(t)

βl(t)
Φl]

w−1[1− sαν−1
t mν(t)

βν(t)
Φν ]

k−w s
αl−1
t ml(t)

βl(t)
Φldt

=

∞∑
k=1

N∑
l=0

∫ ∞

0

βl(t)

βS(t)
e−βl(t)tsαl−1

t ml(t)Φl

k∑
w=1

[βl(t)t− sαl−1
t ml(t)Φlt]

w−1

(w − 1)!

(k − 1)!

(w − 1)!(k − w)!

(
βl(t)

βS(t)

)w−1 [(
1− sαν−1

t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]k−w

dt

=

∞∑
k=1

N∑
l=0

∫ ∞

u

βl(t)ml(t)Φl

βS(t)
e−βl(t)tsαl−1

t

[(
1− sαν−1

t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]k−1

Lk−1

 βl(t)
βS(t) (s

αl−1
t ml(t)Φlt− βl(t)t)[(

1− sαν−1
t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]


=

N∑
l=0

∫ ∞

u

βl(t)ml(t)Φl

βS(t)
e−βl(t)tsαl−1

t

[(
1− sαν−1

t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]−1

e

−
βl(t)
βS(t)

(s
αl−1
t ml(t)Φlt−βl(t)t)1−

1−
s
αν−1
t mν (t)

βν (t)
Φν

(
1− βl(t)

βS(t)

)
dt

≈
N∑
l=0

[(
1− m̄ν

β̄ν
Φν

)(
1− β̄l

β̄S

)]−1 ∫ ∞

u

β̄lm̄lΦl

β̄S
s
αl−1+ρ(αl−αν)
t e−s

αl−1
t m̄lΦltdt
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Exponential scheduler
N∑
l=0

[(
1− m̄ν

β̄ν
Φν

)(
1− β̄l

β̄S

)]−1 ∫ ∞

u

β̄lm̄lΦl

β̄S
s
αl−1+ρ(αl−αν)
t e−s

αl−1
t m̄lΦltdt (52)

=

N∑
l=0

[(
1− m̄ν

β̄ν
Φν

)(
1− β̄l

β̄S

)]−1 ∫ ∞

u

β̄lm̄lΦl

β̄S
t(γ−1)(αl−1+ρ(αl−αν))e−t1+(γ−1)ρ(αl−1)m̄lΦldt

=

N∑
l=0

[(
1− m̄ν

β̄ν
Φν

)(
1− β̄l

β̄S

)]−1
β̄lm̄lΦl

β̄S (m̄lΦl)
− 1+(γ−1)(αl−1+ρ(αl−αν ))

1+(γ−1)ρ(αl−1) Γ
(

1+(γ−1)(αl−1+ρ(αl−αν))
1+(γ−1)ρ(αl−1) , m̄lΦlu

1+(γ−1)ρ(αl−1)
)

1 + (γ − 1)ρ(αl − 1)


For γ → 1:

N∑
l=0

[(
1− m̄ν

β̄ν
Φν

)(
1− β̄l

β̄S

)]−1
β̄l
β̄S

Γ (1, m̄lΦlu) (53)

=

N∑
l=0

[(
1− m̄ν

β̄ν
Φν

)(
1− β̄l

β̄S

)]−1
β̄l
β̄S
e−m̄lΦlu .

12 Extras

Lemma 3. ∀T ∈ [Πj ,Πj+1], ∀j ∈ N,and ∀w ∈ [d−i , d
+
i ] there exist a finite CZ s.t:

sup
T

|Xi
t(w)| ≤ CI

z sup
T

|ξit| . (54)

Using stochastic asymptotic expansion:

|Xi
t(w)| ≤ sup

t∈[0,T ]

|ξt,l|

(
1 + sup

t∈[0,T ]

∫ t

0

H(Yp(w))iie
−

∫ t
p
H(Yu(w))iidudp

)
. (55)

For some δ > 0, the inequality :mi
1 ≤ sup|w|≤δH(Yp(w)) ≤ inf |w|≤δH(Yp(w)) ≤ mi

2.
Let us denote:

C1 = max
w∈G

∫ T̂

0

H(Yp(w))iie
−

∫ t
p
H(Yu(w))iidudp . (56)

For arbitrary T̂ ≤ t:∫ t

0

H(Yp(w))iie
−

∫ t
p
H(Yu(w))iidudp = (57)∫ T̂

0

H(Yp(w))iie
−

∫ t
p
H(Yu(w))iidudp+

∫ t

T̂

H(Yp(w))iie
−

∫ t
p
H(Yu(w))iidudp

The estimate for the first term:∫ T̂

0

H(Yp(w))iie
−

∫ t
p
H(Yu(w))iidudp = e−

∫ t
T̂
H(Yu(w))iidu

∫ T̂

0

H(Yp(w))iie
−

∫ T̂
p

H(Yu(w))iidudp (58)

≤ e−mi
1(t−T̂ )C1 ≤ C1 .

