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Abstract

Equivalence testing, a fundamental problem
in the field of distribution testing, seeks to
infer if two unknown distributions on [n] are
the same or far apart in the total variation
distance. Conditional sampling has emerged
as a powerful query model and has been in-
vestigated by theoreticians and practitioners
alike, leading to the design of optimal algo-
rithms albeit in a sequential setting (also re-
ferred to as adaptive tester). Given the pro-
found impact of parallel computing over the
past decades, there has been a strong desire
to design algorithms that enable high paral-
lelization. Despite significant algorithmic ad-
vancements over the last decade, paralleliz-
able techniques (also termed non-adaptive
testers) have Õ(log12 n) query complexity, a
prohibitively large complexity to be of prac-
tical usage. Therefore, the primary challenge
is whether it is possible to design algorithms
that enable high parallelization while achiev-
ing efficient query complexity.

Our work provides an affirmative answer to
the aforementioned challenge: we present a
highly parallelizable tester with a query com-
plexity of Õ(log n), achieved through a sin-
gle round of adaptivity, marking a significant
stride towards harmonizing parallelizability
and efficiency in equivalence testing.

1 Introduction

Evaluating different properties of an unknown object
is a fundamental challenge in statistics. When deal-
ing with large objects, it becomes essential to de-
termine these properties by making only a limited
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number of queries to the object. In the case of un-
known objects being probability distributions, the goal
is to assess whether the input distribution(s) pos-
sess specific properties or deviate significantly (i.e.,
“ε-far” for some ε > 0) from meeting them. All
of this needs to be accomplished while minimizing
the number of queries made (also known as query
complexity) to the distribution(s). Probability dis-
tributions are crucial subjects of study, and distribu-
tion testing has remained central to sublinear algo-
rithms and modern data analysis since its introduc-
tion [Goldreich et al., 1998, Goldreich and Ron, 2011,
Batu et al., 2013].

Early investigations into distribution testing pri-
marily utilized the SAMP query model, which only
allows drawing samples from the given distribu-
tion(s). However, for testing many interesting
properties, the SAMP model proves to be restric-
tive, as evidenced by strong polynomial (in domain
size) lower bounds on the sample complexity.
To overcome this limitation, several alternative
query models have been proposed over the past
decade. Among these models, the conditional
sampling model (COND) [Chakraborty et al., 2013,
Canonne et al., 2014] has been extensively stud-
ied. This model permits drawing samples from
the input distribution(s) conditioned on any
arbitrary subset of the domain. Various dis-
tribution testing problems have been explored
under the COND model [Falahatgar et al., 2015,
Kamath and Tzamos, 2019, Narayanan, 2021,
Chakraborty et al., 2023] and certain vari-
ants of it like subcube conditioning
model [Bhattacharyya and Chakraborty, 2018,
Canonne et al., 2021, Chen et al., 2021]. Moreover,
the COND model and its variants have recently found
applications in the areas like formal methods and
machine learning (e.g., [Chakraborty and Meel, 2019,
Meel et al., 2020, Golia et al., 2022]).

In this work, we study the equivalence testing prob-
lem, one of the most fundamental problems in distri-
bution testing. In this problem, given query access
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to two (unknown) distributions P and Q, the objec-
tive is to decide whether they are equal or ε-far from
each other in the total variation distance. For this
problem, a query-optimal algorithm is already known
in the COND model. However, the primary challenge
with the query-efficient algorithm/tester in the COND
model is its inherent sequential or adaptive nature.
A tester is considered non-adaptive if it can gener-
ate all its queries based solely on the input parameter
(in this case, the domain size) and its internal ran-
domness, without relying on previous query responses.
Non-adaptive testers are generally favored in practical
situations because they can make multiple queries si-
multaneously.

Exploring the balance between the degree of adaptivity
and query complexity is a captivating area of research.
This curiosity prompted [Canonne and Gur, 2018]
to delve deeper into adaptive testing, introducing a
nuanced approach by permitting a limited number
of adaptive stages or rounds. This multi-stage
or bounded-round adaptivity concept finds reso-
nance in various other problems, including group
testing [Du et al., 2000, Damaschke et al., 2013,
Eberhardt et al., 2020], submodular func-
tion maximization [Balkanski and Singer, 2018,
Chekuri and Quanrud, 2019], compressed sens-
ing and sparse recovery [Nakos et al., 2018,
Kamath and Price, 2019], multi-armed bandits
problem [Agarwal et al., 2017]. In this work, we
initiate the study of bounded-round adaptivity in
the context of the equivalence testing problem and
provide a query-efficient one-round adaptive tester.

2 Notations and Preliminaries

Throughout this paper, we consider distributions over
the domain [n] := {1, 2, · · · , n}. For any i, j ∈ [n] and
S ⊆ [n], for brevity we use i ∪ j and i ∪ S to denote
the sets {i} ∪ {j} and {i} ∪ S respectively.

Given a distribution D over [n] and i ∈ [n], we use D(i)
to represent the probability mass function of i. Simi-
larly, for S ⊆ [n], we use D(S) to denote

∑
i∈S D(i).

For any γ ∈ (0, 1), a ±γ estimate of a quantity (say d)
means a number d̃ ∈ [d− γ, d+ γ].

The total variation distance between two distributions
P and Q, denoted by dTV (P,Q) is defined as

dTV (P,Q) :=
1

2

∑
i∈[n]

|P(i)−Q(i)|.

If the variation distance between two distributions is
more than ε, then we say the distributions are ε-far
(or just far, when it is clear from the context).

The Binomial distribution, with parameters n ∈ Z+

and p ∈ [0, 1] denoted by Bin(n, p) is the distribution of
the number of successes in n independent experiments,
where each experiment yields a Boolean outcome, with
success occurring with probability p and failure with
probability 1− p.

Definition 1 (COND Query Model). A conditional
sampling oracle for a distribution D is defined as fol-
lows: the oracle takes as input a subset S ⊆ [n] and
returns an element j ∈ S, such that the probability that
j ∈ S is returned is equal to D(j)/D(S) if D(S) > 0
and 1/|S| if D(S) = 0.

We denote such a conditional query by CONDD(S).

The formal definition of a k-round adaptive tester is
given in [Canonne and Gur, 2018]. For completeness,
we present the formal definition of a one-round adap-
tive tester for equivalence in the COND Query Model.

