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Abstract

High-resolution simulations, such as the
ICOsahedral Non-hydrostatic Large-Eddy
Model (ICON-LEM), provide valuable in-
sights into the complex interactions among
aerosols, clouds, and precipitation, which are
the major contributors to climate change un-
certainty. However, due to their exorbitant
computational costs, they can only be em-
ployed for a limited period and geographical
area. To address this, we propose a more
cost-effective method powered by an emerging
machine learning approach to better under-
stand the intricate dynamics of the climate
system. Our approach involves active learn-
ing techniques by leveraging high-resolution
climate simulation as an oracle that is queried
based on an abundant amount of unlabeled
data drawn from satellite observations. In
particular, we aim to predict autoconversion
rates, a crucial step in precipitation forma-
tion, while significantly reducing the need for
a large number of labeled instances. In this
study, we present novel methods: custom fu-
sion query strategies for labeling instances –
weight fusion (WiFi) and merge fusion (MeFi)
– along with active feature selection based on
SHAP. These methods are designed to tackle
real-world challenges – in this case, climate
change, with a specific focus on the predic-
tion of autoconversion rates – due to their
simplicity and practicality in application.

1 INTRODUCTION

Precipitation is a crucial weather and climate phe-
nomenon, with its formation rate being influenced by
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various factors, including interactions among aerosols,
clouds, and precipitation itself. Understanding these
interactions is vital for improving future climate projec-
tions, as they represent a major source of uncertainty
in estimating climate change’s radiative forcing (IPCC,
2021).

A prevalent method for investigating intricate interac-
tions within the Earth’s system, such as the interplay
between aerosols, clouds, and precipitation, involves
the utilization of climate models. These models employ
numerical solutions to tackle the differential equations
governing the fluid dynamics of the atmosphere and
ocean, albeit on a discrete grid. However, they are
incapable of representing processes smaller than the
grid scale (IPCC, 2021). Alternatively, recent advance-
ments in computational capabilities have paved the
way for high-resolution models with finer grid cells,
allowing a more accurate portrayal of small-scale atmo-
spheric processes within a realistic large-area context
(e.g., Stevens et al. (2020)). While these high-resolution
models excel in capturing small-scale phenomena, their
practical application is often constrained to specific spa-
tial regions and short timeframes due to the significant
computational complexity involved.

For instance, the ICOsahedral Non-hydrostatic Large-
Eddy Model (ICON-LEM) (Zängl et al., 2015; Dipankar
et al., 2015; Heinze et al., 2017), featuring a horizontal
grid resolution of up to around 150 meters, serves as
a high-resolution simulation model suitable for simu-
lating small-scale atmospheric processes. However, it
is computationally very expensive. For instance, run-
ning ICON-LEM to simulate a single hour of climate
data over Germany requires around 13 hours on 300
computer nodes and incurs a cost of approximately
EUR 100,000 per day (Costa-Surós et al., 2020). Given
these high costs, it is imperative to seek alternative
approaches for understanding complex climate system.

Thus, we propose developing a machine learning (ML)
model with active learning (AL) techniques to predict
autoconversion rates, a key process in precipitation
(rain) formation, which in turn is key to better un-
derstanding cloud responses to anthropogenic aerosols
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(Albrecht, 1989). In particular, we propose to use a
high-resolution ICON-LEM as an oracle that is queried
based on an abundant amount of unlabeled data drawn
from satellite data. Our aim with AL is to minimize the
number of features and labeled instances required to
train the ML model. We demonstrate that AL allows
us to achieve greater accuracy with fewer features and
labeled data points by selecting the most valuable ones
from a pool of unlabeled data, thus reducing overall
costs.

Our research contributes to the field in several signif-
icant ways. First, to the best of our knowledge, we
are the first to apply AL in the field of high-resolution
climate modeling, specifically within the context of the
very expensive ICON-LEM simulation, with a specific
focus on the autoconversion process – a process by
which cloud droplets grow larger and transform into
raindrops. Second, we introduce active feature selection
using SHAP (SHapley Additive exPlanations), which
is introduced by Lundberg and Lee (2017). Third, we
propose innovative query strategy fusion techniques
for instance selection: query strategy fusion by weight
(WiFi) and query strategy fusion by merging (MeFi)
which are straightforward and convenient in practice.
Finally, we introduce a novel adaptive weighting tech-
nique designed to dynamically select hyperparameters
for our WiFi method.

By eliminating prohibitive simulation expenses as a
barrier, our work opens the door to elucidating the
dynamics of aerosols, clouds, and precipitation world-
wide. Through this, the societal impacts are potentially
enormous as we can mitigate uncertainties in long-term
climate projections. Reducing the uncertainty in cli-
mate projections, ultimately means reducing unknowns
around floods, droughts, famine and other climate
change-intensified disasters—this connects directly to
human lives and livelihoods. Overall, our approach
holds the potential to make a significant impact on
science and society.

