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Abstract

We consider the task of identifying the
Copeland winner(s) in a dueling bandits
problem with ternary feedback. This is an
underexplored but practically relevant vari-
ant of the conventional dueling bandits prob-
lem, in which, in addition to strict prefer-
ence between two arms, one may observe
feedback in the form of an indifference. We
provide a lower bound on the sample com-
plexity for any learning algorithm finding the
Copeland winner(s) with a fixed error prob-
ability. Moreover, we propose POCOW-
ISTA, an algorithm with a sample complex-
ity that almost matches this lower bound,
and which shows excellent empirical perfor-
mance, even for the conventional dueling
bandits problem. For the case where the pref-
erence probabilities satisfy a specific type of
stochastic transitivity, we provide a refined
version with an improved worst case sample
complexity.

1 INTRODUCTION

Dueling bandits (Yue and Joachims, 2009) or the
more general problem class of preference-based ban-
dits (Bengs et al., 2021) is a practically relevant vari-
ant of the standard reward-based multi-armed bandits
(Lattimore and Szepesvári, 2020), in which a learner
seeks to find in a sequential decision making process
an optimal arm (choice alternative) by selecting two
(or more) arms as its action and obtaining feedback in
the form of a noisy preference over the selected arms.
The setting is motivated by a broad range of appli-
cations, where no numerical rewards for the actions
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are obtained and only comparisons of arms (choice
alternatives) are possible as actions. In information
retrieval systems with human preference judgments
(Clarke et al., 2021), for example, humans choose their
most preferred choice alternative among the two (or
more) retrieved choice alternatives (e.g., text passages,
movies, etc.). Another example is the analysis of vot-
ing behavior, in which voters express their preferences
over pairs of political parties or candidates (Brady and
Ansolabehere, 1989). The rationale for these types
of applications is that humans are generally better at
coherently expressing their preference for two choice
alternatives than at reliably assessing those two on a
numerical scale (Carterette et al., 2008; Li et al., 2021).

Even though there is a large body of literature on duel-
ing or preference-based bandits (see Sui et al. (2018);
Bengs et al. (2021)) covering various variants or as-
pects of the initial setting, little attention has been
paid to the variant, in which a learner might observe
an indifference between the selected arms for compari-
son as the explicit feedback. In practice, however, this
type of feedback is quite common, especially when the
preference feedback is provided by a human. In the
human preference judgment example above, the hu-
man might be indifferent between the two retrieved
choice alternatives, as the two are considered equally
good/mediocre/bad, so neither is chosen. Similarly,
voters might be indifferent between two political par-
ties or candidates, or two athletes resp. sport teams
competing against each other might draw.

In several areas of preference-based learning, exten-
sions of existing models or methods have been consid-
ered to appropriately incorporate such indifferences.
Notable examples are the recent extensions of estab-
lished probabilistic ranking models (Firth et al., 2019;
Turner et al., 2020; Henderson, 2022), the field of
partial label ranking (Alfaro et al., 2022, 2023), an
extension of the established label ranking problem,
or preference-based Bayesian optimization (Dewancker
et al., 2018; Nguyen et al., 2021). However, the field
of preference-based bandits lags behind in this regard,
as the only work appears to be Gajane et al. (2015)
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that considers an adversarial learning scenario for re-
gret minimization.

Motivated by this gap in the literature on preference-
based bandits, we consider the stochastic dueling ban-
dits problem with indifferences (or ternary feedback)
for the task of identifying an optimal arm as quickly
as possible, i.e., with as few queried feedback obser-
vations as possible. Similarly as in the conventional
dueling bandits problem with binary feedback (i.e.,
strict preferences) specifying the notion of optimal-
ity of an arm raises some issues. Indeed, the most
natural notion of an optimal arm would be an arm,
which is non-dominated by any other arm in terms of
the probability of being strictly preferred or indiffer-
ent. This notion corresponds to the Condorcet winner
(CW) in the conventional setting, where the probabil-
ity of observing indifferences is zero. However, it is
well known that such an arm may not exist in general
in the conventional setting, an issue obviously shared
by the adopted CW for our considered setting. In con-
trast to the conventional CW, the adopted CW does
not even guarantee uniqueness of the optimal arm1.

The non-existence issue of the CW has led several au-
thors to consider alternative notions for the optimality
of arms guaranteed to exist in any case. Most of them
have their roots in tournament solutions used in social
choice and voting theory (Brandt et al., 2015, 2016)
or game theory (Owen, 2013). One popular alterna-
tive is the Copeland set (Copeland, 1951) defined as
the set of choice alternatives (arms) with the highest
Copeland score. In the absence of indifferent prefer-
ences, the Copeland score of a choice alternative is the
number of choice alternatives it dominates in terms
of the pairwise preference probability. In settings like
ours, i.e., where indifferences might be present, the
Copeland score of a choice alternative is the sum of
(i) the number of choice alternatives it strictly domi-
nates, and (ii) half the number of choice alternatives
it is most likely indifferent to. Again, both definitions
coincide for the conventional setting, where the prob-
ability of observing an indifference is zero.

As the term itself suggests, there can be several arms
in the Copeland set, each of which is called a Copeland
winner (COWI). Despite this non-uniqueness issue,
the main advantages of considering the Copeland set
are that (i) it is guaranteed to exist and (ii) that it
consists only of the Condorcet winner(s) in case of its
(their) existence. Moreover, the majority of alterna-
tive optimality notions from tournament solutions are
in fact supersets of the Copeland set (see Ramamohan
et al. (2016)).

1As an example, consider the case of three arms, where
each arm has a probability of 1/2 of being preferred over
or indifferent to another arm, respectively.

Outline and Contributions
In this paper, we make the following contributions:

Introduction of the problem (Sec. 2.1): We are
the first to consider the problem of finding a Copeland
winner in a dueling bandits problem with possible in-
difference observations. This problem variant is of
practical relevance, especially for applications involv-
ing human feedback.

Lower bounds (Sec. 2.2): We provide lower bounds
on the sample complexity for any learning algorithm to
find a Copeland winner with a fixed confidence in this
problem variant. Our lower bounds imply as a special
case a long-missing lower bound for the conventional
dueling bandits problem.

A practically useful (Sec. 5) and near-optimal
algorithm (Sec. 3): We construct a learning algo-
rithm, POCOWISTA, which selects pairs of arms in
a challenge-tournament-like fashion and exploits prior-
posterior-ratio martingale confidence sequences for de-
termining the Copeland scores of the underlying arms
in an asymptotically optimal way. In numerical sim-
ulations, we find that it performs quite well even for
conventional dueling bandits.

Relaxing quadratic dependency (Sec. 4): We
show that in the case of an underlying transitiv-
ity of the preference relations, the update formula
of POCOWISTA can be modified (called TRA-
POCOWISTA) such that the quadratic dependency
w.r.t. the number of arms n of the worst-case sample
complexity can be relaxed to a log-linear dependency.

2 PROBLEM FORMULATION

We consider a set A of n ∈ N≥2 available choice al-
ternatives that we refer to as arms and simply iden-
tify them by their index: A = {1, . . . , n}. The learn-
ing process consists of consequential rounds, in which
the learner performs an action leading to some feed-
back for its action. More precisely, the learner’s ac-
tion in round t corresponds to choosing a pair of arms
(it, jt) ∈ A × A, for which it observes noisy feedback
ot with three possible realizations:

• it ≻ jt, i.e., arm it is strictly preferred over arm jt,
• it ≺ jt, i.e., arm jt is strictly preferred over arm it,
• it ∼= jt, i.e., neither it is strictly preferred over jt
nor the opposite (indifference between it and jt).

Each of the three possible explicit observations
is determined by one of the following matrices
P≻, P≺, P

∼= ∈ [0, 1]n×n. Here, the (i, j)-th entry of
P≻ (

or P≺) denoted by P≻
i,j

(
or P≺

i,j

)
specifies the

probability of observing a strict preference of i over j
(or j over i), while the (i, j)-th entry of P

∼= denoted
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by P
∼=
i,j specifies the probability of observing an in-

difference between i and j. Apparently, it holds that
P≻
i,j + P

∼=
i,j + P≺

i,j = 1 for any i, j ∈ A, and conse-
quently any dueling bandits problem with indifferences
is uniquely determined by one of its strict preference
probability matrices, since P≻

j,i = P≺
i,j . The Copeland

score of arm i ∈ A is

CP(i) =
∑

j ̸=i
1JP≻

i,j>max{P≺
i,j ,P

∼=
i,j}K

+ 1
2

∑
j ̸=i

1JP∼=
i,j>max{P≻

i,j ,P
≺
i,j}K,

(1)

where 1J·K denotes the indicator function. Thus, an
arm gets a score of one for each arm it dominates
and half a point for each arm it is indifferent to. The
Copeland set (or the set of Copeland winners) consists
of all arms with maximal Copeland score, denoted by

C = {i ∈ A |CP(i) = maxj CP(j)}. (2)

The goal of the learner is to find an element of the
Copeland set, i.e., a Copeland winner (COWI), by
performing as few actions as possible. To this end,
the learner may decide to stop the learning process at
some round τ and output an arm î ∈ A deemed to be
a COWI. Because of the stochasticity of the observed
feedback, the learner can make mistakes, so any rea-
sonable learner should meet a theoretical guarantee
that its output is correct. Thus, if δ ∈ (0, 1) is the
desired bound on the error probability, it should hold
that P(̂i /∈ C) ≤ δ. Additionally, the learner’s stopping
time τ should be as small as possible (in expectation
or with high probability), while still guaranteeing the
latter error probability bound.

2.1 Related Work

The conventional dueling bandits problem, i.e., with-
out indifferences, has been introduced as a practical
variant of the classical multi-armed bandit (MAB)
problem by Yue and Joachims (2009). Initially, the
problem has been studied intensively for the task of
regret minimization under the assumption of an exist-
ing CW (Yue et al., 2012; Zoghi et al., 2014, 2015b;
Komiyama et al., 2015) to specify a target arm. Due
to the non-existence issue of the CW, several works
have considered alternative optimality notions for the
target arm such as the COWI (Zoghi et al., 2015a;
Komiyama et al., 2016; Wu and Liu, 2016) or other
tournament solutions (Ramamohan et al., 2016).

Similar to the classical MAB problem, there has been
also much research interest in the pure exploration task
in the conventional dueling bandits problem, where the
goal is to identify the target arm as quickly as possi-
ble. Again, the majority of works have used the CW to
specify the target arm (Karnin, 2016; Mohajer et al.,

2017; Ren et al., 2019, 2020) or a generalized variant
for multi-dueling settings (Haddenhorst et al., 2021a;
Brandt et al., 2022). Although the identification of a
COWI has been in fact studied before the aforemen-
tioned works (Busa-Fekete et al., 2013; Urvoy et al.,
2013; Busa-Fekete et al., 2014), none of these consid-
ered the case where indifferences are observed as ex-
plicit feedback.

In practical use cases, observing indifferences as pair-
wise preference feedback plays an important role, as
has been highlighted by a number of papers with appli-
cations ranging from sports (Tiwisina and Külpmann,
2019), medicine (Li et al., 2021), crowdsourcing tasks
(Asudeh et al., 2015; Clarke et al., 2021) to informa-
tion retrieval (Yan et al., 2022). In addition, there is
recent work in preference-based Bayesian optimization
(González et al., 2017) that incorporates indifference
feedback into the optimization procedure (Dewancker
et al., 2018; Nguyen et al., 2021).

In the dueling resp. preference-based bandit literature,
however, the only work which has considered indiffer-
ences is Gajane et al. (2015), which addresses an ad-
versarial learning scenario for the task of regret mini-
mization. To this end, the Sparring algorithm (Ailon
et al., 2014), which uses two bandit algorithms for the
classic MAB setting (each of which selects one arm
of the pair to be dueled), is used with two instantia-
tions of Exp3 (Auer et al., 2002) suitably modified to
account for preference feedback.

