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Abstract

We study a novel sequential decision-making
setting, namely the dissimilarity bandits. At
each round, the learner pulls an arm that
provides a stochastic d-dimensional obser-
vation vector. The learner aims to identify
the pair of arms with the maximum dis-
similarity, where such an index is computed
over pairs of expected observation vectors.
We propose Successive Elimination for

Dissimilarity (SED), a fixed-confidence
best-pair identification algorithm based on
sequential elimination. SED discards individ-
ual arms when there is statistical evidence
that they cannot belong to a pair of most
dissimilar arms and, thus, effectively exploits
the structure of the setting by reusing the es-
timates of the expected observation vectors.
We provide results on the sample complex-
ity of SED, depending on HP , a novel index
characterizing the complexity of identifying
the pair of the most dissimilar arms. Then,
we provide a sample complexity lower bound,
highlighting the challenges of the identifica-
tion problem for dissimilarity bandits, which
is almost matched by our SED. Finally, we
compare our approach over synthetically gen-
erated data and a realistic environmental
monitoring domain against classical and com-
binatorial best-arm identification algorithms
for the cases d “ 1 and d ą 1.
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1 INTRODUCTION

The classical Multi-Armed Bandit framework (MAB,
Lattimore and Szepesvári, 2020) has been developed
through the years to deal with the problem of ex-
ploration in sequential decision processes with partial
feedback. In such a model, at each round, a learner has
to select an option, a.k.a. arm, in a finite set and re-
ceives a noisy reward corresponding to their choice.
Commonly, in the bandit literature, algorithms for
pursuing two different objectives have been designed.
First, regret minimization (Auer et al., 2002) algo-
rithms aim to minimize the cumulative loss due to the
learning process w.r.t. playing the optimal arm. Sec-
ond, Best-Arm Identification (BAI, Audibert et al.,
2010) algorithms aim to identify with high probability
the arm providing the largest expected reward. In this
paper, we focus on BAI for a novel setting called dis-
similarity bandits, in which the learner’s expected re-
ward is associated with pairs of arms through a known
dissimilarity function.

Over the years, many variants of the MAB setting have
been designed and analyzed to model different sequen-
tial decision problems occurring in real-world settings.
They either extend the standard MAB setting for re-
wards having different nature than the scalar one, e.g.,
dueling bandits (Yue et al., 2012; Sui et al., 2018),
or they make use of the specific structure of the ana-
lyzed problem to speed up the learning process, e.g.,
Combinatorial MABs (Cesa-Bianchi and Lugosi, 2012;
Chen et al., 2013) or linear bandits (Abbasi-Yadkori
et al., 2011). In the present work, we analyze a newly
defined setting in which selecting a specific arm pro-
vides a d-dimensional noisy observation vector, and
the learner reward is provided by a dissimilarity func-
tion that applies to pairs of expected observation vec-
tors. The learner aims to identify, with high probability
(a.k.a. fixed-confidence BAI), the pair of arms with the
maximum dissimilarity.

Motivation This setting has been inspired and mo-
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tivated by environmental monitoring applications for
potable water (Gabrielli et al., 2021). In such a sce-
nario, each sample of water provides a set of mea-
sures consisting of a vector of values representing the
response of the water to the excitation using energy
beams with different frequencies (a.k.a. flourescence
analysis). The response over different frequencies pro-
vides information about the bacterial population in
the water. This analysis is repeated for water sam-
ples collected during different hours throughout the
day for a specific location. The bacteria base concen-
trations are due to environmental factors and vary
significantly over the day due to human activities re-
lated to potable water. However, thanks to the routine
present in everyday human activities, daily patterns
are present over the weeks/months. This allows the
modeling of measurements taken at the same hour on
different days as samples taken from the same stochas-
tic distribution. In such a setting, the values corre-
sponding to a single hour provide no information about
the increase/decrease of a specific bacterium (i.e., bi-
ological stability). Conversely, pairs of measurements
highlight if anomalous changes are occurring in spe-
cific hours. The monitoring campaign aims to iden-
tify with the smallest number of samples possible the
pairs of hours presenting the most dissimilar fluores-
cence response since their dissimilarity corresponds to
the influence of human activities in the water stream.
Currently, these campaigns are structured using naiv̈e
schemes, e.g., sampling each hour with the same fre-
quency over a given period, which may result in a sub-
optimal sampling strategy. Conversely, using the mod-
eling approach offered by the dissimilarity bandits and
with the algorithm developed here, we provide a more
efficient sampling scheme and, given predefined confi-
dence, a stopping time for the monitoring campaign.
For further discussion on related works, see Section 6.

Original Contributions This paper provides:

• the definition of the dissimilarity bandit setting for
the first time in the bandit literature (Section 2);

• the design of the Successive Elimination for

Dissimilarity (SED) algorithm to perform fixed-
confidence BAI specifically crafted for the dissim-
ilarity bandit setting (Section 3), which is pro-
vided with a computationally efficient implementa-
tion (Section 3.1);

• results on the sample complexity of SED, depending
on HP , a novel index characterizing the complexity
of identifying the pair of the most dissimilar arms
(Section 3.2);

• an expected sample complexity lower bound that
almost matches the upper bound for SED and high-
lights the challenges of our problem (Section 4).

• comparison of our approach over synthetically gen-

erated data and a realistic environmental monitor-
ing domain in comparison with classical and combi-
natorial best-arm identification algorithms for both
the cases d “ 1 and d ą 1 (Section 7).

The proofs of the results reported in the main paper
are deferred to Appendix A for space reasons.

2 PROBLEM FORMULATION

Notation We consider a vector-valued Multi-Armed
Bandit (MAB) problem ν “ pνiqiPJKK made of K P N
arms. At each round t P N, the agent pulls an arm
It P JKK :“ t1, . . . ,Ku and receives a vector-valued
feedback xt „ νIt (a.k.a. observation vector) belong-
ing to Rd. For every arm i P JKK we have that
x “ px1, . . . , xdqJ is the realization sampled from the
distribution νi “ pνi,1, . . . , νi,dqJ, with expectation
µi “ pµi,1, . . . , µi,dqJ (a.k.a. expected observation vec-
tor). The components xj are assumed to be indepen-
dent and σ2-subgaussian, formally:

Assumption 2.1 (Subgaussian Random Vector with
Independent Components). For every arm i P JKK,
every component xj for j P JdK of the random vec-
tor x „ νi is independent of the others and σ2-
subgaussian, i.e.:

E
xj„νi,j

rexppλpxj ´ µi,jqqs ď exp

ˆ

σ2λ2

2

˙

, @λ P R.

However, we note that while the independence between
vector components is required for our analysis, a sim-
ilar result, with a higher constant factor in the com-
plexity bound, can be achieved even if this assumption
does not hold (see comments after Lemma 3.1).

Optimality Let w : Rd ˆ Rd Ñ R be a known
symmetric dissimilarity function, the goal of the agent
is to find an optimal (unsorted) pair of arms ti˚, j˚u,
with i˚, j˚ P JKK and i˚ ‰ j˚, i.e., that maximizes the
function w, formally:

ti˚, j˚u :“ argmax
i,jPJKK,i‰j

wpµi,µjq,

and we denote with w˚ :“ wpi˚, j˚q the value of the
dissimilarity for the optimal pair ti˚, j˚u. As com-
monly done in other BAI settings (Garivier and Kauf-
mann, 2016), we assume that the optimal solution is
unique; otherwise, the problem of BAI would become
ill-posed. For a pair ti, ju ‰ ti˚, j˚u, we define the
sub-optimality gap as follows:

∆ti,ju :“ w˚ ´ wpµi,µjq.

