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Abstract

To control how a robot moves, motion plan-
ning algorithms must compute paths in high-
dimensional state spaces while accounting for
physical constraints related to motors and
joints, generating smooth and stable motions,
avoiding obstacles, and preventing collisions.
A motion planning algorithm must therefore
balance competing demands, and should ide-
ally incorporate uncertainty to handle noise,
model errors, and facilitate deployment in
complex environments. To address these is-
sues, we introduce a framework for robot
motion planning based on variational Gaus-
sian processes, which unifies and generalizes
various probabilistic-inference-based motion
planning algorithms, and connects them with
optimization-based planners. Our framework
provides a principled and flexible way to incor-
porate equality-based, inequality-based, and
soft motion-planning constraints during end-
to-end training, is straightforward to imple-
ment, and provides both interval-based and
Monte-Carlo-based uncertainty estimates. We
conduct experiments using different environ-
ments and robots, comparing against base-
line approaches based on the feasibility of the
planned paths, and obstacle avoidance qual-
ity. Results show that our proposed approach
yields a good balance between success rates
and path quality.

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

1 Introduction

Motion planning refers to the process by which a robot
finds a path of motion from a start to a goal state. This
path should be collision-free, satisfy constraints such as
joint or torque limits, maintain a desired end-effector
orientation, and fulfill other task-specific requirements.
The path should also be smooth, avoiding abrupt or
otherwise sharp motions. To compute the path, an
algorithm needs to be able to handle potentially high-
dimensional robot configuration spaces. This may in-
volve uncertainty, due to inherent sensor noise, external
disturbances, and other effects. The algorithm also
needs to cope with complex environment dynamics.

Modern motion planning algorithms handle these
challenges using different mathematical principles.
Sampling-based planners, such as rapidly-exploring ran-
dom trees (Kuffner and LaValle, 2000; Cheng and
LaValle, 2002; Karaman and Frazzoli, 2011; Berenson
et al., 2011), work by exploring the space of possible
trajectories via stochastic processes, such as space-
filling trees. Optimization-based planners (Ratliff et
al., 2009; Schulman et al., 2013, 2014; Zucker et al.,
2013; Kalakrishnan et al., 2011; Mukadam et al., 2016;
Lirui Wang, 2020) calculate a motion plan by solving a
constrained optimization problem defined on the space
of possible paths. Probabilistic-inference-based plan-
ners (Dong et al., 2016; Attias, 2003; Toussaint and
Storkey, 2006; Toussaint and Goerick, 2010; Yu and
Chen, 2023; Mukadam et al., 2018) reinterpret motion
planning as a Bayesian inference problem over spaces
of paths, enabling motion plans to be computed using
inference algorithms.

Once a path is computed, one must ensure it can be
executed successfully on the physical robot. Using
probabilistic representations to handle uncertainty is

∗Equal contribution.
Code repository: https://github.com/luke-ck/vgpmp.
Video available in supplementary material: see repository.

https://github.com/luke-ck/vgpmp


A Unifying Variational Framework for Gaussian Process Motion Planning

becoming increasingly prominent in a number of re-
lated areas, such as imitation learning. For instance,
probabilistic motion primitives (Paraschos et al., 2013)
parameterize Gaussian trajectory distributions to learn
from expert demonstrations, and provide related func-
tionality such as blending trajectories together. Ew-
erton et al. (2020) extend this by adding a mixture
model to handle distinct candidate trajectories, with
uncertainty around each trajectory. Urain et al. (2022)
integrate expert demonstrations to create stochastic
motion planning primitives using energy-based-models.
These developments highlight the usefulness of proba-
bilistic representations to address uncertainty in related
robotics problems.

In this work, we study probabilistic-inference-based
motion planning using Gaussian processes. We (i) in-
troduce a unifying variational Gaussian process motion
planning (vGPMP) framework, which represents the
motion planning problem as a variational inference
problem—an optimization problem on a suitable space
of probability distributions. This problem is parame-
terized by a set of waypoints, which describe locations
through which the motion plans should go through,
on average: these waypoints can be optimized to find
motion plans for a given task. Furthermore, we (ii)
show, using this variational-inference-based viewpoint,
that Gaussian process motion planners are stochastic
extensions of optimization-based planners. As a result,
Gaussian process motion planners implemented in this
manner share the same capabilities as optimization-
based planners, and additionally provide uncertainty
estimates due to their stochastic construction, which
can be propagated downstream.

Our framework makes it possible to directly incorpo-
rate both hard and soft constraints, including joint
limits and collision constraints, into the motion plan-
ning objective as well as task-independent proper-
ties, such as smoothness. We enable both interval-
based and Monte-Carlo-sampling-based quantification
of uncertainty, each in a scalable manner. The re-
sulting framework augments and simplifies preced-
ing Gaussian-process-based motion planners (Dong et
al., 2016; Huang et al., 2017), giving practitioners a
straightforward-to-implement way to construct motion
plans with uncertainty.

2 Motion Planning using Gaussian
Processes

Gaussian processes (GPs) are random functions f :
X → R, where the output value of the function at any
finite set of input variables x ∈ Xn follows a Gaussian
distribution. A Gaussian process is characterized by a
mean function µ : X → R and a positive semi-definite

kernel k : X × X → R, such that, if f ∼ GP(µ, k),
then f = f(x) ∼ N (µ,Kxx) with mean µ = µ(x) and
covariance Kxx = k(x,x). Let (x,y) be the data, and
to ease notation assume the prior mean is µ = 0.

