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Abstract

Designing efficient algorithms for computing
refinements of the Nash equilibrium (NE) in
two-player zero-sum sequential games is of
paramount importance, since the NE may
prescribe sub-optimal actions off the equilib-
rium path. The extensive-form perfect equi-
librium (EFPE) amends such a weakness by
accounting for the possibility that players
may make mistakes. This is crucial in the real
world, which involves humans with bounded
rationality, and it is also key in boosting su-
perhuman agents for games like Poker. Nev-
ertheless, there are only few algorithms for
computing NE refinements, which either lack
convergence guarantees to exact equilibria or
do not scale to large games. We provide the
first efficient iterative algorithm that prov-
ably converges to an EFPE in two-player
zero-sum sequential games. Our algorithm
works by tracking a sequence of equilibria of
regularized-perturbed games, by using a pro-
cedure that is specifically tailored to converge
last iterate to such equilibria. The procedure
can be implemented efficiently by visiting the
game tree, making our method computation-
ally appealing. We also empirically evaluate
our algorithm, showing that its strategies are
much more robust to players’ mistakes than
those of state-of-the-art algorithms.

1 INTRODUCTION

Computing the Nash equilibria (NEs) (Nash, 1951) of
two-player zero-sum sequential (i.e., extensive-form)
games with imperfect information has been one of the
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flagship computational challenges of artificial intelli-
gence since several years. The latest advances in the
field of equilibrium computation have lead to the devel-
opment of superhuman agents that are capable of beat-
ing top human professionals in several games, such as,
e.g., Go (Silver et al., 2016), heads-up no-limit Texas
hold’em Poker (Brown and Sandholm, 2018, 2019),
and Diplomacy (Bakhtin et al., 2022).

The NE is a solution concept that prescribes each
player to play optimally under the assumption that
the opponents are perfectly rational and do the same.
However, this assumption is oftentimes unreasonable,
especially when computed equilibria are deployed in
the real world, where artificial agents usually face hu-
man opponents that naturally have bounded rational-
ity. Indeed, it is well known that the NE has several
weaknesses when played against opponents who may
make mistakes since they are not perfectly rational.
In particular, an NE may prescribe to perform sub-
optimal actions at decision points (a.k.a. information
sets) that are never reached assuming that the players
play equilibrium strategies.

Over the last decades, game theorists introduced sev-
eral refinements of the NE notion, in order to amend
its weaknesses off the equilibrium path. Among them,
the most studied and recognized one is the extensive-
form perfect equilibrium (EFPE) originally introduced
by Selten (1975). The EFPE is based on the idea
of trembling-hand perfection, whose rationale is to let
the players reasoning about the possibility that both
themselves and their opponents may “tremble” in fu-
ture, by playing sub-optimal actions with small prob-
ability at information sets that will be reached later
in the game. An EFPE is defined as a limit point
of a sequence of equilibria that is obtained by letting
the “magnitude of trembles” (i.e., the probabilities of
playing sub-optimal actions at future information sets)
going to zero. This makes the strategies prescribed by
an EFPE robust against possible players’ mistakes.

NE refinements have received some attention from the
artificial intelligence community only recently. This
is surprising, since designing artificial agents that
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are capable of exploiting opponents’ mistakes is of
paramount importance when bringing equilibrium con-
cepts into practice. Indeed, the adoption of NE re-
finements would foster the operationalization of equi-
librium computation techniques into novel application
scenarios where “humans are in the loop”, such as,
e.g., military settings and businesses. Moreover, NE
refinements could boost the performance of state-of-
the-art superhuman agents playing recreational games
like Poker, by equipping them with the ability of cap-
italizing over opponents’ mistakes.

Despite there are several appealing reasons for switch-
ing the attention from the computation of NEs to that
of its refinements, only few works addressed the latter
problem in two-player zero-sum sequential games with
imperfect information. Moreover, most of these works,
such as, e.g., (Farina and Gatti, 2017; Farina et al.,
2018a; Farina and Sandholm, 2021), provide equilib-
rium computation algorithms that rely on the solution
of linear programs (LPs). As a result, up to now, these
methods have failed at scaling up to huge games like
Texas hold’em Poker endgames. This was predictable,
as the major breakthroughs in NE computation in
two-player zero-sum games (such as, e.g., (Brown and
Sandholm, 2018, 2019)) were achieved by means of
iterative techniques that work by repeatedly visiting
the game tree; see, e.g., the counterfactual regret min-
imization (CFR) algorithm (Zinkevich et al., 2007).
To the best of our knowledge, the only iterative meth-
ods for computing NE refinements are those presented
in (Farina et al., 2017; Kroer et al., 2017). However,
these do not provide any convergence guarantee to ex-
act refinements, but only to approximate equilibria of
a perturbed game (see the following Section 2).

In this paper, we provide the first iterative algorithm
that provably converges to (exact) NE refinements, fo-
cusing on the case of EFPEs. Our algorithm works by
tracking a sequence of equilibria of suitably-defined,
regularized-perturbed games, different from the se-
quence in the definition of EFPE. Indeed, these games
modify the utility function of the original game by
adding regularization and perturbation components,
while the definition of EFPE only considers the lat-
ter. The regularization component is needed to ensure
equilibrium uniqueness, while the perturbation compo-
nent guarantees that the equilibrium strategies place
at least a (small) probability on every action, resem-
bling the idea of “trembles”. By carefully controlling
how the regularization and the perturbation compo-
nents vanish, the resulting sequence of equilibria ad-
mits an EFPE of the original game as a limit point.
This is achieved by letting the regularization compo-
nent vanishing faster than the perturbation one.

The core component of our algorithm is a last-iterate

procedure provably converging to an (approximate)
equilibrium of a given regularized-perturbed game.
Such a procedure extends the optimistic online mirror
descent (OOMD) algorithm by Rakhlin and Sridha-
ran (2013). Intuitively, it uses an OOMD-style update
rule in order to converge last iterate, while it deals
with the non-smooth terms appearing in the utility of
regularized-perturbed games without resorting to lin-
earization techniques. The crucial feature of our pro-
cedure is that its updates can be performed by visiting
the game tree recursively, thus avoiding the solution of
“one-piece” optimization problems. This considerably
enhances the scalability of our algorithm compared to
those solving LPs over the players’ strategy spaces.

We conclude by experimentally evaluating the per-
formances of our algorithm on a standard testbed of
Poker-inspired game instances. Our analysis shows
that our algorithm outperforms of orders of magni-
tude several state-of-the-art equilibrium-computation
algorithms—including the CFR algorithm (Zinkevich
et al., 2007) and the iterative methods for comput-
ing (approximate) NE refinements introduced in (Fa-
rina et al., 2017; Kroer et al., 2017)—in terms of av-
erage players’ regrets over all the information sets of
the game, which is the standard practical metric used
for evaluating convergence to NE refinements.

2 RELATED WORKS

The first works addressing the problem of finding NE
refinements in two-player zero-sum sequential games
are (Miltersen and Sørensen, 2010; Farina and Gatti,
2017; Farina et al., 2018a). All the algorithms in these
works rely on the solution of “perturbed” LPs, which
are modified versions of the LP for finding an NE in
two-player zero-sum games. Thus, such algorithms fail
at scaling up to real-world-size game instances, where
it is well-established that an (approximate) NE can be
computed by means of iterative methods that exploit
the tree structure of the game.

The only algorithms that compute EFPEs by itera-
tively visiting the game tree are those in (Farina et al.,
2017) and (Kroer et al., 2017). The former is a modi-
fication of the CFR algorithm that takes into account
opponents’ mistakes so as to minimize regret at all
the information sets, including those never reached at
the equilibrium. The latter applies a similar idea to
first-order methods. Such iterative methods are able
to converge to an approximate equilibrium of a per-
turbed game. However, they are not concerned with
the computation of a limit point of a sequence of equi-
libria, since they work by approximating an equilib-
rium while keeping the “magnitude of trembles” fixed.
Thus, they do not provide any theoretical convergence
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guarantee to an exact EFPE, which would require tak-
ing a limit point as “trembles” vanish.

It is also worth citing some works studying NE refine-
ments in n-player general-sum sequential games (Mil-
tersen and Sørensen, 2010; Hansen et al., 2010; Farina
and Gatti, 2017; Gatti et al., 2020) and refinements of
other solution concepts (Farina et al., 2018b; Marchesi
et al., 2019; Marchesi and Gatti, 2021).

3 PRELIMINARIES

In this section, we provide all the definitions and con-
cepts needed in the paper.

3.1 Extensive-Form Games

An extensive-form game (EFG) is usually described
by means of a game tree. We denote by H the set of
nodes of the tree and by Z ⊂ H the set of terminal
nodes, which are the leaves of the tree. Each non-
terminal node h ∈ H \ Z is either a decision node in
which a given player acts or a chance node where a
random event occurs. For any decision node h, we let
A(h) be the set of actions available to the player acting
at h. On the other hand, each terminal node z ∈ Z
is associated with a payoff u(z) ∈ [−1, 1] for the first
player, while −u(z) is the payoff of the second player
since the game is zero sum.

