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Abstract

Social networks are often associated with rich
side information, such as texts and images.
While numerous methods have been devel-
oped to identify communities from pairwise
interactions, they usually ignore such side in-
formation. In this work, we study an exten-
sion of the Stochastic Block Model (SBM),
a widely used statistical framework for com-
munity detection, that integrates vectorial
edges covariates: the Vectorial Edges Covari-
ates Stochastic Block Model (VEC-SBM).
We propose a novel algorithm based on it-
erative refinement techniques and show that
it optimally recovers the latent communities
under the VEC-SBM. Furthermore, we rig-
orously assess the added value of leveraging
edge’s side information in the community de-
tection process. We complement our theo-
retical results with numerical experiments on
synthetic and semi-synthetic data.

1 Introduction

Networks are a powerful tool for representing rela-
tional data, where each entity is represented by a node
and pairwise connections between these entities are
encoded by edges. Over the past decades, numer-
ous clustering methods have been devised to extract
meaningful insights from graph-structured datasets.
These methods are often evaluated under the Stochas-
tic Block Model (Holland et al., 1983), a random graph
model where each edge is sampled independently with
a probability depending solely on the latent commu-
nities of the corresponding nodes. However, a notable
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limitation of the SBM is its exclusive consideration of
binary interactions.

In recent years, there has been growing interest in de-
veloping extensions of the SBM that can incorporate
more information. This includes the Weighted SBM
(Aicher et al., 2014), which assigns scalar weights to
edges, the Labeled SBM (Yun and Proutiere, 2016)
where labels correlated to the nodes’ community are
available, the Multi-Layer SBM (Vallès-Català et al.,
2016), accommodating multimodal interactions in dis-
tinct layers, the Contextual SBM (Deshpande et al.,
2018), linking each node to a covariate vector, or the
recently introduced Embedded Topic SBM (Boutin
et al., 2023a), where textual information is associated
with each edge.

In this work, we consider a variant of the Embed-
ded Topic SBM: the Vectorial Edges Covariate SBM
(VEC-SBM). Under the VEC-SBM, each observed
edge is associated with a vector, distinguishing it
from the Weighted SBM, which solely permits scalar
weights, and the Multi-Layer SBM, where edge pres-
ence is sampled independently on each layer. Conse-
quently, methodologies and theoretical guarantees es-
tablished for these existing models cannot be directly
applied to the VEC-SBM. Moreover, in contrast to
prior work such as that by Boutin et al. (2023a), which
primarily focuses on practical applications, our study
centers on the statistical analysis of the VEC-SBM. In
particular, our analysis quantifies the added value of
the side information provided by the edges and shows
that it has a multiplicative effect on the signal-to-noise
ratio (SNR). This is in contrast with the node’s side
information that has an additive impact on the SNR
(Abbe et al., 2022), further motivating the incorpora-
tion of edges’ side information in clustering algorithms.

Our contributions. In this work, we make the fol-
lowing contributions.

• We introduce a novel algorithm for graph clus-
tering that incorporates edge vectorial covariates.



Our algorithm is computationally efficient and ap-
plicable to various settings.

• We rigorously analyze our algorithm under the
VEC-SBM and demonstrate that it achieves a sta-
tistically optimal convergence rate. We also pro-
vide valuable insights by quantifying the informa-
tion gain resulting from the inclusion of edge co-
variates: under the VEC-SBM, the SNR will de-
pend on the difference between the means of the
covariates of different classes multiplied by the av-
erage degree of the nodes in the graph. Even if
this difference of means is small this can lead to
a considerable increase in the SNR depending on
the sparsity level of the graph.

• We conduct comprehensive numerical experi-
ments on synthetic data to further substantiate
our findings. These experiments highlight the im-
portance of leveraging both the network structure
and covariate information for effectively recover-
ing all communities. Moreover, we apply our algo-
rithm to a real-world dataset, with synthetic edge
covariates, demonstrating its practical applicabil-
ity.

Related Work. Various extensions of the SBM have
been developed to incorporate side information. In
this paragraph, we describe the main existing algo-
rithmic approaches used for this purpose.

• Discretization of edge weights. Xu et al. (2017) in-
troduced an algorithm that achieves the optimal
rate of convergence under the Weighted SBM by
discretizing edge weights. However, this strategy
becomes computationally inefficient when dealing
with high-dimensional covariates, and selecting
the appropriate level of discretization can be chal-
lenging.

• Tensor and matrix factorization methods. Tensor
methods, such as those presented in Jing et al.
(2021) or Paul and Chen (2020), offer an alter-
native approach to incorporate side information.
However, these methods are typically applied to
multi-layer graphs, which exhibit a distinct noise
structure compared to our setting.

• Model-based approaches. Since the Maximum
Likelihood Estimator (MLE) is intractable for
models based on the SBM, several alternative ap-
proaches have been used. Cerqueira and Lev-
ina (2023) proposed a pseudo-likelihood approach
that avoids the need for discretization, but it
relies on the assumption that weights are sam-
pled from a univariate Gaussian mixture. Their
method attains a convergence rate matching the

lower bound established by Xu et al. Xu et al.
(2017) under the Weighted SBM, albeit up to a
constant factor. Another prevalent model-based
approach involves the use of variational EM al-
gorithms (Léger, 2016; Bouveyron et al., 2016).
While effective, these methods are often compu-
tationally demanding and lack theoretical guaran-
tees. The recent work of Boutin et al. (2023a,b)
combined the variational approach with a deep
learning architecture to simultaneously extract
topics from edges’ textual side information and
cluster the network. In this work, we consider a
simpler setting where the edge covariates can be
directly exploited. Our main purpose is to statis-
tically analyze the model to get insight into the
added value of edge-side information.

• Iterative refinement approaches/ alternating opti-
mization. Instead of using the pseudolikelihood or
the variational method, our algorithm relies on an
iterative refinement procedure based on a simpli-
fied version of the Maximum A Posteriori (MAP)
estimator. The global proof strategy is based on
the seminal work of Gao and Zhang (2022) and
inspired by the analysis of the Contextual SBM
(CSBM) (Braun et al., 2022). However, contrary
to the CSBM, there is a dependency between the
two available sources of information under the
VEC-SBM, since we only access to edge covari-
ates for the observed edges. This poses new chal-
lenges and requires the development of new anal-
ysis techniques. Due to the particular noise struc-
ture in our setting, the error decomposition is dif-
ferent and requires new concentration inequalities
and techniques to be controlled. Using alternat-
ing optimization to solve non-convex optimization
problems is a popular approach that has also been
used for other problems including matrix sens-
ing (Stöger and Soltanolkotabi, 2021), dictionary
learning (Liang et al., 2022), heterogeneous ma-
trix factorization (Shi et al., 2023), and multi-task
regression (Thekumparampil et al., 2021) to men-
tion but a few.

Notations. We will use Landau standard notations
o(.) and O(.). For sequences (an)n≥1 and (bn)n≥1, if
there is a constant C > 0 such that an ≤ Cbn (resp.
an ≥ Cbn) for all n we will write an ≲ bn (resp. an ≳
bn ). If an ≲ bn and an ≳ bn, then we write an ≍ bn.
Matrices will be denoted by uppercase letters. The i-th
row of a matrix A will be denoted as Ai: and depending
on the context can be interpreted as a column vector.
The column j of A will be denoted by A:j , and the
(i, j)th entry by Aij . The transpose of A is denoted
by A⊤. Ik denotes the k × k identity matrix. We use
∥·∥ and ∥·∥F to respectively denote the spectral norm



(or Euclidean norm in the case of vectors) and the
Frobenius norm. The number of non-zero entries of a
matrix A is denoted nnz(A). A† denote the pseudo-
inverse of A. The maximum between a and b will be
denoted by a ∨ b. The indicator function of a set C is
denoted by 1C .

2 Model and algorithm description

In Section 2.1 we describe the generative model and
discuss the assumptions we made for the analysis.
Then, in Section 2.2 we introduce our algorithm.

2.1 The Vectorial Edge Covariates Stochastic
Block Model (VEC-SBM)

The VEC-SBM is an extension of the SBM where a
vector is associated with each observed edge of a graph
sampled from an SBM. The distribution of these edge
vector covariates only depends on the community the
endpoints forming the edge belong to. More formally,
the VEC-SBM is defined by the following parameters.