If we consider a Gaussian likelihood p(y | x) =
N (f(x), σ2I) where σ2 > 0 is the noise variance,
then the conditional distribution of the random func-
tion f given the training dataset (x,y) is also a
Gaussian process. Letting K(·)x = k(·,x), we have
f | y ∼ GP(µf |y, kf |y) where

µf |y = K(·)x(Kxx + σ2In)
−1y (1)

kf |y = k(·, ·′)−K(·)x(Kxx + σ2I)−1Kx(·′). (2)

To train the GP, the hyperparameters of the kernel need
to be learned. This is typically done by maximizing
the marginal likelihood using standard gradient-based
optimization methods (Rasmussen and Williams, 2006).

In the context of motion planning, the input space
will always represent time, namely X = T = R, and
the output space will represent unconstrained joint
values and possibly their derivatives, which we write as
Θ = Rd. The GPs we consider will therefore be random
functions f : T → Θ, and the data will represent joint
values and derivatives at a particular time.

2.1 Gaussian Process Motion Planning

By modeling the distribution of feasible trajectories as
functions that map time to robot states, GPs provide
a principled approach for formulating the motion plan-
ning problem through the lens of probabilistic inference.
Gaussian processes were introduced to motion planning
by Dong et al. (2016), who propose to choose a GP
prior which is given by a linear time-varying stochastic
differential equation, namely

df(t) = (A(t)f(t) + u(t)) dt+ F(t) dw(t) (3)

where A(t) and F(t) are time-varying matrices, u(t) is
the control input to the system, and w(t) is a Wiener
process. The solution of this equation defines the GP
prior. The primary motivations for this choice are
that it (i) encodes spatial smoothness, and (ii) gives
rise to structured covariance matrices, which are block-
tridiagonal because the stochastic differential equation
(SDE) possesses a Markov property. Dong et al. (2016)
show that this accelerates computation and enables
fast maximum a posteriori inference.

To complete the model, Dong et al. (2016) introduce
a likelihood which encourages the robot to avoid colli-
sions and constraint violations. Let kfwd : Θ→ Ψ be
the forward kinematics function, where Ψ represents
joint locations and orientations. Given the forward
kinematics output, following Ratliff et al. (2009), they
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approximate the robot’s body by a set of s spheres,
and calculate a signed distance field for each sphere:
let sdfs : Ψ→ Rs be the function representing this cal-
culation. Let hε(x) = max(−x+ ε, 0) be the hinge loss,
where ε > 0 is called the safety distance parameter.
Let c be a linear penalty function for values exceeding
a given joint limit threshold. By convention, hε and c
act component-wise on vectors. Let ∥x∥2Σ = xTΣ−1x
be the Mahalonobis norm, and let Σobs and Σc be di-
agonal matrices. With this notation, Dong et al. (2016)
propose the likelihood p(e | f) proportional to

exp

(
−1

2

(
∥hε(sdfs(kfwd(f)))∥2Σobs

collision term

+ ∥c(f)∥2Σc

soft constraint term

))
(4)

where e represents the probability of collision-free
events with motion constraints. From here, Dong et
al. (2016) approximate the posterior distribution as
follows: (i) apply maximum a posteriori inference, de-
riving efficient algorithms which use the SDE’s Markov
property to recast the resulting optimization objective
as inference in a sparse factor graph. Once such a
trajectory is obtained, (ii) apply Laplace approxima-
tions to the posterior distribution, and (iii) interpo-
late joint configuration in-between the states at times
t1, .., tT ∈ T . At run-time, the output values of f are
clamped to enforce constraints. In total, the compu-
tations performed produce an optimal trajectory f∗,
and a Gaussian distribution representing trajectories
around it that quantifies uncertainty.

3 Variational Gaussian Process Motion
Planning

Computing motion plans using GPs involves balancing
multiple competing factors, including obstacle avoid-
ance, smoothness, and conformity to joint limits. These
factors depend simultaneously on the motion planner’s
hyperparameters, which must be tuned, and on the
formulation of the objective itself. To provide prac-
titioners with precise control over what the planner
produces and enable them to modify it as needed to
introduce other objectives for specific tasks, we develop
a unifying mathematical and algorithmic formalism for
Gaussian process motion planning.

3.1 Sparse Gaussian Processes as a Unifying
Framework

From a probabilistic inference perspective, one of the
challenges in Gaussian Process motion planning is the
need to accommodate non-Gaussian likelihoods. This
means that the motion planning posterior, unlike the
prior, is not a GP, which means one cannot perform
exact probabilistic inference. One must therefore use

numerical methods to extract means, covariances, and
Monte Carlo samples from the posterior distribution.

Sparse Gaussian Processes (Hensman et al., 2013, 2015;
Titsias, 2009) are a state-of-the-art method for ap-
plying GPs in settings with non-Gaussian likelihoods.
They approximate the exact non-Gaussian posterior
with the best Gaussian approximation, in the sense of
Kullback–Leibler divergence. Originally proposed to
tackle scalability issues which arise when working with
large datasets, they provide a broad and flexible frame-
work for designing approximate probabilistic inference
schemes using GPs. We now apply these notions to
design a unifying framework for motion planning.

We start with an arbitrary Gaussian process prior
f ∼ GP(µ, k), generalizing the framework of Dong
et al. (2016) beyond stochastic differential equations.
Thus, for any collection of times T = [t0, t1, . . . , tn],
the random vector evaluated on this subset f =
[f(t0),f(t1), . . . ,f(tn)] follows a joint Gaussian dis-
tribution whose mean and covariance are determined
by µ and k. Simplifying, suppose that we are also given
a likelihood p(e | f), which incorporates constraints
and collision avoidance, such as the one presented in
Section 2.1—we will discuss likelihoods later in Sec-
tion 3.2. These ingredients specify the exact posterior
distribution, which is non-Gaussian.

