
Score Operator Newton Transport

Nisha Chandramoorthy Florian Schäfer Youssef Marzouk
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Abstract

We propose a new approach for sampling and
Bayesian computation that uses the score of
the target distribution to construct a trans-
port from a given reference distribution to
the target. Our approach is an infinite-
dimensional Newton method, involving an el-
liptic PDE, for finding a zero of a “score-
residual” operator. We prove sufficient con-
ditions for convergence to a valid transport
map. Our Newton iterates can be computed
by exploiting fast solvers for elliptic PDEs,
resulting in new algorithms for Bayesian in-
ference and other sampling tasks. We iden-
tify elementary settings where score operator
Newton transport achieves fast convergence
while avoiding mode collapse.

1 INTRODUCTION

Generating samples from a complex (e.g., non-
Gaussian, high-dimensional) probability distribution
is a core computational challenge in diverse applica-
tions, ranging from computational statistics and ma-
chine learning to molecular simulation. A recurring
setting is where the density ρ of the target distribution
is specified up to a normalizing constant—for example,
in Bayesian modeling, where ρ represents the posterior
density. Here, evaluations of the score ∇ log ρ are often
available as well, even for complex statistical models
(Villa et al., 2021). Alternatively, many new methods
enable effective score estimation from data, without
explicit density estimation; examples include score es-
timation from time series observations in chaotic dy-
namical systems (Chandramoorthy and Wang, 2022;
Ni, 2020) and score-based modeling of image distribu-
tions (Song et al., 2020b,a).

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

In these settings, transport or “flow”-driven algo-
rithms for generating samples have seen extensive suc-
cess. The central idea is to construct a transport map
from a simple, prescribed source distribution to the
target distribution of interest. One class of transport
approaches, e.g., as represented by variational infer-
ence with normalizing flows, involves constructing a
parametric class of invertible maps and minimizing
some statistical divergence between the pushforward
(see Section 2) of the source by a member of this class
and the target. A different, essentially nonparamet-
ric, class of transport approaches are based on par-
ticle systems, e.g., Stein variational gradient descent
(SVGD) (Liu and Wang, 2016) and its many variants
(Li et al., 2020a; Chen and Ghattas, 2020; Detom-
maso et al., 2018). These methods can be interpreted
as gradient flows (Jordan et al., 1998) of some func-
tional on the space of probability measures, for differ-
ent choices of geometry (Chewi et al., 2020; Duncan
et al., 2019). Such methods yield implicit represen-
tations of transport maps, through the paths taken
by sample trajectories (Han and Liu, 2017). Yet an-
other class of transport methods involve prescribing
continuous paths (Masrani et al., 2021; Albergo et al.,
2023) between the source and target distributions, and
approximating these paths with particle systems or
learned velocity fields.

Of course, none of these approaches is without draw-
backs. Parametric representations of transport maps
often involve ad hoc choices of parametric class, where
bias must be balanced against complexity of the rep-
resentation; moreover, the optimization problems that
must be solved over such classes seldom have guaran-
tees. On the other hand, gradient flow approaches,
as exemplified by SVGD or more generally standard
Langevin dynamics, may be slow to converge and quite
sensitive to the geometry and dimensionality of the
target distribution. Because the transport map is not
explicitly available in these approaches, it is gener-
ally difficult to update the map, e.g., for perturbed
scores, or to reuse the map for downstream compu-
tations. Continuous-time “homotopy” approaches re-
quire a priori selection of a path through the space of
probability measures, and may involve solving equa-
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tions that depend explicitly on estimates of the density
at the current time (Reich, 2011) or otherwise resorting
to cruder approximations (Iglesias and Yang, 2021).