• A set of nodes N = [n] and a partition of N into
K communities C1, . . . , CK .

• A membership matrix Z ∈ {0, 1}n×K such that
there is exaclty one 1 in every row. Each mem-
bership matrix Z can be associated bijectively
with a partition function z : [n] → [K] such that
z(i) = zi = k where k is the unique column index
satisfying Zik = 1.

• A symmetric connectivity matrix of probabilities
between communities

Π = (Πkk′)k,k′∈[K] ∈ [0, 1]K×K .

• A family of centroids µ = (µkk′)k,k′∈[K] such that

µkk′ ∈ Rd, where d = O(1) and µkk′ = µk′k for
all k, k′ ∈ [K].

• A family of covariance matrices Σ = (Σkk′)k,k′∈[K]

such that Σkk′ ∈ Rd×d and Σkk′ = Σk′k for all
k, k′ ∈ [K].

A graph with n nodes and edge covariates of dimension
d can be represented by a tensor R ∈ Rn×n×d. It is
distributed according to the VEC-SBM(Z,Π, µ,Σ) if
the entries of R are generated as follows. First, the
presence or absence of an edge is encoded by a matrix
A ∈ {0, 1}n×n with entries samples independently by

Aij
ind.∼ B(Pij), i, j ∈ [n], i ≤ j

where B(p) denotes a Bernoulli distribution with pa-
rameter p, and P = E(A) = ZΠZ⊤. The noise is de-
noted by E = A−E(A). The sparsity level of the graph

is denoted by pmax = maxi,j pij . We will focus on the
regime where npmax = Ω(log n) and npmax = o(n).

Then, for each couple (i, j), we sample independently
(conditionally on Z) an edge covariate Gij ∈ Rd such
that

Gij = µz(i)z(j) + ϵij ,

where ϵij is a centered Gaussian1 variable with co-
variance Σz(i)z(j). Since multiplying all the edges of
the graph by a constant will not modify the informa-
tion contained in the covariates, we can assume that
∥µkk′∥∞ ≤ 1 for all k, k′ ∈ [K]. Finally, the observed
tensor R is given by Rijd = Aij(Gij)d. For the analy-
sis, we will make some additional assumptions.

Assumption A1 (Approximately balanced communi-
ties). The communities C1, . . . , CK are approximately
balanced, i.e., there exists a constant α ≥ 1 such that
for all k ∈ [K] we have

n

αK
≤ |Ck| ≤

αn

K
.

Assumption A2 (Isotropic variance). For all k, k′ ∈
[K], Σkk′ = Id.

Assumption A3 (Symmetric SBM). The connectiv-
ity matrix Π is of the form q11⊤ + (p − q)IK with
1 > p > q > 0.

Assumption A4 (Limited graph information). We
have p = o(1), p/q = O(1), np = Ω(log n) and n(

√
p−√

q)2/K < log n.

Assumption A1 is standard in clustering literature.
When the communities are highly unbalanced, the
problem becomes noticeably more difficult, see for ex-
ample Mukherjee et al. (2023). Assumption A2 is used
to simplify the exposition. We believe that our results
can be extended to the general case (e.g. Chen and
Zhang (2021) for Gaussian mixture models) without
changing the proof strategy but at the price of ad-
ditional technicalities. Moreover, our experiments in
Section 4 show that the algorithm we analyzed per-
forms well even if this assumption is not satisfied. As-
sumption A3 is also used for convenience, but could
be removed at the cost of additional technicalities. Fi-
nally, Assumption A4 implies that there is not enough
information in the graph to recover the clusters, mo-
tivating the use of side information. In particular,
n(
√
p − √

q)2/K < log n corresponds to the regime
where exact recovery is impossible (Zhang and Zhou,
2016).

The quality of the clustering is evaluated through the

1We made this assumption to simplify the exposition,
but we believe that the proof can be extended to Sub-
Gaussian r.v.



misclustering rate r defined by

r(ẑ, z) =
1

n
min
π∈S

∑
i∈[n]

1{ẑ(i) ̸=π(z(i))},

where S denotes the set of permutations on [K]. An
estimator ẑ achieves exact recovery if r(ẑ, z) = 0
with probability 1 − o(1) as n tends to infinity. It
achieves weak consistency (or almost full recovery) if
P(r(ẑ, z) = o(1)) = 1 − o(1) as n tends to infinity. A
more complete overview of the different types of con-
sistency and the sparsity regimes where they occur can
be found in Abbe (2018).

2.2 Algorithm description

Let us denote

MAPi(C,Π, µ,Σ) =
∑

l∈[K]

∑
j∈Cl

Aij log(Πkl) + (1 − Aij) log(1 − Πkl)

−
∑

l∈[K]

∑
j∈Cl

Aij(Gij − µkl)
⊤
Σkl(Gij − µkl) −

1

2
det(Σkl)

the logarithm of the MAP of a node i such that
z(i) = k, given Π, µ,Σ and a partition C of [n]. At
each step t, IR-VEC (cf. Algorithm 1) estimates the
model parameters and then updates the partition en-

coded by Z(t) based on MAPi. We will denote by C(t)
k

the set of nodes i such that Z
(t)
ik = 1, i.e. the nodes

that are associated with community k at time t.

For the analysis, we will consider a simplified ver-
sion of IR-VEC where at each step Σkk′ = Id for all
k, k′ ∈ [K]. This version of the algorithm will be re-
ferred to as sIR-VEC. Despite ignoring the covariance
structure, Section 4 shows that sIR-VEC performs as
well as IR-VEC even if the edge covariates are non-
isotropic.

Computational complexity. Estimating the
model parameters at each step requires at most
O(nnz(A)d2) elementary operations. Given the
estimate of the model parameters, updating the
partition requires O(nnz(A)Kd) operations where
nnz(A) corresponds to the number of non zero entries
of A. The global complexity of the algorithm is
hence O(nnz(A)max(d2,Kd)). Under the VEC-SBM,
nnz(A) ≍ n2pmax.

Initialization. We use the vanilla spectral method
on A for initialization. While the accuracy provided by
this method can be very poor in challenging scenarios,
we show experimentally in Section 4 that it doesn’t
affect the performances of sIR-VEC. We leave as an
open problem the analysis of random initialization.

Algorithm 1 Iterative refinement for the VEC-SBM
(IR-VEC)

Input: The number of communities K, A, G, an
initial estimate of the partition Z(0) of the nodes, a
number of iteration T .

1: for 0 ≤ t ≤ T − 1 do
2: Estimate the model parameters

W
(t)

= (Z
(t)

)
†
, Π

(t)
= W

(t)⊤
AW

(t)

µ
(t)

kk′ =
∑

i∈C(t)
k

j∈C(t)

k′

AijGij/
∑

i∈C(t)
k

j∈C(t)

k′

Aij

Σ
(t)

kk′ =
∑

i∈C(t)
k

j∈C(t)

k′

Aij(Gij − µ
(t)

kk′ )(Gij − µ
(t)

kk′ )
⊤
/

∑
i∈C(t)

k

j∈C(t)

k′

Aij .

3: Update the partition

z
(t+1)
i = arg max

k∈[K]
MAPi(C(t),Π(t), µ(t),Σ(t)).

4: end for

Output: A partition of the nodes Z(T ).

3 Analysis method and main results

In this section, we first introduce some notations asso-
ciated with the error decomposition, present our main
results, and then outline the proof strategy. The de-
tails of the proofs can be found in the supplementary
material.

3.1 Error decomposition

Our analysis is based on the framework developed by
Gao and Zhang (2022). This framework has been used
to analyze other clustering models with similar flavors,
such as the CSBM (Braun et al., 2022) or the Tensor
Block Model (Han et al., 2022). However, we empha-
size that previous results cannot be adapted straight-
forwardly to our setting due to the specific noise struc-
ture induced by the VEC-SBM. In particular, in the
VEC-SBM, there is a dependence between the two
sources of noise: the graph and the covariates. This
dependence requires new techniques and concentration
inequalities to control the noise.

To understand how sIR-VEC can lead to an improve-
ment of the partition, one needs to analyze in which
situation a node i is misclassified after one refinement
step. It corresponds to the condition

a ̸= arg max
k∈[K]

MAPi(C(t),Π(t), µ(t), Id).