Intuitively, wpµi,µjq quantifies the dissimilarity be-
tween the two selected arms i and j that tells how
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Algorithm 1 SED

Input: Confidence δ P p0, 1q

1: S Ð tti, ju | i, j P JKK, i ‰ ju

2: t Ð 1
3: Pull each arm i P JKK once
4: Compute the confidence sets Cδ

i,t for each i P JKK
5: while |S| ą 1 do
6: rwt Ð max

ti,juPS
min

rµiPCδ
i,t,rµjPCδ

j,t

wprµi, rµjq

7: S Ð Sz

#

ti, ju P S : max
rµiPCδ

i,t,rµjPCδ
j,t

wprµi, rµjq ď rwt

+

8: Kt Ð ti P JKK : Dth, ju P S ^ i P th, juu

9: Pull each arm in i P Kt once
10: t Ð t ` 1
11: Update the confidence sets Cδ

i,t for each i P JKK
12: end while
13: return tpI, pJu P S

much they are far apart, and, consequently, ∆ti,ju de-
scribes how much the arm pair ti, ju is far from the
optimal arm pair in terms of dissimilarity.

Best-Arm Identification Framework Let Ft´1 “

σpI1,x1, . . . , It´1,xt´1, Itq be the σ-algebra generated
by the observations up to round t´ 1. A BAI strategy
for dissimilarity bandits is defined by: (i) a sampling
rule pItqtPN , where It is Ft´1-measurable, telling the
learner which arm to pull at round t; (ii) a stopping
rule τ , which is a stopping time w.r.t. Ft, telling the
learner when to stop the learning procedure; and (iii)

a recommendation rule tpIτ , pJτu that is Fτ -measurable,
providing a guess on the optimal pair at round τ . In the
fixed-confidence setting, given a confidence threshold
δ P p0, 1q, we want to minimize the sample complexity
τ , while guaranteeing that the probability of recom-
mending a sub-optimal pair is bounded by δ, formally
we want to find an upper bound τ over τ such that:

P
´

tpIτ , pJτu “ ti˚, j˚u ^ τ ď τ
¯

ě 1 ´ δ. (1)

3 ALGORITHM

This section proposes a novel algorithm, Successive
Elimination for Dissimilarity (SED), that em-
ploys a successive elimination procedure to identify the
optimal pair ti˚, j˚u with high probability.

The pseudocode for the proposed algorithm is pre-
sented in Algorithm 1 and requires the confidence δ P

p0, 1q as input. At first, it initializes the set of admis-
sible arm pairs S with all pairs ti, ju, with i, j P JKK
and i ‰ j, sets the phase counter t, and pulls each
arm i P JKK once (Lines 1-3). The algorithm assumes
to have access to a way of computing confidence sets

Cδ
i,t for the expected observation vectors µi holding

with high probability 1 ´ δ, for all arms i P JKK and
uniformly over the phases t P N (Line 4). Formally:

P
`

@t P N, @i P JKK : µi P Cδ
i,t

˘

ě 1 ´ δ. (2)

The specific form of the confidence sets Cδ
i,t depends on

the estimator pµi,t for the expected observation vectors
µi. In Section 3.1, we provide an explicit form for the
case in which the estimator pµi,t is the sample mean.

During the learning process, if the set of admissible
arm pairs is non-singleton, i.e., |S| ą 1 (Line 5), SED
computes rwt representing the maximum lower bound
over the dissimilarity between the pair of arms compat-
ible with the current confidence sets (Line 6). Notice
that rwt is selected as the minimum value of the dissim-
ilarity among the observation vectors contained in the
confidence sets of the arms i and j. This lower bound is
employed to determine if any arm pair can be excluded
from the set of admissible pairs S (Line 7). Indeed, if
the maximum dissimilarity computed over vectors in
the confidence sets of the arms i and j is lower than
the rwt, with high probability, the pair ti, ju cannot be
the optimal one and can be excluded from the search.

Finally, the algorithm pulls all the arms that are still
present in at least one pair in the set of admissible
arms S, i.e., those belonging to the set Kt (Lines 9-8),
updates the phase count (Line 10), and the confidence
sets to be evaluated in the next phase (Line 11). We
remark that the set Kt will become smaller over time,
i.e., when an arm is no longer contained in any pair of
the admissible set S.

Algorithm 1 has been intentionally presented with-
out specifying the form of the confidence sets Cδ

i,t and
the form of the dissimilarity function w. The choice
of these elements has a crucial impact on the com-
putational and statistical properties of the algorithm.
Indeed, Lines 6 and 7 require solving maximization
and minimization problems involving both Cδ

i,t (as do-
mains) and w (as the objective function) which might
become computationally intractable.1 In the next sec-
tion, we show that for a particular (still notable) sub-
class of dissimilarity functions w and for the sample
mean as an estimator, these optimization problems can
be tackled in a computationally efficient way.

3.1 Efficient Implementation

In the following, we provide a computationally-efficient
implementation of Algorithm 1 which makes use of the

1For instance, when wprµi, rµjq “ }rµi ´ rµj}2 is the Eu-
clidean norm of the difference of vectors, Cδ

i,t “ t0u, and

Cδ
j,t is a polytope, Line 7 reduces to computing the Eu-

clidean diameter of Cδ
j,t, which is known to be an NP-hard

problem (Brieden, 2002).
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sample mean pµi,t for estimating the expected observa-
tion vectors µi and the dissimilarity functions w that
can be expressed by means of seminorms.

Sample Mean Estimator Concentration To es-
timate the expected observation vectors µi, we use the
sample mean of the random observed vectors:

pµi,t :“
1

t

ÿ

lPJtK

xi,l, (3)

where xi,l is the vector observed when pulling arm i P

JKK in the t-th phase. The following result shows that,
under the assumption that the components of the ob-
servation vector are independent and σ2-subgaussian
(Assumption 2.1), the sample mean enjoys a desirable
concentration rate.

Lemma 3.1 (Sample Mean Concentration). Let
δ P p0, 1q. Under Assumption 2.1, the sample mean
pµi,t in Equation (3) fulfills Equation (2) with:

Cδ
i,t :“

$

&

%

rµ P Rd : }rµ ´ pµi,t}2 ď 4

d

σ2 max
␣

d, log 2Kt2

δ

(

t

,

.

-

.

The result is derived by applying the Bernstein’s in-
equality and a union bound over all arms and time
instants. It is worth noting that under Assumption 2.1
(thanks to the independence of the components xj

of the observation vector), the straightforward sam-
ple mean displays optimal concentration rate (Lugosi
and Mendelson, 2019). To achieve the same optimal
concentration rate when relaxing the component inde-
pendence assumption, it is well-known that more com-
plex estimators are needed which come with a more
computationally demanding procedure (e.g.,median of
means, Lugosi and Mendelson, 2019).

Seminorm Dissimilarity Function To make the
optimization problems at Lines 6 and 7 of Algorithm 1
computationally tractable, we restrict the class of the
dissimilarity functions w to those that can be ex-
pressed as the seminorm of the difference of the ex-
pected observation vectors. This requirement is for-
malized in the following assumption.

Assumption 3.1 (Seminorm Dissimilarity Function
w). Let } ¨ } : Rd Ñ Rě0 be a seminorm, i.e., it fulfills
for every x,y P Rd and α P R:

• (Subadditivity) }x ` y} ď }x} ` }y};
• (Absolute homogeneity) }αx} “ |α|}x}.