This paper introduces a new sampling approach
based on different ingredients: an infinite-dimensional
score matching principle and discrete-time dynamics.
Specifically, we construct a transport map as the zero
of a score residual operator via an infinite-dimensional
Newton method for root finding, which is typically
called the Newton–Raphson method in finite dimen-
sions. The transport is a composition of maps found,
at each step, via solution of a linear elliptic partial dif-
ferential equation (PDE). We harness regularity theory
for elliptic PDEs to prove existence of such a map and
to prove convergence of the iterations. The resulting
score-operator Newton (SCONE) transport construc-
tion is illustrated in Figure 1. It applies to any sam-
pling problem where the scores of the source and target
measures can be evaluated. Several desirable features
of our approach are as follows:

• Newton methods are efficient : we will show, em-
pirically and in simple analytical examples (see
Appendix B), that very few iterations may be re-
quired. The Newton construction also permits an
existing map to be updated or fine-tuned, e.g.,
for perturbed scores; this is useful for applications
such as Bayesian filtering.

• Unlike the nonlinear Monge-Ampère equation,
which describes optimal transport maps, our con-
struction involves a sequence of linear PDEs,
which are more amenable to analysis, fast com-
putation, and dimension reduction.

• Elliptic differential operators instantaneously
propagate information throughout the domain.
Hence, our transport updates, which use ellip-
tic PDE solutions, are intrinsically global (Evans,
2022). As evidenced by our numerical results, our
construction thus tends to avoid mode collapse,
since transport updates are influenced by score
values over the entire support of the distributions,
including the tails.

We summarize our main contributions as follows: We
define a score transformation operator that maps an
input score and a transport map to the transported
score. We prove the existence of transport maps that
are fixed points of an operator based on the score-
transformation operator and the target score. Our ex-
istence proof is constructive and leads to a Newton
method on Banach spaces. Our construction yields
a transport map and defines a new notion of score-
matching in infinite dimensions. Convergence of trans-
port maps, and scores, is established in classical Hölder

Figure 1: A graphical overview of the construction of
transport maps. The score of the source and target
densities are given as inputs. The method outputs
samples from the target distribution. Each iteration
involves solving an elliptic PDE that gradually trans-
ports the score of the source to that of the target. The
PDE solutions across iterations are combined via a
simple composition operation to obtain the transport
map from the source to the target.

norms, unlike in dual norms typically used for varia-
tional inference methods.

In this paper, we establish the theoretical foundations
of score operator Newton transport and provide proof-
of-concept numerics. Our construction and theory are
developed in the infinite-dimensional setting, enabling
flexible representations of the transport map. Hence,
the construction facilitates the development of many
new sampling algorithms, based on kernel methods,
deep neural networks, and other discretizations of the
underlying linear elliptic PDEs. Developing such scal-
able algorithms for the Newton updates will be a sub-
ject of our future work.

2 INFINITE-DIMENSIONAL
SCORE MATCHING

Suppose ν is our unknown target probability measure
on Rd with associated density ρν . We define the score
of the target to be the vector-valued function q :=
∇ log ρν : Rd → Rd. In our setting, the target score
q(x) is available at every x ∈ Rd.

Let µ be a source or reference probability measure on
Rd with density ρµ. The source is chosen to be easy
to sample from, e.g., a Gaussian in Rd. Its vector-
valued score function is defined as p := ∇ log ρµ. Here
∇ is the gradient operator on Euclidean space. The
main contribution of this work is a new transport map
to sample from the target ν using the source samples
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from µ and the source and target scores,

p(x) := ∇ log ρµ(x), q(x) := ∇ log ρν(x).

Our transport map is defined as the solution of an
infinite-dimensional root finding problem for the score
operator. Next we define both these objects: transport
maps and the score operator.

Transport maps: Given two probability measures
µ and ν on Rd, we say that a measurable function
T : Rd → Rd is a transport map from µ to ν if

ν(A) = (T♯µ)(A) := µ(T−1(A)), (1)

for every measurable set A; here ♯ denotes the pushfor-
ward operation. In high-dimensional inference prob-
lems, the target ν that we wish to sample from is a
often a complicated “intractable” measure. Our goal
is to find an invertible map T that transforms samples
of µ to samples distributed according to ν. Recall that
samples from the source µ are easily obtained.