2 RELATED WORK

Considering the critical importance of comprehending
autoconversion rates, recent efforts have emerged in the
realm of ML to forecast these rates. Notable examples
of such endeavors include studies by Seifert and Rasp
(2020), Chiu et al. (2021), Alfonso and Zamora (2021),
and others. The study investigated by Seifert and
Rasp (2020) employs neural networks for cloud micro-
physical parameterizations, with a focus on warm-rain
formation processes, including autoconversion, accre-
tion, and self-collection. Chiu et al. (2021) introduced
improved parameterizations for autoconversion and
accretion rates in warm rain clouds. These parameteri-

zations, informed by ML and optimization techniques,
are based on in situ cloud probe measurements from
the Atmospheric Radiation Measurement Program field
campaign in the Azores. Alfonso and Zamora (2021)
created a machine-learned parameterization using a
deep neural network. They trained this neural network
using a dataset of autoconversion rates, which was gen-
erated by solving the kinetic collection equation for a
wide range of droplet concentrations and liquid water
contents.

Our research distinguishes itself from prior work by
shifting its emphasis. While previous studies primarily
concern the estimation of autoconversion rates within
simulation data and in-situ measurements, our inves-
tigation centers on the more intricate task of directly
estimating autoconversion rates from satellite obser-
vations. Our motivation derives from the fact that
satellite data provide extensive geographic coverage
and frequent observations, which therefore have the po-
tential to enhance our understanding of autoconversion
rates in clouds on a scale that simulation-based models,
constrained by computational and cost limitations, can-
not achieve. Furthermore, our focus lies in harnessing
AL techniques within our ML model, allowing us to
train effectively with minimal data.

In the field of AL, various algorithms aim to choose the
best data points for training. Several AL algorithms
have attempted to combine both informativeness and
representativeness measures when selecting optimal
query instances, primarily in the context of classifica-
tion problems. In the work of Du et al. (2017), a method
was introduced that combines representativeness and
informativeness to select the most suitable instances
for training a classifier within an AL framework. This
approach involves the algorithm seeking data points
that not only provide valuable information but also
effectively represent the dataset. Similarly, Huang et al.
(2014) proposed a framework that leverages both infor-
mativeness and representativeness, drawing inspiration
from min-max perspective in AL.

Furthermore, a range of AL algorithms have delved
into the fusion of informativeness and diversity when
striving to identify optimal query instances. Yang et al.
(2015) introduced an approach that operates under the
assumption that uncertain data points share similarities
and strives to maximize diversity by explicitly enforcing
diversity constraints within the objective function.

In a related context, He et al. (2014) presented an AL
approach that takes into consideration factors such as
uncertainty, representativeness, and diversity. Their
approach leverages instance uncertainty in conjunction
with representativeness to construct an informative
dataset, followed by selecting the diversity instances
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using k-means clustering. Similarly, Novitasari (2017)
also explore the combination of informativeness, rep-
resentativeness, and diversity. However, Novitasari’s
approach stands out by incorporating periodicity anal-
ysis into the AL query strategy, which is specifically
tailored for the classification of time series data.

In the broader landscape of AL strategies, our method
takes inspiration from a hybrid approach that com-
bines informativeness, representativeness, and diversity
in the selection of query instances, akin to the ap-
proach undertaken by He et al. (2014) and Novitasari
(2017). However, our approach is custom-designed for
regression tasks, with a specific emphasis on addressing
real-world challenges, distinguishing it from the pre-
viously mentioned methods focused on classification.
Moreover, our approach extends beyond active instance
selection by also integrating active feature selection into
our methodology.

When considering active feature selection, we find that
the paper by Kara et al. (2022) is particularly relevant.
This is due to the relatively limited use of SHAP values
in AL approaches. In their work, Kara et al. (2022) in-
troduces an AL method that leverages SHAP values to
identify the most informative text samples for manual
labeling, with the goal of enhancing text classification.

In contrast, our work maintains a primary focus on
active feature selection, specifically in the context of
regression problems. While both approaches draw on
SHAP values, they serve different purposes, with Kara
et al. (2022) concentrating on text classification, and
our research specializing in feature selection for regres-
sion tasks and combine it with active instance selection
mentioned in the previous paragraph. This dual focus
on feature and instance selection offers a comprehensive
solution tailored to the real-world challenges of regres-
sion problems, further distinguishing our approach.

3 PROPOSED METHODS

We introduce active feature selection using SHAP and
novel query strategies that consider three crucial factors
when choosing unlabeled instances in AL: informative-
ness, representativeness, and diversity, explained in
the following subsections. The general framework of
our AL approach, which employs pool-based sampling,
is shown in Fig. 1. Generally, we train our model
using the initially available labeled data. Then, we
employ active learning on a pool of unlabeled data to
select the best features and instances for labeling via
queries. Subsequently, we add these labeled instances
to the training set and retrain the model. This iterative
process continues until the specified criteria are met.