2.2 Lower bounds

For convenience, write P = ((P≻
i,j , P

∼=
i,j , P

≺
i,j))i<j ,

and denote by P
(1)
i,j , P

(2)
i,j , P

(3)
i,j the order statistics of

P≻
i,j , P

∼=
i,j and P≺

i,j . For any learning algorithm A
for the dueling bandits problem with indifferences let
τA(P) denote its number of samples (or actions), when
started on a dueling bandits problem characterized by
P. If P is clear from the context, we simply write τA.
We denote by

I(j) = {i ∈ A \ {j} |P∼=
i,j > max{P≺

i,j , P
≻
i,j}}

L(j) = {i ∈ A \ {j} |P≻
i,j > max{P≺

i,j , P
∼=
i,j}}

the set of all indifferent resp. superior arms to some
arm j ∈ A. We write C(P) for the Copeland set
in (2) to highlight its dependence on the underly-
ing dueling bandits problem with indifferences. If P
is fixed, let dj = maxi CP(i) − CP(j) be the differ-
ence between the largest Copeland score and arm j’s
Copeland score. Finally, KL((p1, p2, p3), (q1, q2, q3)) is
the Kullback-Leibler divergence between two categor-
ical random variables with parameters (p1, p2, p3) and
(q1, q2, q3), while we use the common notation kl(p, q)
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for the Kullback-Leibler divergence between two cate-
gorical random variables with parameters (p, 1−p) and
(q, 1− q), i.e., two Bernoulli distributions with success
parameters p and q.

The following theorem provides a lower bound on the
sample complexity of any learner for the dueling ban-
dits problem (i) without, or (ii) with indifferences. We
provide the proof as well as a more sophisticated but
more technical variant of (ii) in the appendix (Sec. B),
which is also non-trivial on some exceptional instances
where this simpler bound fails to be positive.

Theorem 2.1. If A correctly identifies the COWI
with confidence 1− δ, then

E[τA(P)] ≥ ln 1
2.4δ

∑
j∈A\{i∗}

Cj min
k∈L(j)∪I(j)

1
Dj,k(P) ,

where C(P) = {i∗} and

(i) Dj,k(P) := kl(P≻
j,k, 1− P≻

j,k) and

Cj := max
{ |L(j)|1J|L(j)|≥dj+1K

dj+1 ,
(|L(j)|−1)1Ji∗∈L(j)K

|L(j)|+dj−2

}
for

all P without indifferences (P
∼= = 0 ∈ [0, 1]n×n) and

mini<j min{P≻
i,j , 1− P≻

i,j} > 0.

(ii) Dj,k(P) := max{KL
(1)
j,k,KL

(2)
j,k} with

KL
(1)
j,k = KL((P≻

j,k, P
∼=
j,k, P

≺
j,k), (P

∼=
j,k, P

≻
j,k, P

≺
j,k)),

KL
(2)
j,k = KL((P≻

j,k, P
∼=
j,k, P

≺
j,k), (P

≺
j,k, P

∼=
j,k, P

≻
j,k)),

Cj = max
(i,l)∈Ψ(j)

(|I(j)|i )(|L(j)|
l )

(|I(j)|−1
i−1 )(|L(j)|

l )1Ji≥1K+(|I(j)|i )(|L(j)|−1
l−1 )1Jl≥1K

,

Ψ(j) :=
{
(i, l) ∈ {0, . . . , |I(j)|}×{0, . . . , |L(j)|} |

i+ 2l ≥ 2dj + 1
}

for any P with minj,k min{P≻
j,k, P

∼=
j,k, P

≺
j,k} > 0.

An easier-to-interpret form of the bounds would be

ln 1
2.4δ

∑
j∈A\{i∗}

∑
k∈L(j)∪I(j)

1
Dj,k(P) , (3)

that resembles the well-known lower bounds in the
standard multi-armed bandits literature (e.g., Theo-
rem 4 in Kaufmann et al. (2016). However, note that
we get a lower bound for the latter as follows:∑
k∈L(j)∪I(j)

1
Dj,k(P) ≥ min

k∈L(j)∪I(j)

1
Dj,k(P) · |L(j) ∪ I(j)|.

In light of this, the Cj terms on the right-hand side
of Theorem 2.1 can be seen as lower bounds for the
|L(j) ∪ I(j)| terms. Even though the bounds in The-
orem 2.1 are “only” lower bounds for the “natural”
lower bounds in (3), they are sufficient to derive, for
example, the expected Ω(n2) worst-case bound. Lower
bounds of that type are common in the dueling bandit

literature for best arm identification tasks, due to the
combinatorial nature of the problem, e.g., see Theorem
5.2 in Haddenhorst et al. (2021a).

Moreover, note that the lower bound in Theorem 2.1
(i) is non-trivial (i.e., positive) for any admissible
P, and in a worst-case sense on instances P with
mini<j |P≻

i,j − 1/2| > ∆ and CP(i∗) = n/2 + o(n)

of order Ω(n
2
/∆2 ln 1/δ). Thus, existing approaches for

COWI identification in a conventional dueling bandits
setting are nearly optimal (cf. Table 7 in Bengs et al.
(2021)). The bounds in (i) and (ii) are consistent in
the sense that if maxj ̸=i∗ |I(j)| = 0, the factor Cj ap-
pearing in (ii) is exactly the maximum term appearing
in (i), and similarly Ω(n

2
/∆2 ln 1/δ) samples might be

necessary in expectation to identify the COWI of an

indifferent P with mini<j |P (1)
i,j − P

(2)
i,j | > ∆.

3 LEARNING ALGORITHM

The key to designing an efficient learning algorithm
for the COWI identification task in general is to de-
termine as quickly as possible which arms are potential
COWIs and then restrict the sampling mechanism to
the set of potential COWIs. In light of this, an impor-
tant component to ensure the efficiency of this sam-
pling procedure is to decide quickly and reliably the
allocation of the Copeland scores (cf. (1)). The latter
can be seen in fact as finding the mode of a ternary
distribution: For a fixed arm pair, say i, j, the duel-
ing feedback is governed by a ternary distribution Pi,j

with probabilities P≻
i,j , P

∼=
i,j and P≺

i,j for i ≻ j, i ∼= j and
i ≺ j. The Copeland score of arm i is then the num-
ber of ternary distributions Pi,j (for varying j ̸= i) for
which P≻

i,j is the mode and half the number of these

for which P
∼=
i,j is the mode. Thus, it seems reasonable

to use an efficient estimation procedure for correctly
identifying the mode of a discrete distribution.

3.1 Mode Identification

In Jain et al. (2022) the PPR-1v1 algorithm is pro-
posed for mode identification by combining the 1-
versus-1-principle from multiclass classification with
prior-posterior-ratio (PPR) martingale confidence se-
quences (Waudby-Smith and Ramdas, 2020), which
provide anytime confidence sequences on a specific pa-
rameter of a distribution.

The prior-posterior-ratio martingale. Let
(Pθ)θ∈Θ be a family of distributions with parameter
space Θ. Let π0 be a prior distribution on Θ and πt

be the posterior distribution after observing t ∈ N
many i.i.d. observations X1, . . . , Xt according to Pθ∗

for some (unknown) θ∗ ∈ Θ. The prior-posterior ratio
(PPR) is given by Rt(θ) = π0(θ)/πt(θ) for θ ∈ Θ. If π0



Viktor Bengs, Björn Haddenhorst, Eyke Hüllermeier

assigns non-zero mass everywhere on Θ, then

Ct = {θ |Rt(θ) < 1/δ} =
{
θ
∣∣ δ < πt(θ)/π0(θ)

}
(4)

is a (1 − δ)-confidence sequence for θ∗, i.e., it holds
that P(∃t ∈ N : θ∗ /∈ Ct) ≤ δ (see Waudby-Smith and
Ramdas (2020)). The name PPR martingale stems
from the fact that (Rt(θ

∗))Tt=1 is a martingale w.r.t. the
canonical filtration of X1, X2, . . . , XT for any T ∈ N.

PPR-Bernoulli test. As an exemplary application
of this result, consider the case of Bernoulli distribu-
tions for Pθ, i.e., Pθ = Ber(θ) and Θ = [0, 1], for which
one seeks to determine as quickly as possible (i.e., in
a sequential manner) whether θ∗ > 1/2 or θ∗ < 1/2
holds. Note that this is equivalent to identifying the
mode of the Bernoulli distribution Ber(θ∗). Using as
the (conjugate) prior a Beta distribution with both
parameters being 1, one obtains the uniform distribu-
tion on Θ, which fulfills the requirements for Ct in (4)
to be an anytime confidence sequence for θ∗. Further,
the posterior distribution after observing t many i.i.d.
Bernoulli samples is a Beta distribution with param-
eters (st(1) + 1, st(0) + 1), where st(x) is the number
of observed x ∈ {0, 1}. Thus, one can stop the sam-
pling process as soon as 1/2 is not contained in Ct

and declaring the x with the most observations as the
mode. Formally, the PPR-Bernoulli test is to declare x
as the mode if fBeta(1/2; st(x)+1, st(¬x)+1) ≤ δ and
st(x) ≥ st(¬x), where fBeta(·;α, β) is the probability
density function of an (α, β)-Beta distribution.

PPR-1-versus-1 test. At first sight, it is tempt-
ing to instantiate the PPR martingale approach with
the Dirichlet distribution as the conjugate prior for a
categorical distribution to identify the latter’s mode
by stopping the sampling process similarly as for the
PPR-Bernoulli test. However, if the categorical distri-
bution has more than two categories, say c1, c2, . . . , cK
with K ∈ N≥2, then it is difficult to obtain a closed-
form criterion as in the PPR-Bernoulli test, so that
costly numerical computations are needed.

In light of this, in Jain et al. (2022) it is proposed
to reduce the mode identification problem to multi-
ple PPR-Bernoulli tests using the 1-versus-1-principle
from multiclass classification. Thus, a PPR-Bernoulli
test is simultaneously conducted for each pair of cat-
egories (ci, cj) with i ̸= j and an error probability
of δ/(K − 1), each of which uses only the number of
occurrences of ci and cj and ignoring the remaining
ones. If there exists a category that has won all of its
tests, it is declared to be the mode. This procedure
is equivalent to monitoring only the PPR-Bernoulli
test for the pair of categories (ct(1), ct(2)), where ct(1)
resp. ct(2) is the category that has the most resp. sec-
ond most occurrences after observing t samples. Con-
sequently, the prior-posterior-ratio-1-versus-1 (PPR-

1v1) test decision is to declare ct(1) as the mode if
fBeta(1/2; st(1) + 1, st(2) + 1) ≤ δ/(K − 1), where st(x)
denotes the number of occurrences of ct(x).

The probability of making an error with this test pro-
cedure, i.e., not declaring the true mode as the mode
of the underlying categorical distribution, is bounded
by means of a union bound by δ. Moreover, the above
PPR-1v1 test is asymptotically optimal in the sense
that the ratio of its expected stopping time and the
lower bound on the expected stopping time for a fixed
categorical distribution tends to one for the error prob-
ability δ tending to zero (Jain et al., 2022).

We can transfer this test procedure to the case of iden-
tifying the mode of a ternary distribution Pi,j , which
is equivalent to finding the mode of a categorical dis-
tribution with three categories c1 := “i ≻ j′′, c2 :=
“i ∼= j′′ and c3 := “i ≺ j′′. The explicit PPR-1v1
procedure for this case is given in Algo. 1, where
S(1) ≥ S(2) ≥ S(3) is the order statistics of S1, S2, S3.