In general, the transport map T between the source
and target measures is not unique. The optimal trans-
port map is one useful and canonical choice, but in the
context of Bayesian inference—where our main goal is
to simulate ν—it suffices to find any transport T that is
computationally feasible. Now we provide a construc-
tive approximation of a map T that satisfies (1) by
exploiting the scores, p = ∇ log ρµ and q = ∇ log ρν ,
associated with the source µ and target ν, respectively.
To do this, we define a score operator on the product
space of functions representing scores and transport
maps.

Score operator: We define a score operator, denoted
by G, that takes as arguments a source score and an
invertible transport map and returns the score of the
resulting pushforward distribution. That is, if T is an
invertible map such that T♯µ = ν, the operator G is
defined such that

G(p, T ) = q. (2)

Recall the change of variables formula for probability
densities,

ρν =
ρµ ◦ T−1

|det∇T | ◦ T−1
. (3)

Taking logarithms and differentiating the above for-
mula, we obtain a definition for the score operator G,

G(s, U) =
(
s(∇U)−1 −∇ log |det∇U |(∇U)−1

)
◦ U−1

(4)

=
(
s (∇U)−1 − tr

(
(∇U)−1 (5)

∇2U
)
(∇U)−1

)
◦ U−1,

where (5) follows from using Jacobi’s formula
for the derivative of the determinant. We
use tr((∇U)−1∇2U) for the vector-valued function
[tr((∇U)−1∂1∇U), . . . , tr((∇U)−1∂d∇U)]⊤, where ∂i
is the partial derivative in the ith coordinate. The
above operator takes as arguments a score s associ-
ated with a probability measure, say π, and a C2-
diffeomorphism U , to return the score associated with
the measure U♯π. That is, G expresses the change of
variables, or the pushforward operation, on the space
of scores. We end this section by listing some proper-
ties of G that will be useful in the sections to follow
and can be checked by using the above definitions.

(i) G(s, Id) = s for any score s, expressing the fact
that the identity coupling results in the same
probability measure;

(ii) G(s, Id + c) = s ◦ (Id − c), where c is a constant
function;

(iii) G has the group property, mimicking the pushfor-
ward operator. That is,

G(s, ψ1 ◦ ψ2) = G(G(s, ψ2), ψ1).

Note that the operator G is not injective in the sec-
ond argument, and hence not invertible. That is,
G(s, U1) = G(s, U2) does not imply that U1 = U2. Any
solution T to (2) is a valid transport map from µ to ν.
We refer to the problem of finding a T that satisfies
(2) as the infinite-dimensional score-matching prob-
lem. This is because the solution T is a function, and
the score of the pushforward distribution through T
matches the target score q. Despite its name, our prob-
lem is not derived as an infinite-dimensional version
of the score-matching problem from (Hyvärinen and
Dayan, 2005), which is essentially a density estimation
problem. Here our objective is to obtain a transport
map given target scores and to use it for sampling.
In the next section, we will define a score-residual op-
erator that maps a score and a transport map to the
difference between the target score and the score of the
pushforward of the source by the transport map. We
will then derive a solution to the score-matching prob-
lem as a zero of this operator; thus, our solution strat-
egy for transport also deviates from the variational
problem involving the typical score-matching objective
in the literature (Hyvärinen and Dayan, 2005; Song
and Ermon, 2019; Song et al., 2020b; Wibisono and
Yang, 2022).

Remark 1 (Availability of scores). As mentioned in
the introduction, the target score is available in settings
beyond Bayesian inference with a tractable likelihood
and prior. In other words, in many settings, scores can
be approximated well even though an explicit model for
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the unnormalized density is not available. One such
example is the score of an ergodic, invariant measure
of certain classes of chaotic systems. Here, fast meth-
ods have been developed to evaluate scores at any point
on a chaotic orbit (Chandramoorthy and Wang, 2022;
Ni, 2020).

Remark 2 (Validity of transport maps). Note that
any diffeomorphism that satisfies G(p, T ) = q is a valid
transport map in the sense that T♯µ = ν. By integrat-
ing both sides of (5), we obtain that any T that sat-
isfies G(p, T ) = q also satisfies, ρν = k(ρµ/|det∇T |) ◦
T−1, for an integration constant k. Since the left hand
side is a valid density (integrates to 1), we obtain that
k must be 1.