Definition 2. Given conditional query access to dis-
tributions P and Q (over domain [n]), and given tol-
erance parameter ε as inputs, a one-round adaptive
tester A makes conditional queries to the distributions
in two rounds:

1. In the first round, the algorithm A (with-
out making any queries to the distributions)
selects a set of subsets (say S0

1 , . . . S
0
q1

of [n] and then makes the conditional
queries CONDP(S

0
1), . . . ,CONDP(S

0
q1) and

CONDQ(S
0
1), . . . ,CONDQ(S

0
q1).

2. In the second round, based on the answers
to the queries it has received in the first
round, it selects another set of subsets (say
S1
1 , . . . S

1
q2 of [n] and then makes the condi-

tional queries CONDP(S
1
1), . . . ,CONDP(S

1
q2) and

CONDQ(S
1
1), . . . ,CONDQ(S

1
q2).

Finally, based on the answers to all the 2(q1 + q2)
queries, A outputs with the following guarantee:

• if P and Q are identical, then with probability at
least 2/3, A outputs Accept, and

• if dTV (P,Q) ≥ ε, then with probability at least
2/3, A outputs Reject.

The query/sample complexity of the algorithm is 2(q1+
q2).

In our proof, we will extensively use concentration lem-
mas. In particular, we will use the following version of
Chernoff bound.

Lemma 3 (Additive Chernoff bound). Let
X1, . . . , Xm be m iid random variables, each Xi
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takes value in {0, 1} and E[Xi] = p. Then for any
γ ∈ (0, 1),

Pr

∣∣∣∣∣∣
∑
i∈[m]

Xi/m− p

∣∣∣∣∣∣ ≥ γ

 < e−γ2m.

3 Related Work

In the standard SAMP model, the query com-
plexity of the equivalence testing problem is
Θ(max(n2/3/ε4/3,

√
n/ε2)) [Chan et al., 2014,

Batu et al., 2013, Valiant, 2011], which is prohib-
ited in most practical applications. The COND
model turns out to be beneficial in this con-
text, enabling to require only Õ(log log n) sam-
ples [Falahatgar et al., 2015], which has recently been
shown to be optimal [Chakraborty et al., 2024].

Unfortunately, the above-mentioned optimal tester in
the COND model is sequential. In simpler terms, the
tester is adaptive, meaning that each query (indexed
as t for any t ≥ 1) in the COND model depends on the
answers to the preceding t − 1 queries. Designing a
parallel, ideally entirely non-adaptive, tester remains
an enormous challenge. [Kamath and Tzamos, 2019]
introduced a non-adaptive tester for the equiva-
lence testing problem, which required Õ(log12 n/ε2)
queries1. However, the substantial poly-logarithmic
dependency on the domain size is impractical in
many real-world applications. Moreover, the best-
known lower bound for the query complexity of non-
adaptive testers is Ω(log n) [Acharya et al., 2018], in-
dicating considerable room for improvement in the up-
per bound. One exciting question is to make the tester
as less adaptive as possible while attaining the op-
timal non-adaptive query complexity. Such a ques-
tion motivates the researchers to study the trade-
off between the number of adaptive rounds and the
query complexity (for testing various properties). The
work [Canonne and Gur, 2018] led to the establish-
ment of a “hierarchy theorem” examining the impact
of the number of adaptive rounds.

For the classical equivalence testing problem, in this
paper, we make significant strides toward achieving
optimal (non-adaptive) query complexity of O(log n)
by allowing only one round of adaptivity.

Comarison of our algorithm to Õ(log12 n)-query
algorithm by [Kamath and Tzamos, 2019]:
[Kamath and Tzamos, 2019] provided a non-adaptive
tester for the equivalence testing problem, which re-
quires Õ(log12 n) queries. Let us briefly describe their
algorithm and compare it with ours. They construct

1Note that Õ(f(n)) notation hides poly(log f(n)) terms.

Õ(log6 n)-many sets of varying sizes. Subsequently,
they compare the empirical conditional distribution
over these subsets for both distributions, by per-
forming Õ(log6 n) conditional sampling queries on
each subsets. If these empirical distributions exhibit
significant differences, their algorithm returns reject.
On the other hand, if the empirical distributions
are close for all such subsets, the algorithm returns
accept.

Despite the similarity in the construction of sets of
varying sizes, our algorithm differs in both description
as well as analysis. In our approach, a key component
is the role of tuple (i, S) as a certificate that two distri-
butions are far, whereas their algorithm solely consid-
ers subsets S. Rather than arguing that the empirical
distribution over these subsets will differ significantly
(if the distributions are far apart), we argue that cer-
tain detectable properties will differ with respect to
the tuple (i, S). This additional dimension allows us
to reduce the number of queries significantly. However,
it is important to note that our algorithm involves a
single round of adaptivity. As a result, our algorithm
is incomparable to theirs in this regard.

4 An Efficient One-Round Adaptive
Algorithm

Our main contribution is a one-round adaptive tester
for the equivalence testing problem in the CONDmodel
that makes at most Õ(log n) queries.

Theorem 4. There exists an algorithm which,
given COND access to two distributions P and Q
on [n] and a parameter ε > 0, makes at most

O
(

logn(log logn) log 1/ε
ε9

)
queries to the oracle and is

one-round adaptive, and decides whether P = Q or
dTV (P,Q) ≥ ε with probability at least 2/3.

In the remaining part of this paper, we will prove the
above theorem. We start with a high-level idea behind
our algorithm, and then we provide a formal descrip-
tion of the algorithm with a detailed analysis.

4.1 High-Level Overview

The first attempt to design an equivalence tester is to
pick a sample, say i, from P and compare the prob-
ability mass P(i) and Q(i) in P and Q respectively.
If P and Q are far (in total variation distance), then
with enough probability, the probability mass of i in
both distributions is significantly different. However,
the issue is that estimating the probability mass of the
element i can be very expensive. To bypass this issue,
the idea is to sample a subset S of the domain, hoping
the following:
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• the probability mass of S in P is comparable to
that of the mass of S in Q, and

• the probability mass of i (in P) is similar to the
probability mass of S.