The dissimilarity function w is s.t. for every x,y P Rd:

wpx,yq “ }x ´ y}. (4)

It is worth noting that Assumption 3.1 allows to com-
fortably embed a large class of dissimilarity func-
tions, including the widely used p-norms. This assump-
tion, in combination with the concentration result of

Lemma 3.1, allows replacing Lines 6 and 7 of Algo-
rithm 1 with a condition that can be evaluated effi-
ciently, as shown in the following lemma.

Lemma 3.2 (Elimination with Seminorms). Let δ P

p0, 1q, t P N, and let BBd´1 be the surface of the unit
sphere in Rd. Let us define:

Uδ
t :“ 4

ˆ

max
xPBBd´1

}x}

˙

¨

d

σ2 max
␣

d, log 2Kt2

δ

(

t
. (5)

Then, using the sample mean as estimator and under
Assumptions 2.1 and 3.1, if the arm pair ti, ju, with
i, j P JKK and i ‰ j, fulfills:

wppµi,t, pµj,tq ` 2Uδ
t ď max

ti1,j1uPS
wppµi1,t, pµj1,tq ´ 2Uδ

t , (6)

then, ti, ju R S.

Thus, Lemma 3.2 provides a sufficient condition for
eliminating the candidate pair ti, ju. Indeed, if the con-
dition of Equation (6) is satisfied, Algorithm 1 excludes
pair ti, ju from the set of admissible pairs S. Thus, if
we replace Lines 6 and 7 of Algorithm 1 with the elim-
ination condition in Equation (6), we are guaranteed
not to discard potentially optimal pairs at the price,
possibly, of postponing their elimination. Indeed, this
drawback is compensated by obtaining a condition
that can be evaluated more efficiently (i.e., with linear
time in the cost needed to evaluate the seminorm).

3.2 Sample Complexity Analysis

We are now ready to provide the analysis of the sam-
ple complexity of SED, i.e., Algorithm 1 instanced with
the sample mean as the estimator for the expected
observation vectors. To this end, we construct a suit-
able complexity index in which each arm i P JKK con-
tributes with the minimum sub-optimality gap ∆ti,ju

in which arm i appears, i.e.:

∆˚
i :“ min

jPJKKztiu
∆ti,ju “ w˚ ´ max

jPJKKztiu
wpµi,µjq. (7)

Similarly to traditional BAI (Kaufmann et al., 2016),
we characterize the complexity of the identification
problem with an appropriate complexity index :

HP :“
ÿ

iPJKKzti˚,j˚u

σ2

p∆˚
i q2

. (8)

The following result provides a high-probability upper
bound to the sample complexity of the SED algorithm.

Theorem 3.3. If the estimator is the sample mean
and under Assumptions 2.1 and 3.1, with probability
at least 1´δ, SED returns the optimal pair ti˚, j˚u with
a sample complexity bounded by:

τ ď O

˜

ÿ

iPJKKzti˚,j˚u

σ2

p∆˚
i q2

max

#

d, log

˜

σ2

p∆˚
i q2

c

K

δ

¸
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` log log

˜

σ2

p∆˚
i q2

c

K

δ

¸+¸

.

Thus, we observe that, apart from logarithmic terms,
we can bound the sample complexity as follows:

τ ď rO

ˆ

HP ¨ max

"

d, log

ˆ

1

δ

˙*˙

. (9)

We would like to point out that these results hold even
without Assumption 2.1 if appropriate mean estima-
tors are used. Moreover, it is worth remarking that the
complexity index HP involves one term for every arm
and not one term for every pair of arms. This is a no-
table improvement with respect to a full search on the
space of the arm pairs, which has cardinality OpK2q.
This property can be explained by the fact that SED

exploits the structure of the problem by reusing the
samples collected from each arm i P JKK for comput-
ing the dissimilarity for all the pairs ti, ju in which arm
i is involved. Thus, arm i will continue to be pulled as
long as at least one pair of the form ti, ju is consid-
ered admissible, i.e., it belongs to set S. This is also
the reason why the complexity is governed by the min-
imum sub-optimality gaps ∆˚

i that determines the last
round in which arm i will be pulled by SED.

4 LOWER BOUND

In this section, we derive a lower bound to the expected
sample complexity that any algorithm that outputs the
optimal pair ti˚, j˚u with high probability satisfies in
the case the dissimilarity function is a seminorm.

Theorem 4.1. There exists a class of Gaussian dis-
similarity bandits fulfilling Assumptions 2.1 and 3.1
such that for any fixed-confidence BAI algorithm that
fulfills PptpIτ , pJτu “ ti˚, j˚uq ě 1 ´ δ, there exists a
Gaussian dissimilarity bandit ν such that:

Eνrτ s ě Ω

¨

˝

ÿ

iPJKKzti˚,j˚u

σ2

p∆˚
i q2

log

ˆ

1

δ

˙

˛

‚ (10)

“ Ω

ˆ

HP ¨ log

ˆ

1

δ

˙˙

. (11)

The construction of the lower bound follows the well-
established construction for the BAI problem and the
change of measure arguments presented by Kaufmann
et al. (2016). Since the involved distributions are over
vectors, the main technical challenge consists in find-
ing the appropriate direction along which to alter the
expected observation vectors when constructing the al-
ternative instance.

Comparing the lower bound of Theorem 4.1 with the
sample complexity upper bound holding for the SED al-

gorithm, we observe the same dependence on the com-
plexity index HP and on the confidence term logp1{δq.
However, the upper bound presents a dependence on
d which might become significant for a large value of
δ. Nevertheless, the lower bound containing the same
complexity termHP suggests that our algorithm SED is
effectively addressing the challenges of the BAI prob-
lem for the dissimilarity bandits.

5 DISCUSSION

In this section, we elaborate on particular instances of
the BAI problem for dissimilarity bandits and discuss
whether they can be addressed with standard BAI in
MABs and we show the corresponding sample com-
plexity results. Table 1 summarizes all the results.

5.1 One-Dimensional Case

When the observation vector is one-dimensional (i.e.,
d “ 1) and wpµi, µjq “ |µi ´ µj | is the absolute value
of the difference, the problem of finding the most dis-
similar arm pair can be reduced to standard fixed-
confidence BAI in suitably defined MABs. Specifically,
we can adopt two approaches.

BAI on Pairs We map this setting to a standard
MAB over the pairs of arms. Let us define the MAB
having JKK ˆ JKK as the arm set and with the ex-
pected rewards defined as rµpi,jq :“ µi ´ µj . In this
specific case, we have that maxpi,jqPJKKˆJKK rµpi,jq “

maxpi,jqPJKKˆJKK |µi´µj | “ w˚. Notice that using such
a modeling strategy, the arm set has been enlarged by
a factor of K; therefore, we can expect the BAI pro-
cedure to become more complex. Indeed, let us define
r∆pi,jq :“ w˚ ´ rµpi,jq, a standard Successive Elimina-
tion (SE, Even-Dar et al., 2002) analysis leads to:

τ ď rO

¨

˝

ÿ

ti,ju‰ ti˚,j˚u

σ2

r∆2
pi,jq

log

ˆ

1

δ

˙

˛

‚. (12)

It is worth noting that r∆pi,jq ě ∆ti,ju since, by defini-
tion rµpi,jq “ µi ´µj ď |µi ´µj | “ wpµi, µjq. Neverthe-
less, the summation over the pairs in Equation (12)
will contain (but is not limited to) the terms ∆˚

i of
Equation (7) and, therefore, for sufficiently small δ
and apart from constants, the sample complexity of
the BAI on Pairs approach is larger than that of SED.