Algorithm 1 PPR-1v1

1: Input: Arms i and j, error prob. δ ∈ (0, 1)
2: Initialization: S = (S1, S2, S3)← (0, 0, 0)
3: while TRUE do
4: Compare i and j
5: Observe o ∈ {i ≻ j, i ∼= j, i ≺ j}
6: if o = i ≻ j then
7: S1 ← S1 + 1
8: else if o = i ∼= j then
9: S2 ← S2 + 1

10: else
11: S3 ← S3 + 1
12: end if
13: if fBeta(1/2;S(1) + 1, S(2) + 1) ≤ δ/2 then
14: return argmaxk=1,2,3 Sk

15: end if
16: end while

3.2 POCOWISTA

Guided by the design idea above, i.e., determining as
quickly as possible which arms are potential COWIs
and then restricting the sampling mechanism to the set
of potential COWIs, we propose the POCOWISTA
(POtential COpeland WInner STays Algorithm) in
Algo. 2. For each arm two Copeland scores are main-
tained: (i) the current Copeland score ĈP (·), which is
determined (using the PPR-1v1 algorithm) by the du-
els already contested, and (ii) the potential Copeland
score CP (·), which is determined by both the duels al-
ready contested and the duels not yet contested, which
add an optimistic bonus to the current Copeland score.
For the calculation of this optimistic bonus, a set of
arms D(·) is maintained for each arm, which includes
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the arms that have already been compared to (du-
eled with) the respective arm as well as the arm itself.
The optimistic bonus for an arm, say i, is then the
size of the set of arms not compared to i so far, i.e.,
|A \D(i)| = n− |D(i)|.

Algorithm 2 POCOWISTA

1: Input: Set of arms A, error prob. δ ∈ (0, 1)
2: Initialization: e← 1 and for each i ∈ A set

D(i)← {i} (set of already compared arms)

ĈP (i)← 0 (current Copeland score)
CP (i)← n− 1 (potential Copeland score)

3: while ∄i s.t. ĈP (i) ≥ CP (j)∀j ∈ A \ {i} do
4: ie = argmaxi∈A CP (i)

5: je = argmaxj∈A\D(ie) ĈP (j)

6: k ← PPR-1v1(ie, je, δ/
(
n
2

)
)

7: Scores-Update(ie, je, k)
8: e← e+ 1
9: end while

10: return argmaxi∈A ĈP (i)

Algorithm 3 Scores-Update

1: Input: Arms i, j, ternary decision k ∈ {1, 2, 3}
2: if k = 1 then
3: ĈP (i)← ĈP (i) + 1
4: else if k = 2 then
5: ĈP (i)← ĈP (i) + 1/2, ĈP (j)← ĈP (j) + 1/2
6: else
7: ĈP (j)← ĈP (j) + 1
8: end if
9: D(i)← D(i) ∪ {j}, D(j)← D(j) ∪ {i}

10: CP (i)← n− |D(i)|+ ĈP (i)

11: CP (j)← n− |D(j)|+ ĈP (j)

The algorithm proceeds in epochs, in each of which
it uses as the “first” arm the current incumbent in
terms of the potential Copeland scores (line 4, Algo.
2) and as the “second” arm the one with the highest
current Copeland score among those not yet compared
to the first (line 5, Algo. 2). These two arms are suc-
cessively dueled against each other until the mode of
their feedback distribution is identified by means of
the PPR-1v1 algorithm (line 6, Algo. 2), which leads
to an update of their Copeland scores (line 7, Algo. 2):
The current Copeland score of the dominating arm is
increased by one (lines 2–3,6–7, Algo. 3), while in case
of an indifference both obtain half a point (lines 4–
5, Algo. 3). In addition, the set of already compared
arms of the two arms is extended by the other one
(line 9, Algo. 3) and the potential Copeland scores are
updated as well (lines 10–11, Algo. 3).

The update procedure corresponds to the end of an
epoch, which leads to the start of a new epoch, unless

there is an arm whose current Copeland score is not
smaller than any other potential Copeland score (line
3, Algo. 2). In such a case the arm is a COWI and
returned by the algorithm (line 10).

For the sampling complexity of POCOWISTA we de-
rive the following result (proof in Sec. C).

Theorem 3.1. Let A := POCOWISTA. For any du-
eling bandits problem with indifferences characterized
by P = ((P≻

i,j , P
∼=
i,j , P

≺
i,j))i<j , such that there exists no

pair i, j ∈ A with i ̸= j and P≻
i,j = P≻

j,i = 1/3, it holds

P
(̂
iA ∈ C(P) and τA(P) ≤ t(P, δ)

)
≥ 1− δ,

where t(P, δ) ≤
∑

i<j t0
(
(P≻

i,j , P
∼=
i,j , P

≺
i,j), δ/(

n
2)
)
,

t0
(
(p1, p2, p3), δ

)
=

c1p(1)

(p(1)−p(2))2
ln
( √

2 c2p(1)√
δ(p(1)−p(2))

)
, (5)

p(1) ≥ p(2) ≥ p(3) is the order statistic of p1, p2, p3 ∈
[0, 1], c1 = 194.07, and c2 = 79.86.

Here, t0
(
(p1, p2, p3), δ

)
is the sample complexity of

PPR-1v1 to identify the mode of a (categorical) distri-
bution with probabilities p1, p2, p3 with an error proba-
bility of at most δ (see Theorem 9 in Jain et al. (2022)).
Since in the worst case, one needs to ensure for all pairs
of arms i, j that the mode of the ternary distribution
Pi,j is correctly identified, the PPR-1v1 algorithm is
used with δ/(n2) for its error probability (line 6 of Algo.
2) to ensure that the overall error probability δ is not

exceeded. If P is such that mini<j |P (1)
i,j − P

(2)
i,j | > ∆,

we see that POCOWISTA’s sample complexity is in
O(n

2 ln(n)/∆2 ln 1/δ) which almost matches the worst-
case lower bound in Theorem 2.1 by Pinsker’s inequal-
ity (see Theorem F.4 in Haddenhorst et al. (2021b)).
Thus, for the conventional dueling bandit case it has
the same worst-case sample complexity as existing al-
gorithms such as SAVAGE (Urvoy et al., 2013) or
PBR-CCSO (Busa-Fekete et al., 2013).

A comparison of the sample complexity per pair, say i
and j, of all the three algorithms only with respect to
the number of arms n, error probability δ and the gap
between the arms ∆i,j = |P≻

i,j − 1/2| for the conven-
tional dueling bandits is given in the following table:

POCOWISTA SAVAGE PBR-CCSO
1

∆2
i,j

ln
(

n√
δ
· 1
∆i,j

)
1

∆2
i,j

ln
(
n
δ ·

1
∆i,j

)
1

∆2
i,j

ln
(
n2

δ ·
1

∆i,j

)
There, we see that POCOWISTA and SAVAGE have
a better dependence on n compared to PBR-CCSO,
while POCOWISTA additionally has a better de-
pendence on δ than the other two. Accordingly,
POCOWISTA is expected to have a better sample
complexity in practical applications than SAVAGE,
which in turn has a better sample complexity than
PBR-CCSO. This is supported by our experimental
results in Sec. 5.
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3.3 Reduction to Conventional Dueling
Bandits

Another tempting idea would be to modify existing
algorithms for the conventional dueling bandit setting
to accept indifference feedback as follows. Whenever
an indifference is observed for the two chosen arms
it and jt, this feedback is changed to either it ≻ jt
or it ≺ jt, by flipping a (fair) coin. However, this
reduction approach has two key issues:

The reduction can change the target arm. As-
sume the preference probabilities for the initial prob-
lem (with indifferences) for three arms to be as follows:

P (1 ≻ 2) = 0.5 P (1 ∼ 2) = 0.1 P (1 ≺ 2) = 0.4
P (1 ≻ 3) = 0.1 P (1 ∼ 3) = 0.75 P (1 ≺ 3) = 0.15
P (2 ≻ 3) = 0.5 P (2 ∼ 3) = 0.1 P (2 ≺ 3) = 0.4

The reduction transforms the probabilities to be:

P (1 ≻ 2) = 0.55 P (1 ≺ 2) = 0.45
P (1 ≻ 3) = 0.475 P (1 ≺ 3) = 0.525
P (2 ≻ 3) = 0.55 P (2 ≺ 3) = 0.45

Thus, the Copeland scores for the initial problem are
1.5 for arm 1, 1 for 2, and 0.5 for 3, so the Copeland
winner set consists of only arm 1. However, for the re-
duced problem, all three arms have a Copeland score
of 1, so all of them will be considered to be Copeland
winners. Thus, any modified algorithm using this re-
duction will, roughly speaking, err in 2 out of 3 cases.

The reduction can change the gap. Using the
previous example, we can see that learning in principle
can be made harder when using the reduction: The
minimal gap for the reduced problem is 0.05, while it
was 0.1 initially.

4 TRANSITIVE PREFERENCES

Although the sample complexity of POCOWISTA al-
most matches the lower bound, it is in some sense un-
satisfactory as it is log-linear with respect to the num-
ber of actions (the number of arm pairs) in the worst
case, i.e., O(n2 ln(n)). In light of this, we consider
in this section structural properties on the preference
probabilities such that the dependency of POCOW-
ISTA’s sample complexity with respect to n is reduced
to O(n ln(n)) in the worst case. To this end, we lever-
age the commonly used stochastic transitivity proper-
ties in conventional dueling bandits, which in essence
assume that if an arm i is preferred over arm j and
arm j over arm k, then i is also preferred over arm
k. As this notion of transitivity merely considers the
part of the feedback regarding the strict preferences,
we augment it with the notion of IP-transitivity and
PI-transitivity as well as transitivity of indifferences
(Hansson and Grüne-Yanoff, 2022) in order to account
for the possibility of observing indifferences.

Definition 4.1. A dueling bandits problem with in-
differences characterized by P = ((P≻

i,j , P
∼=
i,j , P

≺
i,j))i<j

is called transitive if for any distinct i, j, k ∈ A it holds:

1. Transitivity of strict preference.
If P≻

i,j > max(P≺
i,j , P

∼=
i,j) and P≻

j,k > max(P≺
j,k, P

∼=
j,k),

then P≻
i,k > max(P≺

i,k, P
∼=
i,k).

2. IP-transitivity.
If P

∼=
i,j > max(P≺

i,j , P
≻
i,j) and P≻

j,k > max(P≺
j,k, P

∼=
j,k),

then P≻
i,k > max(P≺

i,k, P
∼=
i,k).

3. PI-transitivity.
If P≻

i,j > max
(
P≺
i,j , P

∼=
i,j

)
and P

∼=
j,k > max

(
P≺
j,k, P

≻
j,k

)
,

then P≻
i,k > max

(
P≺
i,k, P

∼=
i,k

)
.

4. Transitivity of indifference.
If P

∼=
i,j > max(P≺

i,j , P
≻
i,j) and P

∼=
j,k > max(P≺

j,k, P
≻
j,k),

then P
∼=
i,k > max(P≺

i,k, P
≻
i,k).

For the conventional dueling bandit setting, i.e., where
P

∼= = 0 ∈ [0, 1]n×n, the transitivity property in Def.
4.1 is equivalent to strict weak stochastic transitivity.

Under the assumption of a transitive dueling bandits
problem with indifferences as stipulated by Def. 4.1,
one can modify POCOWISTA and in particular the
update rule to take the transitivity property into ac-
count. The resulting algorithm will be called TRA-
POCOWISTA and for sake of completeness, we state
its pseudo-code in Algo.4. The main difference to
POCOWISTA is to maintain three additional sets for
each arm: the set of defeated arms W (·), the set of in-
different arms I(·), and the set of inferior arms L(·)
(line 2). These sets are then updated at the end of
each round according to the implications 1-4. of tran-
sitivity and in turn used to update the current and
potential Copeland score of the two arms involved by
using Algo. 5 in line 7.