For our discussion, let the following notations be de-

Figure 1: The general framework of our AL approach.

fined: Dinit as the initial labeled data, D as the current
labeled data, Dval as small validation pool, Xus as the
small unlabeled pool, Xul as the large unlabeled pool,
Lval as large validation pool, P as the set of points to
be labeled, M as the ML model, Bmax as the maxi-
mum budget (number of labeled data), z ∈ Rp as the
full feature vector, Q as query, and t as the SHAP
threshold.

Active Feature Selection In this section, we
present the methodology of active feature selection
in our approach. Active feature selection plays a cru-
cial role in optimizing the efficiency of our ML model
within the AL framework. Our approach employs
SHAP (SHapley Additive exPlanations) as a key tool
to assess feature contributions and eliminate insignifi-
cant features during certain stages of the AL process.
The algorithm for active feature selection is presented
in Algorithm 1.

Algorithm 1 introduces an iterative active learning
framework that involves active feature selection, em-
ploying SHAP-based technique to reduce feature dimen-
sions. Within each iteration, the algorithm conducts
model training using labeled data and selected features.
Every 15 iterations, it evaluates feature importance
via SHAP values, facilitating updates to the chosen
features. Instead of every iteration, the 15-iteration
interval was chosen to reduce computational costs while
still maintaining reasonable results. Following this, the
model employs the designated query strategy (e.g., ran-
dom, WiFi, MeFi, etc.) to select the best unlabeled
data points for labeling. This iterative process contin-
ues until the specified maximum data labeling budget
is achieved. Finally, the algorithm provides the trained
model, incorporating the selected features alongside
the labeled data.

Informativeness Given a Gaussian process regres-
sion model f ∼ GP(m, k) where m is the prior mean
function and k is the prior covariance kernel, the pre-
dictive distribution at a new input x∗ is Normal with
mean µ(x∗) and variance σ2(x∗). In informativeness-
based sampling with Gaussian Process Regression
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Algorithm 1 Active Learning with SHAP-Based Fea-
ture Selection
1: Input:Dinit, D, Xus, P , M, Bmax, z ∈ Rp, t
2: Output:M̂, ẑ: Final model and features
3: D ← Dinit; ẑ← z;M̂ ← ∅; Q← 0
4: while |D|≤ Bmax do
5: if mod(Q, 15) = 0 then
6: M̂ ← train(M, Dz)
7: ϕj = SHAP(M̂, zj),∀j
8: ẑ← z \ {j : |ϕj |< t}
9: end if

10: M̂ ← train(M, Dẑ)
11: P ← Active Learning Step(M̂, Xus)
12: Ask oracle to label points in P
13: D ← D ∪ P
14: Xus ← Xus \ xi : xi ∈ P
15: Q← Q + 1
16: end while
17: return M̂, ẑ

(GPR) (Williams and Rasmussen, 1995), we leverage
the model’s predictive standard deviation, denoted as
linf, to quantify prediction uncertainty. Our goal is
to choose the data points for labeling that have the
highest linf values, as these points correspond to re-
gions where the model is least certain. The details
of our informativeness-based (uncertainty) sampling
algorithm are outlined in the Appendix B1.

Representativeness In this section, we introduce
a straightforward approach that involves selecting a
number of |P | data points to label based on the most
representative values they hold (i.e., those closest to
their centroid cluster), denoted as lrep, as a query strat-
egy in AL regression. We employ k-means (MacQueen
et al., 1967) for the clustering method on Xus, and
determine the optimal number of clusters (k) using the
Silhouette method (Rousseeuw, 1987). Further details
of our representativeness-based sampling algorithm are
provided in the Appendix B2.

Diversity In diversity-based sampling, we select P
data points that maximize dissimilarity within their
clusters, denoted as ldiv. By calculating the average
dissimilarity for each data point within its cluster, we
identify those that contribute the most to dataset di-
versification. We employ k-means (MacQueen et al.,
1967) for the clustering method on Xus, and determine
the optimal number of clusters (k) using the Silhou-
ette method (Rousseeuw, 1987). Our diversity-based
sampling is shown in Algorithm 2.

Weight Fusion (WiFi) We propose the Weight
Fusion (WiFi) query strategy, with α and β as

Algorithm 2 Diversity-based Sampling

1: Input: Small unlabeled pool Xus

2: Output: P points to label
3: ldiv ← ∅
4: Perform k-means clustering on Xus, where k is

determined using the Silhouette method.
5: for each x∗ ∈ Xus do
6: Let Ci be the cluster containing x∗
7: Compute d̄(x∗) = 1

|Ci|
∑

xj∈Ci
d(x∗, xj) where

d(·, ·) is a dissimilarity measure (e.g., Euclidean
distance, reverse cosine similarity).