By some elementary algebra, one can show that the
previous condition is equivalent to the existence of b ∈



[K] \ {a} such that

Ci(a, b) < −∆2(a, b) + F
(t)
ib +G

(t)
ib ,

where F
(t)
ib and G

(t)
ib are error terms specified in the

appendix (Section A.1), and the signal term ∆2(a, b)
and stochastic term Ci(a, b) are given by

∆
2
(a, b) = log(p/q)(|Ca|p−|Cb|q) +

∑
l∈[K]

|Cl|Πal ∥µal − µbl∥
2

(3.1)

Ci(a, b) = log(
p

q
)

 ∑
j∈Ca

Eij −
∑

j∈Cb

Eij


+

∑
l∈[K]

∑
j∈Cl,−i

(
Eij ∥µal − µbl∥

2
+ 2Aij⟨ϵij , µal − µbl⟩

)
.

The first part of the signal only depends on the
graph while the second part depends on the covari-
ates and the graph connectivity parameters. For in-
stance, in the case where the communities are exactly
balanced and p = q, the second part corresponds to
(np/K)

∑
l ∥µal − µbl∥2, i.e. the sparsity level of the

graph np is multiplied by the average distance between
the edge covariates means

∑
l ∥µal − µbl∥2 /K, hence

the multiplicative effect.

3.2 Convergence guarantee

The following theorem shows that if the initializa-
tion z(0) is good enough, then sIR-VEC converges in
O(log n) iterations and achieves a misclustering rate
that decreases exponentially in the SNR formally de-
fined as ∆2

min = mina ̸=b ∆
2(a, b).

Theorem 1. Assume that ∆2
min ≍ log n. Under as-

sumptions A1, A2,A3 and A4, if z(0) is such that

r(z, z(0)) ≤ ϵ

K2

for a constant ϵ small enough, then with probability at
least 1− n−Ω(1) we have for all t ≳ log n

r(z(t), z) ≤ e−(c+o(1))∆2
min

where c > 0 is the constant appearing in Lemma 1.

Remark 1. The condition on initialization implies
having r(z(0), z) = O(1/K2). This is a more stringent
requirement compared to the condition in Braun et al.
(2022), which only necessitates r(z(0), z) = O(1/K).
This dependency on K is likely to be an artifact of the
proof. If we could replace the factor K2 in Lemma
2 with K, we could relax the initial condition to
r(z(0), z) = O(1/K). In Section 4, we experimentally
demonstrate that sIR-VEC performs well even when
initialized with an almost non-informative z(0).

Remark 2. The misclustering rate of the SBM is
on the order of exp(−n(

√
p − √

q)2/K). However,
when p ≈ q accurate recovery of communities be-
comes challenging. In a similar context under the

VEC-SBM, if mina̸=b∈[K]

∑
l ∥µal − µbl∥2 ≥ v > 0,

then ∆2
min is on the order vnp/K = Ω(log n) ≫

n(
√
p − √

q)2/K. When l = 1, it reduces to a
Weighted SBM with Gaussian weights. Utilizing
the closed-form expression for the Hellinger distance
between Gaussian r.v., the result from Xu et al.
(2017) shows that when p = q the misclustering
rate is exp(−2 log n(1−exp(−mina ̸=b∈[K] |µa−µb|2))).
Through a first-order Taylor approximation, we obtain
1−exp(−mina̸=b∈[K] |µa−µb|2) ≈ |µa−µb|2, matching
our convergence rate up to a constant factor. Notice
that under the CSBM (Braun et al., 2022), the SNR is

of order n(p−q)+mina ̸=b ∥µa − µb∥2. By consequence,
the information added by nodes covariate is indepen-
dent of the sparsity level of the graph. In our setting,
it is multiplied by the sparsity level of the graph np.
Due to the multiplicative effect, integrating edge-side
information could have a stronger impact on the SNR
than node-side information.

Sketch of the proof of Theorem 1. The result is ob-
tained by using the framework developped by Gao and
Zhang (2022). The oracle error is controlled by using a
conditioning argument, see Lemma 1. The main chal-
lenge, as discussed in Section 3.5, is to control the
noise. Since the calculations involved are long, we rel-
egated them to the appendix, Section A.

3.3 Minimax lower-bound

We are going to show that the convergence rate of
Theorem 1 is optimal; up to a constant factor. Assume
that the covariates are Gaussian, i.e. ϵij ∼ N (0, Id)
and consider the following space of parameters

Θ = {p = q ∈ [0, 1], µkk′ ∈ [−1, 1]d, ∀k, k′ ∈ [K]}.

Theorem 2. If ∆min → ∞, there exists a constant
c′ > 0 such that

inf
ẑ

sup
θ∈Θ

E(r(ẑ, z)) ≥ exp(−c′∆2
min).

If ∆2
min = O(1), then inf ẑ supθ∈Θ E(r(ẑ, z)) ≥ c for

some positive constant c.

Remark 3. We exclusively examined the extreme sce-
nario where the graph provides no information about
the community structure. As the minimax lower-bound
is only tight up to a constant factor, extending this re-
sult to the case where p > q is straightforward by lower
bounding the signal using either its first or second part,
see equation (3.1).

Sketch of the proof. First, we lower bound the mini-
max risk by the error associated with a two-hypothesis
testing problem by using the argument of Gao et al.



(2018). Since the optimal test is achieved by the like-
lihood ratio (Neyman Pearson Lemma), it is sufficient
to lower the probability of failure of this optimal test.
This can be done by first conditioning on A and using
the well-known properties of Gaussian’s r.v., and then
integrating over A, cf. Section B in the appendix for
details.

3.4 Oracle error

If we ignore the error terms F
(t)
ib and G

(t)
ib , a node i

is misclassified when Ci(a, b) < −∆2(a, b). This is
an unavoidable source of error since it corresponds to
the error made by the algorithm after one iteration
initialized with the ground-truth partition and with
the true model parameters. The error occurring in this
way can be quantified by the oracle error defined for
all δ ∈ (0, 1/2] by

ξ(δ) =

n∑
i=1

∑
b∈[K]\zi

∆2(zi, b)1{Ci(zi,b)≤−(1−δ)∆2(zi,b)}.

Lemma 1. Let δ ∈ (0, 1/2] be a constant, and let us
denote for any given i ∈ [n] and b ∈ [K] \ zi the event

Ω1(zi, b) =
{
Ci(zi, b) ≤ −(1− δ)∆2(zi, b)

}
.

Under the assumptions of Theorem 1, there exists a
constant c > 0 such that for all zi ̸= b

P(Ω1(zi, b)) ≤ e−c∆2
min .

Proof. Assume that zi = a. First, let us decompose
Ci(a, b) + ∆2(a, b) as Y1 + Y2 where

Y1 = log(
p

q
)

∑
j∈Ca

Aij −
∑
j∈Cb

Aij


and

Y2 =
∑

l∈[K],j∈Cl

Aij ∥µal − µbl∥2 + 2Aij⟨ϵij , µal − µbl⟩.

Conditionally on Ai:, we have for all t ∈ R

E(etY2 |Ai:) = e
t
∑

l∈[K],j∈Cl
Aij∥µal−µbl∥2

× E(e2t
∑

l∈[K]

∑
j∈Cl

Aij⟨ϵij ,µal−µbl⟩|Ai:)

≤ e
(t+2t2)

∑
l∈[K]

∑
j∈Cl

Aij∥µal−µbl∥2

.
(since ϵij are ind. Sub-Gaussian r.v.)

Let us denote

∆2
A = ∆2

A(a, b) =
∑

l∈[K],j∈Cl

Aij ∥µal − µbl∥2 .

We have shown that for all t

E(et(Y1+Y2)) ≤ E(etY1+(t+2t2)∆2
A).

We can rewrite tY1 + (t + 2t2)∆2
A as a weighted

sum of independent Bernoulli trials
∑

j wj(t)Aij where

wj(t) = t log(p/q) + (t + 2t2) ∥µaa − µba∥2 for j ∈ Ca,
wj(t) = −t log(p/q) + (t+ 2t2) ∥µab − µbb∥2 for j ∈ Cb
and wj(t) = (t + 2t2) ∥µal − µbl∥2 when j ∈ Cl for
l ̸= a, b. Hence, we obtain

logE(etY1+(t+2t2)∆2
A) ≤

∑
j

pij(e
wj(t) − 1)

≤
∑
j

pijwj(t) + 0.5esupj |wj(t)|
∑
j

pijwj(t)
2.