In an EFG, imperfect information is described by
means of information sets (infosets). A player’s in-
foset I is a collection of decision nodes of that player
which are indistinguishable for them; formally, it must
be the case that A(h) = A(h′) for any pair h, h′ ∈ I.
We let A(I) be the set of actions available at all nodes
of infoset I, with nI := |A(I)| being its cardinality.
Moreover, we denote by I1 and I2 the sets all the in-
fosets of player 1 and 2, respectively. As customary
in the literature, we restrict the attention to games
with perfect recall, where a player never forgets infor-
mation once acquired. This is equivalent to assuming
that both I1 and I2 are partially ordered according
to a precedence relation denoted by �. Namely, here
I � J means that infoset I precedes infoset J . For-
mally, I � J if and only if there exists a path in the
game tree that connects a node belonging to infoset I
to a node in infoset J . Furthermore, give any infoset
I ∈ Ii of player i and action a ∈ A(I), we let CI,a be
the set of all player i’s infosets that immediately follow
I through action a, according to the relation �.

3.2 Sequence-Form Representation

Any node h ∈ H defines a sequence σi(h) of player
i’s actions encountered on the path from the root of

the game tree to h. In EFGs with perfect recall, an
infoset I ∈ Ii uniquely determines a sequence of player
i’s actions, since σi(h) = σi(h

′) for any h, h′ ∈ I by
definition. We denote such a sequence by σi(I). Since
σi(I) extended with any action a ∈ A(I) is a valid
sequence of player i’s actions, we can identify player
i’s sequences with infoset-action pairs. Thus, we let
Σi := {(I, a) | I ∈ Ii, a ∈ A(I)} ∪ {∅} be the set of
player i’s sequences, where ∅ is the empty sequence
defined by paths in which player i never plays.

By leveraging the sequence form, the mixed strategies
of a player can be encoded in terms of realization prob-
abilities of sequences (Von Stengel, 1996). Formally, a
strategy of the first player is a vector x ∈ [0, 1]|Σ1|

such that, for each σ ∈ Σ1, x[σ] is the probability of
playing sequence σ. To be well defined, x must satisfy
the following linear constraints:

x[∅] = 1 and x[σi(I)] =
∑
a∈A(I) x[σi(I)a] ∀I ∈ I1,

which can be expressed as F 1x = f1 using matrix
notation. Similarly, we let y ∈ [0, 1]|Σ2| be a second
player’s strategy, which must satisfy the constraints
F 2y = f2. We denote by X and Y the polytopes of
valid strategies for player 1 and 2, respectively.

Thanks to the sequence-form strategy representation,
we can define the first player’s expected utility given
two strategies x ∈ X and y ∈ Y as the bilinear term
x>Uy, where U ∈ [−1, 1]|Σ1|×|Σ2| is a utility matrix
whose entry corresponding to σ1 ∈ Σ1 and σ2 ∈ Σ2 is
defined as follows:

U [σ1, σ2] :=
∑

z∈Z:σ1(z)=σ1∧σ2(z)=σ2

p(z)u(z),

with p(z) ∈ [0, 1] being the product of chance proba-
bilities on the path from the root to z ∈ Z. The second
player’s expected utility is −x>Uy.

3.3 Extensive-Form Perfect Equilibria

The EFPE refines the NE by considering the possi-
bility that players may make mistakes and play off-
equilibrium actions with “small and vanishing” prob-
ability. Formally, an EFPE is defined as a limit point
as ε → 0 of a sequence of NEs of “perturbed games”
parametrized by ε > 0, where each action a ∈ A(I)
at each infoset I must be played with probability at
least ε (Selten, 1975). In terms of sequence form,
this is equivalent to ask, for the first player, that
x[σi(I)a] ≥ εx[σi(I)] for every I ∈ I1, a ∈ A(I).
Such linear constraints can be expressed as a polytope
M1(ε)x ≥ m1(ε) (see (Farina and Gatti, 2017)), so
that we can define the set of valid first player’s strate-
gies for a perturbed game parametrized by ε > 0 as:
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X ε := {x ∈ X | F 1x = f1,M1(ε)x ≥ m1(ε)}. Simi-
larly, Yε := {y ∈ Y | F 2y = f2,M2(ε)y ≥ m2(ε)} is
the set of valid strategies for the second player. Then,
an EFPE is defined as follows.1

Definition 3.1 (EFPE). Given any ε > 0, an ε-EFPE
is defined as any pair of strategies (x?,y?) ∈ X ε × Yε
such that, for all x ∈ X ε and y ∈ Yε, it holds:

x>Uy? ≤ x?,>Uy? ≤ x?,>Uy.

Finally, an EFPE is a limit point of ε-EFPEs as ε→ 0.

In this work, we also introduce a relaxed notion of
EFPE, which we call δ-approximate ε-EFPE and it is
defined as δ-approximate NEs of ε-perturbed games.

Definition 3.2. Given any ε > 0 and δ > 0, a δ-
approximate ε-EFPE is a pair of strategies (x?,y?) ∈
X ε×Yε such that, for all x ∈ X ε and y ∈ Yε, it holds:

x>Uy? − δ ≤ x?,>Uy? ≤ x?,>Uy + δ.

Notice that, when δ = 0, then a limit point as ε → 0
of δ-approximate ε-EFPEs is an EFPE.

Finally, we measure how well a pair of players’ strate-
gies approximates an NE in terms of Nash gap. For
every (x̃, ỹ) ∈ X × Y, this is defined as Gap(x̃, ỹ) :=
maxx∈X x

>Uỹ −miny∈Y x̃
>Uy.

4 SEQUENCES OF EQUILIBRIA
LEADING TO EFPE

In this section, we provide the core results that allow
us to design our algorithm. First, we introduce a mod-
ified version of an EFG, which alters the utility func-
tion of the game by adding suitable regularization and
perturbation components, where the former guarantees
equilibrium uniqueness, while the latter ensures that
players’ strategies at the equilibrium are valid for the
“perturbed games” in the definition of EFPE. Then,
we show that such a modified game allows us to iden-
tify a sequence of equilibria that admits an EFPE as
a limit point, by carefully tuning the parameters con-
trolling the regularization and the perturbation com-
ponents in the modified game. In the following Sec-
tion 5, we provide an algorithm that is able to track
such a sequence, and converges to an EFPE.

4.1 Regularized and Perturbed Games

Next, we define regularized-perturbed games and show
some of their properties useful in proving our core re-
sults, namely equilibrium uniqueness and the connec-
tion between their equilibria and the δ-approximate
ε-EFPEs of the original game (Theorem 4.1).

1For ease of notation, ε→ 0 is the limit from the right.

Given any EFG and two parameters λ, ε > 0, we define
the regularized-perturbed game G(λ, ε) as a two-player
zero-sum game in which the players’ strategy sets are
those of the original game (namely X and Y) and the
first player’s utility for any pair of strategies x ∈ X
and y ∈ Y is given by:

fλ,ε(x,y) := x>Uy − 1

λ
dε1(x) +

1

λ
dε2(y),

where dε1 : X → R and dε2 : Y → R are strongly
convex distance-generating functions that are defined
recursively over the sequence-form strategy sets X and
Y, respectively, as follows:

dε1(x) :=
∑
I∈I1

αI x[σ1(I)]dε∆I

(
x[I]

x[σ1(I)]

)
,

dε2(y) :=
∑
I∈I2

αI y[σ2(I)]dε∆I

(
y[I]

y[σ2(I)]

)
.

In the definitions of dε1(x) and dε2(y), we introduced
the following useful additional notation:

• for every infoset I ∈ I1 (resp. I ∈ I2), the vector
x[I] ∈ [0, 1]nI (resp. y[I] ∈ [0, 1]nI ) is the sub-
vector of x (resp. y) made by all the components
x[σ1(I)a] (resp. y[σ2(I)a]) for a ∈ A(I);

• for every I ∈ I1 ∪ I2, the function dε∆I
: ∆nI → R

is such that dε∆I
(w) := (w − 1ε)> log(w − 1ε);2

• for all I ∈ I1 ∪ I2, the weights αI ∈ R+ are recur-
sively defined as αI := 2+2 maxa∈A(I)

∑
J∈CI,a αJ ,

so as to guarantee that dε1 and dε2 are 1-strongly
convex functions with respect to the `2-norm (see
Lemma A.2 in Appendix A).

In this paper, we will also use the Bregman divergences
Dε
i (·|·) associated with the distance-generating func-

tions dεi . Formally, for every pair x, x̃ ∈ X , we define
Dε

1(x|x̃) := dε1(x) − dεi(x̃) − ∇dεi(x̃)>(x − x̃), while
Dε

2(y|ỹ) is defined analogously.