Algorithm 4 TRA-POCOWISTA

1: Input: Set of arms A, error prob. δ ∈ (0, 1)
2: Initialization: e← 1 and for each i ∈ A

D(i)← {i}, ĈP (i)← 0, CP (i)← n− 1
W (i)← ∅ (set of defeated arms)
I(i)← ∅ (set of indifferent arms)
L(i)← ∅ (set of superior arms)

3: while ∄i s.t. ĈP (i) ≥ CP (j)∀j ∈ A \ {i} do
4: ie = argmaxi∈A CP (i)

5: je = argmaxj∈A\D(ie) ĈP (j)
6: k ← PPR-1v1(ie, je, δ/n)
7: Transitive-Score-Update(ie, je, k)
8: e← e+ 1
9: end while

10: return argmaxi∈A ĈP (i)

More specifically, the transitivity of strict preferences
and the IP-transitivity imply that once it is ensured
that an arm i either dominates another one j or is
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indifferent to it, then i will also dominate all arms
dominated by j. PI transitivity implies that if i domi-
nates j, all arms that are indifferent to j are also dom-
inated by i. Thus, i’s current Copeland score can be
increased, in addition to the update due to the domi-
nation of j (increasing by one), by the number of arms
that are dominated/indifferent by/to j (line 3). In case
of indifference between i and j the current Copeland
scores can be increased, in addition to the update due
to the indifference (increasing both by one half), by the
number of arms that are dominated/indifferent to the
other (lines 9–10). Conversely, the potential Copeland
score of the dominated arm j can be decreased, in ad-
dition to the update due to the domination by i, by
the number of arms that are dominating/indifferent to
i (line 18)

Algorithm 5 Transitive-Score-Update

1: Input: Arms i, j, k ∈ {1, 2, 3}
2: if k = 1 then
3: ĈP (i)← ĈP (i) + |W (j) ∪ I(j)|+ 1
4: W (i)←W (i) ∪W (j) ∪ I(j) ∪ {j}
5: D(i)← D(i) ∪W (j) ∪ I(j) ∪ {j}
6: L(j)← L(j) ∪ L(i) ∪ I(i) ∪ {i}
7: D(j)← D(j) ∪ L(i) ∪ I(i) ∪ {i}
8: else if k = 2 then
9: ĈP (i)← ĈP (i) + |W (j)|+ 1/2(1 + |I(j)|)

10: ĈP (j)← ĈP (j) + |W (i)|+ 1/2(1 + |I(i)|)
11: W (i)←W (i) ∪W (j),W (j)←W (i)
12: L(i)← L(i) ∪ L(j), L(j)← L(i)
13: I(i)← I(i)∪ I(j)∪ {j}, I(j)← I(i)∪ I(j)∪ {i}
14: D(i)← D(i) ∪D(j), D(j)← D(i)
15: else
16: Same as for k = 1 with i and j reversed
17: end if
18: Same steps as line 10 and 11 in Algo. 3

Although there are three additional data structures to
manage, the memory complexity is still linear w.r.t.
the number of arms n, as in POCOWISTA. In addi-
tion, we obtain the following improved bound on the
sample complexity w.r.t. n (proof in Sec. D).

Theorem 4.2. Let A := TRA-POCOWISTA. For
any dueling bandits problem with indifferences as in
Theorem 3.1 which in addition is transitive according
to Def. 4.1, it holds that

P
(̂
iA ∈ C(P) and τA(P) ≤ t̃(P, δ)

)
≥ 1− δ,

where t̃(P, δ) =
∑E

e=1 t0
(
(P≻

ie,je
, P

∼=
ie,je

, P≺
ie,je

), δ/n
)
, t0

is as in (5) and E ≤ n.

5 EXPERIMENTS

Since, to the best of our knowledge, there are no al-
gorithms for identification tasks in dueling bandits

problems with indifferences, we resort in the follow-
ing experiments to the conventional dueling bandits
problem, i.e., where P

∼= = 0. First, we compare
POCOWISTA with SAVAGE (Urvoy et al., 2013)
and PBR-CCSO (Busa-Fekete et al., 2013), which
are the only available methods for the task of identify-
ing a Copeland winner. Since the Copeland set boils
down to a singleton set consisting of the Condorcet
winner (CW) in case of the latter’s existence, we com-
pare POCOWISTA also with the state-of-the-art al-
gorithm SELECT (Mohajer et al., 2017) and DKWT
(Haddenhorst et al., 2021a) for identifying a CW.

Copeland Winner Identification. Given a strict
preference probability matrix P≻ ∈ P(n) for n arms,
with P(n) =

{
P≻ ∈ [0, 1]n×n

∣∣P≻
i,j + P≻

j,i = 1,∀i ̸= j
}
,

we consider first the setting of identifying a COWI of
P≻. We distinguish between two classes of a (conven-
tional) dueling bandits problem:

P1(n) :=
{
P≻ ∈ P(n)

∣∣|P≻
i,j − 1/2| ≥ 0.1 ∀i ̸= j

}
,

P2(n) :=
{
P≻ ∈ P(n)

∣∣|P≻
i,j − 1/2| ≥ 0.05,

|P≻
i,j − 1| ≤ 0.3, ∀i ̸= j

}
.

The class P1(n) are easy problems, as the gap param-
eters are quite large, while P2(n) consists of more dif-
ficult problem instances, where the pairwise probabili-
ties are close to 1/2 making it more difficult to identify
whether one arm dominates the other or vice versa.

For both classes, a strict preference probability matrix
is repeatedly selected uniformly at random, and then
used to generate the feedback for the learning algo-
rithms for a total of 100 repetitions. Note that all al-
gorithms are parameter-free in the sense that they only
need the desired error probability δ and the number of
arms n, but no other adjustable (hyper-)parameters.

The two leftmost plots in Figure 1 show the average
sample complexity (and their standard deviation in
brackets) of the four algorithms for the two problem
classes with n = 20 arms and different choices for the
error probabilities δ. All algorithms have an empirical
error probability of zero for each δ. This is due to the
Bonferroni correction used by each algorithm to ensure
that each pairwise comparison is correctly decided,
making the overall decision quite conservative. As can
be seen from the plots, the average sample complexi-
ties of our algorithms are by a magnitude smaller than
for the existing methods and the same holds for their
standard deviations. TRA-POCOWISTA has even a
clear improvement over POCOWISTA, although the
considered problem instances do not necessarily satisfy
the transitivity property in Def. 4.1.

Condorcet Winner Identification. Next, we con-
sider the setting of identifying a Condorcet winner
(CW) from a given strict preference probability matrix
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Figure 1: Average sample complexities (and standard deviations) for the considered dueling bandit classes of the
considered learning algorithms.

P≻ ∈ PCW(n) for n arms with an existing CW, where
PCW(n) :=

{
P≻ ∈ P(n)

∣∣∃ρ : P≻
ρ,j > 1

2 ,∀j ̸= ρ
}
.

Again, we distinguish between two classes of a (con-
ventional) dueling bandits problem with different dif-
ficulties for this task similarly as above by defining
Pi,CW(n) := Pi(n) ∩ PCW(n) for i = 1, 2. The exper-
imental set-up (i.e., sampling a problem instance and
repetition number) is similar as above.

Note that POCOWISTA, TRA-POCOWISTA and
DKWT are parameter-free, while SELECT needs as
a parameter the number of duels carried out per arm
pair. In order to ensure that SELECT fulfills the
sought error probability δ this parameter needs to be
chosen as a function of mini<j |P≻

i,j − 1/2| i.e., the
unknown minimal gap (in the conventional dueling
bandit setting). In the following, we use the optimal
choice for SELECT’s parameter, although this gives
it a clear advantage.

The results for n = 20 arms and different choices
for the error probabilities δ for this experiment set-
ting are reported in the rightmost plots of Figure 1.
Again, all algorithms have an empirical error proba-
bility of zero due to the Bonferroni correction. The
results show that DKWT is inferior to all other three
algorithms, while POCOWISTA requires on aver-
age a slightly higher sample complexity than SE-
LECT with the optimal choice of its parameter, and
TRA-POCOWISTA’s sample complexity is the low-
est. Nevertheless, the standard deviation of SE-
LECT’s sample complexity is lower compared to our
algorithms, which is due to the fact that the param-
eter of SELECT determines exactly how many pair-
wise comparisons are performed per pair of arms. The
variance then arises from the different numbers of arm
pairs used in total to arrive at the decision, which
varies accordingly due to the random selection of the
problem instance in each repetition. It is worth noting
that the sampled problem instances do not necessarily
satisfy the transitivity property in Def. 4.1, so that the
results are again in favor of TRA-POCOWISTA.

6 CONCLUSION

In this paper, we considered an extension of the du-
eling bandits problem, where feedback in the form of
an indifference can be observed in addition to the bi-
nary strict preference feedback. We have studied the
pure exploration problem of finding a Copeland winner
within a fixed confidence setting, for which we pro-
vided instance-dependent lower bounds on the sam-
ple complexity. Furthermore, we proposed POCOW-
ISTA, which can solve this task almost optimally
for worst-case scenarios, and extended it to TRA-
POCOWISTA for the case where the preference prob-
abilities satisfy a certain type of stochastic transitivity
that lead to improved sample complexity bounds.

For future work, it would be interesting to investigate
the considered extension of the dueling bandit prob-
lem in a regret minimization setting, or to combine it
with other variants or extensions of the dueling bandits
problem such as the multi-dueling setting (Saha and
Gopalan, 2020) or the non-stationary preference vari-
ants (Saha and Gupta, 2022; Kolpaczki et al., 2022;
Buening and Saha, 2023; Suk and Agarwal, 2023) or
contextualized variants (Saha, 2021; Bengs et al., 2022;
Saha and Krishnamurthy, 2022).

Since our motivation for extending the dueling ban-
dits problem stemmed from real-world examples, a
more in-depth experimental study in such practical
application areas would certainly be a desirable av-
enue for future work, e.g., in algorithm configuration or
learning-to-rank problems for which preference-based
bandit algorithms have been used before (Brost et al.,
2016; Schuth et al., 2016; Oosterhuis et al., 2016; Zhao
and King, 2016; El Mesaoudi-Paul et al., 2020; Brandt
et al., 2023).
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Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [No]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Not Applicable]

(b) The license information of the assets, if ap-
plicable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
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A LIST OF SYMBOLS

The following table contains a list of symbols that are frequently used in the main paper as well as in the following
supplementary material.

Basics

≺,≻ strict preference relation for objects, i.e., o ≻ o′ (or o ≺ o′ ) iff object o is preferred over object o′

(or otherwise)
∼= indifference relation for objects, i.e., o ∼= o′ iff object o is not preferred over object o′ and vice versa
1[·] indicator function
N set of natural numbers (without 0), i.e., N = {1, 2, 3, . . . }
R set of real numbers
[n] the set {1, 2, . . . , n} for some n ∈ N
p(1), p(2), p(3) order statistics of values p1, p2, p3, i.e., p(1) ≥ p(2) ≥ p(3) and {p(1), p(2), p(3)} = {p1, p2, p3}
fBeta(x; a, b) probability density function of the Beta distribution with parameters a, b > 0 at point x ∈ R
KL(p,q) Kullback-Leibler divergence for two categorical distributions

p = (p1, . . . , pK) ∈ [0, 1]K and q = (q1, . . . , qK) ∈ [0, 1]K such that
∑K

i=1 pi =
∑K

i=1 qi = 1
kl(p, q) Kullback-Leibler divergence for two Bernoulli distributions with success probabilities p, q ∈ [0, 1]

i.e, kl(p, q) = KL((p, 1− p), (q, 1− q))
Modeling related

n number of arms
A = [n] set of arms
P≻ strict preference probability matrix with P≻

i,j being the probability of observing i ≻ j

(element of [0, 1]n×n)
P≺ strict preference probability matrix with P≺

i,j being the probability of observing i ≺ j

(element of [0, 1]n×n)
P

∼= indifference probability matrix with P
∼=
i,j being the probability of observing i ∼= j

(element of [0, 1]n×n)

P
(1)
i,j , P

(2)
i,j , P

(3)
i,j order statistic of P≻

i,j , P
∼=
i,j and P≺

i,j ,

i.e., P
(1)
i,j ≥ P

(2)
i,j ≥ P

(3)
i,j and {P (1)

i,j , P
(2)
i,j , P

(3)
i,j } = {P≻

i,j , P
∼=
i,j , P

≺
i,j}

Pi,j ternary probability distribution with probabilities P≻
i,j , P

∼=
i,j and P≺

i,j for i ≻ j, i ∼= j and i ≺ j

P family of ternary distributions characterizing a dueling bandits problem instance with indifferences
i.e., ((P≻

i,j , P
∼=
i,j , P

≺
i,j))i<j

∆(i, j) gap of the mode of Pi,j , i.e., ∆(i, j) = |P (1)
i,j − P

(2)
i,j |

CP(j); CP(P, j) Copeland score of an arm j ∈ A (see (1)); for a given problem instance P
C; C(P) Copeland set (see (2)); for a given problem instance P
dj ;dj(P) difference between the largest Copeland score and some arm j’s Copeland score ; for a given problem instance P

Learner related

A a learning for the dueling bandits problem with indifferences
(it, jt) pair of arms chosen by the learner in round t (action of the learner in round t)
ot preference observation in round t for the learner’s action in round t

either it ≻ jt, it ∼= jt, or it ≺ jt
τA(P) sample complexity of the learning algorithm A, when started on a dueling bandits problem

with indifferences specified by P

îA Copeland Winner candidate returned by A
δ specified probability of error (failure probability)

(TRA-)POCOWISTA related

ĈP (i) current Copeland score of i
CP (i) potential Copeland score of i
D(i) set of already compared arms to i
W (i) defeated arms by i
I(i) indifferent arms to i
L(i) superior arms to i
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B DERIVATION OF LOWER BOUNDS

Before giving the proof and discussion of Theorem 2.1, we need some additional notation and auxiliary re-
sults. The Kullback-Leibler divergence for two categorical distributions p = (p1, . . . , pK) ∈ [0, 1]K and

q = (q1, . . . , qK) ∈ [0, 1]K such that
∑K

i=1 pi =
∑K

i=1 qi = 1 is given by

KL(p,q) =

{∑
i∈[K]:pi>0 pi ln

(
pi

qi

)
, if ∀j ∈ [K] : qj = 0⇒ pj = 0,

∞, otherwise.