8: Set Diversity score ldiv(x∗) = d̄(x∗)
9: end for

10: Normalize ldiv to [0, 1]
11: X̂ ← indices of top P points in Xus ranked in

descending order by ldiv
12: return X̂ (Indices of P points to query)

weight trade-offs. α governs informativeness vs. rep-
resentativeness, while β manages the trade-off be-
tween informativeness-representativeness and diversity.
Higher α values emphasize representativeness, and
higher β values prioritize diversity. WiFi is defined
as:

WiFi(x∗) = (1− β) ((1− α) · linf(x∗)

+ α · lrep(x∗)) + β · ldiv(x∗) (1)

where x∗ ∈ Xus. Details of linf, lrep, ldiv are explained
in the previous subsections, where they denote informa-
tiveness, representativeness, and diversity scores. We
select the top P points in Xus based on their descending
WiFi rank. We optimize α and β using our proposed
adaptive weights, shown in Algorithm 3.

Algorithm 3 introduces a method for dynamically ad-
justing parameters (α and β) used in WiFi query strat-
egy (see Equation 1). The algorithm evaluates nearby
values of α and β to assess their impact on a chosen
metric (e.g., R2, SSIM, inverse MAPE, inverse RM-
SPE). It then compares the maximum metric values
obtained from the variations of α and β separately.
Depending on which parameter yields a higher metric,
the algorithm adjusts the respective parameter based
on the chosen value’s impact. It ensures the adjusted
parameters (α and β) remain within defined bounds (0
to 1). Ultimately, the algorithm provides the adjusted
values for α and β, aiming to optimize these parameters
for improved WiFi query stratey performance.

Merge Fusion (MeFi) MeFi is a novel query strat-
egy that optimally balances informativeness, represen-

tativeness, and diversity by merging the top |P |
3 data
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Algorithm 3 Adaptive Weights

1: Input:Dinit, Xus, D,Dval,M, αinit, βinit, ϵ
2: Output:α, β
3: δα ← ∅; δβ ← ∅; α← αinit; β ← βinit

4: αvalues ← [α− 0.15, α, α + 0.15]
5: βvalues ← [β − 0.15, β, β + 0.15]
6: for α′ in αvalues do
7: α′ ← max(0,min(α′, 1))
8: δ ← EvaluateMetric(Dinit, Xus, D,Dval,M, α′, β)

{(e.g. R2, SSIM, inverse RMSPE, etc.)}
9: δα ← δα ∪ δ

10: end for
11: for β′ in βvalues do
12: β′ ← max(0,min(β′, 1))
13: δ ← EvaluateMetric(Dinit, Xus, D,Dval,M, α, β′)

{(e.g. R2, SSIM, inverse RMSPE, etc.)}
14: δβ ← δβ ∪ δ
15: end for
16: if max(δα) > max(δβ) then
17: i← index of max(δα) in δα
18: α← α(1 + ϵ ∗ αvalues[i])
19: else
20: i← index of max(δβ) in δβ
21: β ← β(1 + ϵ ∗ βvalues[i])
22: end if
23: α← max(0,min(α, 1))
24: β ← max(0,min(β, 1))
25: return α, β

points from each category, defined as follows:

MeFi =
|P |
3

Linf ∪
|P |
3

Lrep ∪
|P |
3

Ldiv (2)

where Linf represents the list of points ranked by in-
formativeness scores (linf), Lrep by representativeness
scores (lrep), and Ldiv by diversity scores (ldiv).

4 EXPERIMENTAL RESULTS

4.1 Dataset

We use datasets from ICON-LEM output from a simu-
lation of the conditions over Germany on 2 May 2013,
where distinct cloud regimes occurred, allowing for the
investigation of quite different elements of cloud forma-
tion and evolution (Heinze et al., 2017). We study a
time period of 09:55 UTC to 13:20 UTC, corresponding
to the polar-orbiting satellite overpass times. Our focus
is on ICON-LEM with a 156 m resolution on the native
ICON grid, then regridded to a regular 1 km resolution
to match the resolution of the Moderate Resolution
Imaging Spectroradiometer (MODIS) data.

The autoconversion rates in our training and testing
data were derived using the two-moment microphysical

parameterization of Seifert and Beheng (2006). The
autoconversion rates for cloud tops that simulate satel-
lite data were determined by selecting rates where the
cloud optical thickness, calculated from top to bottom,
exceeds 1. The optical thickness represents the extent
to which optical satellite sensors can retrieve cloud
microphysical information.

We use dataset of ICON numerical weather prediction
(ICON-NWP) Holuhraun, collected over Holuhraun
volcano in the North Atlantic region on 1 September
2014, to further test the performance of our ML models
(Kolzenburg et al., 2017; Haghighatnasab et al., 2022).
The dataset features a horizontal resolution of approx-
imately 2.5 km. We selected this dataset because it
encompasses completely diverse weather conditions,
allowing us to thoroughly evaluate our ML model’s
performance.