To handle non-Gaussianity, following the sparse GP
framework (Snelson and Ghahramani, 2006; Quiñonero-
Candela and Rasmussen, 2005; Titsias, 2009), we in-
troduce the variational approximation f | u, which
is a GP conditioned on the event f(z) = u, where
z ∈ T m are a set of locations called the inducing
points, and u are called the inducing variables. Let
p(u) = N (0,Kzz) be the prior at the z-locations.
Further, let q(u) ∼ N (µu,Σu) be the distribution
of the u-values, which we assume to be a free-form
multivariate Gaussian whose mean and covariance µu

and Σu will be learned using optimization. The gives
f | u ∼ GP(µf |u, kf |u) with

µf |u = µ(·) +K(·)zK
−1
zz (u− µu) (5)

kf |u = k(·, ·′)−K(·)zK
−1
zzKz(·) (6)

To learn the parameters of q(u), we minimize the
Kullback–Leibler divergence between f | u and the
true posterior. One can show (Matthews et al., 2016)
that this is equivalent to maximizing the evidence lower
bound (ELBO)

Eq(u) Ep(f |u) log p(e | f)−DKL(q(u) || p(u)) (7)

which defines our general framework for probabilistic-
inference-based motion planning. This objective in-
cludes an expectation: since sampling from the in-
volved distributions is tractable, it can be optimized
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(a) Sparse Gaussian process (b) Motion plans via GP samples

Figure 1: Intuitive illustration of representing motion paths with GPs. (a) Sparse GP posterior for 1 joint with
inducing variables u = [uc,u

′] denoted by ‘◦’, where uc = [θ0,θ1] and u′ represent the M = 4 inducing locations
z ∈ T subject to the learning process, shown in-between t = 0 and t = 1. We interpret the inducing points as
waypoints through which the random motion plans travel. (b) Candidate end-effector trajectories for the Franka
Panda robot and associated uncertainty, which is illustrated as the orange shaded region.

using stochastic optimization algorithms. We use stan-
dard gradient-based techniques because they are simple,
widely-used throughout machine learning, and work in
practice: algorithmic details are given in Appendix A.

The inducing points u can be understood as waypoints
through which the robot should move: this is illustrated
graphically in Figure 1. By optimizing the ELBO, the
motion planning algorithm must therefore find way-
points which ensure the stochastic trajectories comply
with the necessary requirements. To understand how
to assure this, we study (i) how to specify the likelihood
p(e | f) to incorporate these and other factors. We
then study (ii) how to extract uncertainty for use by
upstream systems.

3.2 Incorporating Constraints, Smoothness,
and Collision Avoidance

A motion planner must generate plans adhering to var-
ious constraints, such desired start-and-end-states and
collision-avoidance. In the variational Gaussian Process
motion planning framework, this involves integrating
information into the posterior distribution using con-
ditional probability, typically through the likelihood
p(e | f). We now describe how this works for a number
of different forms of information.

Joint Limits and Inequality-based Constraints
To respect the robot’s joint limits, we need to incorpo-
rate an inequality constraint into the GP model. Previ-
ous, non-variational Gaussian Process motion planning
approaches (Dong et al., 2016) generally enforce such
constraints softly by adding an extra term to the opti-
mization objective. This does not guarantee the con-
straints are satisfied, which necessitates post-processing.
The most natural alternative, which guarantees con-

straints to be satisfied, would be to modify the prior
using conditional probability, but this unfortunately
breaks Gaussianity of the GP. We therefore instead pro-
pose to leverage the variational formulation and enforce
constraints using a bijective non-linear transformation.
For box constraints of the form

θ
(min)
i ≤ θi ≤ θ

(max)
i (8)

this can be done by passing the GP through a scaled
and shifted sigmoid function σ : Θ → Θc, where Θc

is constrained joint space. This amounts to simply
replacing f with σ(f) in the likelihood, and returning
motion plans based on the transformed GP sample
paths, which are guaranteed to satisfy all joint con-
straints. One can similarly handle other constraints
which map bijectively into a box, such as triangular
constraints. This straightforward solution highlights
the value of a variational formulation, which makes
such aspects computationally simple to add.

Start States, Goal States, and Equality-based
Constraints To ensure our trajectories pass through
the (unconstrained) start and goal states θ0,θ1 at times
t = 0 and t = 1, we condition the variational process f |
u on the events f(0) = θ0 and f(1) = θ1. This is done
by partitioning the inducing variables as u = [uc,u

′],
where uc are the inducing variables representing start
and goal states, and u′ are the remaining inducing
variables. We then simply set uc to the values needed,
and exclude them from optimization. We illustrate this
in Figure 1 where uc are set to [0, 0] at t = 0, t = 1
in the 1D case. This approach enables one to handle
general equality-based constraints.

Collision Avoidance, Velocity Limits, and Addi-
tional Soft Constraints To incorporate constraints
that do not have a convenient mathematical form, we
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1 2 3 4

Figure 2: A sampled trajectory for grasping a can. Frames 1-2, 2-3, 3-4 depict respectively the end-effector
alignment with the final pose, the approach stage, and the grasping stage.

include likelihood-based soft constraints in a manner
that mirrors non-variational Gaussian Process motion
planning algorithms, such as the collision-avoidance
term proposed by Dong et al. (2016). In such cases,
we replace f with σ(f) to account for inequality con-
straints as described previously. This enables us to
handle collision avoidance, velocity constraints and
other soft constraints, which are implicitly enforced
by penalizing violations via the optimization objective,
providing a flexible modeling tool that can be adapted
to the task at hand. For example, to enforce grasping,
we can include the terms

∥gs− kfwd(σ(f))∥2Σgrasp
(9)

inside the exponential function in the log likelihood
(10). Here, gs is a good graspable pose, which consists
of a vector and matrix that, together, represent the
position and orientation of the end effector: we subtract
element-wise and calculate the norm in the respective
product space. The matrix Σgrasp plays a role similar
to Σobs, and quantifies the relative importance of this
term in the likelihood. In total, this term effectively
allows us to condition the Gaussian process on values
in kinematic space, whereas the GP itself lives in joint
space. During the training phase, we draw a batch of
samples, calculate the joint’s position and orientation
for each sample using forward kinematics, and compute
the norm. This likelihood term therefore guides the
samples towards the desired end-effector position and
rotation, all as part of the variational optimization
problem that produces the motion plan.