If K = 2, we will simply write kl(p, q) := KL((p, 1− p), (q, 1− q)) for any p, q ∈ [0, 1].

Lemma B.1. (i) For any two categorical distributions p = (p1, . . . , pK) ∈ [0, 1]K and q = (q1, . . . , qK) ∈
[0, 1]K , it holds that

KL(p,q) ≤
∑K

i=1

(pi − qi)
2

qi
.

(ii) For any δ ∈ (0, 1) it holds that kl(δ, 1− δ) ≥ ln((2.4δ)−1).

(iii) For any p, q ∈ [0, 1] it holds that 2(p− q)2 ≤ kl(p, q) ≤ (p−q)2

q(1−q) .

For any learning algorithm A for the dueling bandits problem with indifferences let τA(P) denote its number
of samples, when started on a dueling bandits problem with indifferences specified by P = ((P≻

i,j , P
∼=
i,j , P

≺
i,j))i<j

Further, let us write dAt for the duel (element of A × A) made at time step t. Define τAi,j(P) to be the number
of times A compares (i, j) or equivalently (j, i) before termination, i.e.,

τAi,j(P) =

τA(P)∑
t=1

1JdA
t ={i,j}K,

so that τA(P) =
∑

i<j τ
A
i,j(P). In the following, we will simply write τA for τA(P) and τAi,j for τAi,j(P).

Let oAt be the feedback observed by A at time step t, after conducting the duel dAt . Write FA
t =

σ(dA1 , o
A
1 , . . . , d

A
t , o

A
t ) for the sigma algebra generated by the choices and the corresponding observed feedback of

A until time t, and as usual FτA = {B ∈ σ(
⋃

t FA
t ) : B ∩{τA ≤ t} ∈ FA

t ∀t ∈ N}. Note that A can be interpreted
as a learning algorithm for the classical multi-armed bandit with

(
n
2

)
many arms (one for each possible pair) and

“rewards” r(oAt ) ∈ {−1, 0, 1}, where for oAt ∈ {it ≻ jt, it ∼= jt, it ≺ jt} we set

r(oAt ) =


−1, oAt = it ≺ jt,

0, oAt = it ∼= jt,

1, oAt = it ≻ jt.

For sake of convenience, let us write Pi,j = (P≻
i,j , P

∼=
i,j , P

≺
i,j), so that P = (Pi,j)i<j . With this, we may transfer

Lemma 1 from Kaufmann et al. (2016) to our setting as follows:

Lemma B.2. Let P = (P≻
i,j , P

∼=
i,j , P

≺
i,j)i<j, P̃ = (P̃≻

i,j , P̃
∼=
i,j , P̃

≺
i,j)i<j be two problem instances of the dueling bandits

problem with indifferences such that mini<j Pi,j > 0 and mini<j P̃i,j > 0. For any learning algorithm A for the

dueling bandits problem with indifferences, which fulfills EP[τ
A(P)],EP̃[τ

A(P̃)] <∞, it holds that∑
i<j

EP

[
τAi,j(P)

]
KL(Pi,j , P̃i,j) ≥ supE∈FτA

kl (PP(E),PP′(E)) .

In case P and P̃ do not have indifferences (i.e., if maxi,j P
∼=
i,j = 0 = maxi,j P̃

∼=
i,j), the same inequality holds with

KL(Pi,j , P̃i,j) replaced by kl(P≻
i,j , P̃

≻
i,j), respectively.

We are now ready to prove Theorem 2.1.

Recall L(j) and I(j), let CP∗ = maxi CP(i) and dj = CP∗ − CP(j) be as above. In order to capture the
dependence on the underlying instance P of interest, we may simply write L(P, j) and I(P, j) as well as dj(P),
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CP∗(P) and CP(P, j) for these corresponding terms. For any set X ⊆ [n] and k ∈ N, let us denote by X [k] the
set of k-sized subsets of X. If P has no indifferences, let us simply write

κx,y(P) := kl
(
P≻
x,y, 1− P≻

x,y

)
for any x, y ∈ A.
Theorem B.3. If A is an algorithm that correctly identifies the Copeland winner with confidence 1− δ for any
P without indifferences, then we have for all such P with mini<j min{P≻

i,j , 1 − P≻
i,j} > 0 and C(P) = {i∗} (for

some i∗, i.e., there is a unique Copeland winner), then

EP[τ
A] ≥ ln

1

2.4δ

∑
j∈A\{i∗}

max

{
|L(j)|
dj + 1

1J|L(j)|≥dj+1K,
|L(j)| − 1

|L(j)|+ dj − 2
1Ji∗∈L(j)K

}
min

z∈L(j)

1

κj,z(P)
. (6)

Note that the right-hand side of (6) depends not only via κj,z(P) but also via dj = dj(P), L(j) = L(P, j) on
the underlying instance P. Before stating its proof, the following lemma assures us that the lower bound from
Theorem B.3 is in any case non-trivial.

Lemma B.4. Suppose P has no indifferences and C(P) = {i∗} holds and let j ∈ A \ {i∗} be arbitrary. If
i∗ ̸∈ L(j), then |L(j)| ≥ dj + 1.

Proof of Lemma B.4. As P has no indifferences, the Copeland scores are given as

CP(P, l) = (n− 1)− |L(l)|

for any l ∈ A. If i∗ ̸∈ L(j), then j ∈ L(i∗), which implies CP(P, i∗) ≤ (n− 1)− 1 = n− 2 and thus

dj = CP(P, i∗)− CP(P, j) ≤ (n− 2)− ((n− 1)− |L(j)|) = |L(j)| − 1

follows directly.

According to the previous lemma, for any instance P, at least one of the indicators appearing in (6) is 1, whence
the lower bound is larger than 0. In case i∗ ∈ L(j) and L(j) is large, it is possible that both indicators are 1.
We proceed with the proof of the theorem.

Proof of Theorem B.3. Suppose A and P with C(P) = {i∗} without indifferences are fixed.

Claim 1: The following holds:

(i) If L ⊆ L(j) fulfills |L| ≥ dj + 1, then

ln
1

2.4δ
≤

∑
z∈L

EP[τ
A
jz]κj,z(P). (7)

(ii) If i∗ ∈ L(j) and L ⊆ L(j) \ {i∗} fulfills |L| ≥ dj − 1, then (7) holds as well.

Proof of Claim 1: To prove (i), suppose L ⊆ L(j) with |L| ≥ dj + 1 to be arbitrary but fixed for the moment.

Define the instance P̃ via

P̃≻
x,y :=

{
1− P≻

x,y, if (x, y) ∈ {(j, z), (z, j)} for z ∈ L,
P≻
x,y, otherwise.

By construction we have CP(P̃, i∗) ≤ CP(P, i∗) and obtain

CP(P̃, j) = CP(P, j) + |L| ≥ CP(P, j) + dj + 1

= CP(P, j) + (CP(P, i∗)− CP(P, j)) + 1 = CP(P, i∗) + 1 ≥ CP(P̃, i∗) + 1.
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This shows i∗ ̸∈ C(P̃), and by assumption on A the event E := {i∗ ∈ C(P)} ∈ FτA has the properties

PP(E) ≥ 1− δ and PP̃(E) ≤ δ.

Therefore, Lemma B.2 and part (ii) of Lemma B.1 assure∑
x<y

EP

[
τAx,y

]
KL

(
Px,y, P̃x,y

)
≥ kl

(
PP(E),PP̃(E)

)
≥ kl(1− δ, δ) ≥ ln

1

2.4δ
. (8)

In case (x, y) ̸∈ {(j, z), (z, j)} for any z ∈ L, it holds that P̃x,y = Px,y so that KL
(
Px,y, P̃x,y

)
= 0. In case

z ∈ L ⊆ L(j) we have

KL
(
Pj,z, P̃j,z

)
= KL

(
(P≻

j,z, P
≺
j,z), (P

≺
j,z, P

≻
j,z)

)
= kl

(
P≻
j,z, 1− P≻

j,z

)
= κj,z(P).

Combining these estimates with (8) proves (7).

To prove (ii) suppose i∗ ∈ L(j) holds and L ⊆ L(j) \ {i∗} fulfills |L| ≥ dj − 1. Define the instance P̃ via

P̃≻
x,y :=

{
1− P≻

x,y, if (x, y) ∈ {(j, z), (z, j)} for z ∈ L ∪ {i∗}
P≻
x,y, otherwise.

Regarding that P̃≻
j,i∗ = 1−P≻

j,i∗ and P̃≻
z,i∗ = P≻

z,i∗ for z ̸= j, we have CP(P̃, i∗) = CP(P, i∗)− 1, and similarly we

see CP(P̃, j) = CP(P, j)+ |L|+1. Together with |L| ≥ dj −1, we obtain with the same argumentation as before

that CP(P̃, j) ≥ CP(P̃, i∗) + 1 and thus i∗ ̸∈ C(P̃). Therefore, following the lines from above, we conclude that
(7) also holds in this case. ■

To prove the theorem, abbreviate for convenience κx,y = κx,y(P) in the following, and let us at first suppose

that |L(j)| ≥ dj +1 holds. When summing the inequality (7) over all
(|L(j)|
dj+1

)
many L ⊆ L(j) of size |L| = dj +1,

any of the summands EP[τ
A
jz]κj,z, with z ∈ L(j), appears exactly

(|L(j)|
dj+1

)
times, i.e., we have(

|L(j)|
dj + 1

)
ln

1

2.4δ
≤

∑
z∈L

(
|L(j)| − 1

dj

)
EP[τ

A
jz]κj,z

≤
(
|L(j)| − 1

dj

)(
maxz∈L(j) κj,z

)∑
z∈L(j)

EP[τ
A
jz].

Using that
(
a
b

)
/
(
a−1
b−1

)
= a

b holds for any a, b ∈ N with a ≤ b, we infer

EP

[
τAj

]
≥

∑
z∈L(j)

EP

[
τAjz

]
≥

(
ln

1

2.4δ

)
|L(j)|
dj + 1

minz∈L(j)
1

κj,z
.