Notice that the functions dε1 and dε2 are special cases
of dilated distance-generating functions, which are de-
fined by directly exploiting the tree form of sequence-
form strategy sets X and Y (Hoda et al., 2010; Lee
et al., 2021). In particular, dε1 and dε2 employ the dε∆I

as base distance-generating functions for the simplexes
defining the strategy spaces at every infoset I. These
functions modify the classical negative entropy by off-
setting by −ε the strategy given as input. Intuitively,

2In this work, ∆I denotes the (nI − 1)-dimensional
simplex defined over the set A(I) of actions at infoset
I ∈ I1 ∪ I2. We also use log(w) as a shorthand for the
vector whose k-th component is log(w[k]). Moreover, for
the function dε∆I to be well defined for every I ∈ I1 ∪ I2,
we assume w.l.o.g. that ε ≤ minI∈I1∪I2 1/2nI .
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this ensures that the equilibria of the game belong to
X ε × Yε, and, thus, the parameter ε can be used to
tune the perturbation component.

We also notice that the term 1/λ that multiplies the
functions dε1 and dε2 is the one controlling the regu-
larization component, and it is crucial to recover the
strong convexity-concavity of the utility function fλ,ε,
which, in its turn, guarantees equilibrium uniqueness.
By letting z?λ,ε := (x?λ,ε,y

?
λ,ε) ∈ X ε × Yε be an NE of

the game G(λ, ε), it is easy to check that it must satisfy
the following conditions:

x?λ,ε ∈ arg max
x∈X

{
x>Uy?λ,ε −

1

λ
dε1(x)

}
,

y?λ,ε ∈ arg min
y∈Y

{
x?,>λ,ε Uy +

1

λ
dε2(y)

}
.

Then, by the fact that the objectives of the problems
above are strongly convex, one can conclude that a pair
of solutions (x?λ,ε,y

?
λ,ε) is unique and changes smoothly

when the parameters are suitably tuned.

We remark that equilibrium uniqueness in regularized-
perturbed games plays a crucial in the construction un-
derpinning our algorithm, as we will show in Section 5.
Moreover, let us also notice that our approach to en-
sure equilibrium uniqueness is inspired by ideas taken
from the quantal equilibrium (McKelvey and Palfrey,
1995). Indeed, it is easy to check that, setting ε = 0
in fλ,ε defines quantal equilibria.

Next, we prove that the unique NE of a game G(λ, ε) is
indeed a δ-approximate ε-EFPE of the original EFG,
where the approximation δ linearly depends on the
regularization component 1/λ.3

Theorem 4.1. Given an EFG and two parameters
λ, ε > 0, the unique NE z?λ,ε of G(λ, ε) constitutes a

O
(

1
λ

)
-approximate ε-EFPE of the EFG.

4.2 How to Select a Sequence Leading to an
EFPE

From Theorem 4.1, one could näıvely think that, by
tracking a sequence of NEs of G(λ, ε) as λ → +∞
and ε → 0, it is possible to recover an EFPE of the
EFG. In the following, we show that this is not always
the case, since, in order to identify the sequence of
equilibria leading to an EFPE, one needs to carefully
control how the parameters λ and ε converge to +∞
and zero, respectively.

First, let us remark that, as an immediate corollary of
Theorem 4.1, we have that taking the limit as λ→ +∞
before letting ε→ 0 allows to recover an EFPE, since
the theorem shows that limλ→+∞ z

?
λ,ε is an NE of a

3All the proofs are in the Appendixes A and B.

perturbed game. However, doing so will result in losing
all the benefits of the regularization component, which
are needed in order to be able to design an efficient
algorithm converging to an EFPE. Formally:

Corollary 4.2. Given any EFG, let us define z? :=
limε→0 limλ→∞ z

?
λ,ε. Then, z? is an EFPE of the EFG.

However, using any sequence {(λk, εk)}k∈N such that
λk → +∞ and εk → 0 jointly as k → +∞ does not
lead to EFPEs, as shown by the following proposition:

Proposition 4.1. There exists an EFG for which
limλ→∞ limε→0 z

?
λ,ε 6= limε→0 limλ→∞ z

?
λ,ε and, addi-

tionally, limλ→∞ limε→0 z
?
λ,ε is not an EFPE.

By results on iterated limits (Steinlage, 1971), we have
that the double limit lim(λ,ε)→(+∞,0) z

?
λ,ε may not ex-

ist. This immediately implies that one cannot con-
sider any arbitrary {(λk, εk)}k∈N in order to define a
sequence of equilibria leading to an EFPE. Indeed,
the only guarantee is that the sequence leads to an
NE of the original EFG. As a result, the sequence
{(λk, εk)}k∈N must be built in a specific way.

Next, we show that we need sequences {(λk, εk)}k∈N
that are defined so that the sequence made by the λk
converges faster than that of the εk. Formally:

Theorem 4.3. Given any EFG, there exists a func-
tion µ : (0, 1] → R+ such that, given any sequence
{(λk, εk)}k∈N defined so that λk → +∞, εk → 0, and
1/λk < µ(εk) as k → +∞, the limit limk→+∞ z

?
λk,εk

identifies an EFPE of the given EFG.

The proof of Theorem 4.3 is based on the core idea
that, by choosing λk > 1/µ(εk) for a suitably-defined
function µ : (0, 1] → R+, the resulting sequence
(1/λk, εk) is “close” to the one defined by the iter-
ated limit in Corollary 4.2, which is guaranteed to
be an EFPE. Indeed, this amounts to showing that,
for k sufficiently large, the sequence (1/λk, εk) is close
to (0, εk), where the latter sequence converges to an
EFPE thanks to Corollary 4.2.

4.3 The Need of Regularization

Next, we argue why adding a regularization compo-
nent is of paramount importance in our setting. In-
deed, one could argue that it would be more natural
to track the sequence of ε-EFPEs that appear in the
definition of EFPE (Definition 3.1). However, such a
methodology would not work. Indeed, such a natural
sequence, tough always admitting a limit point, can
have discontinuities, bifurcations, multiple branches,
and other irregularities, which are drawback inherited
by the convoluted structure of NE in linear games.
In particular, non-uniqueness alone would doom any
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X × Y

ε

EFPE

zλ(ε),ε

zε

Figure 1: An example of the “smooth” sequence of
equilibria zλ(ε),ε of regularized-perturbed games (in
blue) and the sequence of ε-EFPEs zε in the defini-
tion of EFPE (in red).

method that relies on last-iterate convergence, since
uniqueness is a key assumption in such methods.

Conversely, our sequence of equilibria defined in terms
of regularized-perturbed games is “smooth”—as it is
C∞-differentiable—and it identifies a unique branch,
while sharing the same limit point with the sequence
in the definition of EFPE. This makes our sequence
much easier to track. Figure 1 shows an example of
the sequence used in the definition of EFPE and the
one of our regularized-perturbed games.

5 EFFICIENT ITERATIVE
ALGORITHM FOR EFPE

We are now ready to introduce our last-iterate al-
gorithm that converges to an (exact) EFPE (Algo-
rithm 1). The algorithm works by tracking a sequence
of equilibria z?k := z?λk,εk of regularized-perturbed
games Gk := G(λk, εk) by letting k → +∞, where
the latter games are defined by means of a sequence
{(λk, εk)}k∈N as in the statement of Theorem 4.3.

Algorithm 1 works in phases. For every k ∈ N, the
k-th phase of the algorithm is devoted to finding a
suitable approximation of the equilibrium z?k of the
regularized-perturbed game Gk. This is achieved by
performing Tk := βk (for a given β > 1) iterations of
a last-iterate sub-procedure (Algorithm 2) that con-
verges linearly to an approximate equilibrium of Gk
(see Theorem 5.1). In any given phase k, finding an
approximation of z?k is sufficient, since the sequence
made by the equilibria z?k has the only purpose of
identifying EFPEs as its limit points. Algorithm 2
is an extension of the OOMD algorithm, when instan-
tiated for sequence-form strategy sets. Similarly to
the OOMD algorithm, Algorithm 2 performs suitably-
defined intermediate updates, labeled with t+ 1

2 .

Notice that, in our setting, it is not possible to use the
standard update rule of OOMD, by directly feeding the
algorithm with the gradients of fλk,εk of regularized-

perturbed games Gk. This is because such functions
are non-smooth due to the dεki having unbounded gra-
dient norm near the boundaries of X εk ×Yεk . Indeed,
dεki are Legendre functions (Cesa-Bianchi and Lugosi,
2006). In order to circumvent this issue, we use an
idea introduced by the composite objective mirror de-
scent algorithm (Duchi et al., 2010), which consists in
avoiding the linearization of the non-smooth part in
the utility function to deal with the non-Lipschitzness
of the gradients. The convergence guarantees of Algo-
rithm 2 are the following:

Theorem 5.1. Define Dεk(z|z̃) := Dεk
1 (x|x̃) +

Dεk
2 (y|ỹ), then for all η ≤ 1/

√
2‖U‖2, k ∈ N and

round t ∈ {1, . . . , Tk}, Algorithm 2 guarantees:

‖z?k − z
(k)
t ‖2 ≤ 2

[
2Dεk

(
z?k|z

(k)
0

)]1/2( λk
λk + η

)t/2
.