As a proof-of-concept, we include a grasping experiment.
Alignment for viable grasping is achieved by adding an
appropriate soft constraint term (9), which encourages
the arm to orient itself accordingly. One can take this
further, conditioning the GP at appropriate time steps
to open and close the gripper of the robot to move
objects from one place to another. This reinforces
the value of the proposed framework, which allows us
to treat different kinds of constraints—here, collision-
avoidance and grasping alignment—in essentially-the-

same way mathematically. We demonstrate a motion
plan incorporating these elements in Figure 2, and
include a video in the supplementary material.

Smoothness Smoothness can be controlled via ker-
nel choice and its hyperparameters. In particular,
stationary kernels on R1 can be formulated to in-
clude a length scale parameter κ > 0, and written
k(x, x′) = k

(
|x−x′|

κ

)
. This parameter determines the

characteristic distances over which the function varies
(Rasmussen and Williams, 2006). Kernels on Rd for
d > 1 can be defined similarly, with one length scale per
dimension. Larger length scales yield smoother trajec-
tories, while smaller length scales yield rougher, more
jagged trajectories. Through kernel choice, for instance
by choosing a Matérn kernel with given smoothness
(Rasmussen and Williams, 2006), one can also control
properties such as the number of times a motion path
is differentiable. We illustrate this in Figure 3.

3.3 Computation via Variational Inference
and Connections with Other Planners

By combining the previous likelihood terms, we obtain
the negative ELBO

1

2
Eq(u) Ep(f |u)

(
∥hε(sdfs(kfwd(σ(f))))∥2Σobs

collision term

+ ∥c(σ(f))∥2Σc

soft constraint terms

)
+DKL(q(u

′) || p(u′ | uc))
(10)

which we minimize to obtain the optimal parameters
of q(u). This enforces equality constraints through
the uc-values, inequality constraints through σ, and
soft constraints through the collision and other soft
constraint terms. Compared to previous GP-based ap-
proaches such as for instance Dong et al. (2016), we
do not need to introduce sparse factor graphs, Laplace
approximations, interpolation between time steps, or
other scalability tricks. Instead, we simply carry mini-
mization out using stochastic optimization, by sampling
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(a) Matérn-1/2 (b) Matérn-3/2 (c) Matérn-5/2

Figure 3: Illustration of smoothness properties of different kernels, including the nowhere-differentiable Matérn-1/2,
once-differentiable Matérn-3/2, and twice-differentiable Matérn-5/2 kernel.

u-values, conditionally sampling f -values, computing
the objective, and taking gradient steps.

From (10), we deduce that probabilistic-inference-based
motion planners based on variational inference are
stochastic extensions of optimization-based motion plan-
ning algorithms, such as STOMP, CHOMP (Kalakrish-
nan et al., 2011; Zucker et al., 2013), and their variants.
The main differences in our formulation are:

(i) instead of a single trajectory, we now return a
distribution over trajectories,

(ii) the loss contains an extra expectation term, and

(iii) we include an additional KL-based regularizer to
ensure we do not stray too far from the prior,
allowing us to control smoothness and related task-
independent properties in a distributional manner.

The effect of these differences is that they introduce un-
certainty, at cost of a slightly more complex formulation
compared to optimization-based planners. Our opti-
mization objective is a sum of multiple terms that re-
flect complementary aspects of motion planning, which
need to be weighted appropriately. Empirically, we
found it to be important that the entries of Σobs in
(10) are large enough, to ensure the motion planner
does not ignore the collision part of the objective. We
present an ablation study in Appendix E on how each
likelihood term affects the motion planning behavior.
The formulation presented uses a unimodal variational
approximation: this choice favors simplicity and ease
of optimization. One could instead make a choice in
favor of the opposite tradeoffs, following for instance
Ewerton et al. (2020), by using a mixture model for
the variational approximation.

Compared to other probabilistic-inference-based plan-
ners, such as GPMP2 (Dong et al., 2016), our formula-
tion ensures computational tractability through sparse
GPs, waypoints, and variational inference, rather than
through a factor graph arising from the SDE prior.
Compared to GVI (Yu and Chen, 2023), we work

with posterior function samples rather than purely in
distribution-space, making our implementation much
closer to that of an optimization-based planner. Our
algorithm’s complexity is O(TM2 + dM3 + T (d+ s))
for obtaining the variational parameters which define
a motion plan, O(dM3) for computing error bars, and
O(TM2 +M3) for both computing the mean motion
plan and drawing one Monte Carlo sample when using
efficient sampling via pathwise conditioning (Wilson
et al., 2020, 2021), and O(T (d + s)) to compute the
likelihood. Here, T is the number of time points, M is
the number of inducing points, which for our tasks is
usually around a dozen, d is the dimensionality of joint
space, and s is the number of spheres. Calculations are
given in Appendix C.

Replanning In situations where we need to replan,
we do so by starting with the previous motion plan and
moving inducing points and inducing values around
appropriately in order to compute a new motion plan.
We also condition on the current value as initial state.