MaxBAI + MinBAI Alternatively, we can decom-
pose our problem into two classical BAI ones, in which
the goal is to identify the arms with the maximum
and the minimum expected reward, respectively. In-
deed, we can alternate the identification of the two and
recommend, as an outcome, the pair composed of the
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Approach 1-dimensional d-dimensional

SED (ours) HP ¨ log

ˆ

1

δ

˙

HP ¨ max

"

d, log

ˆ

1

δ

˙*

BAI on Pairs
ÿ

ti,ju‰ti˚,j˚u

σ2

r∆2
pi,jq

log

ˆ

1

δ

˙

Not applicable

MaxBAI+MinBAI

¨

˝

ÿ

i:∆`
i ą0

σ2

p∆`
i q2

`
ÿ

i:∆´
i ą0

σ2

p∆´
i q2

˛

‚log

ˆ

1

δ

˙

Not applicable

Table 1: Orders (in terms of rOp¨q) of the upper bounds on the stopping times of different approaches to solving
the BAI dissimilarity bandits problem. The best orders of complexity are reported in boldface.

arms provided as guesses by the two identification pro-
cedures. Formally, we use the fact that w˚ “ µ` ´µ´,
where µ` :“ maxiPJKK µi and µ´ :“ minjPJKK µj . Let

us define ∆`
i :“ µ` ´ µi and ∆´

i :“ µi ´ µ´, the
analysis of this double SE algorithm leads to:

τď rO

¨

˝

¨

˝

ÿ

i:∆`
i ą0

σ2

p∆`
i q2

`
ÿ

i:∆´
i ą0

σ2

p∆´
i q2

˛

‚log

ˆ

1

δ

˙

˛

‚. (13)

We observe that, remarkably, for sufficiently small δ
and apart from constant terms, the sample complexity
in Equation (13) has the same order as the sample
complexity of SED (Theorem 3.3). Indeed, we have:

∆˚
i “µ` ´µ´ ´ max

jPJKKztiu
|µi ´µj |

“mintµ` ´µ´ ´ pµi ´µ´q, µ` ´µ´ ´ pµ` ´µiqu

“mint∆`
i ,∆

´
i u.

It follows that the MaxBAI + MinBAI, from a theo-
retical perspective, displays performance comparable
to our SED.

5.2 Multi-Dimensional Case

The more challenging case of d-dimensional observa-
tion vectors cannot be addressed using the two above-
mentioned approaches. Indeed, both are not viable
since the involved observation vectors would be d-
dimensional on which there is no clear definition of
maximum and minimum, preventing the use of both
the BAI on Pairs and MaxBAI + MinBAI.

Another approach would be to design a MAB over the
pair of arms in which the learner selects a pair of arms
ti, ju to be pulled, obtains the pair of observation vec-
tors tx,yu and uses them to directly compute the dis-
similarity function wpx,yq. This term is regarded as a
surrogate of the dissimilarity over the expected obser-
vation vectors wpµi,µjq and employed as the reward in
the BAI procedure. However, this approach would in-
troduce a bias in estimating the dissimilarities. Indeed,
the expected dissimilarity Ex„νi,y„νj

rwpx,yqs does

not correspond to the dissimilarity of the expected ob-
servation vectors wpEx„νirxs,Ey„νj rysq “ wpµi,µjq

in general. Thus, using such an approach with a SE
algorithm may fail to identify the optimal arm pair.

Example 5.1. Let us consider a 1-dimensional 3-
armed Gaussian dissimilarity bandit with expected ob-
servations µ “ p0, 1{2, 1qJ, variances σ2 “ p0, b2, 0qJ,
and wpx, yq “ |x´y| as dissimilarity. The optimal arm
pair is ti˚, j˚u “ t1, 3u. However, if we consider the
expectation of the dissimilarity of the observations, we
obtain:

E
x„ν1,y„ν2

rwpx, yqs “ E
x„ν2,y„ν3

rwpx, yqs ě
a

2{πe´ 1
8b2 b,

E
x„ν1,y„ν3

rwpx, yqs “ 1.

Thus, we can make the first expression arbitrarily large
by setting the value of b, leading this approach to
wrongly believe that the optimal pairs are t1, 2u and
t2, 3u.

6 RELATED WORKS

Combinatorial Bandits The setting we analyze in
this work is related to that of Combinatorial MAB
(CMAB), defined originally for the regret minimiza-
tion task by Chen et al. (2013); Cesa-Bianchi and Lu-
gosi (2012) and, successively, extended to BAI (Chen
et al., 2014). In such a setting, the learner is allowed to
select a subset of the available arms (a.k.a. superarm),
and a set of constraints determines the formation of the
subset. This setting could be, in principle, adapted to
our problem by using the pair of arms as a superarm in
the CMAB setting and carrying out the learning using
the BAI algorithm designed for such a scenario (e.g.,
Gabillon et al., 2016; Chen et al., 2016a; Rejwan and
Mansour, 2020; Jourdan et al., 2021).

However, such works usually require more demanding
assumptions that do not allow their direct application
in our setting. Indeed, CMAB works require either that
the constraints enforced on the selection of the arms
for the superarm definition are matroidal (Chen et al.,
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Figure 1: Results for the 1-dimensional environments.

2016a; Jourdan et al., 2021), or that the superarm’s re-
ward is a linear combination of the arms’ reward (Chen
et al., 2014; Gabillon et al., 2016; Öner et al., 2018; Re-
jwan and Mansour, 2020), or, more generally, that the
superarm’s reward is monotone in the arms’ reward
with respect to the partial order of vectors (Chen et al.,
2016b; Huang et al., 2017). However, none of the above
can be adequately applied to our setting. The fact that
we are only considering pairs (and, for instance, we
cannot have single arms as superarms) makes the na-
ture of our constraints non-matroidal. On the other
hand, adopting a dissimilarity function, which can be
interpreted as an indicator of how far two arms are
from each other, as the superarm’s reward can break
the monotonicity assumption. We note that this is not
the case when the reward of each arm is a scalar, as
the only reasonable dissimilarity function between two
arms would be the absolute difference of their expected
observations, which can be reduced to a valid CMAB
setting by creating a copy of each arm with a nega-
tive reward. Indeed, this is equivalent to identifying
the minimum and maximum arms adopting standard
BAI algorithms. While we compare our results with
such methods for the one-dimensional case, we mainly
focus on the case where the arms’ observations are
multi-dimensional, where there is no analog modeling
of minimum and maximum problems independently,
and the monotonicity assumption does not hold even
with the simple choice of the Euclidean distance as the
dissimilarity function.

Environmental Monitoring Regarding the ap-
plication that inspired this work, i.e., environmental
monitoring, bandit works have been applied and pro-
vided significant results for the environmental field.
In particular, a BAI algorithm to identify the maxi-
mum concentration of a contaminant in potable wa-
ter has been designed by Gabrielli et al. (2022, 2024).
This work focuses on the exploitation of the tempo-
ral dependency of the arms in this setting, and, being
of a practical nature, it provides no theoretical result

on the sample complexity of the algorithm therein de-
fined. Therefore, it cannot be directly compared with
what we will present. Another work, by Martin and
Johnson (2020), focused on the regret minimization
task and aimed at assessing the performances of clas-
sical MAB techniques for designing smart sampling
techniques. This work showed that applying adaptive
sampling strategies can outperform traditional equal
probability allocation strategies. Even in this case,
the nature of the work was purely experimental, with
no novel insights into theoretical results or new algo-
rithms.