Assuming that all the above two statements hold, one
can use conditional sampling (conditioned on S ∪ i) to
compare P(i)/P(S ∪ i) and Q(i)/Q(S ∪ i). Since, we
assumed P(S) is similar to Q(S) so with high enough
probability P(i)/P(S ∪ i) and Q(i)/Q(S ∪ i) will be
different enough. And since we assumed that P(i) is
comparable to P(S), one can estimate P(i)/P(S ∪ i)
and can upper bound Q(i)/Q(S ∪ i) using only a few
samples, which should be sufficient to distinguish P
from Q if the the two distributions are far. But the
issue is how to take care of the two assumptions.

Firstly, for the second assumption, since we don’t know
the quantity P(i) beforehand, trying to pick a S with
similar probability seems unrealistic. For this, we pick
a collection of sets, S1, . . . , Slogn, where the set Sk is
obtained by picking each element of the domain with
probability 1/2k. This ensures that the expected value
of P(Sk) is 1/2

k. So, irrespective of what the value of
P(i) is, there exists (with high probability) a S∗ such
that P(S∗) is comparable to P(i). Thus, the hope is
to go over all the sets and estimate the P(i)/P(Sk ∪ i)
and Q(i)/Q(Sk∪ i) for all the log n sets, as long as the
ratios are within a particular range. Assuming that
P(S) and Q(S) is comparable and P and Q are far,
the value of P(i)/P(S∗∪ i) and Q(i)/Q(S∗∪ i) will be
different enough.

For the above argument to go through, we need the
other assumption that the probability mass of S in P
is comparable to that of the mass of S in Q. Since
the sets Sk are obtained by independently drawing el-
ements from the domain, one expects the assumption
to hold. While the expected weight of S according to
P and Q will be the same, we need to prove concentra-
tion. The concentration is hard to achieve in this case.
In other words, when the random set Sk is drawn the
expected value of P(Sk) = Q(Sk) = 1/2k, and either
of the two cases can happen:

• (Case 1) The value of the random variable P(Sk)−
Q(Sk) is concentrated around 0, or

• (Case 2) There is large “tail probability,” be-
cause of which concentration is not possible. (The
notion of tail probability is formalized in Sec-
tion 4.3).

If Case 1 holds, that is, the value of the random vari-
ables P(Sk) and Q(Sk) are concentrated around the
expectation then the argument of the previous para

goes through and we will be able to distinguish P from
Q by estimating P(i)/P(S∗ ∪ i) and Q(i)/Q(S∗ ∪ i).

On the other hand, if Case 2 holds, then it means
that the tail probability is high, and if this happens,
it means P and Q are far. This case can be caught by
estimating the tail probability. This is what is done in
our algorithm EstTail.

So our main tester EquivTester first picks a number of
samples according to P and then constructs Õ(log n)
sets Sk. For each set Sk and for each sample i it
estimates the difference between P(i)/P(Sk ∪ i) and
Q(i)/Q(Sk ∪ i) and also the tail probability (using
EstTail). If either of the two estimates is large, the
algorithm rejects P and Q, and if the algorithm does
not reject in all the iterations, then the algorithm ac-
cepts.

Note that the power of conditional samples is used
in estimating the values of P(i)/P(Sk ∪ i) and
Q(i)/Q(Sk ∪ i) and also for estimating the tail prob-
abilities. Regarding the amount of adaptiveness used
in the algorithm EquivTester, we observe that once the
sets Sk’s are fixed, the rest of the samples (conditional
samples) can be drawn in parallel.

4.2 Algorithm Description

Our algorithm, EquivTester, takes as input, two distri-
butions P and Q, and a parameter ε > 0. It returns
Accept if P = Q and Reject if their total variation dis-
tance dTV (P,Q) is greater than ε, both with at least
2/3 probability.

EquivTester samplesO(1/ε) points from P, with the set
of all such points denoted by E (line 4). It then con-
structs subset St for each t in {1, 1/2, 1/4, . . . , 1/n},
such that each element from [n] is included in St with
probability t (lines 5–6). The algorithm then employs
two subroutines, EstProb and EstTail, for each tuple
(i, S) (where i ∈ E and S = St for some t) (lines 8–
16). We invoke EstProb to estimate corresponding con-
ditional probabilities P(i)/P(i∪S) and Q(i)/Q(i∪S)
and return Reject if the difference between conditional
probabilities is far (lines 9–12). If the difference is not
far, we invoke EstTail (to estimate the tail probability
TP, formally defined in Section 4.3) and again, we re-
ject if the difference between the tail probabilities of
(i, S) for P and Q is far (lines 13–16). Finally, if for all
tuples (i, S), all these estimates are close, EquivTester
returns Accept(line 17).

Query complexity: We now establish an upper
bound on the number of calls to the COND oracle
by the EquivTester algorithm. Note that each invo-

cation of EstProb results in m = O
(

(log logn) log 1/ε
ε8

)
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calls to the COND oracle, and each invocation of
EstTail leads to mb = 40000m calls to the COND ora-
cle. Given that EquivTester invokes both EstProb and
EstTail at most |E × S| ≤ 20 log n/ε times, the total
number of calls made to the COND oracle is at most
O
(

logn(log logn) log 1/ε
ε9

)
.

Making EquivTester one-round adaptive: For the
sake of improved presentation of EquivTester, we have
opted not to group together the conditional queries
that can be made simultaneously. We now modify
EquivTester by re-arranging the order of the condi-
tional queries and making it a one-round adaptive
algorithm. First, we note that the construction of
S = {St : t ∈ {1, 1/2, . . . , 1/n}} does not require any
call to the COND oracle.

To convert EquivTester into a one-round algorithm, all
conditional queries executed in line 4 of EquivTester
and line 1 of EstTail can be made simultaneously. This
is possible since these queries are either of the form
CONDP([n]) or CONDP(S) and CONDQ(S) for some
S ∈ S and as noted before, the set S can be con-
structed beforehand.

Then, we can make all the remaining conditional
queries simultaneously. These queries are of the form:
(i) CONDP(i∪S) and CONDQ(i∪S) (line 1 of EstProb)
where i ∼ CONDP([n]) is the outcome of query made
in the previous round and S ∈ S is available before-
hand, (ii) CONDP(i ∪ j) and CONDQ(i ∪ j) (line 3
of EstTail) where again i ∼ CONDP([n]) and j ∼
CONDD(S) (for some S ∈ S and D ∈ {P,Q}) are
the outcomes from the queries in the first round.