3.4 Uncertainty: Intervals and Monte Carlo
Function Samples

Once a Gaussian process motion planning algorithm
has completed the optimization process, the next step
is to extract an actual motion plan from it. Since,
in the variational framework, motion plans map bijec-
tively to Gaussian processes, the most likely motion
plan under the variational posterior can be obtained via
the variational posterior’s mean . We can incorporate
uncertainty in two ways: (a) through posterior inter-
vals or (b) by drawing Monte Carlo random function
samples. These work in the following manner:

(a) Posterior intervals: for a given scaling level α > 0
and independent GPs per output dimension, we
can represent uncertainty through posterior inter-
vals, which are µf |u(x)± α

√
kf |u(x,x). For large-

enough α, this gives a high-probability estimate on
the region through which motion plans will travel.
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Robot Env M
Planners

vGPMP (ours) RRT-connect LBKPIECE CHOMP

Franka

I
Acc 100% 100% 88.89% 18.06%
MPL 2.75± 2.14 1.16± 1.67 1.82± 2.48 0.96± 1.95
MC −1.17 ± 1.73 −11.81± 3.23 −14.03± 4.55 −9.25± 6.94

B
Acc 81.81% 100% 100% 14.54%
MPL 2.60± 1.86 2.10± 2.09 2.21± 2.19 1.27± 2.01
MC −6.76 ± 4.69 −84.42± 18.63 −116.58± 20.05 −37.47± 12.77

UR10

I
Acc 100% 97.22% 86.11% 11.11%
MPL 1.63± 1.09 2.42± 2.55 4.03± 4.37 0.20± 0.47
MC −56.03 ± 11.86 −281.84± 22.91 −479.73± 35.52 −5940.77± 108.31

B
Acc 89.82% 85.45% 16.36% 18.18%
MPL 3.95± 1.91 1.82± 2.22 0.93± 1.56 0.55± 0.90
MC −7.10 ± 5.55 −42.56± 13.03 −26.48± 9.97 −58.53± 6.58

Table 1: Experiments in different environments using two robots. The environments (Env) used are named
Industrial (I) and Bookshelves (B), and the Measures (M) are accuracy (Acc), Mean Path Length (MPL), and
Mean Clearance (MC). Mean and standard deviation are computed over the entire benchmark suite, and are
averaged over five total runs.

(b) Posterior function samples: we can also draw ran-
dom function ϕ ∼ GP(µf |u, kf |u). For stationary
kernels, we do so up to a small error tolerance
using the efficient sampling technique of Wilson
et al. (2020, 2021), which works by drawing ap-
proximate random functions from the prior, and
transforming them into the posterior using path-
wise conditioning. Once drawn, we can then plug
these randomly-sampled functions into upstream
systems as needed for the given task.

We emphasize that (b) is computationally tractable in
part because the variational formulation can handle
general kernels. These technical primitives can be used
to propagate uncertainty into any upstream decision-
making algorithm built atop of GP. Gaussian processes
are widely used to represent uncertainty in a number
of decision-making systems, including in Bayesian opti-
mization, active learning, and reinforcement learning.
Our formalism can therefore in principle facilitate the
development of similar systems in the context of motion
planning with further work.

4 Experiments

We now evaluate vGPMP and compare its performance
and capabilities with other motion planners, including
both those based on probabilistic inference and those
based on other formalisms. To illustrate the unifying
nature of our techniques, we consider standard collision-
avoidance benchmarks. In all cases, full experiment
details can be found in Appendix D.

To understand how vGPMP and other motion planners
handle collision avoidance, we ran them on two kinds

of motion planning benchmarks. For the first kind, we
compare with a state-of-the-art probabilistic-inference-
based planner GPMP2, using similar hyperparameters
as detailed in Appendix D, on the Barrett WAM robot
(7 DOF) in the Lab environment (Mukadam et al.,
2016). For the second kind, we compare with sampling-
based and optimization-based planners, using bench-
marks originally introduced by Schulman et al. (2013),
which are based on the Franka Panda (7 DOF) and
UR10 (6 DOF) robots in the Industrial and Bookshelves
environments, and have 36 and 55 unique motion plan-
ning problems, respectively. A visualization of these
environments can be seen in Appendix D.

We evaluate behavior with respect to (i) accuracy,
which is the percentage of tasks within the bench-
mark suite correctly solved by the planner, (ii) clear-
ance, which quantifies collision-avoidance by measuring
the distance to objects, and (iii) path length, which is
the total distance moved by the end effector. Specif-
ically, clearance, which we use it as a metric to as-
sess safety, is defined as the negation of the collision
term − 1

2∥hε(sdfs(kfwd(σ(f))))∥2Σobs
used in the likeli-

hood. Note that clearance and path length are related:
higher clearance pushes paths further away from ob-
jects, hence increasing path length. If required, an
extra objective can be added to bring paths to desired
lengths whilst maintaining collision avoidance.

All measurements are repeated using 5 different ran-
dom seeds to assess variability. Further details on
measurements are given in Appendix D.

Table 2 shows that vGPMP and GPMP2 both succeed
in finding obstacle-free paths reaching the targets in all
cases. Compared to GPMP2, vGPMP leads to better
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(a) Start query state (b) Goal query state

Figure 4: Example distribution of collision-free paths
generated by vGPMP in the boxes environment, with
a random sample shown in green.

clearance values and consequently longer paths moving
away from the objects ensuring safety. Both methods
require careful tuning of Σobs to ensure that this term
is a sufficiently-important part of the loss to achieve
collision-avoidance. Overall, in comparison to GPMP2,
vGPMP performs comparably and provides a simpler
computational pipeline and more general formulation.

Next, we examine how uncertainty translates to real-
world execution. For vGPMP, we use Monte Carlo
sampling to obtain 150 paths, from which we calculate
the resulting envelope around the mean trajectory. The
intervals in Figure 4 show the successful incorporation
of the problem constraints as expressed in the low
uncertainty at the beginning and end of the trajectory.
This uncertainty grows as one moves further away from
start and goal states, as well as points of collision.