(by Taylor-Lagrange formula)

Since p/q = O(1) and ∥µal − µbl∥2 ≤ 4 for all l ∈ [K],
one can choose t∗ < 0 close to 0 such that

esupj |wj(t
∗)|
∑
j

pijwj(t
∗)2 ≤ |

∑
j

pijwj(t
∗)|

and ∑
j

pijwj(t
∗) ≤ −c′∆2(a, b)

for some positive constant c′. By consequence

P(Ω1(zi, b)) = P(Y1 + Y2 ≤ δ∆2(a, b))

≤ E(et
∗(Y1+Y2))e−t∗δ∆2(a,b)

≤ e−0.5c′∆2(a,b)−t∗δ∆2(a,b)

≤ e−0.25c′∆2(a,b)

for all δ > 0 smaller than min{c′|4t∗|−1, 1/2} = 1/2.

Corollary 1. Under the assumptions of Theorem 1,
with probability at least 1 − e−∆2

min we have for some
constant c > 0

ξ(δ) ≤ ne−c∆2
min .

Proof. By Lemma 1, we have

E(ξ(δ)) ≤ ne−(c−o(1))∆2
min

since K is constant. Hence, by Markov inequality

P(ξ(δ) ≥ e∆minE(ξ(δ))) ≤ e−∆min .

Since e∆minE(ξ(δ))) ≤ ne−(c+o(1))∆2
min we obtain the

result of the lemma.



3.5 Control of the noise

To apply Theorem 3.1 in Gao and Zhang (2022) to
show that the error contracts at each step until reach-
ing the oracle error, one needs to prove that the noise

terms F
(t)
i and G

(t)
i satisfy the following conditions.

Let τ = ϵn∆2
min/K

2 where ϵ > 0 and let δ ∈ (0, 1/2)
be a constant. Let us define the weighted Hamming
loss

l(z, z′) =

n∑
i=1

∆2(zi, z
′
i)1{zi ̸=z′

i}.

Condition C1 (F-error type). Assume that

max
{z(t):l(z,z(t))≤τ}

n∑
i=1

max
b∈[K]\zi

(F
(t)
ib )2

∆2(zi, b)l(z, z(t))
≤ δ2
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for all t ≥ 0 holds with probability at least 1− n−Ω(1).

Condition C2 (G-error type). Assume that

max
i∈[n]

max
b∈[K]\zi

|G(t)
ib |

∆2(zi, b)
≤ δ

4

holds uniformly on the event {z(t) : l(z, z(t)) ≤ τ} for
all t ≥ 0 with probability at least 1− n−Ω(1) .

Condition C1 necessitates a uniform control of the
noise induced by the F (t) error term in an ℓ2 norm
sense. Additionally, Condition C2 requires a uni-
form control of the l∞ norm of the G(t) error term.
Typically, the F (t)-error term depends on the estima-
tion error of the partition

∥∥Z(t) − Z
∥∥ while the G(t)-

error term depends on the parameter estimation error∥∥Π(t) −Π
∥∥.

The main technical challenge to prove the consistency
or sIR-VEC is to show that the previous conditions
hold. In particular, one needs to control the estimation
error of the model parameters uniformly. For the SBM
part, it can be done as in Braun et al. (2022), but

bounding uniformly the error
∥∥∥µkk′ − µ

(t)
kk′

∥∥∥ requires

a new approach: contrary to the CSBM setting, the
edge centroids are estimated on random samples that
depend on A and the current estimate of the partition
C(t). This is the object of the following lemma.

Lemma 2. Under the assumption of Theorem 1 we
have with probability at least 1 − n−Ω(1), for all z(t)

such that l(z(t), z) ≤ τ

max
b,l∈[K]

∥∥∥µbl − µ
(t)
bl

∥∥∥ ≲ K1.5

(√
l(z(t), z)

n∆2
min

∨
√
logK

npmax

)
.

Sketch of the proof. To obtain an uniform bound over
z(t), we first need to control uniformly over all set S the
quantities

∥∥∑
i∈S ϵi

∥∥ where ϵi are i.i.d. sub-Gaussian

r.v. This can be done by using Lemma A.1 in Lu and
Zhou (2016). Secondly, we need to control uniformly
over T1, T1 ⊂ [n] the sums

∑
i∈T1,j∈T2

Aij . This can
be done by showing that A satisfies the discrepancy
property, e.g. Lei and Rinaldo (2015). The details
can be found in the appendix (Section A.1.1, Lemma
4).

We will also need control of the following term to es-
tablish Condition C1.

Lemma 3. Under the assumption of Theorem 1 we
have with probability at least 1− n−Ω(1)

∑
i∈Ck

∑
j∈Ck′ ,j′∈Ck′′

EijEij′ ≲ (n/K)2pmax,

for all k, k′, k′′ ∈ [K].

Proof. Let’s fix k, k′, k′′ ∈ [K]. To simplify the expo-
sition, we will assume that each class is of size n/K.
We want to bound

S =
∑
j,j′

∑
i∈Ck

EijEij′ =
∑
j,j′

⟨E:j , E:j′⟩Ck
,

where the scalar product is restricted to the entries of
E:j in Ck. In the following, we will drop the subscript
when clear from the context.

Case where k, k′, and k′′ are all distinct. S is a
sum of (n/K)3 bounded and centered independent r.v.
with variance of order p2max that can be handled with
standard concentration inequalities.

Case where k ̸= k′ = k′′. We have S =∑
j ̸=j′⟨Ej:, E:j′⟩+∥E∥2F . It is easy to show that w.h.p.

∥E∥2F ≲ (n/K)2pmax. So we can focus on the first
summand. Observe that

∑
j ̸=j′ E(⟨E:j , E:j′⟩) = 0. To

remove the dependencies in the sum, we will use a de-
coupling argument similar to the one used in Rudelson
and Vershynin (2013) to prove Hanson-Wright inequal-
ity. This strategy has also been used by Braun (2023)
in the setting of bipartite graphs.

Let (δj)j∈[n] be independent Bernoulli r.v. with pa-
rameter 1/2 and let us define the set of indices Λδ =
{j ∈ Ck′ : δj = 1} and the random variable

Sδ =
∑

j,j′∈Ck′

δj(1−δj′)⟨Ej:, Ej′:⟩ =
∑
j∈Λδ

⟨Ej:,
∑
j′∈Λc

δ

Ej′:⟩.

Let us denote by EΛc(.) the conditional expectation on



δ and (Ej′:)j′∈Λc
δ
. For all t > 0, we have

logEΛc

(
etSδ

)
=
∑

i,j∈Λδ

log(EΛc
δ
(e

Eijt
∑

j′∈Λc
δ
Eij′ )

=
∑

i,j∈Λδ

log(EeAijt
∑

j′∈Λc
δ
Eij′ )− pijt

∑
j′∈Λc

δ

Eij′


≤
∑

i,j∈Λδ

pij(e
t
∑

j′∈Λc
δ
Eij′ − 1)− pijt

∑
j′∈Λc

δ

Eij′


(log(1 + x) ≥ x, for all x > −1)

≤ e
tmaxi

∑
j′∈Λc

δ
Eij′0.5t2pmax

∑
i∈Ck,j∈Ck′

(
∑
j′∈Λc

δ

Eij′)
2.

(by Taylor-Lagrange formula)

Let C1 > 1 be an appropriately large constant and let
us denote the events

E(Λ
c
δ) = {

∑
i∈Ck,j∈C

k′

(
∑

j′∈Λc
δ

Eij′ )
2 ≤ C1(n/K)

3
pmax}

∩ {max
i

∑
j′∈Λc

δ

Eij′ ≤ C1npmax/K}

and

E = {max
Λδ

∑
i∈Ck,j∈Ck′

(
∑
j′∈Λc

δ

Eij′)
2 ≤ C1(n/K)3pmax}∩D

where D = {maxi
∑

j Aij ≤ C1npmax/K}. By Bern-
stein inequality (cf. appendix Section C) E occurs with
probability at least 1 − n−5 for C1 large enough. By
choosing t = (C1npmax/K)−1, we obtain for C2 > 1
large enough

P
(
Sδ ≥ C2(n/K)2pmax ∩ E

)
≤ E

(
1E(Λc

δ)
P(Sδ ≥ C2(n/K)2pmax|Λc)

)
≤ E

(
1E(Λc

δ)
P(etSδ ≥ eC2t(n/K)2pmax |Λc)

)
≤ e−tC2(n/K)2pmaxE

(
1E(Λc

δ)
EΛc

(
etSδ

))
≲ e−C2C

−1
1 (n/K)e2n/(C1K) ≤ e−5n/K .