4.3 Technical Analysis

Before we formally present the analysis of the correct-
ness and complexity of EquivTester, we define the tail
probability, TP. Given a distribution D, a tuple (i, S)
where i ∈ [n] and S ⊆ [n], and parameters β ∈ (0, 1)
and b ∈ Z+, the tail probability TP(D, i, S, β, b) is de-
fined as follows:

It is the probability that a random sample j ∼
CONDD(S) will occur no more than 1

2 + β times in
b independent queries of CONDD(i, j). Formally, it
can be expressed as:

TP(D, i, S, β, b) :=

Pr
j∼CONDD(S)

[
Bin

(
b,

D(j)
D(j) +D(i)

)
≤ (

1

2
+ β)b

]
=

∑
j∈S

D(j)
D(S)

Pr

[
Bin

(
b,

D(j)
D(j) +D(i)

)
≤ (

1

2
+ β)b

]
.

We now analyze our algorithms. The subroutine

EstProb(D, i, S,m) takes as input a distribution D,
i ∈ [n], S ⊆ [n] and a parameter m ∈ Z+. It uses
a straightforward estimator to return ±γ estimate of
D(i)

D(i∪S) with probability at least 1− e−γ2m.

Lemma 5. For an arbitrary i ∈ [n], S ⊆ [n], γ ∈ (0, 1)
and m ≥ 1 and distribution D, the EstProb(D, i, S,m)

returns ±γ estimate of D(i)
D(i∪S) with probability at least

1− e−γ2m.

Algorithm 1 EquivTester(P,Q, ε)
Input: A pair of distribution P,Q on [n], ε > 0
Output: Accept with prob. 2/3 if P = Q, Reject

with prob. 2/3 if dTV (P,Q) ≥ ε.

1: γ ← ε4

L where L← 1015 is a large constant.
2: m← 100(log log n) log 1

ε/γ
2.

3: β = 0.05, b = 100/β2.
4: Sample 20/ε points from P. Let E be the set of

such points.
5: for t ∈ {1, 1

2 ,
1
4 , . . . ,

1
n} do

6: Construct set St by picking each element of [n]
independently with probability t.

7: Let S = {St|t ∈ {1, 1
2 ,

1
4 , . . . ,

1
n}}.

8: for all tuple (i, S) ∈ E × S do
9: ep1 = EstProb(P, i, S,m).

10: ep2 = EstProb(Q, i, S,m).
11: if |ep1 − ep2| > 2γ then
12: return Reject

13: et1 = EstTail(P, i, S, β, b,m).
14: et2 = EstTail(Q, i, S, β, b,m).
15: if |et1 − et2| > 2γ then
16: return Reject

17: return Accept.

Algorithm 2 EstProb(D, i, S,m)

Input: distribution D on [n], i ∈ [n], S ⊆ [n],
parameter m ≥ 1

Output: estimate of D(i)
D(i∪S)

1: Sample j1, . . . , jm ∼ CONDD(i ∪ S).

2: return
∑

k∈[m] 1jk=i

m

The subroutine EstTail(D, i, S, β, b,m) takes as input
a distribution D, i ∈ [n], S ⊆ [n] and parameters
β ∈ (0, 1), b,m ∈ Z+. It returns, in a straightforward
way, ±γ estimate of TP(D, i, S, β, b,m) with high prob-
ability.

Lemma 6. For any distribution D on [n], i ∈
[n], S ⊆ [n], parameters β ∈ (0, 1), b,m ∈ Z+,
the EstTail(D, i, S, β, b,m) returns ±γ estimate of

TP(D, i, S, β, b) with probability at least 1− e−γ2m.
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Algorithm 3 EstTail(D, i, S, β, b,m)

Input: distribution D on [n], i ∈ [n], S ⊆ [n],
parameters β > 0, b,m ≥ 1

Output: estimate of TP(D, i, S, β, b)
1: Sample j1, . . . , jm ∼ CONDD(S).
2: for k ∈ [m] do
3: Sample y1, . . . , yb ∼ CONDD({jk, i}).
4: if

∑
ℓ∈[b] 1yℓ=jk

b ≤ 1
2 + β then

5: Zk = 1.
6: else
7: Zk = 0

8: Z =
∑

k∈[m] Zk

m .
9: return Z.

The proofs of both Lemma 5 and Lemma 6 are by
a standard application of additive Chernoff bound
(Lemma 3), and deferred to the supplementary ma-
terials.

For brevity, from now on, we use EstProb(D, i, S)
for EstProb(D, i, S,m), EstTail(D, i, S) for
EstTail(D, i, S, β, b,m) and TP(D, i, S) for
TP(D, i, S, β, b,m).

We now prove the first part of our main theorem, i.e.,
if P = Q, then EquivTester returns Accept with high
probability.

Lemma 7. If P = Q then the algorithm returns
Accept with probability at least 1− o(1).

Proof. For each (i, S) ∈ E×S, let Bad1(P, i, S) be the
event that∣∣∣∣EstProb(P, i, S)− P(i)

P(i ∪ S)

∣∣∣∣ ≥ γ

and Bad2(P, i, S) be the event that

|EstTail(P, i, S)− TP(P, i, S)| ≥ γ.

Similarly, we define the events Bad1(Q, i, S) and
Bad2(Q, i, S). Now, consider the event Bad :=⋃

(i,S)∈E×S(Bad1(P, i, S) ∪ Bad2(P, i, S)
∪Bad1(Q, i, S) ∪ Bad2(Q, i, S)).

From Lemma 5 (substituting m =
100(log log n) log 1

ε/γ
2), we have Pr [Bad1(P, i, S)] ≤

e−γ2m and Pr [Bad1(Q, i, S)] ≤ e−γ2m. Similarly, from

Lemma 6, we have Pr [Bad2(P, i, S)] ≤ e−γ2m and

Pr [Bad2(Q, i, S)] ≤ e−γ2m.

Since the total number of (i, S) tuples considered by
the algorithm is at most 10 log n · ε−1, by a union
bound, we have Pr[Bad] ≤ 10 log n · ε−1 · 4 · e−γ2m ≤
1/(log n)98 (since e−γ2m ≤ ε/(log n)100). Further, if
the event Bad does not happen, then for all (i, S) ∈

E×S, we have |EstTail(P, i, S)−EstTail(Q, i, S)| ≤ 2γ
and |EstProb(P, i, S)− EstProb(Q, i, S)| ≤ 2γ. Hence,
with probability at least 1− o(1), EquivTester will re-
turn Accept.