Specifically, we trained and validated our models using
ICON-LEM output over Germany on 2 May 2013, from
9:55 am to 12:20 pm. The test dataset consists of two
different datasets: one covering the entire Germany
region (ICON-LEM) on 2 May 2013, at 13:20, and an-
other encompassing the North Atlantic region (ICON-
NWP Holuhraun) on 1 September 2014, at 13:00. As
for the satellite observation data, we use cloud product
level-2 of Terra and Aqua MODIS (Platnick et al., 2017,
2018).

4.2 Data Preprocessing and Evaluation

To enhance the model’s performance, we employ log-
arithmic transformations on both the input and out-
put variables for the purpose of normalization. This
normalization procedure effectively handles data with
values that are extremely small, thereby enhancing in-
terpretability and stability. Additionally, the input and
output variables undergo further normalization using
standard scaling techniques, involving subtraction of
the mean and division by the standard deviation.

The performance of each experiment in AL and auto-
conversion rates prediction is assessed using a variety
of metrics, each with a specific role. R2 serves as a
fundamental metric to evaluate the overall goodness
of fit, reflecting how well the model aligns with the
actual data. MAPE (Mean Absolute Percentage Error)
and RMSPE (Root Mean Squared Percentage Error)
are employed to measure prediction accuracy in terms
of percentage errors, with RMSPE emphasizing larger
errors. The Structural Similarity Index (SSIM) evalu-
ates the similarity index between model outputs and
actual data. We also incorporate PSNR (Peak Signal-
to-Noise Ratio) for the autoconversion rates prediction.
It is typically associated with image quality assess-
ment, serves to evaluate the quality of model outputs.
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(a) |D|=10

(b) |D|=50

(c) |D|=100

Figure 2: SHAP-based feature selection results.

Prior to calculating each metric, the data is normalized
by transforming it using base 10 logarithms and then
scaling it to a range between 0 and 1.

4.3 Active Learning (AL)

Initial Active Learning Settings We utilized a
pool-based AL regression approach with a large training
pool (Xul) of about 4 million unlabeled data points and
a large validation pool (Lval) of approximately 1 million
data points. We conducted 100 experiments – including
active feature selection, cluster number selection, active
instance selection, and α and β hyperparameter tuning
– and averaged the results. In each experiment, we sam-
pled small training (Xus) and validation pools (Dval)
of 1,000 and 250 data points, respectively, with |Dinit|
= 10 and |P | = 3. We employed GPR to train our
ML models. Our initial model takes the cloud effective
radius (CER) and pressure (P), parameters of the cloud
microphysical state typically obtained from satellite
retrievals (Platnick et al., 2017; Grosvenor et al., 2018),
as input. The model output is the autoconversion rates
derived from ICON-LEM.

Active Feature Selection In this step, we selected
our features using the active feature selection algorithm
explained in Section 3 with t = 0.5. Initially, we started
with two candidate features because not all variables in
the ICON-LEM output align with satellite data. Con-
sequently, we narrowed our selection to inputs typically
derived from satellite retrievals, which limited us to
two variables: cloud effective radius (CER) and pres-
sure (P). While we acknowledge the existence of other

(a) R2 & SSIM

(b) MAPE & RMSPE

Figure 3: GPR-based feature comparison results.

potential features, such as liquid water path (LWP)
and cloud optical thickness (COT), these variables are
vertically integrated and do not provide information
per layer. Therefore, we did not include them in our
current analysis. However, future research directions
may involve, for example, predicting COT per layer as
part of our ongoing research.

Our results highlight CER as the most influential fea-
ture in predicting autoconversion rates, while the con-
tribution of P is relatively small, as shown in Fig. 2.
We validated our results by performing Gaussian pro-
cess regression across different sample sizes (10, 50, and
100) and evaluating the outcomes. Consistently, the
results show that using CER alone outperforms using
both P and CER as input features, as illustrated in
Fig. 3.

Selection of the Number of Clusters, Alpha, and
Beta We determined the optimal number of clusters
using the Silhouette method on Xus. The best number
of clusters was found to be 2. We initiated our AL
experiment with an αinit value of 0.5, and a βinit value
of 0.4 for diversity based on Euclidean distance and 0.5
for inverse cosine-based diversity (refer to Appendix C
for details on the selection of αinit and βinit).

To adaptively adjust the α and β values for subsequent
iterations, we employed Algorithm 3 by providing the
αinit and βinit values. The adaptive weight adjustments
were applied every 15 iterations, starting with an initial
ϵ value of 0.25. We applied a decay rate of 0.75 to ϵ
during the process. While we used R2 as the evaluation
metric for this experiment, other metrics can also be
employed.
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Active Learning Results We assess the AL query
strategy performance using R2, SSIM, MAPE and RM-
SPE metrics, shown in Fig. 4. R2 indicates that linf,
WiFi, and MeFi achieve faster convergence than ran-
dom (baseline), lrep, and ldiv. However, linf eventually
lags behind others. WiFi and MeFi consistently out-
perform baseline and individual aspects (linf, lrep, ldiv)
across all query iterations. SSIM results closely align
with the R2 findings, showing that linf, WiFi, and MeFi,
consistently outperform others, with WiFi and MeFi
still maintaining their lead. WiFi, in particular, excels
when using the Euclidean distance for both R2 and
SSIM.