Now, suppose i∗ ∈ L(j). When summing (7) over all
(|L(j)|−1

dj−1

)
many L ⊆ L(j) \ {i∗} with |L| = dj − 1, we

observe EP[τ
A
ji∗ ]κj,i∗ exactly

(|L(j)|−1
dj−1

)
times as a summand and each of the terms EP[τ

A
jz]κj,z, with z ∈ L(j),

exactly2
(|L(j)|−2

dj−2

)
1Jdj≥2K times as a summand. Therefore, we get(

|L(j)| − 1

dj − 1

)
ln

1

2.4δ
≤

(
|L(j)| − 1

dj − 1

)
EP[τ

A
ji∗ ]κj,i∗ +

∑
z∈L

(
|L(j)| − 2

dj − 2

)
EP[τ

A
jz]κj,z1Jdj≥2K. (9)

If dj ≥ 2, again using that
(
a
b

)
/
(
a−1
b−1

)
= a

b holds for any a, b ∈ N with a ≤ b, we obtain from(
|L(j)| − 1

dj − 1

)
+

(
|L(j)| − 2

dj − 2

)
=
|L(j)|+ dj − 2

|L(j)| − 1

(
|L(j)| − 2

dj − 2

)
that

EP[τ
A
j ] ≥ EP[τ

A
jz] ≥ ln

1

2.4δ

|L(j)| − 1

|L(j)|+ dj − 2

(
minz∈L(j)

1

κj,z

)
and (6) follows. In the other case dj = 1, we have

|L(j)|+dj−2
|L(j)|−1 = 1 and thus (6) can be inferred from (9). This

completes the proof.

2Note here that L = ∅ if dj = 1.
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Next, we want to prove an analogon of the above lower bound for the more sophisticated scenario of dueling
bandits with indifferences. To prepare this, define for any instance P with indifferences and x, y ∈ A the terms

Dx,y(P) := max
{
KL

((
P≻
x,y, P

∼=
x,y, P

≺
x,y

)
,
(
P

∼=
x,y, P

≻
x,y, P

≺
x,y

))
,

KL
((
P≻
x,y, P

∼=
x,y, P

≺
x,y

)
,
(
P≺
x,y, P

∼=
x,y, P

≻
x,y

))}
.

If P is fixed or clear by the context, we may simply write Dx,y instead of Dx,y(P).

Theorem B.5. If A is an algorithm that correctly identifies the Copeland winner with confidence 1− δ for any
P, then we have for all P with mini<j min{P≻

i,j , P
∼=
i,j , P

≺
i,j} > 0 and C(P) = {i∗} (for some i∗, i.e., there is a

unique Copeland winner) the bound

EP[τ
A] ≥ ln

1

2.4δ

∑
j∈A\{i∗}

max
{
Cj , C

′
j1Ji∗∈I(j)K, C

′′
j 1Ji∗∈L(j)K

}
min

z∈L(j)∪I(j)

1

Dj,z(P)

where

Cj := max
(i,l)∈Ψ(j)

(|I(j)|
i

)(|L(j)|
l

)(|I(j)|−1
i−1

)(|L(j)|
l

)
1Ji≥1K +

(|I(j)|
i

)(|L(j)|−1
l−1

)
1Jl≥1K

,

C ′
j := max

(i,l)∈Ψ′(j)

(|I(j)|−1
i

)(|L(j)|
l

)(|I(j)|−1
i

)(|L(j)|
l

)
+

(|I(j)|−2
i−1

)(|L(j)|
l

)
1Ji≥1K +

(|I(j)|−1
i

)(|L(j)|−1
l−1

)
1Jl≥1K

,

C ′′
j := max

(i,l)∈Ψ′′(j)

(|I(j)|
i

)(|L(j)|−1
l

)(|I(j)|
i

)(|L(j)|−1
l

)
+

(|I(j)|−1
i−1

)(|L(j)|−1
l

)
1Ji≥1K +

(|I(j)|
i

)(|L(j)|−2
l−1

)
1Jl≥1K

with

Ψ(j) := {(i, l) : i ∈ {0, . . . , |I(j)|}, l ∈ {0, . . . , |L(j)|} and i+ 2l ≥ 2dj + 1} ,
Ψ′(j) := {(i, l) : i ∈ {0, . . . , |I(j)| − 1}, l ∈ {0, . . . , |L(j)|} and i+ 2l ≥ 2dj − 1} ,
Ψ′′(j) := {(i, l) : i ∈ {0, . . . , |I(j)|}, l ∈ {0, . . . , |L(j)| − 1} and i+ 2l ≥ 2dj − 3} .

Before providing its proof, let us briefly discuss this lower bound. At first, note that in fact all of the binomial
coefficients appearing in the definitions of Cj , C

′
j and C ′′

j are well-defined and of the form
(
n
k

)
for 0 ≤ k ≤ n. In

the definition of Cj this is assured by means of the indicator functions 1Ji≥1K and 1Jl≥1K, and in the definition
of C ′

j resp. C ′′
j this follows from the definitions of Ψ′(j) resp. Ψ′′(j). For example, if (i, l) ∈ Ψ′(j), then i ≥ 0

assures |I(j)| ≥ i+ 1 ≥ 1, and in case i ≥ 1 we have |I(j)| ≥ 2, whence
(|I(j)|−2

i−1

)(|L(j)|
l

)
is well-defined.

Note that Thm. 2.1 is a direct consequence of the stated lower bounds. For the sake of completeness, we formulate
it as follows.

Proof of Theorem 2.1. Part (i) is exactly Theorem B.3, and part (ii) follows due to
max{Cj , C

′
j1Ji∗∈I(j)K, C

′′
j 1Ji∗∈L(j)K} ≥ Cj directly from Theorem B.5.

The maximum in the proof of Thm. B.5 actually assures that the lower bound is non-trivial on any instance P
considered in the theorem. This is made formal in the upcoming lemma.

Lemma B.6. Let P be an instance with indifferences such that C(P) = {i∗}. Then, for any j ̸= i∗ exactly one
of the following holds:

(i) i∗ ̸∈ L(j) ∪ I(j) and Ψ(j) ̸= ∅,

(ii) i∗ ∈ I(j) and Ψ′(j) ̸= ∅,

(iii) i∗ ∈ L(j) and Ψ′′(j) ̸= ∅.
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Proof of Lemma B.6. Suppose P with C(P) = {i∗} and j ̸= i∗ to be fixed. Regarding the definition of the
Copeland score, we have

CP(P, l) = (n− 1)− |L(l)| − 1

2
|I(l)|

for any l ∈ A. For fixed j ̸= i∗ we have in particular

CP(P, i∗) ≤


n− 2, if i∗ ̸∈ I(j) ∪ L(j),

n− 3/2, if i∗ ∈ I(j),

n− 1, if i∗ ∈ L(j)

and thus

dj = dj(P) ≤


|L(j)|+ |I(j)|/2− 1, if i∗ ̸∈ L(j) ∪ I(j),

|L(j)|+ |I(j)|/2− 1/2, if i∗ ∈ I(j),

|L(j)|+ |I(j)|/2, if i∗ ∈ L(j).

If i∗ ̸∈ L(j) ∪ I(j), then 2dj ≤ 2|L(j)| + |I(j)| − 2 and (|I(j)|, |L(j)|) ∈ Ψ(j) follows. In case i∗ ∈ I(j),
2dj ≤ 2|L(j)| + |I(j)| − 1 and thus (|I(j)| − 1, |L(j)|) ∈ Ψ′(j), and similarly we see in case i∗ ∈ L(j) that
2dj ≤ 2|L(j)|+ |I(j)| implies (|I(j)|, |L(j)| − 1) ∈ Ψ′′(j).

In contrast to Thm. B.5, the corresponding simplified version stated in Thm. 2.1 is e.g. trivial on the instance
P defined via

(P≻
i,j)i,j =

 − 1/2 1/2
1/4 − 1/2
1/4 1/4 −

 .

To see this, note that P
∼=
x,y = 1/4 holds for all x, y ∈ A, C(P) = {1} and observe that d2 = 1 = |L(2)| resp.

d3 = 2 = |L(3)| and |I(2)| = |I(3)| = 0 imply Ψ(2) = ∅ resp. Ψ(3) = ∅.

Now, let us proceed with the proof of Thm. B.5. The proof idea is similar to that of Thm. B.3, but as it is more
sophisticated and technical, we prove it for the sake of completeness in detail.

Proof of Theorem B.5. Suppose A and P with C(P) = {i∗} are fixed. Assume w.l.o.g. i∗ = 1 and let j ∈ [n]\{i∗}
be arbitrary but fixed for the moment.

Claim 1: The following holds:

(i) If (i, l) ∈ Ψ(j), we have for each I ∈ I(j)[i],L ∈ L(j)[l] that

ln
1

2.4δ
≤

∑
z∈I

EP

[
τAjz

]
Dj,z(P) +

∑
z∈L

EP

[
τAjz

]
Dj,z(P). (10)

(ii) If (i, l) ∈ Ψ′(j) and i∗ ∈ I(j), (10) holds for all I ∈ I(j)[i],L ∈ L(j)[l] with i∗ ∈ I.

(iii) If (i, l) ∈ Ψ′′(j) and i∗ ∈ L(j), (10) holds for all I ∈ I(j)[i],L ∈ L(j)[l] with i∗ ∈ L.

Proof of Claim 1: To prove (i), suppose (i, l) ∈ Ψ(j), that is, i ∈ {0, . . . , |I(j)|} and l ∈ {0, . . . , |L(j)|} are

such that i+2l ≥ 2dj +1. Let I ∈ I(j)[i] and L ∈ L(j)[l] be arbitrary but fixed. Define P̃≻ as a modification of

P≻ via P̃≻
x,y := P≻

x,y for any (x, y) ∈ A×A with x ̸= j ̸= y,

P̃≻
j,z := P

∼=
j,z, P̃

∼=
j,z := P≻

j,z and P̃≺
j,z := P≺

j,z (11)

for all z ∈ I, and

P̃≻
j,z := P≺

j,z, P̃
∼=
j,z := P

∼=
j,z and P̃≺

j,z := P≻
j,z (12)
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for all z ∈ L. By construction of P̃≻, we have3 CP(P̃≻, i∗) ≤ CP(P≻, i∗). Moreover, as the modes of the (j, z)-
components of P≻ have been flipped to the “category” j ≻ z for z ∈ I ∪ L and remained unchanged otherwise,
we have

CP(P̃≻, j) = CP(P≻, j) +
1

2
|I|+ |L| = CP(P≻, j) +

i

2
+ l.

As i+ 2l ≥ 2dj + 1 holds by assumption, we thus get

CP(P̃≻, j) ≥ CP(P≻, j) + dj + 1/2

= CP(P≻, j) + (CP(P≻, i∗)− CP(P≻, j)) + 1/2

= CP(P≻, i∗) + 1/2 ≥ CP(P̃≻, i∗) + 1/2.

This shows4 i∗ ̸∈ C(P≻), and by assumption on A, the event E := {i∗ ∈ C(P)} ∈ FτA has the properties

PP≻(E) ≥ 1− δ, PP̃≻(E) ≤ δ.

Consequently, Lemma B.2 and part (ii) of Lemma B.1 assure

∑
x<y

EP

[
τAx,y

]
KL

(
Px,y, P̃x,y

)
≥ kl

(
PP(E),PP̃(E)

)
≥ kl(1− δ, δ) ≥ ln

1

2.4δ
. (13)

In case x ̸= j ̸= y, P̃x,y = Px,y assures KL
(
Px,y, P̃x,y

)
= 0. In case z ∈ I ⊆ I(j), we have

KL
(
Pj,z, P̃j,z

)
= KL

((
P≻
j,z, P

∼=
j,z, P

≺
j,z

)
,
(
P

∼=
j,z, P

≻
j,z, P

≺
j,z

))
≤ Dj,z(P),

and in case z ∈ L ⊆ L(j) we similarly see

KL
(
Pj,z, P̃j,z

)
= KL

(
(P≻

j,z, P
∼=
j,z, P

≺
j,z), (P

≺
j,z, P

∼=
j,z, P

≻
j,z)

)
≤ Dj,z(P).

Combining these estimates with (13) proves (10).

To prove (ii), suppose now (i, l) ∈ Ψ′(j) and I ∈ I(j)[i], L ∈ L(j)[l] with i∗ ∈ I are given. Similarly as above, one

may construct an instance P̃, which differs from P only on positions (j, z), z ∈ I ∪ L ∪ {i∗}, such that (11) for

all z ∈ I and (11) for all z ∈ L and P̃≻
j,i∗ = P

∼=
j,i∗ , P̃

∼=
j,i∗ = P≻

j,i∗ and P̃≺
j,i∗ = P≺

j,i∗ . Then, CP(P̃
≻, i∗) = CP(P≻, i∗)

holds and again CP(P̃≻, j) = CP(P≻, j)+ i
2 + l. Due to i+2l ≥ 2dj−1 we obtain CP(P̃≻, j) ≥ CP(P̃≻, j)+1/2

and thus i∗ ̸∈ C(P̃≻). Thus, the same argumentation as above shows that (10) also holds in this case.