We now proceed towards showing the second part of
our main theorem, if dTV (P,Q) ≥ ε, then EquivTester
returns Reject with high probability.

Lemma 8. If dTV (P,Q) ≥ ε, then EquivTester re-
turns Reject with probability at least 2/3.

Proof. We start with the notion of a tuple (i, S) ∈
E × S being a distinguisher for P and Q, which will
prove to be a sufficient condition for EquivTester to
return Reject with high probability.

Definition 9. A tuple (i, S) ∈ E × S is called a dis-
tinguisher for P and Q if either of the following two
conditions hold true:

1.
∣∣∣ P(i)
P(i∪S) −

Q(i)
Q(i∪S)

∣∣∣ > 4γ,

2. |TP(P, i, S)− TP(Q, i, S)| > 4γ.

To complete the proof, we rely on the following three
lemmas, whose proofs we will provide later.

Lemma 10. If (i, S) ∈ E×S is a distinguisher for P
and Q, then EquivTester returns Reject with probability
at least 1− 4/(log n)100.

Lemma 11. Let c = 1000. If dTV (P,Q) ≥ ε, then
with probability at least 1 − e−6, there exists a non-
empty set T ⊆ E, such that for all i∗ ∈ T , we have

1.
∑

j:P(j)≤P(i∗) P(j) ≥ 3ε/10,

2. P(i∗) ≥ (1 + ε/4)Q(i∗),

3. P(i∗) ≥ ε3

c2n .

Let us now consider the subset T ⊆ E from the above
lemma.

Lemma 12. For every i∗ ∈ T , with probability at
least 4/5, there exists a S∗ ∈ S, such that (i∗, S∗) is a
distinguisher for P and Q.

We are now ready to finish the proof of Lemma 8. It
now directly follows from Lemma 11, Lemma 12, and
Lemma 10, that if dTV (P,Q) ≥ ε, then EquivTester
does not return Reject with probability at most e−6 +
1/5 + 4/(log n)100 < 1/3.
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Proof of Lemma 10

Proof. Analogous to the proof of Lemma 7, we now
define the events Bad1(P),Bad2(P), and so on. For
any distribution D ∈ {P,Q}, let Bad1(D) be the event
that ∣∣∣∣EstProb(D, i, S)− D(i)

D(i ∪ S)

∣∣∣∣ ≥ γ

and Bad2(D) be the event that

|EstTail(D, i, S)− TP(D, i, S)| ≥ γ.

Let Bad := ∪D∈{P,Q} ∪j∈{1,2} Badj(D).

Since m = 100(log log n) log 1
ε/γ

2, from Lemma 5 and
Lemma 6, we have for D ∈ {P,Q}, both Pr [Bad1(D)]
and Pr [Bad2(D)] are at most e−γ2m ≤ ε/(log n)100.
Thus by a union bound, the event Bad happens with
probability at most 4ε/(log n)100.

Since (i, S) is fixed in the context of this lemma, for
brevity, we use ep1 for EstProb(P, i, S) and ep2 for
EstProb(Q, i, S) for the remaining parts of the proof
of this lemma. Similarly, we use et1 for EstTail(P, i, S)
and et2 for EstTail(Q, i, S).

From now on, assume Bad does not happen. Since
(i, S) is a distinguisher, either the item (1) or the item
(2) in the Definition 9 holds. If the item (1) holds,
then by the triangle inequality, we have

|ep1 − ep2| ≥∣∣∣∣ P(i)P(i ∪ S)
− Q(i)
Q(i ∪ S)

∣∣∣∣− ∣∣∣∣ep1 − P(i)
P(i ∪ S)

∣∣∣∣
−
∣∣∣∣ep2 − Q(i)

Q(i ∪ S)

∣∣∣∣ > 2γ

and thus EquivTester returns Reject.

Now, if the item (2) holds, then again, by the triangle
inequality, we have

|et1−et2| ≥
|TP(P, i, S)− TP(Q, i, S)|
− |et1 − TP(P, i, S)| − |et2 − TP(Q, i, S)| > 2γ

and thus EquivTester returns Reject.

Proof of Lemma 11

Proof. Let A = {i ∈ [n] : P(i) > Q(i)}. We partition
A into A1 = {i ∈ A : P(i) < ε3/c2n}, A2 = {i ∈
A\A1 : P(i) < (1+ε/4)Q(i)} and A3 = A\{A1∪A2}.
Note that any i ∈ A3, by definition, will satisfy P(i) ≥
(1 + ε/4)Q(i) and P(i) ≥ ε3

c2n . We now lower bound
P(A3). Firstly,

dTV (P,Q) =
∑
i∈A1

|P(i)−Q(i)|+
∑
i∈A2

|P(i)−Q(i)|

+
∑
i∈A3

|P(i)−Q(i)|

≤ n · ε3

c2n
+

∑
i∈A2

P(i) · ε
4
+

∑
i∈A3

P(i)

≤ ε3

c2
+

ε

4
+

∑
i∈A3

P(i).

Since dTV (P,Q) ≥ ε, we have
∑

i∈A3
P(i) ≥ 3ε/5.

Let A4 = {i ∈ A3 :
∑

j∈A3:P(j)≤P(i) P(j) ≥ 3ε/10}.
Observe that every i∗ ∈ A4 satisfies all the items of
this lemma. Now, we lower bound P(A4).

Note that P(A3 \ A4) < 3ε/10. Therefore, P(A4) ≥
3ε/5 − 3ε/10 = 3ε/10. Thus, the set T := E ∩ A4 is
empty with probability at most (1− 3ε/10)20/ε < e−6

(since (1−x)r ≤ e−xr). Therefore, with probability at
least 1− e−6, the set T is non-empty, and any i∗ ∈ T
satisfies all the items of this lemma.