The second sum: ∫ t

T̂

H(Yp(w))iie
−

∫ t
p
H(Yu(w))iidudp ≤

∫ t

T̂

mi
2e

−mi
1(t−p)dp ≤ mi

2

mi
1

. (59)

And: Cl
Z = C1 +

ml
2

ml
1
.

13 Framework properties and notations

Let us first make few assumptions on the geometry of G and notations:

1. Near the basin W ∗, ∇U : Ḡ → Rd.
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2. U is µ−strongly convex .

3. The boundary of our domain is denoted as ∂G, which is a C1 manifold, so that the vector field of the outer
normals on the boundary exists. This means that ∇U “points into G”, hence:

⟨∇U(w), n(w)⟩ < − 1

C
, (60)

for any w ∈ ∂G

4. Zero is an attractor of the domain (i.e. ∇U(0) = 0, and for every starting value w ∈ G,the deterministic
solution vanishes asymptotically:

limt→∞Yt(w) → 0 . (61)

5. Let us define the inner part of G as Gδ = {y ∈ G : dict(w, ∂G) ≥ δ} ,

where C > 1.
Let us define δ0 > 0 as the point which if ∥w∥ < δ0 then w ∈ G and ∀δ ∈ (0, δ). The following is valid:

• From the exponential stability of 0, ∥Yt∥ < Ce−
1
C t ∥w∥.

• For ∥w∥ < δ0, and g
i
w,+ = w + tri, g

i
w,− = w − tri, we shall define the distance to the boundary as:

d+i (w) ≜ inf{t > 0 : giw,+(t) ∈ ∂G} . (62)

• We will define δ-tubes as Ω+
i (δ) ≜ {w ∈ Rd : ∥⟨w, ri⟩ri∥ < δ, ⟨w, ri⟩ > 0} ∩ Gc and Ω−

i (δ) ≜ {w ∈ Rd :
∥⟨w, ri⟩ri∥ < δ, ⟨w, ri⟩ < 0} ∩ Gc.

• Gδ with the dynamic process Yt and the initial point w ∈ Gδ is a Positively invariant set Amann (2011) .

14 Constructing the SDE

Let us first define our SGD iterative update rule:

wk = wk−1 − η̄k∇U(wk) + η̄kζk . (63)

ζk ∈ RN , wk ∈ RN ,∇U(wk) ∈ RN . Let us remind that Σk ∈ RNxN approximates the noise covariance matrix :

Σk =
1

D

[
1

B

Q∑
i=1

∇U(wk)i∇U(wk)
T
i −∇U(wk)∇U(wk)

T

]
. (64)

The SGN is assumed to be modeled by a Levy-stable random variable, ζlk ∼ SαS(1TΣk
l ), note that 1TΣk

l is a
scalar, and it represents the sum of interactions of parameter’s l with the rest of the parameters in the DNN. Let
us start with the following SDE:

Wt =

∫ t

0

∇U(Wp) dp+

∫ t

0

N∑
l=1

η
αl−1

αl ((1TΣl)
1
αl )

1
αl (Wt)rldL

l
t . (65)

We aim to use the Euler-Maruyama method and Levy process properties to achieve Eq. 63. Let us define the
time discretization constant as ηk > 0 , we split (0, t) to M splits: 0 = τ0 < τ1 < ... < τk < .. < τM−1 = t,where
τi − τi−1 = η thus for τi ∈ (0, t) using Euler-Maruyama method:

wτk = wτk−1
−∇U(wτk , τk)(τk − τk−1) +

N∑
l=1

η
αl−1

α ((1TΣl)
1
αl )

1
αl (Wτk)rl(L

l
τk

− Ll
τk−1

) . (66)

Using Levy stationary increments property: The difference Lm−Ln, for m > n distributes Lm−Ln ∼ SαS((m−
n)

1
α ), further for clarity we will mark wτk as wk.

wk = wk−1 + ηk∇U(wk) +

N∑
l=1

η
αl−1

αl ((1TΣl)
1
αl )

1
αl (Wk)rlS

l
k . (67)

Where Sl
k ∼ SαS(η

1
αl ). Using SαS characteristic function and the fact Lt is a real value process: Sl

k =

ζlkη
1
αl ((1TΣl)

1
αl )

− 1
αl , let us use this identity:

wk = wk−1 + ηk∇U(wk) +

N∑
l=1

η
αl−1

αl ((1TΣl)
1
αl )

1
αl (Wk)rlζ

l
kη

1
αl ((1TΣl)

1
αl )

− 1
αl . (68)
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wk = wk−1 − ηk∇U(wk) +

N∑
l=1

ηkrlζ
l
k . (69)

Since we defined (for simplicity) rl as one hot vector we can deduce:

wk = wk−1 − ηk∇U(wk) + ηζk . (70)

For the convergence of the Euler-Maruyama discritization please see Jacod et al. (2005); Protter et al. (1997);
Bally and Talay (1996).