We also remark that the proof of the theorem above
can be generalized to achieve last-iterate convergence
to equilibria of EFGs for any dilated regularization
functions di. Indeed, our results do not rely on the the
specific di used here that are specifically tailored for
EFPEs. Let us remark that the problem of designing
learning algorithms with last-iterate converge guaran-
tees to equilibria in games has recently received con-
siderable attention (see, e.g., (Cen et al., 2021, 2022;
Liu et al., 2022; Sokota et al., 2022; Abe et al., 2023))

5.1 Convergence Analysis

By exploiting the analysis of Algorithm 2 in Theo-
rem 5.1, the following theorem formally proves the con-
vergence guarantees of Algorithm 1 to (exact) EFPEs.

Theorem 5.2. Given any sequence {(λk, εk)}k∈N de-
fined as in Theorem 4.3 and satisfying η ≤ λ2

k ≤
ηβk/2 for every k ∈ N, Algorithm 1 grantees that

limk→∞ z
(k)
Tk

is an EFPE.

Moreover, we can exploit the strongly convex-concave
structure of the utility functions fλ,ε to prove Nash
gap guarantees for regularized-perturbed games Gλ,ε,
which can then be combined with Theorem 4.1 to ob-
tain guarantees on the exploitability of z

(k)
Tk

in the orig-
inal EFG. Formally:

Theorem 5.3. Let z̃ := (x̃, ỹ) ∈ X × Y be such that
it holds ‖z?λ,ε − z̃‖2 ≤ ν for some ν > 0, then:

Gap(x̃, ỹ) ≤ ν|Σ|3/2 + 8C/λ,

where |Σ| := max{|Σ1|, |Σ2|} and C > 0 is a con-
stant that depends polynomially in maxi∈{1,2} |Ii|,
maxI∈I1∪I2 αI , and maxI∈I1∪I2 log nI .
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Algorithm 1 Compute EFPE

1: function Compute-EFPE({(λk, εk)}, β, η)
{(λk, εk)}k: As in Theorem 4.3.
β > 1: Phase growing rate.
η > 0: Learning rate.

2: z(0) ∈ X × Y; k ← 0; T ← 0
3: while not exceeding time limit do
4: k ← k + 1
5: Instantiate game Gk := G(λk, εk)
6: Tk ← βk; T ← T + Tk
7: z

(k)
Tk
← Solve(Gk, Tk, z(k−1)

Tk−1
, η)

8: return z
(k)
Tk

Algorithm 2 Solve game Gk

1: function Solve(Gk, Tk, z(k)
−1/2, η)

2: for t = 0, . . . , Tk − 1 do

3: x
(k)

t+ 1
2

← arg max
x∈X

{
x>Uy

(k)
t −

d
εk
1 (x)
λk
− 1

ηD
εk
1

(
x|x(k)

t− 1
2

)}
4: x

(k)
t+1 ← arg max

x∈X

{
x>Uy

(k)
t −

dεk (x)
λk
− 1

ηD
εk
1

(
x|x(k)

t+ 1
2

)}
5: y

(k)

t+ 1
2

← arg min
y∈Y

{
x

(k),>
t Uy +

d
εk
2 (y)
λk

+ 1
ηD

εk
2

(
y|y(k)

t− 1
2

)}
6: y

(k)
t+1 ← arg min

y∈Y

{
x

(k),>
t Uy +

d
εk
2 (y)
λk

+ 1
ηD

εk
2

(
y|y(k)

t+ 1
2

)}
7: return z

(k)
Tk

:=
(
x

(k)
Tk
,y

(k)
Tk

)

As a direct corollary, we can prove the following guar-
antees in terms of Nash gap for Algorithm 1.

Corollary 5.4. Given any sequence {(λk, εk)}k∈N as
in Theorem 5.2, at the end of every phase k ∈ N of
Algorithm 1, the following holds:

Gap
(
x

(k)
Tk
,y

(k)
Tk

)
≤ 4

λk
|Σ| 32

[
2Dεk(z?k|z

(k)
0 )
] 1

2

+
8C

λk
.

The result above shows that, after T =
∑k
j=1 β

j =

O(βk) rounds, one gets a Nash gap of the order of
O(1/λk). Thus, by choosing λk = O(βk/2) (which is
the largest order of λk allowed by Corollary 5.4), we
have a bound of O(1/

√
T ) on the Nash gap.

Notice that Theorem 4.3 shows asymptotic conver-
gence in terms of `2-distance to an EFPE, while Corol-
lary 5.4 shows convergence in terms of Nash gap. De-
termining whether it is possible to show finite conver-
gence rates also for the `2-distance to the set of EFPEs
requires additional research. The difficulty of such an
inquiry is that, even in (non-perturbed) normal-form
games, our problem reduces to finding convergence
rates to limit-quantal equilibria, which is still open.

5.2 Efficient Decomposition

The pseudo-code formulation of Algorithm 2 does not
scale efficiently, since at each iteration it requires to
solve convex problems over the whole set X and Y.

Next, we show that each update of Algorithm 2 can
be implemented efficiently by directly working on the
game tree with closed form solutions. In particular, we
show how to implement each update in Algorithm 2 so
that: (i) it is performed recursively with a bottom-up
visit of one player’s infosets; and (ii) at every visited
infoset, it only requires a local closed-form update.

To achieve this, we exploit a technique of (Hoda et al.,
2010; Farina et al., 2021). By focusing on the first

player, we have that if the following two facts hold:

(i) the overall update can be expressed as a prox-
imal gradient update; formally, as the compu-
tation of the conjugate gradient ∇dε,∗1 (g̃) :=
arg maxx∈X

{
x>g̃ − dε1(x)

}
of dε1 for some vector

g̃ ∈ R|Σ1|, and

(ii) for every information set I ∈ I1 and vector
g̃ ∈ RnI , the local conjugate gradient ∇dε,∗∆I

(g̃) :=

arg maxw∈∆I

{
w>g̃ − dε∆I

(w)
}

and local gradient
∇dε∆I

(g̃) have a closed-form expression,

then the overall update can be computed efficiently in
terms by closed form expressions.

However, Algorithm 2 employs update rules that are
a priori different from those studied in (Hoda et al.,
2010) and its follow ups. Thankfully, the following
theorem shows that the approach described above can
still be employed on the update rules of Algorithm 2.

Theorem 5.5. The following hold:

(i) For any pair of vectors g, x̃ ∈ R|Σ1| and
ε > 0, the updates of Algorithm 2 of the form

arg maxx∈X

{
x>g − dε1(x)

λ − 1
ηD

ε
1(x|x̃)

}
can be

formulated as the computation of the conju-
gate gradient ∇dε,∗1 (g̃) for a suitably-defined,
efficiently-computable vector g̃ ∈ R|Σ1|.

(ii) For every ε > 0, I ∈ I1, and g̃ ∈ RnI ,

∇dε,∗∆I
(g̃)[a] = (1 − ε nI)

eg̃[a]

‖eg̃‖1 + ε, and the lo-

cal gradient can be computed as ∇dε∆I
(g̃)[a] =

1 + log(g̃[a]− ε) for all a ∈ A(I).

6 EXPERIMENTAL EVALUATION

We conclude by evaluating our algorithm on a stan-
dard testbed of EFGs. We consider two simplified
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Figure 2: Results of the experimental evaluation. Algorithm 1 is compared with the baselines in terms of Nash
gap (First row) and average infoset regret (Second row). CFR(ε) and EGT(ε) denote the methods by Farina
et al. (2017) and Kroer et al. (2017), respectively, instantiated with perturbation ε.

versions of Poker, called Kuhn (Kuhn, 1950) and
Leduc (Southey et al., 2005), and a two-player game
called Goofspiel Ross (1971).4

We evaluate our algorithm in terms of two metrics.
The first one is the Nash gap, which is the standard
metric employed to evaluate NE approximation. The
second metric is the average infoset regret, which we
call RI for short. Given a pair of players’ strategies,
this is defined as the average of the regrets that such
strategies incur at all the infosets of the game. Specifi-
cally, the regret at an infoset is computed by assuming
that such infoset is reached with probability one and
by applying the Bayes rule to get a distribution en-
coding the probability of reaching each node in the
infoset. Then, the regret is defined as the increase in
utility by playing a best response to the opponent’s
strategy from that infoset on.

We compare Algorithm 1 with two baseline algorithms
that are designed for computing NEs, namely the clas-
sical CFR algorithm (Zinkevich et al., 2007) and the
excessive gap technique (EGT) algorithm for sequence-
form strategy sets, as introduced by Farina et al.
(2019). Moreover, we also compare the performances
of Algorithm 1 with the extensions of such algorithms
that have been designed for NE refinements. These are
the iterative methods proposed by Farina et al. (2017)
and Kroer et al. (2017), which take as input a fixed per-
turbation parameter ε > 0, and work with the strategy
space X ε × Yε. In particular, we test such algorithms
for the perturbation values ε ∈ {0.01, 0.001}. More-

4See Appendix C for a description of the games.

over, we run Algorithm 1 with the following values of
the parameters: β = 1.001, η = 2, εk = (1 − 1e−4)k,
and λk = 1/ε2k.