Proof of Lemma 12

Proof. Consider an arbitrary i∗ ∈ T . Our goal is to
show that with high probability, there exists a S∗ ∈ S
such that (i∗, S∗) is a distinguisher. From the def-
inition 9, it follows that if |P(i∗)−Q(i∗)| > 4γ or
|TP(P, i∗, [n])− TP(Q, i∗, [n])| > 4γ, then (i∗, [n]) is a
distinguisher (note that [n] ∈ S). Therefore, we need
to focus only on the following cases:

|P(i∗)−Q(i∗)| ≤ 4γ (1)

|TP(P, i∗, [n])− TP(Q, i∗, [n])| ≤ 4γ. (2)

We now give the value of t∗ ∈ {1, 1/2, . . . , 1/n}, in
terms of P(i∗) such that the tuple (i∗, St∗) will be a
distinguisher with high probability, where recall St∗ is
a set constructed by picking each element in [n] with
probability t∗. For the same, first note that:

P(i∗)− P(i∗)
1 + ε/4

≤ P(i∗)−Q(i∗) ≤ 4γ

where the first inequality is by Lemma 11 and the sec-
ond by the Eq. 1. Immediately, we get:

P(i∗) ≤ 32γ

ε
≤ 32ε3

L
. (3)

Let t′ = c2P(i∗)
ε3 . Since P(i∗) ≤ ε3/c2n, we have 1

n ≤
t′ ≤ 1. Therefore, there exists t∗ ∈

{
1
n ,

2
n , . . . , 1

}
such

that t′ ≤ t∗ < 2t′, i.e.,

c2P(i∗)
ε3

≤ t∗ < 2
c2P(i∗)

ε3
. (4)

Let S∗ = St∗ , i.e., S
∗ is the set constructed by picking

each element in [n] with probability t∗. Our goal now
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is to prove, with probability at least 4/5, (i∗, S∗) is a
distinguisher for P and Q.

Let for any j ∈ [n], we define R(D, i∗, j) as

D(j) Pr
[
Bin

(
b,

D(j)
D(j) +D(i∗)

)
≤

(
1

2
+ β

)
b

]
and for any subset S ⊆ [n]

R(D, i∗, S) :=
∑
j∈S

R(D, i∗, j).

Therefore, by the definition of tail probability,

TP(D, i∗, S) = R(D, i∗, S)
D(S)

.

We want to show concentration on both R(D, i∗, S∗)
and D(S∗), for all D ∈ {P,Q} which then will give us
the concentration inequalities for TP(D, i∗, S∗).

Claim 13. Let Good1 be the event that for all D ∈
{P,Q}, we have

|R(D, i∗, S∗)− t∗R(D, i∗, [n])]| ≤
8t∗ε

√
εR(D, i∗, [n])

c
.

Then Pr[Good1] ≥ 9/10.

Claim 14. Let Good2 be the event that all the follow-
ing three conditions are satisfied

1. P(S∗) ≥ t∗ε
9 ,

2. P(S∗) ≤ 200t∗,

3. Q(S∗) ≤ 200t∗.

We defer the proofs of the above two claims to the
supplementary materials. Let Good = Good1 ∧Good2.
Note that by union bound, Pr[Good] ≥ 4/5.

We are now ready to complete the proof of Lemma 12.
Assuming the event Good occurs, we now prove that
(i∗, S∗) is a distinguisher. For the sake of contradic-
tion, suppose (i∗, S∗) is not a distinguisher for P and
Q. Then the following claim holds, the proof of which
is deferred to the supplementary materials.

Claim 15. Assuming the event Good, and that (i∗, S∗)
is not a distinguisher for P and Q, we have Q(S∗) >

P(S∗)
(
1 + 150ε

c

)−1
.

We now argue that
∣∣∣ P(i)
P(i∪S) −

Q(i)
Q(i∪S)

∣∣∣ > 4γ, contra-

dicting that (i∗, S∗) is not a distinguisher.

If P(S∗)
P(i∗) > Q(S∗)

Q(i∗) then

P(S∗)

P(i∗)
>
Q(S∗)

Q(i∗)
>
P(S∗)(1 + ε/4)

P(i∗)(1 + 150ε/c)
, (5)

(by Lemma 11 and Claim 15) which is a contradiction.
Hence,

P(S∗)

P(i∗)
≤ Q(S

∗)

Q(i∗)
. (6)

Recall that we would like to argue that∣∣∣ P(i∗)
P(i∗)+P(S∗) −

Q(i∗)
Q(i∗)+Q(S∗)

∣∣∣ > 4γ. Note that

∣∣∣∣ P(i∗)
P(i∗) + P(S∗)

− Q(i∗)
Q(i∗) +Q(S∗)

∣∣∣∣
>

P(S∗)

(1+ 150ε
c )Q(i∗)

− P(S∗)
P(i∗)(

1 + P(S∗)
P(i∗)

)(
1 + Q(S∗)

Q(i∗)

) (Eq. 6, Claim 15)

=

P(S∗)

(1+ 150ε
c )
− Q(i∗)P(S∗)

P(i∗)(
1 + P(S∗)

P(i∗)

)
(Q(i∗) +Q(S∗))

>

P(S∗)

(1+ 150ε
c )
− P(S∗)

1+ε/4(
1 + P(S∗)

P(i∗)

)(
P(i∗)
1+ε/4 +Q(S∗)

) (Lemma 11)

>
P(S∗)ε

20

(
1 +
P(S∗)

P(i∗)

)−1 ( P(i∗)
1 + ε/4

+Q(S∗)

)−1

=
ε

20

(
1 +

P(i∗)
P(S∗)

)−1 (
1

1 + ε/4
+
Q(S∗)

P(i∗)

)−1

>
ε

20

(
1 +

9P(i∗)
t∗ε

)−1 (
1 +
Q(S∗)

P(i∗)

)−1

(Claim 14)

>
ε

20

(
1 +

9t∗ε3

c2t∗ε

)−1 (
1 +
Q(S∗)

P(i∗)

)−1

(Eq. 4)

>
ε

40

(
1 +
Q(S∗)

P(i∗)

)−1

>
ε

40

(
1 +

200t∗

P(i∗)

)−1

(Claim 14)

>
ε

40

(
1 +

400t∗c2

t∗ε3

)−1

(Eq. 4)

>
ε

40
(
401c2

ε3

) >
ε4

16040c2
> 4

ε4

L
= 4γ.