3 LEARNING A ZERO OF THE
SCORE-RESIDUAL OPERATOR

Fixing p and q, we define the score-residual operator
on the space of C2-diffeomorphisms on Rd as

R(T ) := G(p, T )− q.

A zero of this operator is a transport map between the
measures associated with p and q. Here we describe
an iterative approach for finding a zero of this opera-
tor, which is a generalization of Newton’s method to
infinite-dimensional spaces.

3.1 Score operator Newton (SCONE)
method

Infinite-dimensional generalizations of the Newton
method appear in the analysis of PDEs under the
name of Nash–Moser iteration (Berti and Bolle, 2015).
They also appear in the context of finding conjuga-
cies between nearby dynamical systems, in an ap-
proach called the Kolmogorov–Arnold–Moser or KAM
method (Moser, 1961). In the next section, we de-
rive sufficient conditions for the convergence of this
method.

To develop the SCONE iteration, we expand the score
operator, supposing that p is close to q and assuming
a linear structure on function space near (q, Id),

G(p, T ) = G(q, Id) +D1G(q, Id)(p− q)+ (6)

D2G(q, Id)(T − Id) + ∆(p, T ),

where Id is the identity function on Rd, D1, D2 are
first-order partial derivatives (Frechét derivatives) of
G in its first and second arguments respectively, and
∆(p, T ) contains nonlinear operators on p − q and
T − Id. Analogous to the elementary Newton method,
to find the solution to the score-matching problem,
we first look for a solution to the linearized score-
matching problem. That is, we find such a T for which

the left hand side of (6) is q and ∆(p, T ) = 0. This
linearization of the score-matching problem yields,

−D1G(q, Id) (p− q) = D2G(q, Id)v, (7)

defining the vector field

v := T − Id.

Since G(p, Id) = p for all p, we have that D1G(q, Id) =
Id. We can explicitly compute the linear operator
D2G(q, Id) to be the following differential operator,
which, for convenience, we define as L(q),

−D2G(q, Id) v = L(q) v := ∇q v + q ∇v + tr(∇2v).
(8)

In the above, the trace tr(∇2v) of the tensor ∇2v is a
row vector with the ith column being tr(∂i∇v). Using
this, we obtain that v satisfies,

(p− q) = L(q) v. (9)

We may then iterate this update in the following way.
Assuming that L(q) is invertible, we obtain the so-
lution v = (L(q))−1(p − q). Using T = Id + v, we
obtain p1 = G(p, T ), and then, we repeat the up-
date (9) with p1 replacing p, and solve for v1. We
then update the transport map approximation as T1 =
(Id + v1) ◦ (Id + v). Proceeding further, at the nth it-
eration, we obtain the function vn by solving

−(q − pn) = L(q)vn = (∇q)vn + qn(∇vn) + tr(∇2vn).
(10)

Then, we set,

Tn+1 ← (Id + vn) ◦ Tn
pn+1 ← G(pn, Id + vn). (11)

In the same spirit as the KAM method from the dy-
namical systems literature, notice that the differential
operator L(q) remains the same across steps, (10). In
the next section, we will give sufficient conditions un-
der which the sequence of functions (Tn)n≥0 converges,
in a classical Hölder norm, to a transport map T , i.e.,
an invertible map that satisfies T♯µ = ν.

3.2 SCONE transport algorithm

The steps of the infinite-dimensional Newton algo-
rithm derived above are summarized in Algorithm 1.
The input to the algorithm are black-box functions
that return the source score p0 = p and q, the tar-
get score. In addition, we have m iid samples from
the source distribution, say, {xi}mi=1. After n steps
of the algorithm, these samples are transformed to
{Tn(xi)}mi=1, which represent target samples more ac-
curately as n increases. The algorithm can also return
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Algorithm 1 Score-operator Newton Transport

T0(x) = x, p0(x) = ∇ log ρµ(x), x1, x2, · · · , xm ∼ µ
while n ≤ nmax do

vn ← L(q)−1(pn − q)
xi ← xi + vn(xi)
pn+1(x)← G(pn, Id + vn)(x)
n→ n+ 1

end while
Return {xi}1≤i≤m

the transport map T as a black-box function that can
be evaluated at any point.