By an union bound argument,

P(∃δ, Sδ ≳ (n/K)2pmax ∩ E︸ ︷︷ ︸
E1

) ≤ 2n/Ke−5n/K ≤ e−4n/K .

Hence, P(∃δ, Sδ ≳ (n/K)2pmax) ≤ e−4n/K + n−5.
Since ∑

j ̸=j′

⟨E:j , E:j′⟩Ck
= 4Eδ(Sδ),

we obtain that S ≲ (n/K)2pmax with probability at
least 1− n−5.

Case k = k′ = k′′. See the appendix, Section C.

Figure 1: Average performance over 20 runs under Sce-

nario 1.

4 Numerical experiments

In this section, we evaluate our proposed algorithms,
sIR-VEC and IR-VEC (with T = 3), on synthetic data
and the email EU core dataset (Leskovec et al., 2007)
with synthetic edge covariates2.

We compare our methods with OLMF (Paul and Chen,
2020), a general matrix factorization approach appli-
cable beyond the multi-layer graph setting, and the
vanilla spectral method Spec which doesn’t incorpo-
rate edge side information. We assess the accuracy
of clustering using the Normalized Mutual Informa-
tion (NMI) criterion, where an NMI of zero indicates
no significant correlation between the clusters, and an
NMI of one signifies a perfect match.

4.1 Network with indistinguishable
communities (Scenario 1)

We consider a VEC-SBM with K = 3, n = 600, and
such that the graph is generated by an SBM with pa-
rameters p = 3.5 log n and q = log n where the com-
munities 1 and 2 are indistinguishable. The covariates
are such that µ11 = (1, 1, 1) and µ22 = −µ11 and all
the other centroids are zero. Thus, the covariates only
separate communities 1 and 2. As shown in Figure
1, IR-VEC and sIR-VEC outperform OLMF and effec-
tively combine both sources of information to recover
the clusters. However, we observed that IR-VEC is
more sensitive to initialization than sIR-VEC. This is
why we initialized it with sIR-VEC.

4.2 Non-isotropic covariance (Scenario 2)

In this scenario, we sample a VEC-SBM with the same
parameters as the previous experiment, except for the

2The experiments were conducted using R on a CPU In-
tel Core i7-1255U. The code implementation can be found
on https://github.com/glmbraun/VECSBM/.

https://github.com/glmbraun/VECSBM/


Figure 2: Average performance over 20 runs under Sce-

nario 2.

Figure 3: Average performance over 20 runs with varying

K (Scenario 3).

edge covariates. Here, µkk′ is generated uniformly over
[−1, 1], and Σkk′ are positive definite matrices ran-
domly generated using the clusterGeneration pack-
age, with the maximal singular value set to 1. As
shown in Figure 2, the performance of OLMF signifi-
cantly decreases under this scenario, while IR-VEC and
surprisingly sIR-VEC recover accurately the clusters.

4.3 Influence of the number of communities
(Scenario 3)

We evaluate the performance of our method as the
number of communities increases. We fix the param-
eters: n = 1000, p = 8 log n/n, q = p/2, and generate
isotropic edge covariates with centroids sampled uni-
formly over [−2, 2] for K ∈ {2, 4, 6, 8, 10}. As shown
in Figure 3, while the spectral method’s performance
decreases with increasing K, sIR-VEC is less sensitive.
This is because the edge distribution is dissymmetric,
allowing the SNR to remain higher when K increases.
Additionally, we observe that sIR-VEC performs well
when initialized with an almost uninformative z(0) pro-
vided by Spec.

4.4 Email EU core dataset

The dataset (Leskovec et al., 2007) comprises email
communications between members of different Euro-
pean research institutions. We restrict the dataset to
six institutions with at least 50 members and consider
the institution as the ground-truth partition. Isolated
vertices are removed, and for each edge, we simulate a
textual distribution across 6 topics depending on the
communities of its endpoints. The proportion of top-
ics for each k, k′ ∈ [K] is generated uniformly over
[0, 1]. We obtained an NMI of 0.49 with the spectral
method, while IR-VEC is more accurate and provides a
clustering with an NMI of 0.81 after 15 iterations. The
number of iterations required is higher than when the
graph is generated from an SBM, but IR-VEC appears
robust to variations in graph topology.

5 Conclusion and perspectives

We have quantified the added value of edge-side infor-
mation within the VEC-SBM framework. Our find-
ings reveal that incorporating edge covariates can sig-
nificantly improve the SNR, particularly when com-
munities exhibit similar connectivity profiles or when
dealing with a large number of communities. Further-
more, we have introduced an efficient iterative algo-
rithm, sIR-VEC, which has been proven to achieve the
optimal misclustering rate.

However, our work leaves several questions open for
future research. These include the challenging task
of estimating the number of communities in the pres-
ence of covariates, as well as the analysis of random
initialization techniques for improved community de-
tection. Furthermore, a promising research direction is
to extend this framework to more complex and realis-
tic models where the covariates are high-dimensional,
and the network possesses intricate structures beyond
the scope of the traditional SBM.
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Supplementary Material

The proof of Theorem 1 is presented in Section A. More precisely, Section A.1 gives the exact expression of the
error decomposition discussed in Section 3.1. Section A.1.1 shows that the F-error term satisfies Condition C1
and Section A.1.2 shows that the G-error term satisfies Condition C2. The proof of the remaining case of Lemma
3 is given in Section C.

A Proof of Theorem 1

We will use the following notations. Let us define the Hamming loss h as

h(zi, z
′
i) =

∑
i

1zi ̸=z′
i

and recall that l was defined as the weighted Hamming loss

l(z, z′) =
∑
i

∆2(zi, z
′
i)1zi ̸=z′

i
.

We will denote by h(t) the corresponding function applied to z and z(t).

A.1 Error decomposition

Let us define for all k, k′ ∈ [K] the oracle estimators

p̃ =
∑

k∈[K]

∑
i,j∈Ck

Aij

K|Ck|2
, q̃ =

∑
k ̸=k′∈[K]

∑
i∈Ck,j∈Ck′ Aij

K(K − 1)|Ck||C′
k|
, µ̃kk′ =

∑
i∈Ck,j∈Ck′ AijGij

|Ck||C′
k|

.

The node i such that z(i) = a is incorrectly classified at step t iff

a ̸= argmax
k

MAPi(C(t),Π(t), µ(t), Id).

It implies that there exists a b ̸= a ∈ [K] such that∑
l∈[K]

∑
j∈C(t)

l,−i

Aij

(
log(Π

(t)
al )− log(Π

(t)
bl )−

∥∥∥Gij − µ
(t)
al

∥∥∥2 + ∥∥∥Gij − µ
(t)
bl

∥∥∥2) < 0.

This last condition can be further decomposed as

log(
p

q
)

∑
j∈Ca

Eij −
∑
j∈Cb

Eij

+
∑
l∈[K]

∑
j∈Cl,−i

(
Eij ∥µal − µbl∥2 + 2Aij⟨ϵij , µal − µbl⟩

)
︸ ︷︷ ︸

Ci(a,b)

< −∆2(a, b) + F
(t)
i +G

(t)
i

where

∆2(a, b) = log(p/q)(|Ca|p−|Cb|q) +
∑
l∈[K]

|Cl|Πal ∥µal − µbl∥2 ,

F
(t)
i = ⟨Ei:(Z

(t) − Z), log Πa: − log Πb:⟩+ ⟨Ei:Z
(t), log Π(t)

a: − log Π̃a: − log Π
(t)
b: + log Π̃b:⟩

+
∑
l∈[K]

∑
j∈Cl

(
2Aij⟨ϵij , µ(t)

al − µ̃al + µ̃bl − µ
(t)
bl ⟩+ Eij

∥∥∥µ̃bl − µ
(t)
bl

∥∥∥2 − 2Eij⟨µal − µbl, µ̃bl − µ
(t)
bl ⟩
)
,

G
(t)
i = ⟨Pi:(Z

(t) − Z), log Πa: − log Πb:⟩+ ⟨Pi:Z
(t), log Π(t)

a: − log Πa: + logΠ
(t)
b: + logΠb:⟩

+
∑
l∈[K]

∑
j∈Cl

Pij

(∥∥∥µbl − µ
(t)
bl

∥∥∥2 − 2Pij⟨µal − µbl, µbl − µ
(t)
bl ⟩
)



+ ⟨Ei:Z
(t), log Π̃a: − log Πa: + logΠb: − log Π̃b:⟩ − 2

∑
l∈[K]

∑
j∈Cl

Eij⟨µal − µbl, µbl − µ̃bl⟩

+
∑
l∈[K]

∑
j∈Cl

Eij

(∥∥∥µbl − µ
(t)
bl

∥∥∥2 − ∥∥∥µ̃bl − µ
(t)
bl

∥∥∥2)+ 2Aij⟨ϵij , µ̃al − µal − µ̃bl + µbl⟩.