For proving (iii), construct P̃≻ such that it differs from P only on positions (j, z), z ∈ I ∪ L ∪ {i∗}, fulfills
(11) for all z ∈ I and (11) for all z ∈ L and further P̃≻

j,i∗ = P≺
j,i∗ , P̃

∼=
j,i∗ = P

∼=
j,i∗ and P̃≺

j,i∗ = P≻
j,i∗ . Then,

CP(P̃≻, i∗) = CP(P≻, i∗) − 1 holds, and the assumptions stated in (iii) suffice to show i∗ ̸∈ C(P̃≻). Therefore,
repeating the arguments from above shows (10).■

As P is fixed, we may simply write Dx,y for Dx,y(P) throughout the rest of the proof. First, let (i, l) ∈ Ψ(j)
be arbitrary but fixed, i.e., i ∈ {0, . . . , |I(j)|} and l ∈ {0, . . . , |L(j)|} and i + 2l ≥ 2dj + 1 hold. According to

Part (i) of Claim 1, (10) holds for any of the
(|I(j)|

i

)(|L(j)|
l

)
many (I,L) ∈ I(j)[i] × L(j)[l]. When summing (10)

over all such (I,L), the summand EP

[
τAjz

]
Dj,z appears exactly

(|I(j)|−1
i−1

)(|L(j)|
l

)
1Ji≥1K many times if z ∈ I(j),

3In fact, the difference CP(P≻, i∗)− CP(P̃≻, i∗) is 1 resp. 1/2 resp. 0 if i∗ ∈ L resp. i∗ ∈ I resp. i∗ ̸∈ I ∪ L.
4In fact, by construction we even have C(P̃≻) = {j}.
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and it appears
(|I(j)|

i

)(|L(j)|−1
l−1

)
1Jl≥1K many times if z ∈ L(j). Consequently, we have(

|I(j)|
i

)(
|L(j)|

l

)
ln

1

2.4δ

≤
(
|I(j)| − 1

i− 1

)(
|L(j)|

l

)
1Ji≥1K

∑
z∈I

EP

[
τAjz

]
Dj,z

+

(
|I(j)|
i

)(
|L(j)| − 1

l − 1

)
1Jl≥1K

∑
z∈L

EP

[
τAjz

]
Dj,z

≤ maxz∈I(j)∪L(j) Dj,z ·
∑

z∈I(j)∪L(j)
EP

[
τAjz

]
·
[(
|I(j)| − 1

i− 1

)(
|L(j)|

l

)
1Ji≥1K +

(
|I(j)|
i

)(
|L(j)| − 1

l − 1

)
1Jl≥1K

]
.

Thus, we obtain for τAj =
∑

z ̸=j τ
A
jz the estimate

EP

[
τAj

]
≥

∑
z∈I(j)∪L(j)

EP

[
τAjz

]
≥

(|I(j)|
i

)(|L(j)|
l

)(|I(j)|−1
i−1

)(|L(j)|
l

)
1Ji≥1K +

(|I(j)|
i

)(|L(j)|−1
l−1

)
1Jl≥1K

(
ln

1

2.4δ

)
minz∈I(j)∪L(j)

1

Dj,z
. (14)

Next, suppose i∗ ∈ I(j) and (i, l) ∈ Ψ′(j) be fixed for the moment. For any of the
(|I(j)|−1

i

)(|L(j)|
l

)
many

(I,L) ∈ I(j)[i] × L(j)[l] with i∗ ∈ I, Part (ii) of Claim 1 yields that (10) holds. Summing this over all such
(I,L), we observe:

• The summand EP

[
τAji∗

]
Dj,i∗ appears

(|I(j)|−1
i

)(|L(j)|
l

)
many times.

• For z ∈ I(j) \ {i∗}, the summand EP

[
τAjz

]
Dj,z appears

(|I(j)|−2
i−1

)(|L(j)|
l

)
many times if |I(j)| > i ≥ 1, and it

does not appear at all if i = 0. Thus, this summand appears
(|I(j)|−2

i−1

)(|L(j)|
l

)
1J|I(j)|>i≥1K many times.

• For z ∈ L(j), the summand EP

[
τAjz

]
Dj,z appears

(|I(j)|−1
i

)(|L(j)|−1
l−1

)
1Jl≥1K many times.

Thus, we obtain(
|I(j)| − 1

i

)(
|L(j)|

l

)
ln

1

2.4δ

≤
(
|I(j)| − 1

i

)(
|L(j)|

l

)
EP

[
τAji∗

]
Dj,i∗

+

(
|I(j)| − 2

i− 1

)(
|L(j)|

l

)
1Ji≥1K

∑
z∈I

EP

[
τAjz

]
Dj,z

+

(
|I(j)| − 1

i

)(
|L(j)| − 1

l − 1

)
1Jl≥1K

∑
z∈L

EP

[
τAjz

]
Dj,z

≤ maxz∈I(j)∪L(j) Dj,z ·
∑

z∈I(j)∪L(j)
EP

[
τAjz

]
·
[(
|I(j)| − 1

i

)(
|L(j)|

l

)
+

(
|I(j)| − 2

i− 1

)(
|L(j)|

l

)
1Ji≥1K +

(
|I(j)| − 1

i

)(
|L(j)| − 1

l − 1

)
1Jl≥1K

]
,

which shows similarly as above that

EP

[
τAj

]
≥

(|I(j)|−1
i

)(|L(j)|
l

)(|I(j)|−1
i

)(|L(j)|
l

)
+
(|I(j)|−2

i−1

)(|L(j)|
l

)
1Ji≥1K +

(|I(j)|−1
i

)(|L(j)|−1
l−1

)
1Jl≥1K

(
ln

1

2.4δ

)
·minz∈I(j)∪L(j)

1

Dj,z
. (15)

Finally, suppose i∗ ∈ L(j) and let (i, l) ∈ Ψ′′(j) be fixed for the moment. For any of the
(|I(j)|

i

)(|L(j)|−1
l

)
many

(I,L) ∈ I(j)[i]×L(j)[l] with i∗ ∈ L(j), Part (iii) of Claim 1 yields that (10) holds. When summing over all these
(I,L), we see:
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• The summand EP

[
τAji∗

]
Dj,i∗ appears

(|I(j)|
i

)(|L(j)|−1
l

)
many times.

• For z ∈ I(j), the summand EP

[
τAjz

]
Dj,z appears

(|I(j)|−1
i−1

)(|L(j)|−1
l

)
1Ji≥1K many times.

• For z ∈ L(j) \ {i∗}, the summand EP

[
τAjz

]
Dj,z appears

(|I(j)|
i

)(|L(j)|−2
l−1

)
1Jl≥1K many times.

Analogously as above, we obtain

EP

[
τAj

]
≥

(|I(j)|
i

)(|L(j)|−1
l

)(|I(j)|
i

)(|L(j)|−1
l

)
+
(|I(j)|−1

i−1

)(|L(j)|−1
l

)
1Ji≥1K +

(|I(j)|
i

)(|L(j)|−2
l−1

)
1Jl≥1K

(
ln

1

2.4δ

)
·minz∈I(j)∪L(j)

1

Dj,z
. (16)

As (14) holds for all (i, l) ∈ Ψ(j), (15) for all (i, l) ∈ Ψ′(j), if i∗ ∈ I(j), and (16) holds for all (i, l) ∈ Ψ′′(j) if
i∗ ∈ L(j), combining these estimates concludes the proof.

For the sake of comparison, let us state the consequences from Theorem B.5 for the particular case when the
indifferences are non-dominant in the sense that I(z) = ∅ for all z. Note that the maximum appearing therein
is exactly the same term as that in the lower bound for Copeland winner identification without indifferences
(Thm. B.3).

Corollary B.7. If A is an algorithm that correctly identifies the Copeland winner with confidence 1−δ for any P
(possibly with indifferences), then we have for all such P with mini<j min{P≻

i,j , P
∼=
i,j , P

≺
i,j} > 0, maxz∈A |I(z)| = 0

and C(P) = {i∗} that

EP

[
τA

]
≥ ln

1

2.4δ

∑
j ̸=i∗

max

{
|L(j)|
dj + 1

1J|L(j)|≥dj+1K,
|L(j)| − 1

|L(j)|+ dj − 2
1Ji∗∈L(j)K

}
min

z∈L(j)∪I(j)

1

Dj,z(P)
.

Proof of Corollary B.7. Suppose P is such that maxz∈A |I(z)| = 0 and recall the definitions of Cj , C
′′
j , Ψ(j) and

Ψ′′(j) from Thm. B.5. Then, CP(j) and dj are integers for any j ∈ A. Moreover, for any j ∈ A\{i∗}, |I(j)| = 0
directly implies Ψ(j) = {(0, dj + 1), . . . , (0, |L(j)|)} and Ψ′′(j) = {(0, dj − 1), . . . , (0, |L(j)| − 1)}. Note that
Ψ(j) ̸= ∅ iff |L(j)| ≥ dj + 1, whereas |L(j)| ≥ dj shows that Ψ′′(j) ̸= ∅ in any case. Using that

(
a
b

)
/
(
a−1
b−1

)
= a

b
holds for any a, b ∈ N with a ≤ b, we thus obtain

Cj = max(i,l)∈Ψ(j)

(|I(j)|
i

)(|L(j)|
l

)(|I(j)|
i

)(|L(j)|−1
l−1

)
= maxl∈{dj+1,...,|L(j)|}

|L(j)|
l

=
|L(j)|
dj + 1

1J|L(j)|≥dj+1K

and similarly

C ′′
j = max(i,l)∈Ψ′′(j)

(|I(j)|
i

)(|L(j)|−1
l

)(|I(j)|
i

)(|L(j)|−1
l

)
+

(|I(j)|
i

)(|L(j)|−2
l−1

)
= maxl∈{dj−1,...,|L(j)|−1}

(|L(j)|−1
l

)(|L(j)|−1
l

)
+ l

|L(j)|−1

(|L(j)|−1
l

)
= maxl∈{dj−1,...,|L(j)|−1}

|L(j)| − 1

|L(j)| − 1 + l

=
|L(j)| − 1

|L(j)|+ dj − 2
.

Thus, the statement follows from Thm. B.5.

To conclude this section, we state in the following corollary worst-case consequences of Thm. B.5 and Thm. B.3.
They show in particular that – in both learning scenarios with and without indifferences – identifying the
Copeland winner of P requires Ω(n2) samples in the worst case.
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Corollary B.8. Let f : N → N with 1 ≤ f(n) ≤ n
2 − 1 for all n ∈ N and f(n) ∈ o(n) as n → ∞ and let

∆ ∈ (0, 1/6) be arbitrary.

(i) There exists a sequence (Pn)n∈N of instances without indifferences with (Pn)≻i,j ∈ {1/2±∆} for all i, j ∈ A
and CP∗(Pn) ≥ ⌈n2 + f(n)⌉ such that

EPn

[
τA

]
∈ Ω

(
n2

f(n)∆2
ln

1

δ

)
for any algorithm A that correctly identifies the Copeland winner of any P without indifferences with confi-
dence 1− δ.

(ii) There exists a sequence (Pn)n∈N of instances with (Pn)≻i,j , (P
n)

∼=
i,j , (P

n)≺i,j ∈ {1/3 − ∆, 1/3 + 2∆} for all
i, j ∈ A and CP∗(Pn) ≥ ⌈n2 + f(n)⌉ such that

EPn

[
τA

]
∈ Ω

(
n2

f(n)∆2
ln

1

δ

)
for any algorithm A that correctly identifies the Copeland winner of any P with indifferences with confidence
1− δ.