Figure 2 shows the main results of our experimental
evaluation (additional ones are in Appendix C).5 As
it is clear from the plots, Algorithm 1 outperforms the
others in terms of average infoset regret RI . This was
expected, since our algorithm is specifically tailored for
converging to an EFPE, while the others only guaran-
tee convergence to either an NE or an approximate
EFPE. Notice that Algorithm 1 is also competitive
with the other algorithms in terms of Nash gap. This
shows that the additional guarantees provided by Al-
gorithm 1 do not hinder the speed of decay of the
Nash gap metric. Indeed, our algorithm surprisingly
achieves the best performance in terms of Nash gap in
the Khun and Leduc games.

Our results show the importance of tuning regulariza-
tion and perturbation terms jointly in order to con-
verge to exact EFPEs. Indeed, every method that
finds approximate equilibria of the perturbed game
provably fails in getting either zero Nash gap or zero
average infoset regret. This shows that the regulariza-
tion introduced into the game not only enables con-
vergence to EFPEs, but it also has the potential of
leading to the design of algorithms which are superior
to current state-of-the-art equilibrium-computation al-
gorithms.

5For Algorithm 1, EGT, and EGT(ε) we considered the
last iterates, while for CFR and CFR(ε) we considered the
time average.
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Appendix Index

The appendix is structured as follows:

• Appendix A presents the proofs omitted from Section 4.

• Appendix B provides the proofs and additional details omitted from Section 5 in the construction of Algo-
rithm 1.

• Appendix C provides additional experiments details and results.

A Proofs omitted from Section 4

Lemma A.1. For every I ∈ I1∪I2 and ε > 0, the function dε∆I
is 1-strongly convex with respect to the Euclidean

norm.

Proof. For every w ∈ ∆I , we have that:

∂2dε∆I
(w)

∂w[i]∂w[j]
=

{
1

w[i]−ε if i = j

0 otherwise
.

Thus, ∇2dε∆I
(w) ≥ InI , where In denotes the n-dimensional identity matrix.

Lemma A.2. For any ε > 0, the functions dε1 and dε2 are 1-strongly convex with respect to the Euclidean norm.

Proof. This follows from Lemma A.1, the expression of the weights αI in dε∆I
in the definitions of dε1 and dε2,

and by using Farina et al. (2019, Corollary 1).

Lemma A.3. We have that |dε1(x)| ≤ C and |dε2(y)| ≤ C for all x,y ∈ X × Y and any ε ≤ minI∈I1∪I2
1

2nI
.

Moreover C ≤ ‖α‖∞ ·maxi∈{1,2} |Ii|maxI∈I1∪I2 log(2nI), where α ∈ R|I1|+|I2| is a vector that contains all the
components αI with I ∈ I1 ∪ I2.

Proof. Consider the following inequalities:

max
x∈X
|dε1(x)| ≤

∑
I∈I1

αI max
w∈∆I

|dε∆I
(w)|

≤
∑
I∈I1

αI log

(
nI

1− ε · nI

)
≤
∑
I∈I1

αI log(2nI) := CX ,

where we used that the maximum of dε∆I
(w) is attained in the center w[a] = 1/nI , for all a ∈ A(I), and the

last inequality follows from ε ≤ min
I∈I1∪I2

1
2nI

. We can define CY analogously for the second player and take

C := max{CX , CY}.

Then define the vector α as the vector that contains the components αI for the first player and second player.
Then, by Holder’s inequality, it holds C ≤ ‖α‖∞ ·maxi∈{1,2} |Ii|maxI∈I1∪I2 log(2nI).

Lemma A.4. The following inequalities holds:∣∣∣∣max
x

f(x)−max
y

g(y)

∣∣∣∣ ≤ max
x
|f(x)− g(x)|, (1)∣∣∣∣min

x
f(x)−min

y
g(y)

∣∣∣∣ ≤ max
x
|f(x)− g(x)|. (2)
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Proof. Consider the following inequality:

f(x) ≤ |f(x)− g(x)|+ g(x)

Applying the max operator to both sides of the previous equation and observing that max
x

(|f(x)−g(x)|+g(x)) ≤
max
x
|f(x)− g(x)|+ max

x
g(x)) we can rearrange the inequality to obtain:

max
x

f(x)−max
x

g(x) ≤ max
x
|f(x)− g(x)|.

We can in the same way obtain that:

max
x

g(x)−max
x

f(x) ≤ max
x
|f(x)− g(x)|,

which combined with the above let us conclude Equation (1). Now Equation (2) follows from considering
Equation (1) with −f(x) instead of f(x) and −g(x) instead of g(x).

Theorem 4.1. Given an EFG and two parameters λ, ε > 0, the unique NE z?λ,ε of G(λ, ε) constitutes a O
(

1
λ

)
-

approximate ε-EFPE of the EFG.

Proof. Let us consider the function f̃ε : X × Y → R such that, for every x ∈ X and y ∈ Y, it holds:

f̃ε(x,y) := x>Uy − IX ε(x) + IYε(y),

where IW(w) is 0 if w ∈ W, while it is +∞ if w 6∈ W.

First, it is easy to check that any (x,y) ∈ X ×Y such that f̃ε(x,y) = maxx̃∈X minỹ∈Y f̃ε(x̃, ỹ) is an ε-EFPE of
the original EFG (see Definition 3.1).

Moreover, for any (x,y) ∈ X ε × Yε it is easy to show that |fλ,ε − f̃ε| = O(1/λ):

|fλ,ε(x,y)− f̃ε(x,y)| ≤ |d
ε
1(x)− dε2(y)|

λ
≤ 2C

λ
,

where C is defined in Lemma A.3.

Finally, let us consider the unique NE z?λ,ε = (x?λ,ε,y
?
λ,ε) of G(λ, ε). By Lemma A.4, we have that:

max
x∈X ε

f̃ε(x,y
?
λ,ε)− min

y∈Yε
f̃ε(x

?
λ,ε,y) ≤

∣∣∣∣max
x∈X ε

f̃ε(x,y
?
λ,ε)− max

x∈X ε
fλ,ε(x,y

?
λ,ε)

∣∣∣∣
+

∣∣∣∣min
y∈Yε

f̃ε(x
?
λ,ε,y)− min

y∈Yε
fλ,ε(x

?
λ,ε,y)

∣∣∣∣
≤ 4C

λ
,

which concludes the proof.

Proposition 4.1. There exists an EFG for which limλ→∞ limε→0 z
?
λ,ε 6= limε→0 limλ→∞ z

?
λ,ε and, additionally,

limλ→∞ limε→0 z
?
λ,ε is not an EFPE.

Proof. Let us consider a game in which the two players play simultaneously and only once, having each of them
three different actions available (i.e., a 3 × 3 game in normal form). The following matrix encodes the first
player’s payoffs for all the possible combinations of players’ actions: 0.3 0.5 0.3

0.7 0.3 0.7
0.6 0.2 0.2


By using the fact that any quantal equilibrium enjoys the ”independence of irrelevant alternatives” property McK-
elvey and Palfrey (1995), we can prove that it holds:

lim
λ→∞

[
lim
ε→0

z?λ,ε

]
=

 2/3
1/3
0

 ,
 1/6

2/3
1/6

 ,
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where we expressed player’s strategies as the probability distributions that they induce over the three actions
for ease of presentation. Moreover, the only EFPE of the game is:

z? =

 2/3
1/3
0

 ,
 0

2/3
1/3

 ,

since this is the unique NE that eliminates weakly dominated strategies, and, thus, it is an (Van Damme, 1991,
Corollary 2.2.6). This proves the proposition.

Theorem 4.3. Given any EFG, there exists a function µ : (0, 1] → R+ such that, given any sequence
{(λk, εk)}k∈N defined so that λk → +∞, εk → 0, and 1/λk < µ(εk) as k → +∞, the limit limk→+∞ z

?
λk,εk

identifies an EFPE of the given EFG.

Proof. By Corollary 4.2, we have that

z? := lim
ε→0

[
lim
λ→∞

z?λ,ε

]
is an EFPE. Let z?ε := limλ→∞ z

?
λ,ε for all ε > 0. By definition of limit, for every τ > 0 there exists Rε(τ) ∈ R+

such that ||z?λ,ε− z?ε ||2 ≤ τ for all λ ∈ R : λ > Rε(τ). Moreover, by looking at the outer limit in the definition of
z? we have that, for every τ ′ > 0, there exists H(τ ′) ∈ R+ such that ||z?ε − z?||2 ≤ τ ′ for all ε ∈ R : |ε| ≤ H(τ ′).

By using the triangular inequality, for every τ > 0:

||z?ε,λ − z?||2 ≤ ||z?ε,λ − z?ε ||2 + ||z?ε − z?||2 ≤ τ

for all λ ∈ R : λ > Rε(τ/2) and ε ∈ R : |ε| ≤ H(τ/2).

Moreover, if εk ≤ H(τ/2), then λk > Rεk(τ/2). This follows from the following inequalities:

λk >
1

µ(εk)
≥ 1

µ(H(τ/2))
≥ Rεk(τ/2),

which holds for a suitable choice of the function µ : (0, 1]→ R+.

As a result, for every τ > 0 and for all k ∈ N such that εk ≤ H(τ/2), it holds:

||z?εk,λk − z
?||2 ≤ τ,

which concludes the proof.