The term ∆2(a, b) is deterministic and corresponds to the signal. Under Assumptions A1 and A3, it is easy to
see that

∆2(a, b) ≍ n(p− q)

K
+

np

K

∑
l

∥µal − µbl∥2 .

So if the difference between the centroids
∑

l ∥µal − µbl∥2 = Ω(1), edges covariate have a multiplicative effect
on the signal. The error terms (Fi(t))i∈[n] depend linearly on ϵi: and Ei: and these errors can be controlled in
average. On the other hand, the error terms (Gi(t))i∈[n] need to be controlled uniformly.

A.1.1 F-error term

We need an upper-bound of

F = max
{z(t):l(z,z(t))≤τ}

n∑
i=1

max
b∈[K]\zi

(F
(t)
ib )2

∆2(zi, b)l(z, z(t))
.

Toward this end, notice that (F
(t)
ib )2 ≲ F1 + F2 + F3 + F4 where

F1 =

n∑
i=1

max
b∈[K]\zi

⟨Ei:(Z
(t) − Z), log Πa: − log Πb:⟩2

F2 =

n∑
i=1

max
b∈[K]\zi

⟨Ei:Z
(t), log Π(t)

a: − log Π̃a: − log Π
(t)
b: + log Π̃b:⟩2

F3 =

n∑
i=1

max
b∈[K]\zi

∑
l∈[K]

∑
j∈Cl

Aij⟨ϵij , µ(t)
al − µ̃al + µ̃bl − µ

(t)
bl ⟩

2

F4 =

n∑
i=1

max
b∈[K]\zi

∑
l∈[K]

∑
j∈Cl

Eij

(∥∥∥µ̃bl − µ
(t)
bl

∥∥∥2 − 2⟨µal − µbl, µ̃bl − µ
(t)
bl ⟩
)2

.

First, let us establish some useful inequalities that will be used repeatedly.

Lemma 4. Under the assumption of Theorem 1 we have with probability at least 1 − n−Ω(1), for all z(t) such
that Kl(z(t), z) ≤ n∆2

minϵ

1. maxk∈[K] |n
(t)
k − nk| ≤ l(z(t),z)

∆2
min

2. maxk∈[K] ||Z
(t)
:k − Z:k|| ≤

∥∥Z(t) − Z
∥∥ ≲ K0.5

n0.5∆2
min

l(z(t), z),

3. | log(p
(t)

q(t)
)− log( p̃q̃ )| ≲ K l(z(t),z)

n∆2
min

4. maxb,l∈[K]

∥∥∥µ̃bl − µ
(t)
bl

∥∥∥ ≲ K1.5
(√

l(z(t),z)
n∆2

min
∨

√
logK

npmax

)
,

5. maxb,l∈[K] ∥µ̃bl − µbl∥ ≲ K√
n2pmax

.

Proof. The first three items are direct consequences of Lemma 13, 14, and 15 in Braun et al. (2022). However,
the fourth point doesn’t derive immediately from Lemma 4.1 in Gao and Zhang (2022) since in our setting the
estimate of µbl depends on A. We will need several properties of the adjacency matrix A that holds w.h.p. We
recall them below.



Fact 1. The adjacency matrix A satisfies the following version of the discrepancy property (see e.g. Lei and
Rinaldo (2015))

∀T1, T2 ⊂ [n] such that |T1| ≤ |T2|, T (A) ≤ κ(|T1|, |T2|)pmax|T1||T2|

where T (A) =
∑

(i,j)∈T1×T2
Aij and κ(|T1|, |T2|) = max( c

∗ log(en/|T2|)
pmax|T1| , C∗) for constants c∗, C∗ > 0.The argument

is based on Chernoff’s bound and a union bound, see the supplementary material of Lei and Rinaldo (2015) for
more details.

Fact 2. Let us denote by IA(a, b) =
∑

i∈Ca,j∈Cb
Aij the number of observed edges between communities a and

b ∈ [K]. By using Chernoff’s bound and a union bound over (a, b) ∈ [K]2 we can show that w.h.p for all a, b ∈ [K]

I(a, b) ≍ pmax
n2

K2
.

We will assume from now on that A satisfies the previous properties. Hence, conditionally on A, a straightforward
adaptation of Lemma A.1 in Lu and Zhou (2016) implies that w.h.p.

∀T = T1 × T2 ⊂ [n]× [n],

∥∥∥∥∥∥
∑

(i,j)∈T

Aijϵij

∥∥∥∥∥∥ ≲
√
|T (A)|n. (A.1)

The price to pay to have a uniform bound is an additional
√
n factor.

Consider the set T = (Ca×Cb)∆(C(t)
a ×C(t)

b ) where ∆ denotes the symmetric difference operator. It can be further

decomposed as ∪3
c=1T

(c) where T (1) = Ca \ C(t)
a × Cb, T (2) = (Ca ∩ C(t)

a )× (C(t)
b ∆Cb), and T (3) = C(t)

a \ Ca × C(t)
b .

Note that by definition of h(t) we have

max
b

|C(t)
b ∆Cb| ≤ h(t)

max
a

|Ca \ C(t)
a | ≤ h(t)

max
a

|C(t)
a \ Ca| ≤ h(t).

Notice that by definition of h(0), we have |Ca ∩ C
(t)
a | ≍ n/K and |C(t)

b | ≍ n/K. By Fact 1 and 2, we have for all
c = 1 . . . 3

|T (c)(A)| ≲ pmax
nh(t)

K
∨ log(K)

n

K
. (A.2)

Let us denote by I
(t)
A (a, b) =

∑
i∈C(t)

a ,j∈C(t)
b

Aij the number of edges between nodes in the estimated communities

a and b. Since h(t) ≤ h(0) ≤ ϵn/K2 we have,∣∣∣I(t)A (a, b)− IA(a, b)
∣∣∣ ≲ ϵIA(a, b)/K.

This implies that I
(t)
A (a, b) ≍ pmaxn

2/K2. Now, we can decompose

µ̃bl − µ
(t)
bl =

∑
i∈Ca,j∈Cb

AijGij −
∑

i∈C(t)
a ,j∈C(t)

b

AijGij

IA(a, b)
+

(
1

IA(a, b)
− 1

I
(t)
A (a, b)

) ∑
i∈C(t)

a ,j∈C(t)
b

AijGij

=

∑
i∈Ca,j∈Cb

Aijϵij −
∑

i∈C(t)
a ,j∈C(t)

b

Aijϵij

IA(a, b)︸ ︷︷ ︸
L1

+

(
1

IA(a, b)
− 1

I
(t)
A (a, b)

) ∑
i∈C(t)

a ,j∈C(t)
b

Aijϵij

︸ ︷︷ ︸
L2

+

∑
i∈Ca,j∈Cb

Aijµab −
∑

i∈C(t)
a ,j∈C(t)

b

Aijµz(i)z(j)

IA(a, b)︸ ︷︷ ︸
L3



+

(
1

IA(a, b)
− 1

I
(t)
A (a, b)

) ∑
i∈C(t)

a ,j∈C(t)
b

Aijµz(i)z(j)

︸ ︷︷ ︸
L4

.