Furthermore, when using MAPE and RMSPE, we con-
sistently demonstrate that our WiFi and MeFi ap-
proaches remain the top performers, especially when
utilizing the inverse cosine similarity with WiFi for
both MAPE and RMSPE.

Fig. 5 illustrates the label efficiency of our approach
compared to the baseline, quantifying how much less
labeled data is needed to achieve similar results using
the best query strategy. It demonstrates that, on aver-
age, our selected best query strategy (WiFi Euclidean)
requires only around 50% of the labeled data to reach
comparable results. Specifically, we need 65.66% (R2),
53.17% (SSIM), 43.65% (RMSE), and 38.78% (RMSPE)
of the labeled data, relative to the baseline (100%), to
obtain similar outcomes for different metrics.

4.4 Autoconversion Rates Prediction

We employ GPR with an RBF and white noise kernel
to train our model. To determine the optimal hyper-
parameters for the kernel, we employ random search
cross-validation. Our training dataset consists of only
109 labeled data points (Bmax) selected using one of
our best AL query strategies explained in the previous
subsection, WiFi Euclidean, while we reserve 250 data
points for validation. This represents less than 0.01%
of the total available labeled data and reduces the la-
beled data needed by the baseline by around 50%. For
the input, we use CER as determined by our previous
experiment using SHAP. The final α and β values for
WiFi Euclidean, determined using adaptive weights,
are 0.5 and 0.475, respectively.

Simulation Model (ICON) We evaluate our final
ML model using different testing datasets and scenarios
associated with the ICON-LEM simulations over Ger-
many and the ICON-NWP simulations over Holuhraun,
as follows:

1. ICON-LEM Germany : In this scenario, we assess
the performance of our ML models using the same
data that was utilised during its training process,

(a) R2 (b) Zoomed R2

(c) SSIM (d) Zoomed SSIM

(e) MAPE (f) Zoomed MAPE

(g) RMSPE (h) Zoomed RMSPE

Figure 4: Evaluation of different query strategies in
active learning with R2, SSIM, MAPE, and RMSPE.
Euclidean (euc); inverse cosine (cos).

collected through the use of ICON-LEM simula-
tions over Germany. The testing data, however,
differs from the training data as we focus on a dif-
ferent time period, specifically 2 May 2013 at 13:20.
This enables us to assess the model’s generalisa-
tion capability to new data within the same region
and day, while considering significant weather vari-
ations that evolved considerably (Heinze et al.,
2017). Data points: approximately 1 million.
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(a) R2 (b) SSIM

(c) MAPE (d) RMSPE

Figure 5: Label efficiency comparison: the figure
demonstrates how many labeled data points are needed
to achieve comparable results across multiple metrics
when using the best query strategy (WiFi Euclidean)
compared to the random (baseline) strategy.

2. Cloud-top ICON-LEM Germany : In this testing
scenario, we evaluate the performance of our ML
model by utilising the same data as in the previ-
ous scenario, with the exception that we are only
considering the cloud-top information of the data,
representing satellite-like data. We extract this
cloud-top 2D data from the 3D atmospheric sim-
ulation model by selecting the variable value at
any given latitude and longitude where the cloud
optical thickness exceeds 1, integrating vertically
from cloud-top. Data points: approximately 200
thousand.

3. Cloud-top ICON-NWP Holuhraun: This final test-
ing scenario uses distinct data from that of previ-
ous scenarios. In particular, we use cloud-top of
ICON-NWP Holuhraun data that was acquired at
a different location, time, and resolution compared
with the data used in the previous scenarios. The
ability of the model to perform well in the pres-
ence of new data is important in many practical
applications, allowing the model to make accurate
predictions on unseen data, adapting to varying
geographical locations and different metereolog-
ical conditions. Data points: approximately 1.7
million.

The results in Table 1 demonstrate that SSIM values
exceed 90% for all scenarios, with scenarios 1 and 2 also
achieving around 90% for R2. Scenario 3, despite using
different data in terms of time, location, and resolution,

(a) ICON-LEM Germany (1 km)

(b) Cloud-top ICON-LEM Germany (1 km)

(c) Cloud-top ICON-NWP Holuhraun (2.5 km)

Figure 6: Visualization of the autoconversion predic-
tion results of ICON-LEM Germany and ICON-NWP
Holuhraun. The left side of the image depicts the
groundtruth, while the middle side shows the predic-
tion results obtained from the GP model. The right
side displays the difference between the groundtruth
and the prediction results. The top image (a) compares
groundtruth and predictions for testing scenario 1, with
the second image (b) focusing on scenario 2. The third
figure (c) illustrates scenario 3.

still achieves an R2 slightly above 88%. These findings
highlight the model’s capability to accurately estimate
autoconversion rates when utilizing model-simulated
satellite data, without the need for further adjustments
such as fine-tuning. This minimizes the need for ad-
ditional data collection and time-consuming training
processes.