B Proofs omitted from Section 5

In this section is convenient to consider the join updates for the first and second player. If we define z = (x,y) ∈
X × Y, then it is easy to verify that updates of the form:

x̂ = arg max
x∈X

{
x>Uy0 −

1

λ
dε1(x)− 1

η
Dε

1(x|x̃)

}
(3)

ŷ = arg min
y∈Y

{
x>0 Uy +

1

λ
dε2(y) +

1

η
Dε

2(y|ỹ)

}
, (4)

can be jointly expressed as:

ẑ = arg min
z∈X×Y

{
G(z0)>z +

1

λ
Hε(z) +

1

η
Dε(z|z̃)

}
,

where we define Hε(z) := dε1(x) + dε2(y), Dε(z|z̃) := Dε
1(x|x̃) +Dε

2(y|ỹ) and G(z) := (−Uy,U>x).
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B.1 Convergence Analysis

Lemma B.1. Let z?λ,ε the unique NE of the game Gλ,ε, then for all z:

G(z)>(z?λ,ε − z) +
1

λ

[
Hε(z?λ,ε)−Hε(z)

]
≤ 0

Proof. Since z?λ,ε is an equilibrium of Gλ,ε we have that:

fλ,ε(x
?
λ,ε,y

?
λ,ε) ≤ fλ,ε(x?λ,ε,y), ∀y ∈ Y

which implies that:

x?,>λ,ε U(y?λ,ε − y) +
1

λ

[
dε2(y?λ,ε)− dε2(y)

]
≤ 0. (5)

Similarly we can observe that:
fλ,ε(x,y

?
λ,ε) ≤ fλ,ε(x?λ,ε,y?λ,ε), ∀x ∈ X

which implies that:

(x− x?λ,ε)>Uy?λ,ε +
1

λ

[
dε1(x?λ,ε)− dε1(x)

]
≤ 0. (6)

By summing Equation (5) and Equation (6) and observing that x>Uy?λ,ε − x
?,>
λ,ε Uy = G(z)>(z?λ,ε − z) we can

conclude the statement of the lemma.

Lemma B.2. If ẑ = arg min
z∈X×Y

{
G(z0)>z + 1

λH
ε(z) + 1

ηD
ε(z|z̃)

}
then:

η(ẑ − z)>G(z0) +
η

λ
Hε(ẑ)− η

λ
Hε(z) ≤ Dε(z|z̃)−Dε(ẑ|z̃)− λ+ η

λ
Dε(z|ẑ) (7)

Proof. By the fact that for any Bregman divergence we have ∇zD
ε(z|z̃) = ∇Hε(z)−∇Hε(z̃), and rearranging

the optimality condition of ẑ we get that:[
G(z0) +

(
1

λ
+

1

η

)
∇Hε(ẑ)− 1

η
∇Hε(z̃)

]>
(z − ẑ) ≥ 0,

which implies that:

λη

λ+ η
G(z0)>(ẑ − z) ≤

[
∇Hε(ẑ)− λ

λ+ η
∇Hε(z̃)

]>
(z − ẑ). (8)

It is then easy to check that for the right hand side of Equation (8) the following equality holds:[
∇Hε(ẑ)− λ

λ+ η
∇Hε(z̃)

]>
(z − ẑ) =

λ

λ+ η
Dε(z|z̃)− λ

λ+ η
Dε(ẑ|z̃) +Dε(z|ẑ)

+

[
λ

λ+ η
− 1

]
Hε(ẑ)−

[
λ

λ+ η
− 1

]
Hε(z),

which concludes the proof by rearranging the terms.

Next we prove a similar result to Wei et al. (2020, Lemma 11) that relates the distance between the gradients of
two updates to the distance in the outputs. Formally:

Lemma B.3. Let

ẑ1 = arg min
z∈X×Y

{
G(z0,1)>z +

1

λ
Hε(z) +

1

η
Dε(z | z1)

}
and

ẑ2 = arg min
z∈X×Y

{
G(z0,2)>z +

1

λ
Hε(z) +

1

η
Dε(z | z1)

}
.

Then:

‖ẑ1 − ẑ2‖2 ≤
ηλ

η + λ
‖G(z0,1)−G(z0,2)‖2.
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Proof. By summing the first order conditions of the two equations above we obtain:

η [G(z0,1)−G(z0,2)]
>

(ẑ2 − ẑ1) ≥
(

1 +
η

λ

)
[∇Hε(ẑ1)−∇Hε(ẑ2)]

>
(ẑ1 − ẑ2). (9)

By strong convexity of Hε(·), given by Lemma A.1, the right hand side is lower bounded by
(
1 + η

λ

)
‖ẑ1 −

ẑ2‖22, while by Cauchy-Schwartz inequality we have that the wight hand side is upper bounded by η‖G(z0,1)−
G(z0,2)‖2‖ẑ1 − ẑ1‖2. Thus:

η‖G(z0,1)−G(z0,2)‖2‖ẑ1 − ẑ1‖2 ≥
(

1 +
η

λ

)
‖ẑ1 − ẑ2‖22,

which, after dividing by ‖ẑ1 − ẑ2‖2, concludes the proof.

Theorem 5.1. Define Dεk(z|z̃) := Dεk
1 (x|x̃) + Dεk

2 (y|ỹ), then for all η ≤ 1/
√

2‖U‖2, k ∈ N and round
t ∈ {1, . . . , Tk}, Algorithm 2 guarantees:

‖z?k − z
(k)
t ‖2 ≤ 2

[
2Dεk

(
z?k|z

(k)
0

)]1/2( λk
λk + η

)t/2
.

Proof. Notice that the update of Algorithm 1 can be jointly written as:

z
(k)
t+1 = arg min

z

{
z>G(z

(k)
t ) +

1

λk
Hεk(z) +

1

λk
Dεk

(
z|z(k)

t+ 1
2

)}
,

z
(k)

t+ 1
2

= arg min
z

{
z>G(z

(k)
t ) +

1

λk
Hεk(z) +

1

λk
Dεk

(
z|z(k)

t− 1
2

)}
.

Then we can use Lemma B.2 for the update of z
(k)

t+ 1
2

which gives:

η(z
(k)

t+ 1
2

− z)>G(zt) +
η

λk
Hεk(z

(k)

t+ 1
2

)− η

λk
Hεk(z) ≤

Dεk(z|z(k)

t− 1
2

)−Dεk(z
(k)

t+ 1
2

|z(k)

t− 1
2

)− λk + η

λk
Dεk(z|z(k)

t+ 1
2

), (10)

which holds for any z and thus also for z?k.

On the other hand using Lemma B.2 for the update of z
(k)
t which gives:

η(z
(k)
t − z)>G(z

(k)
t−1) +

η

λk
Hεk(z

(k)
t )− η

λk
Hεk(z) ≤

Dεk(z|z(k)

t− 1
2

)−Dεk(z
(k)
t |zt− 1

2
)− λk + η

λk
Dεk(z|z(k)

t ), (11)

which holds fro any z and thus also for z
(k)

t+ 1
2

. Summing Equation (10) with z = z?k to Equation (11) with

z = z
(k)

t+ 1
2

, and rearranging results in the following inequality:

η(z
(k)
t − z?)>G(z

(k)
t ) +

η

λk

[
Hεk(z

(k)
t )−Hεk(z?)

]
≤ Dεk(z?k|z

(k)

t− 1
2

)− λk + η

λk
Dεk(z?k|z

(k)

t+ 1
2

)−Dεk(z
(k)
t |z

(k)

t− 1
2

)

− λk + η

λk
Dεk(z

(k)

t+ 1
2

|z(k)
t ) + η(z

(k)
t − z

(k)

t+ 1
2

)>(G(z
(k)
t )−G(z

(k)
t−1)) (12)

Now consider the last term of Equation (12) and the following inequalities:

(z
(k)
t − z

(k)

t+ 1
2

)>(G(z
(k)
t )−G(z

(k)
t−1)) ≤ ‖z(k)

t − z
(k)

t+ 1
2

‖2‖G(z
(k)
t )−G(z

(k)
t−1)‖2

≤ λkη

λk + η
‖G(z

(k)
t−1)−G(z

(k)
t )‖22
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≤ λkη

λk + η
L2
U‖z

(k)
t−1 − z

(k)
t ‖22

≤ 2λkη

λk + η
L2
U

[
‖z(k)

t−1 − z
(k)

t− 1
2

‖22 + ‖z(k)

t− 1
2

− z(k)
t−1‖22

]
≤ 4λkη

λk + η
L2
U

[
Dεk(z

(k)
t |z

(k)

t− 1
2

) +Dεk(z
(k)

t− 1
2

|z(k)
t−1)

]
,

where the first inequality is the Cauchy Schwartz inequality and the second inequality follows from Lemma B.3.
Then we used the fact that the operator G(·) is linear with matrix A defined as:

A =

[
0 −U>
U 0

]
,

and LU := ‖U‖2 = ‖A‖2. Thus, continuing from Equation (12) we get:

η(z
(k)
t − z?k)>G(z

(k)
t ) +

η

λk

[
Hεk(z

(k)
t )−Hεk(z?k)

]
≤ Dεk(z?k|z

(k)

t− 1
2

)− λk + η

λk
Dεk(z?k|z

(k)

t+ 1
2

)−Dεk(z
(k)
t |z

(k)

t− 1
2

)− λk + η

λk
Dεk(z

(k)

t+ 1
2

|z(k)
t )

+
4λkη

2

λk + η
L2
U

[
Dεk(z

(k)
t |z

(k)

t− 1
2

) +Dεk(z
(k)

t− 1
2

|z(k)
t−1)

]
By assuming that λk ≥ η and η ≤ 1√

2LU
we have that 4λkη

2

λk+η L
2
U ≤ 1. Moreover, thanks to Lemma B.1 we have

that:
η(z

(k)
t − z?k)>G(z

(k)
t ) +

η

λk

[
Hεk(z

(k)
t )−Hεk(z?k)

]
≥ 0.