Control of L1. We have

∥L1∥ =

∥∥∥∥∥
∑3

c=1

∑
(i,j)∈T (c) Aijϵij

IA(a, b)

∥∥∥∥∥
≲ K1.5

(√
h(t)

n
∨

√
logK

npmax

)
≤ K1.5

(√
l(z(t), z)

n∆2
min

∨
√
logK

npmax

)
. (by equations (A.2) and (A.1))

Control of L3. By a similar argument we obtain

∥L3∥ ≲

∑
c

∑
(i,j)∈T (c) Aij

IA(a, b)

≲ K
h(t)

n
∨K

logK

npmax
.

Control of L2. By equation (A.1) and the discrepancy property, we obtain∥∥∥∥∥∥∥
∑

i∈C(t)
a ,j∈C(t)

b

Aijϵij

∥∥∥∥∥∥∥ ≲
√
n
√
I(a, b).

Furthermore, we have ∣∣∣∣∣ 1

IA(a, b)
− 1

I
(t)
A (a, b)

∣∣∣∣∣ ≲ |IA(a, b)− ItA(a, b)|
I(a, b)2

≲
K3h(t)

n3pmax
∨ K3 logK

n3p2max

.

By consequence

∥L3∥ ≲
1√

I(a, b)

Kh(t)

n
∨ logK√

I(a, b)npmax

Control of L4. It can be handled in the same way as L2.

We can conclude by summing all the error terms.

Control of F1. This term can be controlled with a similar argument as in Braun et al. (2022). We have

F1

∆2(zi, b)l(z(t), z)
≤
∑
i

∥∥∥Ei:(Z
(t) − Z)

∥∥∥2 1

∆2
minl(z

(t), z)

≤
∥∥∥Ei:(Z

(t) − Z)
∥∥∥2
F

1

∆2
minl(z

(t), z)

≲ K ∥E∥2 K

n∆6
min

l(z(t), z) (by Lemma 4)

≲ K
npmax

∆4
min

Kl(z(t), z)

n∆2
min

→ 0

Control of F2. This term can be handled again by the same techniques as in Braun et al. (2022). We have
by triangular inequality

F2

∆2(zi, b)l(z(t), z)
≤ 4

∑
i

∥∥∥Ei:Z
(t)
∥∥∥2 max

k

∥∥∥log Π(t)
k: − log Π̃k:

∥∥∥2 1

∆2
minl(z

(t), z)

≲ K2n
2pmaxl(z

(t), z)

n2∆6
min

→ 0. (by Lemma 4)



Control of F3 while
√

h(t)

n >
√
logK

npmax
. To control F3 we will use the following lemma.

Lemma 5. Under the assumption of Theorem 1 we have with probability at least 1− n−Ω(1)

1. maxa,b∈[K]

∥∥∥∑i∈Ca,j∈Cb
Aijϵijϵ

⊤
ij

∥∥∥ ≲ (n/K)2pmax,

2. maxl,l′,a∈[K]

∥∥∥∑i∈Ca,j∈Cl,j′∈Cl′
AijAij′ϵijϵ

⊤
ij′

∥∥∥ ≲ (n/K)2pmax.

Proof. The first point can be obtained by conditioning on A and using the Lemma A.2 in Lu and Zhou (2016).
Since

∑
i∈Ca,j∈Cb

Aij ≲ (n/K)2pmax w.h.p. we obtain the stated result. The second result can be obtained by a
similar argument and by noticing that by Lemma 3 w.h.p

max
a,l,l′

∑
i∈Ca,j∈Cl,j′∈Cl′

AijAij′ ≲ (n/K)2pmax

By developing the square in F3 we obtain

F3

∆2(zi, b)l(z(t), z)
≲

K4

∆2
minl(z

(t), z)

∥∥∥∥∥∥
∑
i,j

Aijϵijϵ
⊤
ij

∥∥∥∥∥∥+ max
l,l′,a∈[K]

∥∥∥∥∥∥
∑

i∈Ca,j∈Cl,j′∈Cl′

AijAij′ϵijϵ
⊤
ij′

∥∥∥∥∥∥


×max
b ̸=a,l

∥∥∥µ(t)
al − µ̃al + µ̃bl − µ

(t)
bl

∥∥∥2
≲ K6npmax

∆4
min

→ 0. (by Lemma 4)

Control of F4 while
√

h(t)

n >
√
logK

npmax
. Let us write cabl =

∥∥∥µ̃bl − µ
(t)
bl

∥∥∥2 − 2⟨µal − µbl, µ̃bl − µ
(t)
bl ⟩. We have

maxa,b,l |cabl| ≲ K2
√

l(z(t),z)
n∆2

min
By developing the square in F4 we obtain

F4

∆2(zi, b)l(z(t), z)
≲
∑
i

∑
b ̸=z(i),l,l′

∑
j∈Cl,j′∈Cl′

EijEij′cz(i)blcz(i)bl′
1

∆2
minl(z

(t), z)

≲
∑

b ̸=z(i),l,l′,l′′

cl′′blcl′′bl′
∑

j∈Cl,j′∈Cl′

∑
i∈Cl′′

EijEij′

≲ K3n
2pmax

n∆4
min

→ 0. (by Lemma 3)

Case where
√

h(t)

n <
√
logK

npmax
. In this case, one should consider F3 and F4 as G-error terms. More precisely,

we should consider the following term appearing in the F-error decomposition

∑
l∈[K]

∑
j∈Cl

(
2Aij⟨ϵij , µ(t)

al − µ̃al + µ̃bl − µ
(t)
bl ⟩+ Eij

∥∥∥µ̃bl − µ
(t)
bl

∥∥∥2 − 2Eij⟨µal − µbl, µ̃bl − µ
(t)
bl ⟩
)

as a G-error term. By using the fact that ∥∥∥µ̃bl − µ
(t)
bl

∥∥∥ ≲
K1.5 logK

npmax

it is easy to show that all the terms are o(1). See also the proof of the bound of G7 and G8 in the next subsection.



A.1.2 G-error term

We can upper bound G
(t)
i by G1 +G2 +G3 +G4 +G5 +G6 +G7 +G8 where

G1 =
∣∣∣⟨Pi:(Z

(t) − Z), log Πa: − log Πb:⟩
∣∣∣

G2 =
∣∣∣⟨Pi:Z

(t), log Π(t)
a: − log Πa: + logΠ

(t)
b: + logΠb:⟩

∣∣∣
G3 =

∑
l∈[K]

∑
j∈Cl

Pij

∥∥∥µbl − µ
(t)
bl

∥∥∥2
G4 =

∑
l∈[K]

∑
j∈Cl

2Pij

∣∣∣⟨µal − µbl, µbl − µ
(t)
bl ⟩
∣∣∣

G5 =
∣∣∣⟨Ei:Z

(t), log Π̃a: − log Πa: + logΠb: − log Π̃b:⟩
∣∣∣

G6 = 2

∣∣∣∣∣∣
∑
l∈[K]

∑
j∈Cl

Eij⟨µal − µbl, µbl − µ̃bl⟩

∣∣∣∣∣∣
G7 =

∣∣∣∣∣∣
∑
l∈[K]

∑
j∈Cl

Eij

(∥∥∥µbl − µ
(t)
bl

∥∥∥2 − ∥∥∥µ̃bl − µ
(t)
bl

∥∥∥2)
∣∣∣∣∣∣

G8 = 2

∣∣∣∣∣∣
∑
l∈[K]

∑
j∈Cl

Aij⟨ϵij , µ̃al − µal − µ̃bl + µbl⟩

∣∣∣∣∣∣ .
Control of G1. Since

∥∥Pi:(Z
(t) − Z)

∥∥ ≤
√
Kpmaxh

(t) and ∥log Πa: − log Πb:∥ = O(1) we get

G1

∆2(zi, b)
≲

√
Kpmaxh

(t)

∆2
min

≲
Kl(z(t), z)

n∆2
min

npmax

∆2
min

√
K

≤ δ.

Control of G2. We have
∥∥Pi:Z

(t)
∥∥ ≲ (n/

√
K)pmax and by Lemma 4

∥∥∥log Π(t)
a: − log Πa:

∥∥∥ ≲ K l(z(t),z)
n∆2

min
. By

using the triangular inequality, we obtain

G2

∆2(zi, b)
≲ K

l(z(t), z)

n∆2
min

npmax

∆2
min

√
K

≤ δ.