The visual representation of autoconversion rate pre-
dictions for ICON-LEM Germany and ICON-NWP
Holuhraun under various testing scenarios can be seen
in Fig. 6. These figures demonstrate our model’s ability
to accurately capture and reproduce key groundtruth
features. This is evident in the strong resemblance
between the groundtruth and our model’s predictions,
which show minimal deviations, generally below 20%
and predominantly around less than 10%. In summary,
these results confirm our model’s effectiveness in di-
verse scenarios, including atmospheric simulations and
satellite-like data, with a high degree of accuracy.

Satellite Observation (MODIS) This experiment
aims to assess our model’s ability to predict autocon-
version rates using real satellite data, specifically by
testing the model on such data. We focused on com-
paring the autoconversion rate predictions from the
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Table 1: Evaluation of autoconversion prediction results
on three different testing scenarios.

Set R2 MAPE RMSPE SSIM PSNR

1 89.64% 9.61% 11.52% 90.05% 25.91
2 90.64% 10.36% 12.92% 90.12% 26.23
3 88.33% 7.34% 12.64% 92.15% 27.07

(a) CER (b) Aut

Figure 7: Mean, standard deviation, median, 25th and
75th percentiles of the autoconversion rates (g m−3 h−1)
of both (a) simulation (ICON-LEM) and (b) satellite
(MODIS) data over Germany.

MODIS satellite with cloud-top ICON simulation out-
put over Germany (latitude: 47.50° to 54.50° N, lon-
gitude: 5.87° to 10.00° E). While it is worth noting
that the comparisons between satellite predictions and
simulation models cannot be made directly due to dif-
ferences in cloud placement, Figure 7 demonstrates
that the MODIS autoconversion rate predictions sta-
tistically align with those from cloud-top ICON-LEM
Germany. The mean, standard deviation, median, and
percentiles of autoconversion rates demonstrate close
agreement. It shows that autoconversion rates can be
well estimated from satellite-derived CER data using
our method.

5 CONCLUSION

In this study, we have provided a computationally
efficient solution for understanding the key process
of precipitation formation, specifically the autocon-
version process. This process plays a crucial role in
advancing our understanding of how clouds respond
to anthropogenic aerosols (Mülmenstädt et al., 2020),
and ultimately, climate change. Importantly, we have
shown it is possible to predict autoconversion rates ac-
curately using less than 0.01% of the expensive labeled
data from high-resolution ICON-LEM simulation. This
achievement suggests a potential cost reduction from
100,000 EUR to 10 EUR per day for data acquisition,
marking a significant leap towards more accessible and
cost-effective climate modeling.

While recognizing the potential impact of our approach
within climate science domain, we also highlight its
significant contribution to advancing data science, par-

ticularly in active learning. In particular, we introduced
innovative techniques: custom fusion query strategies
for active learning, WiFi and MeFi, along with ac-
tive feature selection using SHAP. These methods were
specifically designed to address real-world problems due
to their practical simplicity. Our custom fusion query
strategies, WiFi and MeFi, consistently outperformed
the baseline query strategy, as well as the individual
aspects of informativeness, representativeness, and di-
versity.

Our ML model achieves good performance on both
atmospheric simulation and satellite data, while reduc-
ing around 50% of the data needed by the baseline
strategy. This demonstrates a cost-effective approach
to train an accurate model with minimal labeled data,
potentially inspiring further explorations in similar ar-
eas (e.g., other microphysical processes) using active
learning to save substantial costs. While our work is
specifically designed for autoconversion rates predic-
tion, our approach can be repurposed for a broad range
of other applications.

Future research directions include exploring ML mod-
els that predict autoconversion rates using additional
features beyond cloud effective radius (CER) and pres-
sure (P), such as cloud optical thickness (COT) and
cloud droplet number concentration (CDNC) per layer.
However, it is important to note that currently, COT
and CDNC per layer are not available in satellite data.
Therefore, to pursue this approach, it would be neces-
sary to first predict COT/CDNC per layer and then
incorporate it as an additional feature in the autocon-
version rates prediction. Furthermore, there is poten-
tial for enhancing our active learning approach through
model selection. While we have incorporated feature
and instance selection, the exploration of model selec-
tion is an exciting prospect for future research.