7 NUMERICAL SIMULATIONS
AND REAL-WORLD EXAMPLE

In this section, we present numerical simulations to
complement the theoretical results we provided in the
previous sections. At first, we compare the SED algo-
rithm in the scenario of 1-dimensional observation vec-
tors, in which we can provide significant and strong
baselines. Subsequently, we address the d-dimensional
case, and, finally, we provide an example of the perfor-
mance of SED on a simulated potable water scenario.2

7.1 1-dimensional Case

In the following, we compare SED with the perfor-
mance of two BAI algorithms: SE (Even-Dar et al.,
2002) and LIL-LUCB (Jamieson et al., 2014) in the
1-dimensional setting using as similarity wpµi, µjq “

|µi ´ µj |. For each of the above baseline methods, we
applied one of the modeling approaches we mentioned
before, i.e., BAI on Pairs and MaxBAI+MinBAI. We
will denote the two approaches using the suffixes -P
and -MM, respectively.

We experimented on synthetically generated bandit

2Details about the numerical simulations are reported
in Appendix B. The code used for the experimental section
is available at https://github.com/paolob2/sed.
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environments with K “ 10 Gaussian arms having uni-
form variance σ2 “ 0.01. We considered the following
three scenarios differing for the arm mean rewards:

• Env. #1: µi “ 0.1i @i P JKK;
• Env. #2: µ1 “ 1, µK “ 0, µi “ 0.5 @i P

JKKzt1,Ku;
• Env. #3: µ1 “ 1, µK “ 0, µi “ 0.9 @i : 1 ă i ď K

2 ,

and µi “ 0.1 @i : K
2 ă i ă K.

Notice that the complexity indexes of the three envi-
ronments are HP » 2.85, HP “ 0.32, and HP “ 8,
respectively, which makes Env #3 the one requiring
(most likely) the largest number of samples to reach
the stopping time.

We tested the considered algorithms over
different confidence values, specifically δ P

t0.005, 0.01, 0.02, 0.05, 0.1, 0.2, . . . , 0.9, 0.99u. In
the following, we report the average stopping time
τ̂ of the different algorithms, averaged over 1000
independent runs.3

Results The results are displayed in Figure 1. First,
let us notice that despite the guarantees being in high
probability, all the analyzed algorithms could always
identify the optimal pair of arms. The proportional de-
pendence of the stopping time τ̂ on logp1{δq is appar-
ent for all the algorithms, confirming the theoretical
results. Similarly, the algorithms are faster in detect-
ing the optimal pair as the complexity term HP gets
smaller. In all the examined scenarios, the -MM ap-
proach provides significantly better results, improving
the stopping time of a factor at least ˆ7 than the corre-
sponding -P one. However, this approach is not viable
in d ą 1. The second best option after the -MM ap-
proach in all three environments is the SED approach,
which differs by a factor of approximately ˆ3´4 across
all environments. We think the information provided
by the dissimilarity used in SED can only partially close
the gap in performances w.r.t. the -MM, specifically
crafted for this setting.

7.2 d-Dimensional Case

The comparison of the d-dimensional case is more com-
plex due to the lack of solid baselines, as discussed ear-
lier. We select as dissimilarity wpµi,µjq “ }µi ´ µj}2

the Euclidean norm of the vector difference and syn-
thetically generate bandit environments with K “ 10
arms, where each arm is a vector of d “ 16 independent
Gaussian variables having uniform variance σ2 “ 0.01.
The arms expected observation vector components µi,j

were randomly generated in the range p0, 1q in such a

3We also report the 90% confidence intervals as bars.
However, they are hard to spot in the pictures since their
width is « 10.

way that miniPJKK ∆
˚
i ě 0.1.

We compare the SED with the BAI on Pairs approach
for the multi-dimensional case, as discussed in Sec-
tion 5.2, i.e., by computing the dissimilarity over the
observation vectors }x ´ y}2, where x „ νi and y „

νj .
4 We applied this approach to the LIL-LUCB and

the SE algorithms. We tested the above algorithms for
different confidences δ P t0.01, 0.02, 0.05, 0.1, 0.2, 0.5u

The results show the average stopping time τ̂ over 1000
independent runs and the corresponding 90% confi-
dence intervals as vertical bars.

Results Figure 2a shows that the proposed SED ap-
proach can deliver the correct answer with a sample
complexity of « 2 order of magnitude smaller than
the -P approach. We recall that the -P approach in-
troduces a bias in the estimation (Section 5.2) and
this may influence their performances. Overall, the re-
sults are in line with what has been observed in the
1-dimensional case and strengthen the idea that what
we proposed outperforms the currently available algo-
rithms for the dissimilarity bandit setting.

7.3 Environmental Monitoring

Finally, we look at a more practical multi-dimensional
setting, where each arm represents the average fluo-
rescence response output at a certain hour of the day.
This output can be represented as a grey-scale image,
which we resize down to 4 ˆ 4 (d “ 16) and where
we normalize the values in the r0, 1s range. The envi-
ronment was generated from the dataset in Gabrielli
et al. (2021) as follows. First, we identified a suitable
30-day period (June 2019) and used arms correspond-
ing to even hours of the day (K “ 12). For each
vector element of each arm, we compute the sample
mean and variance of the corresponding pixel. Then,
each vector element is treated as a Gaussian vari-
able with the computed mean and a common vari-
ance equal to the 90% percentile of all the variance
estimators (i.e., σ » 0.004). The resulting value for
the complexity index is HP » 3.98. We tested for
δ P t0.01, 0.02, 0.05, 0.1, 0.2, 0.5u, running 100 runs for
each value. We used the same algorithms of the d-
dimensional case and a Naive-RR approach equivalent
to a uniform sampling strategy (as described in Martin
and Johnson (2020)).

Results The results are reported in Figure 2b. Even
for the realistic setting, the results are in line with the
ones provided before. In this case, the SED algorithm
provides stopping times that are « 60% smaller than
those of the other approaches. This shows empirical
evidence of the savings in terms of samples on an en-
vironmental monitoring campaign.

4We approximate them with 2dσ2 subgaussians.
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Figure 2: Results for (a) the 16-dimensional environments and (b) the realistic environmental monitoring case.

8 CONCLUSION

In this paper, motivated by real-world environmen-
tal monitoring applications, we have introduced the
novel setting of the dissimilarity bandits. On top of
it, we have formulated the fixed-confidence BAI prob-
lem of finding the pair of the most dissimilar arms.
For this problem, we have presented a novel algorithm
Successive Elimination for Dissimilarity that,
under the assumption that the dissimilarity can be
expressed through a seminorm and using the sample
mean as an estimator, enjoys desirable computational
and statistical properties. Specifically, we have pro-
vided a sample complexity analysis that highlights the
challenges of the identification problem using a novel
complexity index HP . Furthermore, we have derived
a sample complexity lower bound almost matched by
our SED. Finally, we have conducted an experimen-
tal campaign on both synthetic and real-world do-
mains showing the advantages of the proposed method
over the considered baselines, especially in the multi-
dimensional case.