Table 1 shows that vGPMP consistently leads to high
success rates in reaching the goal states, achieving
91.42% across all experiments, which is significantly
higher than the performance of LBKPIECE (69.78%)
and CHOMP (15.69%). RRT-connect achieves a

Metric vGPMP (ours) GPMP2

Acc. 100% 100%
MC −0.90 ± 1.50 −2.58± 2.54
MPL 2.17± 1.00 1.89± 0.98

Table 2: Comparison using WAM robot in the lab envi-
ronment. Metrics shown are accuracy, mean clearance,
and mean path length, defined in Section 4.

slightly higher success rate, 95.05% on average—
however, the generated paths demonstrate worse clear-
ance values. In most cases, vGPMP produces longer
paths, since uncertainty drives paths away from obsta-
cles for better collision avoidance.

vGPMP consistently yields better clearance values in
all environments using the two robots, except with
Franka Panda in the bookshelves environment, where
the performance of vGPMP drops due to collisions
with the floor: this could be alleviated by including an
extra term in the loss, which we omitted to ensure a
fair comparison with other planners that also do not
consider the floor. In total, without post-processing,
the uncertainty produced by vGPMP results in safer
trajectories compared to those of other planners.

Finally, we apply our approach directly to a real robot.
We demonstrate the feasibility of the approach by exe-
cuting a trajectory generated from vGPMP given three
obstacles placed around a Franka Panda robot. To
execute the generated motion plans on the physical
robot, we used a low-level joint impedance position
controller (Franzese et al., 2021). We show the result-
ing trajectory in Figure 5, and provide a video in the
paper’s supplementary materials.

Figure 5: Sampled trajectory executions on the real (bottom) and the simulated (top) robot showing successful
transfer using a low-level controller.
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5 Conclusion

We present a unifying framework for Gaussian-process-
based motion planning with obstacle avoidance, us-
ing a formulation based on variational inference. The
framework supports equality constraints, inequality
constraints, and general soft constraints. It also allows
for fine-grained control over smoothness through the
prior. Our approach generalizes previous Gaussian-
process-based motion planners to arbitrary kernels in a
manner that simplifies computation. Additionally, by
viewing variational inference as an optimization prob-
lem over a space of random motion paths, our frame-
work also generalizes optimization-based planners to in-
corporate uncertainty. We evaluate the approach using
different robots, environments, and tasks—including
obstacle avoidance and grasping—showing that it has
high accuracy in reaching target positions, while avoid-
ing obstacles and using uncertainty to providing better
clearance compared to baselines. We demonstrate the
feasibility of the approach on a real robot, executing a
sampled trajectory while avoiding obstacles.
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Supplementary Materials:
A Unifying Variational Framework for

Gaussian Process Motion Planning

A Algorithm

A full algorithmic description of vGPMP is given below.

Algorithm 1 vGPMP

1: Inputs: number of total optimization steps L, the variational distribution q(u), the prior p(u), input
timesteps X = [t0, t1, · · · , tN ], the process f ∼ GP(µ, k), step size ρ, total number of samples K drawn at each
ELBO estimation step, samples drawn from posterior P , optional: query timesteps with finer discretization
e.g. Xnew = [t0, t0.5, · · · , tNnew

], Nnew > N .

2: for ℓ = 1 : L do
3: Draw

{
uk

}K

k=1
∼ N (µuℓ

,Σuℓ
)

4: Kzz ← k(u,u)
5: L← CholeskyDecomposition(Kzz)

\\ Matrix inversion using Cholesky decomposition
6: K−1

zz ← CholeskySolve(L, I)
\\ Draw pathwise samples

7:
{
fk

}K

k=1
∼ f(X) +KxzK

−1
zz (u− fm)

\\ Evaluate the likelihood and average over samples
8: E←∑K

i=1

∥∥hε(sdfs(kfwd(σ(f
i))))

∥∥2
Σobs

collision term

+
∥∥c(σ(f i))

∥∥2
Σc

soft constraint terms

\\ Compute the mean and covariances for p(u) and q(u)
9: µp ← K−1

zzuc

10: µq ← [uc,µus
]

\\ Whiten the difference between q(u) and p(u)
11: W← TriangularSolve(L,µq − µp)

\\ Compute the KL divergence and ELBO
12: DKL ← 0.5

(
log |Σuℓ

| − tr(Σuℓ
)− dim(W) +W⊤W

)
13: L ← α 1

N

∑N
i=1 E

i +DKL

\\ Update the variational distribution
14: µuℓ+1

= µuℓ
+ ρ [∇qL]

15: Σuℓ+1
= Σuℓ

+ ρ [∇qL]
16: end for
17: Draw

{
ui

}P

i=1
∼ N (µuL

,ΣuL
)

\\ Draw pathwise samples from posterior or return the mean
18:

{
f i

}P

i=1
∼ f(Xnew) +Kx′zK

−1
zz (u− fm)

\\ Optional: pick a trajectory of choice - here we pick the lowest collision cost trajectory
19: θ = argmin{f i}P

i=1

[∥∥hε(sdfs(kfwd(σ(f
i))))

∥∥2
Σobs

]
20: return: θ
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B Incorporating Additional Constraints under the Variational Representation

For learning the variational distribution, we choose q(u) = N (µu,Σu) with a particular representation we now
describe. Letting u = [u′,uc] be the partition of u into the learned and constrained parts, the matrix Σu contains
one part for u′, which is padded with zeros to encode the uncertainty in the given motion planning constraints
uc. One can additionally introduce noise in the latent variables, but we omit this here to ease notation.