Proof. Let f and ∆ be as stated above. We start with the proof of (i). By assumption on f there exists n0 ∈ N
with n − 1 − ⌈n2 + f(n)⌉ ≥ 1 and ⌊n−1

2 ⌋ ≥ f(n) + 2 for all n ≥ n0. For n < n0, let Pn be an arbitrary
allowed instance. For arbitrary but fixed n ≥ n0, fix a set Ln ⊆ A of size |Ln| = n− 1− ⌈n2 + f(n)⌉ and define
Pn = ((Pn)≻x,y)x,y via

(Pn)≻1,y :=

{
1/2 + ∆, if y ∈ A \ Ln,

1/2−∆, if y ∈ Ln

for 2 ≤ y ≤ n and

(Pn)≻x,y :=

{
1/2 + ∆, if x+ y is even,

1/2−∆, if x+ y is odd

for 2 ≤ x < y ≤ n. Then, Pn has no indifferences. Moreover, CP(Pn, 1) = n − 1 − |Ln| = ⌈n2 + f(n)⌉
and CP(Pn, j) ≥ ⌊n−1

2 ⌋ − 1 for j ∈ A \ {1} hold, which shows C(Pn) = {1} and dj(P
n) = CP(Pn, 1) −

CP(Pn, j) ≤ f(n) + 1. By construction, ⌊n−1
2 ⌋ ≤ |L(P

n, j)| ≤ ⌈n−1
2 ⌉ + 1 is fulfilled, and thus by choice of n0

also |L(Pn, j)| ≥
⌊
n−1
2

⌋
≥ f(n) + 2 = dj(P

n) + 1 holds. Using that Lemma B.4 and ∆ < 1/6 imply

κx,y(P) = kl(P≻
x,y, P

≺
x,y) ≤

(P≻
x,y − P≺

x,y)
2

P≺
x,y(1− P≺

x,y)
=

4∆2

(1/2−∆)(1/2 + ∆)
≤ 16∆2,

Thm. B.3 yields

EPn

[
τA

]
≥ ln

1

2.4δ

∑
j ̸=i∗

|L(Pn, j)|
dj(Pn)

min
z∈L(j)

1

κj,z(Pn)

≥ 1

16∆2

(
ln

1

2.4δ

) ∑
j ̸=i∗

⌊(n− 1)/2⌋
f(n) + 1

≥ 1

32∆2

(
ln

1

2.4δ

) ∑
j ̸=i∗

n− 1

f(n) + 1

≥ 1

32∆2

(
ln

1

2.4δ

)
(n− 1)2

f(n) + 1
,

which concludes the proof of (i).

To prove (ii), define n0 as before and fix allowed arbitrary Pn for n < n0. For arbitrary but fixed n ≥ n0, fix
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again Ln ⊆ A of size n− 1− ⌈n2 + f(n)⌉ and define the instances Pn = ((Pn)≻x,y)x,y via

(Pn)≻1,y :=

{
1/3 + 2∆, if y ∈ A \ Ln,

1/3−∆, if y ∈ Ln,

(Pn)≻y,1 :=

{
1/3−∆, if y ∈ A \ Ln,

1/3 + 2∆, if y ∈ Ln,

for 2 ≤ y ≤ n and

(Pn)≻x,y :=

{
1/3 + 2∆, if (x+ y is even and x < y) or (x+ y is odd and x > y)

1/3−∆, if (x+ y is odd and x < y) or (x+ y is even and x > y)

for distinct x, y ∈ {2, . . . , n}. Then, Pn has indifferences and fulfills (Pn)
∼=
x,y = 1/3−∆ for any distinct x, y ∈ A,

which directly implies I(j) = ∅ for any j ∈ A. By construction, we see similarly as above CP(Pn, 1) = ⌈n2 +f(n)⌉,
C(Pn) = {1} and dj(P

n) ≤ f(n) + 1 as well as ⌊n−1
2 ⌋ ≤ |L(P

n, j)| ≤ ⌈n−1
2 ⌉+ 1 and |L(Pn, j)| ≥ dj(P

n) + 1 for
j ∈ A \ {1}. Regarding the construction of Pn, Lemma B.4 implies due to 0 < ∆ < 1/6 the estimate

Dx,y(P
n) = KL

((
1

3
+ 2∆,

1

3
−∆,

1

3
−∆

)
,

(
1

3
−∆,

1

3
+ 2∆,

1

3
−∆

))
≤ (3∆)2

1/3−∆
+

(3∆)2

1/3 + 2∆
≤ 32(6 + 3)∆2 = 81∆2.

With the use of Cor. B.7 instead of Thm. 6, following the same argumentation as in the proof of (i) thus lets us
conclude

EPn

[
τA

]
≥ 1

162∆2

(
ln

1

2.4δ

)
(n− 1)2

f(n) + 1
.
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C POCOWISTA ANALYSIS

Theorem 3.1. Let A := POCOWISTA. For any dueling bandits problem with indifferences characterized by
P = ((P≻

i,j , P
∼=
i,j , P

≺
i,j))i<j , such that there exists no pair i, j ∈ A with i ̸= j and P≻

i,j = P≻
j,i = 1/3, it holds that

P
(̂
iA ∈ C(P) and τA(P) ≤ t(P, δ)

)
≥ 1− δ,

where

t(P, δ) =
∑
i<j

t0
(
(P≻

i,j , P
∼=
i,j , P

≺
i,j), δ/(

n
2)
)
,

t0
(
(p1, p2, p3), δ

)
=

c1p(1) ln
(√

2 c2
δ

p(1)

(p(1)−p(2))

)
(p(1) − p(2))2

,

p(1) ≥ p(2) ≥ p(3) is the order statistic of p1, p2, p3 ∈ [0, 1] with
∑3

i=1 pi = 1 and c1 = 194.07 and c2 = 79.86.

Proof. Let P be a categorical distribution with categories c1, c2 and c3 having probabilities p1, p2 and p3, i.e.,
P (ci) = pi for i = 1, 2, 3, such that p(1) > p(2) ≥ p(3). Theorem 9 in Jain et al. (2022) states that running PPR-

1v1 with δ̃ ∈ [0, 1] as the desired error probability for identifying the mode of P, leads to a sample complexity
of at most

t0
(
(p1, p2, p3), δ̃

)
=

c1p(1) ln
(√

2 c2
δ̃

p(1)

(p(1)−p(2))

)
(p(1) − p(2))2

,

for identifying the mode with probability at least 1− δ̃.

In the worst case, POCOWISTA has to use PPR-1v1 with an error probability of δ̃ = δ/(n2) for each ternary
distribution Pi,j , where i < j. Recall that Pi,j is a categorical distribution with three categories c1 := “i ≻
j′′, c2 := “i ∼= j′′ and c3 := “i ≺ j′′ having probabilities P≻

i,j , P
∼=
i,j and P≺

i,j . Moreover, by assumption each Pi,j has
a unique mode, so that we can use Theorem 9 in Jain et al. (2022). As for each epoch the probability of making
an incorrect decision or exceeding t0

(
(P≻

i,j , P
∼=
i,j , P

≺
i,j), δ/(

n
2)
)
many samples is bounded by δ/(n2), the probability

that the overall sample complexity of POCOWISTA exceeds∑
i<j

t0
(
(P≻

i,j , P
∼=
i,j , P

≺
i,j), δ/(

n
2)
)

is bounded by
∑

i<j
δ/(n2) = δ by means of the union bound.

Next, as the modes of the ternary distributions are all correctly identified (with probability δ/(n2)), the score
updates are all correct in the sense that

ĈP (i) ≤ CP (i) ≤ CP (i) ∀i ∈ A

holds with probability at least 1− δ. Thus, the termination criterion of POCOWISTA implies that

CP (̂iA) ≥ ĈP (̂iA) ≥ CP (j) ≥ CP (j)∀j ∈ A \ {̂iA}

holds with probability at least 1− δ, so that îA is an element of the Copeland set C(P).



Identifying Copeland Winners in Dueling Bandits with Indifferences

D TRA-POCOWISTA ANALYSIS

Theorem 4.2. Let A := TRA-POCOWISTA. For any dueling bandits problem with indifferences as in Theo-
rem 3.1 which in addition is transitive according to Def. 4.1, it holds that

P
(̂
iA ∈ C(P) and τA(P) ≤ t̃(P, δ)

)
≥ 1− δ,

where

t̃(P, δ) =
∑E

e=1 t0
(
(P≻

ie,je
, P

∼=
ie,je

, P≺
ie,je

), δ/n
)
,

t0 is as in (5) and E ≤ n.

Proof. Following the lines of the proof of Theorem 3.1, we only need to verify that TRA-POCOWISTA runs
for at most n many epochs. For this purpose, we only need show that the termination criterion of TRA-
POCOWISTA (see line 3 in Algo. 4) is fulfilled after at most n many epochs. If the modes of the ternary
distributions are all correctly identified (with probability δ/n) and transitivity as in Def. 4.1 holds, then the score
updates are all correct in the sense that

ĈP (i) ≤ CP (i) ≤ CP (i) ∀i ∈ A

holds with probability at least 1− δ.

For sake of convenience, define ĈP e(i) as the estimated Copeland score for arm i ∈ A before the update in epoch
e is made (i.e., the value before line 7 in Algo. 4) and likewise CP e(i). The score updates (Algo. 5) as well as
the choice of je (line 5 in Algo. 4) imply that

ĈP e(je) ≥ ĈP e−1(je−1) + ĈP e−1(ie−1) + 1/2 (17)

for any epoch e. Indeed, if one arm dominates the other in epoch e − 1, then it’s estimated Copeland score
is updated to ĈP e−1(je−1) + ĈP e−1(ie−1) + 1, while in case of an indifference the updated value corresponds
to the right-hand side of (17). As je is (one of) the arm(s) with largest estimated Copeland score, it has
consequently an estimated Copeland score in epoch e of at least the right-hand side of (17). Further, it holds

that ĈP 2(j2) ≥ 1/2. If TRA-POCOWISTA has not terminated after epoch n−1 it must hold that there exists

some epoch s ∈ {1, . . . , n − 1} such that ĈP s+1(is) ≥ 1/2, as otherwise the “second arm” je has dominated
in each epoch the “first arm” ie and has stayed the same for all epochs, in which case TRA-POCOWISTA
terminates and returns je. Combining this with (17) it holds that ĈPn+1(jn) ≥ n/2. We distinguish now the
three different cases for the outcome between the compared arms in and jn in epoch n (i.e., line 6 in Algo. 4)
and show that in each case TRA-POCOWISTA terminates, so that the overall number of epochs E is bounded
by n.

Case 1: k = 1, i.e., in dominated jn.

This implies that ĈPn+1(in) ≥ ĈPn+1(jn) and in particular ĈPn+1(in) ≥ ĈPn(in). By choice of in it holds
that for any i ∈ A

CPn+1(i) ≤ CPn(i) ≤ CPn(in) = n− ĈPn(in) ≤ n− ĈPn+1(in) ≤ n/2 ≤ ĈPn+1(in).

Thus, the termination criterion of TRA-POCOWISTA (see line 3 in Algo. 4) is fulfilled after epoch n, as in
fulfills the criterion.

Case 2: k = 2, i.e., and indifference between in and jn.

This implies that ĈPn+1(in) = ĈPn+1(jn) and in particular ĈPn+1(in) ≥ ĈPn(in). By choice of in it holds
that for any i ∈ A

CPn+1(i) ≤ CPn(i) ≤ CPn(in) = n− ĈPn(in) ≤ n− ĈPn+1(in)

= n− ĈPn+1(jn) ≤ n/2 ≤ ĈPn+1(jn).

Thus, the termination criterion of TRA-POCOWISTA (see line 3 in Algo. 4) is fulfilled after epoch n, as jn
fulfills the criterion.
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Case 3: k = 3, i.e., jn dominated in.

In this case, the potential Copeland score of in in epoch n+1 is at most n− ĈPn+1(jn). By choice of in it holds
that for any i ∈ A

CPn+1(i) ≤ CPn(i) ≤ CPn(in) ≤ n− ĈPn+1(jn) ≤ n/2 ≤ ĈPn+1(jn).

Thus, the termination criterion of TRA-POCOWISTA (see line 3 in Algo. 4) is fulfilled after epoch n, as jn
fulfills the criterion.
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