5 Conclusion

We considered the problem of equivalence testing of
two distributions (over [n]) in the conditional sam-
pling model. We presented a simple algorithm with
sample complexity Õ(log n). While our algorithm is
not fully non-adaptive, it is only one-round adaptive.
This shows that even a limited amount of adaptiveness
can help to significantly reduce the sample/query com-
plexity. Our algorithm can also be modified slightly
to obtain a fully adaptive algorithm with sample com-
plexity Õ(log log n), matching the best bound in this
setting.
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One limitation of our algorithm is the presence of
large constants and a worsened dependency on the
parameter ε compared to the previous algorithm
by [Kamath and Tzamos, 2019]. Investigating meth-
ods to reduce this dependency on ε while maintaining
the Õ(log n) dependency with respect to the parame-
ter n poses an intriguing open direction of research.
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Supplementary Materials

6 MISSING PROOFS

Proof of Lemma 5. Note that for any k ∈ [m], 1jk=i is a Bernoulli random variable such that Pr[1jk=i = 1] =

Pr[jk = i] = D(i)
D(i∪S) . Also, note that 1jk=i are iid for all k ∈ [m]. By additive Chernoff bound (Lemma 3), the

value ep = EstProb(D, i, S,m) returned by the estimator satisfies:

Pr

[∣∣∣∣ep− D(i)
D(i ∪ S)

∣∣∣∣ > γ

]
≤ e−γ2m.

Proof of Lemma 6. For any k ∈ [m], we have

Pr[Zk = 1]

=
∑
j∈S

Pr[jk = j] Pr

∑
ℓ∈[b]

1yℓ=j ≤ (1/2 + β) b


=

∑
j∈S

D(j)
D(S)

Pr

[
Bin

(
b,

D(j)
D(i) +D(j)

)
≤ (1/2 + β)b

]
= TP(D, i, S, β, b).

Therefore, by additive Chernoff bound (Lemma 3), the value et = EstTail (D, i, S, β, b,m) returned by the algo-
rithm satisfies

Pr[|et− TP (D, i, S, β, b)| > γ] ≤ e−γ2m.

To prove Claims 13, 14 and 15, we will use the following concentration inequality that directly follows from
Bernstein’s concentration inequality.

Lemma 16. [Falahatgar et al., 2015] Consider a set G and a function r : G → R≥0 such that maxj∈G r(j) ≤
rmax. Consider set S formed by selecting each element from G independently and uniformly randomly with
probability r0, then E[r(S)] = r0r(G) and with probability at least 1− 2λ,

|r(S)− E[r(S)]| ≤
√
2r0rmaxr(G) log

1

λ
+ rmax log

1

λ
.

We now first state lower bounds for R(P, i∗, [n]) and R(Q, i∗, [n]) in the following claim.

Claim 17.

R(P, i∗, [n]) ≥ ε

9
(7)

R(Q, i∗, [n]) ≥ ε

10
(8)
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Proof. Note that if P(j) ≤ P(i∗) then by additive Chernoff bound, Pr
[
Bin

(
B, P(j)

P(j)+P(i∗)

)
≤ ( 12 + β)B

]
≥

1− 1
eβ2B

≥ 1− 1
e100 . Hence, we have

R(P, i∗, [n]) =
∑
j∈[n]

P(j) Pr
[
Bin

(
b,

P(j)
P(j) + P(i∗)

)
≤ (

1

2
+ β)b

]
≥ (1− 1

e100
)

∑
j:P(j)≤P(i∗)

P(j) ≥ ε

9

where the last inequality is because of item 1 of Lemma 11. Now we have,

R(Q, i∗, [n]) = TP(Q, i∗, [n])
≥ (TP(P, i∗, [n])− 4γ)( from inequality (2) )

= (R(P, i∗, [n])− 4γ)

≥ ε/10(as γ = ε4/L )

Now we prove the Claims 13, 14 and 15.

Proof of Claim 13

Now we provide the proof of our Claim 13. Consider an indicator random variable 1j∈S∗ for each j ∈ [n] that
takes the value 1 if j is included in S∗ and 0 otherwise. We have

E[R(D, i∗, S)] =
∑
j∈[n]

E[1j∈S∗ ]R(D, i∗, j) = t∗R(D, i∗, [n])

Note that if D(j) ≥ 3
2D(i

∗) then by additive Chernoff bound, we have Bin(b, D(j)
D(j)+D(i∗) ) ≤

1
2 +β with probability

at most 1
e(3/5−1/2−β)2b

= 1/e100. Therefore, maxj R(D, i∗, j) ≤ 2D(i∗).

To apply Lemma 16, we have set G = [n], rj = R(D, i∗, j) for all j ∈ [n], r0 = t∗ and rmax = 2D(i∗) and λ = 1
c .

Therefore, with probability at least 1− 1/λ = 1− 1/c,

|R(D, i∗, S∗)− t∗R(D, i∗, [n])| ≤
√
2t∗(2D(i∗))R(D, i∗, [n])(log c) + 2D(i∗)(log c)

≤
8t∗ε

√
εR(D, i∗, [n])

c

where the last inequality is clear from the fact that Q(i∗) < P(i∗) (Lemma 11) , P(i∗) ≤ t∗ε3/c2 (inequality
(4)), P(i∗) ≤ 32ε3/L (inequality (3)) and c = 1000, L = 1015.

Proof of Claim 14

Consider the set G = {j ∈ [n] : P(j) ≤ P(i∗)}. Further, let S∗
G = S∗ ∩G. Obviously, P(S∗) ≥ P(S∗

G). Further,
E[P(S∗

G)] = t∗ · (
∑

j:P(j)≤P(i∗) P(j)) ≥ 3t∗ε/10 (from Lemma 11).

Applying Lemma 16 to the set G with r0 = t∗, rmax = P(i∗), r(G) = P(G) ≤ 1 and λ = 1
c , we have Pr[P(SG) <

3t∗ε/10− 4t∗ε
√
ε/c] < 1

c . Note that 3t∗ε/10− 4t∗ε
√
ε/c > ε/9. Therefore,

Pr[P(S∗) <
tε

9
] < Pr[P(S∗

G) <
tε

9
] <

1

c

Note that E[P(S∗)] = E[Q(S∗)] = t∗. Therefore, by Marhov’s inequality, we have Pr[P(S∗) > 200t∗] < 1/200
and Pr[Q(S∗) > 200t∗] < 1/200. By union bound, our claim holds.
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Proof of Claim 15

First, we show the following claim, which is a corollary of Claim 13.