Computational Considerations To improve computational efficiency, we use a whitened representation that
only considers the learned portion of the covariance Σu. Let z′ and zc be the inducing points corresponding to
u′ and uc, respectively. The part of the distribution representing uc is a degenerate Gaussian, so we omit it from
the whitening process. This representation is achieved using the block partitioned representation of Kzz, because
the Cholesky decomposition of the covariance of p(u′|uc) can be written as Chol(Kz′z′ −Kz′zc

K−1
zczc

Kzcz′): this
can be seen by considering the block LU decomposition. An added benefit of this approach is that the KL term
in (10) can be computed efficiently, as the Cholesky factor is already cached and used in the pathwise updates.

Velocity Modeling and Higher Order Derivatives Including constraints on derivatives, such as maintaining
constant velocity, is crucial for real-world execution. By incorporating these constraints, the resulting models can
accurately account for physical system limitations, ensuring the feasibility and reliability of planned trajectories
during execution. In our framework, one can encode velocities as prior information by considering inducing
variables along with their time derivatives, namely u = [u′, u̇′,uc, u̇c] which implies that the respective kernel
matrix can be assembled by differentiating the kernel function. In many situations, we set the start and end
velocities to zero. Our framework also allows angular velocities of the samples to be computed by differentiating
the sample paths. This means they can be included in the likelihood via a soft constraint term which brings the
velocity of sampled trajectories to desired values. This lead to, for instance, the likelihood term∥∥σ̇(f)− µv

∥∥
Σvelocity

. (11)

Acceleration and other higher-order derivatives can also be considered following a similar argument, assuming
appropriate kernel choice to ensure sufficient differentiability. For the Matérn-5/2 kernel, this benefit is two-fold as
the GP is then Markovian: if advantageous in the setting at hand, this can be used to re-formulate the necessary
computations in terms of sparse linear algebra, which makes it possible to generalize the stochastic-differential-
equation-based techniques of Dong et al. (2016) to GP priors with more available derivatives.

C Time Complexity

In this section, we examine the scalability of vGPMP. Let s be the number of spheres that model the robot
body. Let T be the total number of discrete time points. Let M be the number of inducing points, and d be the
dimensionality of joint space. The time complexity of one iteration can be split up into

Costiteration = Csampling + Clikelihood + CKL. (12)

We begin by deriving the complexity cost of computing the likelihood for a single sample, for one single joint
configuration at some timestep t.

The time complexity of the forward kinematics computation using the Denavit-Hartenberg (DH) convention and
homogeneous transformation matrices is O(d), where d is the number of degrees of freedom of the robot arm. To
compute the forward kinematics, we need to multiply the homogeneous transformation matrices for each joint, as
follows:

Fd =

d−1∏
i=0

Fi,iFi,i+1 (13)

Each Fi is 4× 4 matrix computed using the DH parameters, and hence requires constant amount of computation.
Then, an additional transform is needed to translate the sphere offsets into world coordinates. This can be easily
achieved by considering some other homogeneous transform Hi,j for some sphere cj , j = {1, · · ·, s} and some frame
of reference (in world coordinates) i such that we can get the sphere placement in world coordinates, namely

Hj = FiHi,j . (14)
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Robot Env Parameters

E[q(u)] length scale kernel variance σobs Ind. var.

Franka
I Zeros [2, 2, 2, 2, 2, 2, 2] 0.2 0.005 10

Trained Trained Trained Not trained Trained

B Interp. [4, 4, 4, 3, 3, 3, 3] 0.5 0.0005 24
Trained Trained Trained Not trained Trained

UR10
I Interp. [6, 6, 6, 6, 6, 6] 0.1 0.0001 18

Trained Trained Trained Not trained Trained

B Upright [4, 4, 4, 4, 4, 4] 0.25 0.0005 12
Trained Trained Trained Not trained Not trained

WAM Lab Interp. [5, 5, 5, 4, 5, 5, 5] 0.05 0.005 14
Trained Trained Trained Not trained Not trained

Table 3: Experiment configurations for various robots in different environments. The environments (Env) used
are named industrial (I) and bookshelves (B). Interp. stands for interpolated. In all cases, set ε = 0.05, aside
from UR10 on the industrial environment where it was ε = 0.08 and WAM on the lab environment where it was
ε = 0.03. We also list which parameters are optimized during training, which are denominated as trained, and
which are fixed during training, denominated as not trained.

To do this for all joints and all spheres, the time complexity is O(s), which brings the overall cost to O(d+ s).
After the joint configuration has given the robot pose and the sphere position in world coordinates, the likelihood
can be computed. The cost can be broken up into applying the hinge loss to the signed distances, and the cost of
computing the quadratic form. For the first half, the cost of computing the signed distance involves a lookup
in a 3D grid, incurring constant cost per sphere. Since the hinge loss’ complexity is linear in the number of
spheres, the overall time complexity of this procedure is O(s). Additionally, since the covariance-matrix-term in
the likelihood is assumed diagonal, for a given vector of spheres of size s, the quadratic form can be computed in
linear time O(s). At each iteration of the optimization the likelihood is evaluated at T timesteps, bringing the
overall cost to Clikelihood = T (d+ s).

The efficient sampling technique of Wilson et al. (2020, 2021) uses pathwise conditioning, which involves solving a
linear system and computing the Cholesky decomposition of Kzz. Therefore, drawing the samples amounts to
Csampling = TM2 +M3 for one sample. We view the cost of Fourier features as constant.

Lastly, we consider computation of the KL term. The dominant factor here is the computation of the covariance
matrix inverse and determinant. We must also whiten Σu. We have that (a) the cost of computing Kzz is
O(dM2), (b) the cost of computing the Cholesky decomposition and solving the linear system takes O(dM3) time
for a dense matrix, (c) the cost of whitening the covariance is dominated by solving the linear system, where the
Cholesky factor is computed beforehand and is upper triangular, which therefore also takes O(dM3). Overall,
CKL = dM3, which gives the overall time complexity of Algorithm 1 as O(TM2 + dM3 + T (d+ s)).