In summary, our approach holds the potential to make
a significant impact on science and society by bridging
the gap between resource-intensive high-resolution at-
mospheric simulations and cost-effective methodologies
essential for comprehensive studies on aerosol-cloud-
precipitation interactions using machine learning. By
eliminating prohibitive simulation expenses as a bar-
rier, our work opens the door to elucidating the dy-
namics of aerosols, clouds, and precipitation worldwide.
The societal impacts are potentially enormous as we
can mitigate uncertainties in long-term climate projec-
tions. Reducing the uncertainty in climate projections
ultimately means reducing unknowns around floods,
droughts, famine, and other climate change-intensified
disasters—this connects directly to human lives and
livelihoods.
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Crewell, S., CrÜGer, T., Deneke, H., Friederichs, P.,
Henken, C. C., Hohenegger, C., Jacob, M., Jakub,
F., Kalthoff, N., KÖHler, M., Laar, T. W. V., Li,
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Supplementary Materials

A COMPUTING INFRASTRUCTURE

In this study, we utilized internal computing resources (cluster), a shared computer with the Rocky 9 operating
system, equipped with 2 x Intel(R) Xeon(R) CPU E5-2660 v3 processors, featuring 20 cores (2 x 10 cores), and
512GB of RAM, to conduct all of the experiments. Python was the primary programming language employed for
all these experiments; this includes the use of the scikit-learn library (Pedregosa et al., 2011).

B PROPOSED METHODS

We introduce novel query strategies that take into consideration three crucial factors when selecting unlabeled
instances in active learning: informativeness (linf), representativeness (lrep), and diversity (ldiv). Due to page
limitations, we include the details of some categories (linf and lrep) of the query strategy in this appendix section.

B.1 Informativeness

Our informativeness-based (uncertainty) sampling active learning query strategy is shown in Algorithm B1.
The algorithm takes two inputs: the small pool of unlabeled dataset (referred to as Xus) and the GP model
(f ∼ GP(m, k)). It then produces a set of data points (P ) that are recommended for labeling.

Algorithm B1 Informativeness-based Sampling

1: Input: Small unlabeled pool Xus, GP model f ∼ GP(m, k) Output: P points to label
2: linf ← ∅
3: Use GP to compute µ(x∗), σ2(x∗) for all x∗ ∈ Xus

4: for each x∗ ∈ Xus do
5: Compute predictive std σ(x∗).
6: Set Informativeness score linf(x∗) = σ(x∗)
7: end for
8: Normalize linf to [0, 1]
9: X̂ ← indices of top P points in Xus ranked in descending order by linf

10: return X̂ (Indices of P points to query)

B.2 Representativeness

The algorithm for our representativeness-based sampling is outlined in Algorithm B2. The algorithm takes one
input: the small pool of an unlabeled dataset (referred to as Xus). It then produces a set of data points (P ) that
are recommended for labeling.

C SELECTION OF ALPHA AND BETA (WIFI QUERY STRATEGY)

The results for α selection using initial data points are illustrated in Fig. C1. The optimal α value is determined
to be 0.5, signifying an equilibrium between 50% informativeness and 50% representativeness. The optimal β
value for diversity based on Euclidean distance is 0.4, resulting in a balanced combination of 40% informativeness-
representativeness and 60% diversity, while for inverse cosine-based diversity, it is identified as 0.5. Figure C2
illustrates the selection of β using Euclidean distance metrics, while Figure C3 showcases the results of β selection
with inverse cosine similarity applied to the initial data points Dinit.
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Algorithm B2 Representativeness-based Sampling

1: Input: Small unlabeled pool Xus Output: P points to label
2: lrep ← ∅
3: Perform k-means clustering on Xus, where k is determined using the Silhouette method.
4: for each x∗ ∈ Xus do
5: Compute d(x∗, ci) where ci is the centroid of the cluster containing x∗.
6: Set Representativeness score lrep(x∗) = 1

d(x∗,ci)

7: end for
8: Normalize lrep to [0, 1]

9: X̂ ← indices of top P points in Xus ranked in descending order by lrep
10: return X̂ (Indices of P points to query)

(a) R2 (b) SSIM

(c) MAPE (d) RMSPE

Figure C1: Exploring the alpha trade-off of the WiFi query strategy: balancing informativeness and representa-
tiveness with various metrics, including (a) R2, (b) SSIM, (c) MAPE, and (d) RMSPE. A higher alpha means
placing more emphasis on representativeness.
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(a) R2 (b) SSIM

(c) MAPE (d) RMSPE

Figure C2: Exploring the beta trade-off of the WiFi query strategy: balancing informativeness-representativeness
and diversity (Euclidean distance) with various metrics, including (a) R2, (b) SSIM, (c) MAPE, and (d) RMSPE.
A higher beta means placing more emphasis on diversity, with the best beta found to be 0.4, representing 40%
diversity and 60% informativeness-representativeness.
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(a) R2 (b) SSIM

(c) MAPE (d) RMSPE

Figure C3: Exploring the beta trade-off of the WiFi query strategy: balancing informativeness-representativeness
and diversity (inverse cosine similarity) with various metrics, including (a) R2, (b) SSIM, (c) MAPE, and (d)
RMSPE. A higher beta means placing more emphasis on diversity, with the best beta found to be 0.5, representing
50% diversity and 50% informativeness-representativeness.
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