Future works include the extensions of the proposed
approach and the corresponding analysis to different
BAI strategies, such as lower-upper approaches and
track and stop strategies, as well as the possibility
of generalizing the analysis for estimators other than
the sample mean. Concerning the dissimilarity func-
tions, further investigations should include the case in
which particular known functions are considered (for
obtaining more effective algorithms) and the challeng-
ing scenario in which the dissimilarity is not known
but has to be learned from some environmental feed-
back. Lastly, we consider the possibility of relaxing the
independence assumption between arms.
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Yes, Section 4.1

(c) (Optional) Anonymized source code, with a
specification of all dependencies, including
external libraries. Yes, we added the source
code to the supplementary material
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all theoretical results. Yes, in the statements
of Section 4 and 5

(b) Complete proofs of all theoretical results.
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reproduce the main experimental results (ei-
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URL). Yes, we added the source code to the
supplementary material

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). Yes

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). Yes, we used vertical bars
in the figures, and mentioned if they are not
visible due to the fact that they are negligible

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster,
or cloud provider). Yes, they are present in
Appendix B
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you include:

(a) Citations of the creator If your work uses ex-
isting assets. Yes

(b) The license information of the assets, if ap-
plicable. Yes
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ble
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pants and the total amount spent on partic-
ipant compensation. Not Applicable
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Dissimilarity Bandits: Supplementary Material

A Proofs

We start by presenting some definitions and properties of subgaussian random variables that will be needed for
the proofs of the subsequent lemmas Rigollet (2015).

• Let X be a σ2-subgaussian zero-mean random variable. Then, it holds for every k ě 1 that Rivasplata
(2012):

Er|X|ks ď kp2σ2qk{2Γ

ˆ

k

2

˙

, (14)

where Γp¨q is the Gamma function.

• A zero-mean random variable X is pξ2, βq-subexponential if:

ErexppλXqs ď exp

ˆ

ξ2λ2

2

˙

, @ |λ| ď
1

β
. (15)

• Let X be a σ2-subgaussian zero-mean random variable. Then, it holds that X2 ´ ErX2s is a p32σ4, 4σ2q-
subexponential random variable Honorio and Jaakkola (2014).

• Let X1, . . . , Xn be n independent pξ2, βq-subexponential random variables. Then, Sn :“ X1 ` ¨ ¨ ¨ ` Xn is a
pnξ2, βq-subexponential random variable.

• (Bernstein’s inequality) Let X be a zero-mean pξ2, βq-subexponential random variable. Then, it holds that:

P pX ą ϵq ď exp

ˆ

´
1

2
min

"

ϵ2

ξ2
,
ϵ

β

*˙

.

Let us start by showing the concentration rate of the sample mean estimator under Assumption 2.1.

Lemma A.1. Let pµt be the sample mean of t d-dimensional i.i.d. random vectors with independent components
drawn from a σ2-subgaussian distribution with expected value µ (Assumption 2.1). Then, for every δ P p0, 1q it
holds that:

P

¨

˝}pµt ´ µ}2 ą 4

d

σ2 max
␣

d, log 1
δ

(

t

˛

‚ď δ. (16)

Proof. Under Assumption 2.1, each element pµj,t of the vector pµt is an independent σ2

t -subgaussian variable.

P p}pµt ´ µ}2 ě ϵq “ P

¨

˝

ÿ

jPJdK

ppµj,t ´ µjq2 ě ϵ2

˛

‚ (17)

“ P

¨

˝

ÿ

jPJdK

`

ppµj,t ´ µjq2 ´ Erppµj,t ´ µjq2s
˘

ě ϵ2 ´ 4d
σ2

t

˛

‚ (18)

ď exp

¨

˚

˝

´
1

2
min

$

’

&

’

%

´

ϵ2 ´ 4dσ2

t

¯2

64dσ4

t2

,
ϵ2 ´ 4dσ2

t

8σ2

t

,

/

.

/

-

˛

‹

‚

, (19)

where line (18) follows from Equation (14) applied to Erppµj,t ´ µjq2s setting k “ 2. Line (19) is obtained by

Equation (16), recalling that ppµj,t ´ µjq2 ´Erppµj,t ´ µjq2s is a
´

32σ4

t2 , 4σ2

t

¯

-subexponential random variable and,



Paolo Battellani, Alberto Maria Metelli, and Francesco Trovò

consequently,
ř

jPJdK

`

ppµj,t ´ µjq2 ´ Erppµj,t ´ µjq2s
˘

is a
´

32dσ4

t2 , 4σ2

t

¯

-subexponential random variable, recalling

that the d components are independent. Then, by applying Bernstein’s inequality, under the assumption that

ϵ2 ě 4dσ2

t , we obtain the result.

By setting Equation (19) to be equal to δ, we find the appropriate value for ϵ. Let λ :“ ϵ2 ´ 4dσ2

t . Then:

exp

˜

´min

#

λ2

64dσ4

t2

,
λ

8σ2

t

+¸

“ δ (20)

ùñ λ “
σ2

t
max

#

c

64d log
1

δ
, 8 log

1

δ

+

(21)

ùñ ϵ2 “ 8
σ2

t
max

#

c

d log
1

δ
, log

1

δ

+

` 4d
σ2

t
ď 16

σ2

t
max

"

d, log
1

δ

*

(22)

ùñ ϵ ď 4

d

σ2 max
␣

d, log 1
δ

(

t
, (23)

where Equation (22) is obtained by observing that:

8max

#

c

d log
1

δ
, log

1

δ

+

` 4d ď 16max

#

c

d log
1

δ
, d, log

1

δ

+

“ 16max

"

d, log
1

δ

*

,

and Equation (21) follows since minpgpλq, hpλqq “ z is equivalent to λ “ maxpg´1pzq, h´1pzqq when g and h are
both invertible.

Lemma 3.1 (Sample Mean Concentration). Let δ P p0, 1q. Under Assumption 2.1, the sample mean pµi,t in
Equation (3) fulfills Equation (2) with:

Cδ
i,t :“

$

&

%

rµ P Rd : }rµ ´ pµi,t}2 ď 4

d

σ2 max
␣

d, log 2Kt2

δ

(

t

,

.

-

.

Proof. Let us consider the probability of the real mean vector to belong to the defined confidence intervals:

P
`

Dt P N, Di P JKK : µi R Cδ
i,t

˘

ď
ÿ

tPN

ÿ

iPJKK

P
`

µi R Cδ
i,t

˘

(24)

ď
ÿ

tPN

ÿ

iPJKK

P

¨

˝}µi,j ´ pµi,t}2 ą 4

d

σ2 max
`

d, log 2Kt2

δ

˘

t

˛

‚ (25)

ď
ÿ

tPN

ÿ

iPJKK

δ

2Kt2
ď δ, (26)

where a union bound over the time instants t and over the arms JKK in Equation (25), and the first inequality
in Equation (26) follows from Lemma A.1.

Lemma 3.2 (Elimination with Seminorms). Let δ P p0, 1q, t P N, and let BBd´1 be the surface of the unit sphere
in Rd. Let us define:

Uδ
t :“ 4

ˆ

max
xPBBd´1

}x}

˙

¨

d

σ2 max
␣

d, log 2Kt2

δ

(

t
. (5)

Then, using the sample mean as estimator and under Assumptions 2.1 and 3.1, if the arm pair ti, ju, with
i, j P JKK and i ‰ j, fulfills:

wppµi,t, pµj,tq ` 2Uδ
t ď max

ti1,j1uPS
wppµi1,t, pµj1,tq ´ 2U δ

t , (6)

then, ti, ju R S.
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Proof. Let us start by proving that the confidence set for the 2-norm induces a confidence set over the seminorm.
We apply the definition of Uδ

t and the properties of seminorms:

Cδ
i,t “

$

&

%

rµ P Rd : }rµ ´ pµi,t}2 ď 4

d

σ2 max
␣

d, log 2Kt2

δ

(

t

,

.