D Experimental Details

Experiments were performed on an AMD Ryzen 7 3700x CPU. For the proposed planner, we employ independent
GPs per output dimension with Matérn-5/2 kernels. This GP model provides a sufficient degree of differentiability
to express higher order dynamics, and is expressive enough to accommodate different ranges of motion necessary
in the motion plans. Experiments were repeated five times with different seeds. We use the GPFlow library
(Matthews et al., 2017), with the complementary GPFlow-based pathwise sampling module (Wilson et al., 2020,
2021) and PyBullet for simulations (Coumans and Bai, 2017). vGPMP uses Adam with hyperparameters β1 = 0.8
and β2 = 0.95 and learning rate η = 0.09.

Since optimization is carried out on the loss directly, any standard optimizer can be used. In practice, with
standard stochastic optimization we observed convergence across all test suites in 150 optimization steps or
less—however, if even faster convergence is desired, one could for instance apply natural gradients with some
additional computational overhead (Khan and Nielsen, 2018; Salimbeni et al., 2018).
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(a) Industrial environment (b) Bookshelves environment

Figure 6: Example distributions of collision-free paths generated by vGPMP in two benchmark environments.
Sampled trajectories are shown in green.

We include RRT-connect, LBKPIECE and CHOMP via the MoveIt! OMPL library (Chitta et al., 2012). RRT-
connect and LBKPIECE were ran with default settings, with post-processing left on to smoothen the resulting
trajectory. CHOMP was ran using the configuration detailed by Dong et al. (2016).

We compare the proposed approach, vGPMP, with GPMP2 (Dong et al., 2016) in the lab environment, originally
introduced by Mukadam et al. (2016), using the (7 degree of freedom) Barrett WAM robot. We test both planners
using 24 different cases with various start and goal states. We initialize GPMP2 with parameters as outlined
in Dong et al. (2016): Σobs = 0.022I, ε = 0.2 with 101 temporally equidistant states. Results are detailed in
Table 2. For vGPMP, we set Σobs = 0.0052I, ε = 0.03, and only 14 inducing locations. For optimization, we use
14 samples per iteration for a total of 150 iterations.

All parameters used for baselines against RRT-connect, LBKPIECE, CHOMP and GPMP2 are outlined in
Table 3. The number of iterations for Franka and UR10 is 130. From Table 1, in the industrial environment
using UR10 our approach finds shorter paths in general, which is in part due to higher length scale initialization.

We evaluated the performance of vGPMP and other baseline planners in two different environments, which can be
seen in Figure 6, using various start and goal states. vGPMP generates smooth trajectories that are also further
away from the obstacles in comparison to baselines as illustrated in Figure 7. If we filter samples to obtain a
most-collision-free path, this avoids the bookshelf in a safer manner than the respective path from RRT-connect.
To ensure balanced comparisons, average success rates reported are calculated as a weighted average with respect
to the number of problems.

Each hyperparameter in Table 3 can be interpreted as follows. The expectation E[q(u)] represents the mean
of the prior around which paths are sampled for optimization. Length scale refers to the kernel length scale

Figure 7: Comparison of trajectories from a baseline motion planner, RRT-connect (in blue) and vGPMP (in
green). As in this example, in general vGPMP leads to smooth trajectories further away from the obstacles.
Spheres around robot links that are used in collision detection can also be seen.
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(a) Trajectory distribution for the Panda arm using all like-
lihood terms.

(b) Trajectory distribution for the Panda arm missing the
collision likelihood.

(c) Trajectory distribution for the Panda arm missing the
position likelihood.

(d) Trajectory distribution for the Panda arm missing the
orientation term.

Figure 8: Visual comparison of the influence of each constraint term on optimization and the resulting trajectory
distribution. In Figure 8a optimization uses all three likelihoods for optimization: collision, position and
orientation. In Figure 8b the collision likelihood was omitted. In Figure 8c, Figure 8d the position and orientation
part of the grasping likelihood were omitted, respectively.

hyperparameter, which controls spatial variability—see Rasmussen and Williams (2006). Kernel variance
corresponds to the size of the outlined volume in Figure 4. The likelihood standard deviation term σobs controls
the weight on the likelihood in the objective, with lower values representing higher weight on the likelihood. The
term Ind. Var. represents the number of inducing variables corresponding to waypoints used during optimization.

E Ablation Study

In Section 3.2, we showed that our framework can be easily adapted to include additional constraints of interest.
Here, we use the grasping setup using the additional terms introduced in (9) to perform an ablation experiment on
how the contribution of each likelihood term affects the final distribution. For all experiments, the configuration
of vGPMP is fixed. Figure 8a shows the final trajectory distribution following optimization using all 3 constraints:
the collision, position, and orientation likelihoods, as explained earlier. Through sufficient weight on the grasping
term, the resulting end effector alignment enables the robot to pick up the can. Figure 8b, Figure 8c and Figure 8d
show the resulting distribution in the absence of the collision, position and orientation terms, respectively. In all
3 cases, grasping is unsuccessful. Without collision information, the grasping constraints compete against the KL
divergence, and the position constraint is not enforced completely. Without position information, the trajectory is
collision-free and the end effector is aligned, but is located away from the table. Finally, without orientation, the
end effector is not aligned for grasping. Note that in all examples, the uncertainty contracts and then expands
again. This is a consequence of predicting at timesteps not seen during training, that is, timesteps which are
either in-between, before, or after the waypoints. Note that this behavior may not be present in other GP-related
motion planners, particularly if they implement predictions of this form using interpolation algorithms used atop
the planner’s output (Dong et al., 2016; Yu and Chen, 2023; Urain et al., 2022) rather than using the uncertainty
obtained from the Gaussian process.
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