Control of G3. By Lemma 4 maxb,l∈[K]

∥∥∥µbl − µ
(t)
bl

∥∥∥ ≲ K2
√

l(z(t),z)
n∆2

min
+ K√

n
. By consequence,

G3

∆2(zi, b)
≲ K4npmax

∆2
min

(
l(z(t), z)

n∆2
min

+
1

n

)
≤ δ.

Control of G4. The proof is similar to G3.

Control of G5. One has
∥∥∥log Π̃a: − log Πa: + logΠb: − log Π̃b:

∥∥∥ ≲ 1
n2pmax

and maxi
∥∥Ei:Z

(t)
∥∥ ≲

√
npmax.

Control of G6. Let V ∈ Rk such that Vl = ⟨µal − µbl, µbl − µ̃bl⟩. By the triangular inequality and Lemma 4,
we have ∥V ∥∞ ≲ K

n
√
p . Hence

G6

∆2(zi, b)
=

2 |⟨Ei:Z, V ⟩|
∆2(zi, b)

≲

√
npmax ∥V ∥∞

∆2
min

= o(1)



Control of G7. By Lemma 4, maxb,l∈[K]

∥∥∥µbl − µ
(t)
bl

∥∥∥ ≲ K2
√

l(z(t),z)
n∆2

min
+ K√

n
and maxb,l∈[K]

∥∥∥µ̃bl − µ
(t)
bl

∥∥∥ ≲

K
√

l(z(t),z)
n∆2

min
. By consequence,

G6

∆2(zi, b)
≲

√
npmax

∆2
min

(
K4 l(z

(t), z)

n∆2
min

+K2 1

n

)
= o(1).

Control of G8. Conditionally on (Aij)j∈Cl
,
∑

j∈Cl
Aij⟨ϵij , µ̃al − µal − µ̃bl + µbl⟩ is a centered Gaussian r.v.

with variance σ2
A = ∥µ̃al − µal − µ̃bl + µbl∥2

∑
j∈Cl

Aij ≲ K√
n

∑
j∈Cl

Aij by Lemma 4. By consequence,

P(Aij)j∈Cl

∣∣∣∣∣∣
∑
j∈Cl

Aij⟨ϵij , µ̃al − µal − µ̃bl + µbl⟩

∣∣∣∣∣∣ ≳√log n ∥µ̃al − µal − µ̃bl + µbl∥2
∑
j∈Cl

Aij

 ≤ n−Ω(1).

Let us denote the event

H =

max
i,l

∑
j∈Cl

Aij ≲
npmax

K

 .

This event holds with probability at least 1− n−Ω(1). We have

P

∣∣∣∣∣∣
∑
j∈Cl

Aij⟨ϵij , µ̃al − µal − µ̃bl + µbl⟩

∣∣∣∣∣∣ ≳√log n
npmax

K
∥µ̃al − µal − µ̃bl + µbl∥2


≤ PH

∣∣∣∣∣∣
∑
j∈Cl

Aij⟨ϵij , µ̃al − µal − µ̃bl + µbl⟩

∣∣∣∣∣∣ ≳√log n
npmax

K
∥µ̃al − µal − µ̃bl + µbl∥2

+ n−Ω(1)

≲ PH

P(Aij)j∈Cl

∣∣∣∣∣∣
∑
j∈Cl

Aij⟨ϵij , µ̃al − µal − µ̃bl + µbl⟩

∣∣∣∣∣∣ ≳√log n ∥µ̃al − µal − µ̃bl + µbl∥2
∑
j∈Cl

Aij

+ n−Ω(1)

≤ n−Ω(1).

Since ∥µ̃al − µal − µ̃bl + µbl∥2 ≲ K2

n by Lemma 4, we obtain that

G8

∆2(zi, b)
≲

K3
√
nnpmax

n∆2
min

= o(1).

B Proof of Theorem 2

Choose two communities a and b ∈ [K] such that ∆min = ∆(a, b). For each k ∈ [K], let Tk a subset of Ck with
cardinality 3n

4K . Define T = ∪K
k=1Tk and

Z = {ẑ : ẑi = zi for all i ∈ T}.

By using the same argument as in the proof of Theorem 2 in Gao et al. (2018) we can reduce the problem to a
two-hypothesis testing problem

inf
ẑ

sup
θ∈Θ

E(r(ẑ, z)) ≥ 1

6|T c|
∑
i∈T c

1

2K2
inf
ẑi

P1(ẑi = 2) + P2(ẑi = 1) (B.1)

where P1 (resp. P2 ) denotes the probability distribution of the data when zi = a (resp. zi = b). By the Neyman
Pearson Lemma, the likelihood ratio test achieves the infinimum of the right-hand side of (B.1). Hence we have

inf
ẑi

P1(ẑi = 2) + P2(ẑi = 1) = P


∑

l∈[K],j∈Cl

Aij(∥µal − µbl∥2 + 2⟨ϵij , µal − µal⟩) ≤ 0

︸ ︷︷ ︸
O

 .



First, assume that ∆2(a, b) → ∞. Conditionally on (Aij)j , P(Aij)j (O) = P(XA ≤ −σ2
A

2 ) = P(XA ≥ σ2
A

2 ) where

XA ∼ N (0, σ2
A) and σ2

A =
∑

l,j Aij ∥µal − µbl∥2. By using the fact that∫ ∞

t

e−x2/2 dx ≥ 1√
2π

t

t2 + 1
e−t2/2,

it is easy to show that

P
(
XA ≥ σ2

A

2

)
≳

e−σ2
A/8

σA
.

By Chernoff’s bound, there exists constants c1, c2 > 1 such that

P
(

1

c1
E(σ2

A) ≤ σ2
A ≤ c1E(σ2

A)

)
≥ 1− e−c2E(σ2

A).

Moreover we have

logE
(
e−σ2

A/8
)
=
∑
l,j

log
(
e−∥µal−µbl∥2/8p+ 1− p

)
≥ (1− o(1))

∑
l,j

p
(
e−∥µal−µbl∥2/8 − 1

)
(by using log(1 + x) ≥ x

1+x for x > −1)

≥ −(1− o(1))
∆2(a, b)

8
. (because e−x − 1 ≥ −x)

By consequence,

P(O) = E
(
P
(
XA ≥ σ2

A

2

))
≥ E

(
e−σ2

A/8

σA
1{ 1

c1
E(σ2

A)≤σ2
A≤c1E(σ2

A)}

)

≥ 1√
c1E(σ2

A)
E
(
e−σ2

A/81{ 1
c1

E(σ2
A)≤σ2

A≤c1E(σ2
A)}

)
≥ 1

√
c1∆(a, b)

E
(
e−σ2

A/8
)
− e−c2∆

2(a,b)

√
c1∆(a, b)

≥ e−(1−o(1))∆2(a,b)

since c2 > 1 and ∆(a, b) → ∞.

If ∆2(a, b) = O(1), then σ2
A = O(1) with a positive probability and

P(O) ≥ P
(
σ2
A = O(1)

)
E
(
P
(
XA ≥ σ2

A

2

))
≳ 1.

C Proof of Lemma 3

Control of E. The event D occurs with probability at least 1− n−5 by Chernoff’s bound. It remains to show
that conditionally on D

max
Λ

∑
i∈Ck

∑
j∈Λc

δ

Eij

2

≲ (n/K)2pmax.

Let us fix Λ and defineXi = (
∑

j Eij)
21{|∑j Eij|≲npmax/K}. By developing the square and using the independence

between Eij and Eij′ for j ̸= j′ we obtain E(Xi) ≲ npmax. A similar calculation shows that Var(Xi) ≲ (np)2.
Hence, Bernstein’s inequality gives

P

(∑
i

Xi ≳ (n/K)2pmax

)
≤ e−Ω(n/K).



We obtain the result by a union bound and the fact that conditionally on D, it holds that maxi

∣∣∣∑j Eij

∣∣∣ ≲
npmax/K.

Case where k = k′ = k′′. One can first decouple the indexes i from j, j′ by considering

Sδ =
∑

i,j ̸=j′

δi(1− δj)(1− δj′)EijEij′ =
∑
i∈Λ

∑
j,j′∈Λc

EijEij′ .

Then one can use the result from the case k ̸= k′ = k′′ to show that conditionally on E , Sδ ≲ (n/K)2pmax with
probability at least 1− e−Cn/K for some constant C > 1 and conclude as in the previous case.
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