Claim 18. Assuming the event Good, we have

|R(P, i∗, S∗)− R(Q, i∗, S∗)| ≤
20t∗ε

√
εmin{R(P, i∗, [n]),R(Q, i∗, [n])}

c
. (9)

Proof. By triangle inequality, we have

|R(P, i∗, S∗)− R(Q, i∗, S∗)| ≤ |R(P, i∗, S∗)− t∗R(P, i∗, [n])|+ |R(Q, i∗, S∗)− t∗R(Q, i∗, [n])|+
t∗|R(P, i∗, [n])− R(Q, i∗, [n])|

≤
8t∗ε

√
εR(P, i∗, [n])

c
+

8t∗ε
√

εR(Q, i∗, [n])
c

+ 4t∗γ.

The last inequality implies from Claim 13, the inequality (2) and that TP(P, i∗, [n]) = R(P, i∗, [n]). Further, we
have

|
8t∗ε

√
εR(P, i∗, [n])

c
−

8t∗ε
√
εR(Q, i∗, [n])

c
| = 8t∗ε

√
ε

c
|
√

R(P, i∗, [n])−
√

R(Q, i∗, [n])|

≤ (8t∗ε3/2/c)
|R(P, i∗, [n])− R(Q, i∗, [n])|√
R(P, i∗, [n]) +

√
R(Q, i∗, [n])

≤ (8t∗ε3/2/c)
12γ

2
√
ε

≤ 50t∗εγ/c.

The second last inequality is because of inequalities (7) and (8).

Therefore, we have

|R(P, i∗, S∗)− R(Q, i∗, S∗)|

≤
8t∗ε

√
εR(P, i∗, [n])

c
+

8t∗ε
√
εR(Q, i∗, [n])

c
+ 4t∗γ

≤
16t∗ε

√
εmin{R(P, i∗, [n]),R(Q, i∗, [n])}

c
+ |

8t∗ε
√
εR(P, i∗, [n])

c
−

8t∗ε
√
εR(Q, i∗, [n])

c
|+ 4t∗γ

≤
16t∗ε

√
εmin{R(P, i∗, [n]),R(Q, i∗, [n])}

c
+ (8t∗ε3/2/c)

12γ

2
√
ε
+ 4t∗γ

≤
20t∗ε

√
εmin{R(P, i∗, [n]),R(Q, i∗, [n])}

c
.

The last inequality holds because
16t∗ε
√

εR(P,i∗,[n])

c is at least 16t∗ε
√

εε/10/c ≥ t∗ε2/c whereas
50t∗εγ/c+ 4t∗γ ≤ 100t∗γ = 100t∗ε4/L.

Now we proceed with showing the proof of Claim 15. Recall that TP(D, i∗, S∗) = R(D, i∗, S∗)/D(S∗). We
consider two cases.

1. R(P,i∗,S∗)
P(S∗) < R(Q,i∗,S∗)

Q(S∗) .

By assumption that (i∗, S∗) is not a distinguisher, we have

4γ ≥ R(Q, i∗, S∗)

Q(S∗)
− R(P, i∗, S∗)

P(S∗)
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≥ R(P, i∗, S∗)(
1

Q(S∗)
− 1

P(S∗)
)−

20t∗ε
√

εR(P, i∗, [n])
c · Q(S∗)

(from(9))

This implies that

R(P, i∗, S∗)(
1

Q(S∗)
− 1

P(S∗)
) ≤ 4γ +

20t∗ε
√

εR(P, i∗, [n])
c · Q(S∗)

≤
25t∗ε

√
εR(P, i∗, [n] \ {i∗})
c · Q(S∗)

The last inequality follows because 4γ = 4ε4/L is small compared to
20t∗ε
√

εR(P,i∗,[n])

c·Q(S∗) ≥ 20t∗ε
√

ε·ε/9
c200t∗ ≥

ε2/200c. Here, we used Claim 14 and inequality (7). Now,

R(P, i∗, S∗)(
1

Q(S∗)
− 1

P(S∗)
) ≤

25t∗ε
√

εR(P, i∗, [n])
c · Q(S∗)

=⇒ P(S∗)−Q(S∗) <
25tε

√
εR(P, i∗, [n])P(S∗)

c · R(P, i∗, S∗)

=⇒ P(S∗)−Q(S∗) <
30ε

√
ε

R(P,i∗,[n])P(S
∗)

c

The last inequality comes from fact that R(P, i∗, S∗) ≥ t∗R(P, i∗, [n])(1 − 8/c)(from Claim 13). Finally,
since R(P, i∗, [n]) ≥ ε/9(from (7)), we have P(S∗)−Q(S∗) < 90εP(S∗)/c and hence the claim follows.

2. R(P,i∗,S∗)
P(S∗) > R(Q,i∗,S∗)

Q(S∗) .

From (9), we have

0 <
R(P, i∗, S∗)

P(S∗)
− R(Q, i∗, S∗)

Q(S∗)
<

R(Q, i∗, S∗)

P(S∗)
− R(Q, i∗, S∗)

Q(S∗)
+

20t∗ε
√

εR(Q, i∗, [n])
c

This implies

R(Q, i∗, S∗)(
P(S∗)−Q(S∗)

P(S∗)Q(S∗)
) <

20t∗ε
√

εR(Q, i∗, [n])
c · P(S∗)

.

Hence, (P(S∗)−Q(S∗)
Q(S∗) ) <

20t∗ε
√

εR(Q,i∗,[n])

c·R(Q,i∗,S∗) which is at most
25t∗ε
√

εR(Q,i∗,[n])

ct∗R(Q,i∗,[n]) (from Claim 13)). Finally,

25t∗ε
√

εR(Q,i∗,[n])

ct∗R(Q,i∗,[n]) =
25ε
√

ε
R(Q,i∗,[n])

c ≤ 90ε
c (from inequality (8)). Thus, we have (P(S∗)−Q(S∗)

Q(S∗) ) ≤ 90ε
c and this

directly implies the claim.

7 An Õ(log log n)-query fully adaptive algorithm

Our algorithm can also be modified slightly to obtain a fully adaptive algorithm with sample complexity
Õ(log log n). This matches the best-known bound in this setting by [Falahatgar et al., 2015]. In the original
formulation, our algorithm sequentially examines all log n possible values of t to find a particular value, t∗. At
t∗, one of our subroutines—either EstProb or EstTail—will Reject if the input distributions significantly differ.
Employing a binary search for t∗ reduces the number of queries to Õ(log log n). However, this process requires
adaptivity at each iteration.