Thus, by rearranging Equation(12) and recalling that Dεk(·|·) ≥ 0 we obtain:

λk + η

λk

[
Dεk(z?k|z

(k)

t+ 1
2

) +Dεk(z
(k)

t+ 1
2

|z(k)
t )
]
≤ Dεk(z?k|z

(k)

t− 1
2

) +Dεk(z
(k)

t− 1
2

|z(k)
t−1).

Thus, by iterating the above expression, we get that:

Dεk(z?k|z
(k)

t+ 1
2

) +Dεk(z
(k)

t+ 1
2

|z(k)
t ) ≤

(
λk

λk + η

)t
Dεk(z?k|z

(k)
0 ),

and since Dεk(z1, z2) ≥ 1
2‖z1 − z2‖22 ≥ 0 we have that:

‖z?k − z
(k)

t+ 1
2

‖22 ≤ 2

(
λk

λk + η

)t
Dεk(z?k|z

(k)
0 ),

and

‖z(k)
t − z

(k)

t+ 1
2

‖22 ≤ 2

(
λk

λk + η

)t
Dεk(z?k|z

(k)
0 ),

Thus we can conclude that:

‖z?k − z
(k)
t ‖2 ≤ ‖z?k − z

(k)

t+ 1
2

‖2 + ‖z(k)
t − z

(k)

t+ 1
2

‖2 ≤ 2

√
2Dεk(z?k|z

(k)
0 )

(
λk

λk + η

)t/2
. (13)

which concludes the proof.

B.2 Exploitability

In this section we will prove all the results needed to prove the convergence rate of Algorithm 1 in terms of Nash
gap.

We first need the following lemma.
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Lemma B.4. For all x ≥ a > 0 we have the following inequality:(
x

a+ x

)x2/a

≤ 2

x
.

Proof. Consider (1− y)r with r > 0 and y < 1 and define b = log
(

1
1−y

)
. Then the following inequality holds:

(1− y)r = e−rb ≤ 1

1 + rb
≤ 1

1 + r log
(

1
1−y

) . (14)

Define φ = a+ x. Thanks to Equation (14) we get:

(
x

a+ x

)x2/a

=

(
1− a

φ

) (φ−a)2
a

≤ 1

1 + (φ−a)2

a log
(

φ
φ−a

) .
Substituting back x = φ − a we can notice that log(1 + a/x) ≥ a/x

1−a/x = a
x−a ≥

a
2x , where the last inequality

follows from x ≥ a. Thus we obtain:(
x

a+ x

)x2/a

≤ 1

1 + x2

a log
(
1 + a

x

) ≤ 1

1 + x2

a
a

x−a
=

1

1 + x/2
≤ 2

x
,

thus concluding the proof.

Theorem 5.2. Given any sequence {(λk, εk)}k∈N defined as in Theorem 4.3 and satisfying η ≤ λ2
k ≤ ηβk/2 for

every k ∈ N, Algorithm 1 grantees that limk→∞ z
(k)
Tk

is an EFPE.

Proof. Consider now the following chain of inequalities:

‖z?k − z
(k)
Tk
‖2

(i)
= O

((
λk

λk + η

)Tk/2)
(ii)
= O(1/λk),

where (i) is due to Theorem 5.1 and (ii) is due to Lemma B.4 and the assumption that Tk := βk ≥ 2λ2
k

η . Thus

limk→∞ z
(k)
Tk

= z?k. Moreover from Theorem 4.3 we know that z?k → z? and thus by triangular inequality we can
show that:

‖z? − z(k)
Tk
‖2 ≤ ‖z? − z?k‖2 + ‖z?k − z

(k)
Tk
‖2,

and both terms on the right hand side goes to zero with k →∞, thus concluding the proof.

Theorem 5.3. Let z̃ := (x̃, ỹ) ∈ X × Y be such that it holds ‖z?λ,ε − z̃‖2 ≤ ν for some ν > 0, then:

Gap(x̃, ỹ) ≤ ν|Σ|3/2 + 8C/λ,

where |Σ| := max{|Σ1|, |Σ2|} and C > 0 is a constant that depends polynomially in maxi∈{1,2} |Ii|, maxI∈I1∪I2 αI ,
and maxI∈I1∪I2 log nI .

Proof. We will first consider the saddle point gap with respect the utility function fλ,ε of the regularized-
perturbed game:

fλ,ε(x, ỹ)− fλ,ε(x̃,y) :=x>Uỹ − 1

λ
dε1(x) +

1

λ
dε2(ỹ)− x̃>Uy +

1

λ
dε1(x̃)− 1

λ
dε2(y) (15)

Now we can add and subtract the following quantities x>Uy?λ,ε,x
?,>
λ,ε Uy,

1
λd

ε
1(x?λ,ε) and 1

λd
ε
2(y?λ,ε) to obtain:

fλ,ε(x, ỹ)− fλ,ε(x̃,y) =x>U(ỹ − y?λ,ε)− (x̃− x?λ,ε)>Uy︸ ︷︷ ︸
1



Martino Bernasconi, Alberto Marchesi, Francesco Trovò

+
1

λ
dε1(x̃)− 1

λ
dε1(x?λ,ε) +

1

λ
dε2(ỹ)− 1

λ
dε2(y?λ,ε)︸ ︷︷ ︸

2

+ fλ,ε(x,y
?
λ,ε)− fλ,ε(x?λ,ε,y)︸ ︷︷ ︸

3

.

We can observe that by Cauchy-Schwartz inequality we have that the 1 is can be upper bounded by:

νLU (‖x‖2 + ‖y‖2) ≤ νLU

√
2|Σ1|+ 2|Σ2|

≤ 2ν|Σ|3/2,

where LU := ‖U‖2 ≤
√
|Σ1| · |Σ2| ≤ |Σ|.

On the other hand 2 is upper bounded by 4C/λ (see Lemma A.3 for the definition of the constant C). Finally
3 is negative by definition of the equilibria z?λ,ε = (x?λ,ε,y

?
λ,ε). Thus we have:

fλ,ε(x, ỹ)− fλ,ε(x̃,y) ≤ ν|Σ|3/2 +
4C

λ
.

On the other hand, following the same argument as in the proof of Theorem 4.1 we know that |fλ,ε(x,y) −
x>Uy| ≤ 2C

λ which directly implies that:

x>Uỹ − x̃>Uy ≤ ν|Σ|3/2 +
8C

λ
.

This concludes the proof.

Corollary 5.4. Given any sequence {(λk, εk)}k∈N as in Theorem 5.2, at the end of every phase k ∈ N of
Algorithm 1, the following holds:

Gap
(
x

(k)
Tk
,y

(k)
Tk

)
≤ 4

λk
|Σ| 32

[
2Dεk(z?k|z

(k)
0 )
] 1

2

+
8C

λk
.

Proof. From Theorem 5.1 we have that at the end of the k-th phase of Algorithm 1 we can guarantee:

‖z?k − z
(k)
Tk
‖2 ≤ 2

√
2Dεk

(
z?k|z

(k)
0

)( λk
λk + η

)Tk/2
.

Moreover, by the assumption on λk that Tk := βk ≥ 2λ2
k

η , and combining Theorem 5.1 with Lemma B.4 we have
that: (

λk
λk + η

)Tk/2
≤ 2

λk

This, thanks to Theorem 5.1, let us conclude that:

‖z?k − z
(k)
Tk
‖2 ≤

4

λk

[
2Dεk(z?k|z

(k)
0 )
]1/2

and thanks to Theorem 5.3 we can readily conclude that:

x>Uy
(k)
Tk
− x(k),>

Tk
Uy ≤ 4

λk
|Σ|3/2

[
2Dεk(z?k|z

(k)
0 )
]1/2

+
8C

λk
.

This concludes the proof.
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B.3 Decomposition

Here we prove the results on the decomposition of Algorithm 1 on the tree. We also report here for completeness
of exposition the decomposition of in Farina et al. (2019, 2021) that shows how to compute the conjugate gradient
∇dε,∗i (·) and the gradient ∇dεi(·) over the entire tree by computing local conjugate gradient ∇dε,∗∆I

(·) and gradient
∇dε∆I

(·) at each infoset I ∈ Ii.