-

(27)

Ď

$

&

%

rµ P Rd : }rµ ´ pµi,t} ď 4 max
rµ1PCδ

i,t

}rµ1 ´ pµi,t}

}rµ1 ´ pµi,t}2

d

σ2 max
␣

d, log 2Kt2

δ

(

t

,

.

-

(28)

“

$

&

%

rµ P Rd : }rµ ´ pµi,t} ď 4 max
rµ1PCδ

i,t

›

›

›

›

rµ1 ´ pµi,t

}rµ1 ´ pµi,t}2

›

›

›

›

d

σ2 max
␣

d, log 2Kt2

δ

(

t

,

.

-

(29)

“

$

&

%

rµ P Rd : }rµ ´ pµi,t} ď 4 max
xPBBd´1

}x}

d

σ2 max
␣

d, log 2Kt2

δ

(

t
“: U δ

t

,

.

-

. (30)

where (30) follows from the fact that the vector rµ1 ´ pµi,t divided by its L2-norm yields a unit vector.

To obtain the result, it is sufficient to prove the following two inequalities under Assumption 3.1:

max
rµiPCδ

i,t,rµjPCδ
j,t

wprµi, rµjq ď wppµi,t, pµj,tq ` 2U δ
t , (31)

min
rµiPCδ

i,t,rµjPCδ
j,t

wprµi, rµjq ě wppµi,t, pµj,tq ´ 2U δ
t . (32)

We will only prove the first inequality (proof for the second is analogous). Let psµi,t, sµj,tq be a maximizer of
wp¨, ¨q in Cδ

i,t ˆ Cδ
j,t. Then:

max
rµiPCδ

i,t,rµjPCδ
j,t

wprµi, rµjq “ wpsµi,t, sµj,tq “ }sµi,t ´ sµj,t} (33)

“ }sµi,t ´ sµj,t ´ ppµi,t ´ pµj,tq ` ppµi,t ´ pµj,tq} (34)

“ }ppµi,t ´ pµj,tq ` ppsµi,t ´ pµi,tq ´ psµj,t ´ pµj,tqq} (35)

ď }pµi,t ´ pµj,t} ` }psµi,t ´ pµi,tq ´ psµj,t ´ pµj,tq} (36)

ď }pµi,t ´ pµj,t} ` }sµi,t ´ pµi,t} ` }sµj,t ´ pµj,t} (37)

ď wppµi,t, pµj,tq ` 2U δ
t , (38)

where line (35) is simply a reordering of the terms in the previous line, lines (36) and (37) are obtained by
applying the triangle inequality, and line (38) is obtained by combining the first part of the lemma with the fact
that sµi,t and sµj,t belong to Cδ

i,t and Cδ
j,t respectively.

Lemma A.2. If the estimator is the sample mean and under Assumptions 2.1 and 3.1, with probability at least
1 ´ δ, Algorithm 1 discards the sub-optimal pair ti, ju ‰ ti˚, j˚u after at most tti,ju phases, where:

tti,ju :“
c2σ2

∆2
ti,ju

max

#

d, 2

˜

log

˜

2c2σ2

∆2
ti,ju

c

2K

δ

¸

` log log

˜

2c2σ2

∆2
ti,ju

c

2K

δ

¸

` log 2

¸+

, (39)

where c “ 322 pmaxxPBBd´1 }x}q
2
.

Proof. Consider a sub-optimal pair ti, ju ‰ ti˚, j˚u. We have:

∆ti,ju “ wpµi˚ ,µj˚ q ´ wpµi,µjq ď max
rµ˚
i PCδ

i˚,t
,rµ˚

j PCδ
j˚,t

wprµ˚
i , rµ

˚
j q ´ min

rµiPCδ
i,t,rµjPCδ

j,t

wprµi, rµjq (40)

ď wppµi˚,t, pµj˚,tq ´ wppµi,t, pµj,tq ` 4U δ
t , (41)
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where Equation (41) is obtained by applying Equations (31) and (32). From Lemma 3.2, we discard pair ti, ju if:

wppµi,t, pµj,tq ` 2U δ
t ď max

ti1,j1uPS
wppµi1,t, pµj1,tq ´ 2Uδ

t (42)

ùñ
`

wppµi˚,t, pµj˚,tq ´ ∆ti,ju ` 4Uδ
t

˘

` 2U δ
t ď wppµi˚,t, pµj˚,tq ´ 2Uδ

t (43)

ùñ 8U δ
t ď ∆ti,ju. (44)

By substituting Uδ
t with its value, we obtain:

32 max
xPBBd´1

}x}

d

σ2 max
␣

d, log 2Kt2

δ

(

t
ď ∆ti,ju (45)

which we can rewrite as

t ě 322
ˆ

max
xPBBd´1

}x}

˙2
σ2

∆2
ti,ju

max

"

d, log
2Kt2

δ

*

. (46)

If d ě log 2Kt2

δ , we simply obtain:

t ě 322
ˆ

max
xPBBd´1

}x}

˙2
σ2d

∆2
ti,ju

. (47)

Otherwise, we rewrite the inequality, having denoted with c2 “ 322 pmaxxPBBd´1 }x}q
2
as:

∆2
ti,ju

t

2c2σ2
ě log

˜

2c2σ2

∆2
ti,ju

c

2K

δ

∆2
ti,ju

t

2c2σ2

¸

. (48)

The proof follows by applying Lemma A.3:

t ď
2c2σ2

∆2
ti,ju

˜

log

˜

2c2σ2

∆2
ti,ju

c

2K

δ

¸

` log log

˜

2c2σ2

∆2
ti,ju

c

2K

δ

¸

` log 2

¸

. (49)

We conclude by defining:

tti,ju :“
c2σ2

∆2
ti,ju

max

#

d, 2

˜

log

˜

2c2σ2

∆2
ti,ju

c

2K

δ

¸

` log log

˜

2c2σ2

∆2
ti,ju

c

2K

δ

¸

` log 2

¸+

. (50)

Theorem 3.3. If the estimator is the sample mean and under Assumptions 2.1 and 3.1, with probability at least
1 ´ δ, SED returns the optimal pair ti˚, j˚u with a sample complexity bounded by:

τ ď O

˜

ÿ

iPJKKzti˚,j˚u

σ2

p∆˚
i q2

max

#

d, log

˜

σ2

p∆˚
i q2

c

K

δ

¸

` log log

˜

σ2

p∆˚
i q2

c

K

δ

¸+¸

.

Proof. We consider an arm i P JKKzti˚, j˚u at a time. Arm i will be pulled as long as at least one pair of the
form ti, ju belongs to the set of admissible pairs S. This happens as long as t ď tti,ju for some j P JKKztiu. Thus,
let us define ti as the maximum number of times arm i is pulled:

ti :“ max
jPJKKztiu

tti,ju “
c2σ2

∆˚
i
2 max

#

d, 2

˜

log

˜

2c2σ2

∆˚
i
2

c

2K

δ

¸

` log log

˜

2c2σ2

∆˚
i
2

c

2K

δ

¸

` log 2

¸+

. (51)

The sample complexity becomes:

τ ď
ÿ

iPJKKzti˚,j˚u

ti. (52)

By applying the Big-O notation, we get the result.
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Theorem 4.1. There exists a class of Gaussian dissimilarity bandits fulfilling Assumptions 2.1 and 3.1 such
that for any fixed-confidence BAI algorithm that fulfills PptpIτ , pJτu “ ti˚, j˚uq ě 1 ´ δ, there exists a Gaussian
dissimilarity bandit ν such that:

Eνrτ s ě Ω

¨

˝

ÿ

iPJKKzti˚,j˚u

σ2

p∆˚
i q2

log

ˆ

1

δ

˙

˛

‚ (10)