Algorithm 3 Prox-mapping decomposition (Farina et al., 2021)

1: function ∇dε,∗i (g) . Conjugate gradient computation.
2: v ← 0 ∈ R|Σi|
3: v[∅]← 1
4: for I ∈ Ii in bottom-up order do . Compute the behavioral strategy v in bottom-up fashion.
5: v[σi(I)a]← ∇dε,∗∆I

(g[I]/αI)[a]

6: g[σI ]← g[σI ]− αIdε∆I
(v[I])− g[I]>v[I]

7: for I ∈ Ii in top-down order do . Convert the strategy v ∈ R|Σi| from behavioral to sequence form.

8: v[σ(I)a]← v[σ(I)a]~[σ(I)]

9: return v
10:

11: function ∇dεi(g) . Gradient computation.
12: v ← 0 ∈ R|Σi|
13: for I ∈ Ii in bottom-up order do . Compute the gradient v in bottom-up fashion.

14: v[σi(I)a]← v[σi(I)a] + αI∇dε∆I

(
g[σi(I)a]
g[σi(I)]

)
15: v[σi(I)]← v[σi(I)] + αId

ε
∆I

(
g[σi(I)a]
g[σi(I)]

)
− αI

(
g[σi(I)a]
g[σi(I)]

)>
∇dε∆I

(
g[σi(I)a]
g[σi(I)]

)
16: return v

Theorem 5.5. The following hold:

(i) For any pair of vectors g, x̃ ∈ R|Σ1| and ε > 0, the updates of Algorithm 2 of the form

arg maxx∈X

{
x>g − dε1(x)

λ − 1
ηD

ε
1(x|x̃)

}
can be formulated as the computation of the conjugate gradient

∇dε,∗1 (g̃) for a suitably-defined, efficiently-computable vector g̃ ∈ R|Σ1|.

(ii) For every ε > 0, I ∈ I1, and g̃ ∈ RnI , ∇dε,∗∆I
(g̃)[a] = (1 − ε nI) e

g̃[a]

‖eg̃‖1 + ε, and the local gradient can be

computed as ∇dε∆I
(g̃)[a] = 1 + log(g̃[a]− ε) for all a ∈ A(I).

Proof. (i) Let us firs prove the first statement, and let us consider the following chain of equations:

x̂ := arg max
x∈X

{
x>g − dε1(x)

λ
− 1

η
Dε

1(x|x̃)

}
= arg max

x∈X

{
x>g −

(
1

η
+

1

λ

)
dε1(x) +

1

η
dε1(x̃) +

1

η
∇dε1(x̃)>(x− x̃)

}
= arg max

x∈X

{
x>
(
g +

1

η
∇dε1(x̃)

)
−
(

1

η
+

1

λ

)
dε1(x)

}
= arg max

x∈X

{
x>
(
γg +

γ

η
∇dε1(x̃)

)
− dε1(x)

}
:= ∇dε,∗1 (g̃),

where we defined g̃ := γg + γ
η∇d

ε
1(x̃) and 1

η + 1
λ = 1

γ , which concludes the first statement whenever ∇dε1(x̃)

is efficiently computable, which, thanks to Algorithm 3 happens whenever the local gradient ∇dε∆I
(x̃) have a

closed formula (see below the proof for statement (ii)).
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(ii) Now let us turn to the second statement, which concerns the closed formula updates of the local conjugate

gradients of dε∆I
. It is well known that ∇d0,∗

∆I
(g̃) is solved by e−g̃[a]∑

b∈A(I)

e−g̃[b] . Moreover, it is straightforward to verify

that:

∇dε,∗∆I
(g̃) := arg max

w∈∆I

{
w>g̃ − dε∆I

(w)
}

= 1ε+ arg max
w≥0,∑nI

k=1 w[k]=1−ε·nI

{
w>g̃ − d0

∆I
(w)

}
where we used the change of variable w 7→ w − 1ε. Clearly a similar statement holds for the updates of the
second player. Now we employ the change of variable w 7→ w/(1− ε · nI) which gives:

∇dε,∗∆I
(g̃) = 1ε+ (1− ε · nI) arg max

w∈∆I

{
w>g̃∇− d0

∆I
(w)

}
= 1ε+ (1− ε · nI) arg max

w∈∆I

∇d0,∗
∆I

(g̃)

= 1ε+ (1− ε · nI)
eg̃∑

b∈A(I) e
g̃[b]

,

which proves the second statement. Finally the computation of the gradient of dε∆I
(w) := (w−1ε)> log(w−1ε)

follows from direct computation.

C Additional Experiments

C.1 Games Description

|I| |Σ|

Kuhn 6 13
Leduc 3 114 337
Leduc 5 390 911
Goofspiel 57 118
dRPS 3 10

Figure 3: Games sizes with respect to the number of infosets |I| and sequences |Σ|.

First we are going to describe in details the games used in the evaluation.

Kuhn Poker Is a simplified poker game Kuhn (1950) in which is played with 3 cards. Each player then pays
one blind to the pot and is dealt a private card. The first player then decide to either check or to bet (places an
additional blind on the pot). In the first case the second player can either check or bet and fold or call in the
second case. In the case in which the second player has placed a bet, the first player still has to decide weather
to call or to fold. In the case no one has folded, there is a showdown phase in which the player with the hand of
higher value wins the pot. In the case one of the player folded, then the other takes the pot.

Leduc Poker (n) Leduc is a card game played first introduced in Southey et al. (2005). It is played with 2n
cards, where n is called the rank of the game. Each player is dealt a private card an there is a common, unknown
card. At the start of every hand, each player places one blind in the pot. There are two betting phases, which
are identical and work as in the Kuhn poker, one before the revel of the common card, and one after. After the
two betting stages, if no player folded, the player whose hand is of higher value wins the pot.

Goofspiel It is a card game introduce by Ross (1971). Each of the two players has 3 ordered cards, which are
used to privately bet on a community card (also of value from 1 to 3) revealed et each of the 3 turns. The player
who has bet the highest card at a specific turn, wins the amount represented by the community card. In case of
ties the community card is disregarded, otherwise it has the value of the card itself.
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l1 r1c1

L1 R1C1

l2 r2c2

L2 R2C2

r p s

I2,3

RP S RP S RP S

I1,1

1 −1

−1 −1

−1 −1

−1 −1

I2,1

I1,2

I2,2

I1,3

0 −1 1 1 0 −1 −1 0 1

Figure 4: Game tree of the dRPS game described in this section. White (black) nodes are nodes of the infoset
of the first (second) player. Ii,j is the i-th player’s j-th infoset.

dRPS We designed dRPS which is a “deep” version of Rock Paper Scissor in which each player has 3 actions
at each infoset for two alternating times. Then, after the second move of the second player, begins a turn of
Rock Paper Scissor. The payoffs of such a game are designed so that all the NE of the game prescribe the first
player to end the game straight away. This renders irrelevant all the moves played on the other infoset. Indeed
every strategy that assign probability 1 to action l1 of the first player is a NE. The game is designed so that at
deep infosets the chance of an algorithm which is not designed to explore the tree would have low probability of
visiting such infosets due to random chance.

Matrix Game We also consider a 3×3 normal form game (that was also used in the proof of Proposition 4.1).
The utility matrix, in which element i, j is the utility received by the first player when it plays i and the second
player plays 2, is:  0.3 0.5 0.3

0.7 0.3 0.7
0.6 0.2 0.2


In this game we can easily compute the unique perfect equilibria that is z? =

(
[2/3, 1/3, 0]>, [0, 2/3, 1/3]>

)
.

C.2 Additional Results

We can see in Figure 5 that in both Leduc 5 and dRPS, Algorithm 1 outperforms the baselines in term if average
infoset regret RI . This is the case for both the baselines which are agnostic to refinements (CFR and EGT) and
those who are build to work for refinements, but only find approximate ones (EGT(ε = 0.01), EGT(ε = 0.001),
CFR(ε = 0.01) and CFR(ε = 0.001)). On the other hand, as seen in Section 6, this is not always the case for
what concern the Nash gap, even if we can see that in Leduc 5, Algorithm 1 still manages to outperform all the
baselines by 2 orders of magnitude. However, this is not always the case. Indeed, in dRPS, CFR outperforms
all the other methods by 2 orders of magnitude. As already remarked in Section 6, we think that investigating
such behavior requires further investigation.

Finally we used the Matrix Game introduce in the previous section, of which we know the only perfect equilibria,
to compute the distance ‖zt−z?‖2 of the iterates. In Figure 6 we reported the evolution of the `2-distance to the
unique EFPE of the game. We can see that Algorithm 1 outperforms all the other benchmark in terms of this
metric. Indeed it achieves a distance more then one order of magnitude smaller then the second best algorithms
that are EGT and CFR. This further corroborates the theoretical findings of Section 4. Finally we can see that
CFR, CFR(ε = 0.01), CFR(ε = 0.001), EGT, EGT(ε = 0.01) and EGT(ε = 0.001) are ordered as expected, with
the one instantiated with the lower, fixed, ε are closer to z?.
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Figure 5: Results of the experimental evaluation. Algorithm 1 is compared with the baselines in terms of Nash
gap (Left) and average infoset regret (Right).
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Figure 6: Distance to the unique EFPE of the Matrix Game.