“ Ω

ˆ

HP ¨ log

ˆ

1

δ

˙˙

. (11)

Proof. We consider instances of dissimilarity bandits, where the distributions of the observations νi are Gaus-
sian with diagonal covariance σ2I. Let us consider the base instance ν having expected observation vec-
tors pµ1, . . . ,µKqJ. The optimal arm pair is ti˚, j˚u. Let a P JKK, we construct an alternative instance
ν 1 in which only the expected observation vector of arm a changes from µa to µ1

a. Let a R ti˚, j˚u and
∆˚

a “ }µi˚ ´ µj˚ } ´ }µa ´ µb˚paq}, where b˚paq P argmaxbPJKK }µa ´ µb} (note that we can assume b˚paq ‰ a).
Let us define:

µ1
a “ µa ` 2∆˚

a

µa ´ µb˚paq

}µa ´ µb˚paq}
. (53)

We show that in the alternative instance ν 1 the optimal arm pair is ta, b˚paqu. Indeed, now ta, b˚paqu has larger
dissimilarity than ti˚, j˚u:

}µ1
a ´ µb˚paq} “

›

›

›

›

`

µa ´ µb˚paq

˘

ˆ

1 `
2∆˚

a

}µa ´ µb˚paq}

˙
›

›

›

›

(54)

“ }µa ´ µb˚paq} ` 2∆˚
a (55)

“ }µi˚ ´ µj˚ } ` ∆˚
a ą }µi˚ ´ µj˚ }, (56)

and b˚paq remains the arm most dissimilar for a, since for every b P JKK, we have:

}µ1
a ´ µb} ď }µa ´ µb} ` 2∆˚

a (57)

ď }µa ´ µb˚paq} ` 2∆˚
a (58)

“ }µ1
a ´ µb˚paq}. (59)

Consider the event ttpIτ , pJτu “ ti˚, j˚uu, any δ-PAC algorithm satisfies PνptpIτ , pJτu “ ti˚, j˚uq ě 1 ´ δ and

Pν1 ptpIτ , pJτu “ ti˚, j˚uq ď δ. Thus, we apply Lemma 1 of Kaufmann et al. (2016) to the stopping time τ , to get:

KLpνa,ν
1
aqE

ν
rNapτqs ě log

ˆ

1

2.4δ

˙

, (60)

where Napτq is the number of times arm a was pulled before stopping. Let us now compute the KL-divergence
between the arm distributions:

KLpνa,ν
1
aq “

1

2σ2

›

›µa ´ µ1
a

›

›

2

2
“

2p∆˚
aq2

σ2

›

›

›

›

µa ´ µb˚paq

}µa ´ µb˚paq}

›

›

›

›

2

2

ď
2p∆˚

aq2

σ2

1

minxPBBd´1 }x}2
. (61)

where BBd´1 denotes the surface of the unit sphere. Since the derivation holds for all a R ti˚, j˚u, we can conclude
that:

E
ν

rτ s ě
ÿ

aRti˚,j˚u

E
ν

rNas ě
ÿ

aRti˚,j˚u

σ2

2p∆˚
aq2

¨ min
xPBBd´1

}x}2 ¨ log

ˆ

1

2.4δ

˙

. (62)

Passing to the Big-Ω notation leads to the result.
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Lemma A.3. Consider the following inequality:

x ě logpαxq. (63)

A solution to the above inequality valid @α ě e is:

x “ logα ` log logα ` log 2. (64)

Proof. By plugging our solution into (63) we obtain:

logα ` log logα ` c ě logpαplogα ` log logα ` cqq (65)

α logpαqec ě αplogα ` log logα ` cq (66)

pec ´ 1q logα ě log logα ` c (67)

αec´1 ě ec logα. (68)

Choosing c “ log 2 trivially satisfies the inequality. It can be shown that the inequality is satisfied for all
c ě log e

e´1 .
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B Additional Experiments

In the following, we present some information to allow the reproducibility of the presented results and some
additional experiments to have a complete picture of the capabilities of the SED algorithm in different scenarios.

B.1 Additional Information for Reproducibility

In this section, we provide additional information for the full reproducibility of the experiments provided in the
main paper.

The code5 has been run on an Intel(R) Core(TM) i7 ´ 8750H CPU with 16 GiB of system memory. The
operating system was Ubuntu 18.04 LTS, and the experiments were run on Python 3.9.12. The libraries used in
the experiments, with the corresponding versions, were:

• matplotlib==3.6.2

• tikzplotlib==0.10.1

• numpy==1.22.3

• scipy==1.8.1

B.2 Noise Variance Experiments

The experiments provided in this section use a similar experimental setting as the one presented in Env. #1,
#2 and #3 described in the main paper. The only differences are about the confidence set, which is δ P

t0.01, 0.02, 0.05, 0.1, 0.2, 0.5u, and the number of runs that has been fixed to 100. Even with fewer experiments,
the confidence intervals are not visible in the pictures. In these experiments, we analyze the behavior of the SED
and the baseline used in the paper as the noise variance used for generating the sample σ2 P t0.01, 0.1, 1u.
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(c) σ2
“ 1

Figure 3: Results for the Env. #1.

Results The results are presented in Figures 3, 4 and 5. We used logarithmic scales for both x and y axes for
ease of visualization. As expected, as the variance of the noise increases, the number of samples required for the
identification of the optimal pair increases for all the methods. However, the relative ordering of the analyzed
methods remains constant over the different scenarios (Except for the two LIL-LUCB variants in Env. #2) and
for different values of the noise variance σ2. The percentage of improvement over the ´P approach remains
almost unchanged over the different scenarios.

B.3 Heterogeneous Noise Variance Experiment

In this experiment we allow the noise variance of the observation to be heterogeneous over the different compo-
nents. In particular, we draw a value σh uniformly over the interval r0.01, 0.1s for each one of the components xh

5Full code is available at https://github.com/paolob2/sed.



Paolo Battellani, Alberto Maria Metelli, and Francesco Trovò
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Figure 4: Results for the Env. #2.
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Figure 5: Results for the Env. #3.

and we use σ2
h as the variance for the realization of the observation for that specific component. The remaining

parameters of the experiments are the same as the ones provided in Section 7.2. We average our results over 100
independent runs.

Results The results are presented in Figure 6. They are in line with the one provided in the main paper, where
the use of the SED algorithm provides an improvement of around 2 order of magnitudes in terms of stopping
time τ̂ over the ´P approach. This behavior suggests that the dynamics of the phenomenon are driven by the
maximum noise variance since the identification even in this case has the same empirical complexity.

B.4 Observation Vector Dimension Experiment

The following experiments are executed in the same d-dimensional environment introduced in the main paper,
with the only difference being the value of d, which is chosen in d P t4, 16, 64u (experiments with d “ 16 are
the same as the one provided in the main paper and are reported for the sake of completeness). We provide the
averaged results over 100 runs.

Results The results are shown in Figure 7. In all scenarios, the SED algorithm outperforms the BAI on Pairs
methods by at least one order of magnitude. Even in this case, the improvement over the ´P approach remains
almost constant (of a multiplicative factor) as d increases. This reflects the dependence on d of the regret bound
in Theorem 3.3 in which the increase in terms of sample complexity has only a logpdq dependence. Overall,
these results strengthen the idea that exploiting the structure, as SED does, in the dissimilarity bandit setting is
providing a significant improvement over currently available options.
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Figure 6: Results for heterogeneous variance in the 16-dimensional case.
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Figure 7: Results for the d-dimensional scenario.