In the beginning, we set the initial guess for the trans-
port map T0 (e.g., T0(x) = Id(x) = x) and p0 = p,
the source score. At each iteration, we solve the PDE
(10) to obtain the vector field vn. There is exten-
sive literature on approximating solutions of PDEs us-
ing neural networks, such as physics-informed neural
networks (Raissi et al., 2019), deep Ritz methods (Lu
et al., 2021b; Yu et al., 2018) and Fourier neural oper-
ators (Li et al., 2020b); as well as kernel methods and
Gaussian process approximations (Owhadi and Scovel,
2019; Wendland, 2004; Schaback and Wendland, 2006;
Zhang et al., 2000), and finite elements (Ciarlet, 2002;
Wang and Ye, 2013). Bespoke methods that exploit
the particular structure of L(q) are deferred to future
work (see Section 6).

Using meshfree methods such as PINNs or FNOs, we
obtain a black-box solution vn that can be evaluated
at any point. Moreover, these black-box solutions, be-
ing neural networks, can also be automatically differ-
entiated. Thus, we can evaluate vn(xi),∇vn(xi) and
∇2vn(xi), where {xi}mi=1 are the samples at the nth
iteration. When we use grid-based methods, we ob-
tain (approximate) evaluations of vn at the grid points.
Then, we use interpolations and finite-differences to
obtain vn(xi) and its derivatives. Using (5), we up-
date the source score pn as pn+1 = G(pn, Id + vn).
The samples are also transformed as xi → xi+ vn(xi).
Note that this results, at the end of the nth iteration,
in the samples {Tn(xi)}, where Tn := (Id+vn)◦Tn−1.
We repeat this process until the algorithm converges,
i.e., ∥vn∥ is close to zero or if the maximum number of
iterations is reached.

SCONE complexity: The computational cost of our
method is O(n (Cpde + Cu)), where n is the number
of Newton iterations, Cpde is the cost of the solv-
ing the PDE and Cu is the cost of the update step
(11). Typically Newton methods exhibit quadratic
convergence (Galántai, 2000), which can be acceler-
ated further for finite-dimensional problems under lo-
cal smoothness conditions (Gerlach, 1994) (see Sec-
tion 6). The cost of solving the PDE dominates the

per iteration cost and näıve methods typically have
a computational complexity that scales exponentially
with the problem dimension (d). However, in the con-
text of elliptic PDEs, various sparse structures in the
solution have been exploited to mitigate the curse of
dimensionality, including tensor decompositions (Dah-
men et al., 2016), hierarchical low-rank approxima-
tions (Boullé and Townsend, 2023), and other notions
of model reduction (see Section 6).

3.3 Related work

In many variational methods for sampling and
Bayesian inference, one seeks transport maps that
minimize a divergence or distance functional on a
space of probability measures, over a parametric class
of maps U . As an example, one could define a score-
based distance metric, and seek a T such that

T = arg min
U∈U

∫
∥q(x)− G(p, U)(x)∥2 dν(x). (12)

Candidate maps U ∈ U are parameterized and an
empirical minimization problem for the parameters is
solved using a method that is appropriate for the dis-
tance functional. Common classes of parametric maps
include normalizing flows (Papamakarios et al., 2021),
the flows of neural ODEs (Chen et al., 2018), and gra-
dients of input-convex neural networks (Huang et al.,
2020). An alternative class of approaches produces
implicit representations of transport maps through
paths taken by sample trajectories of a deterministic
or stochastic dynamics. Beginning with the classical
work of Jordan et al. (1998), these dynamics are de-
rived such that their mean field limits are gradient
flows of the distance functional on the space of prob-
ability measures, for appropriate choices of objective
and geometry (Chewi et al., 2020; Duncan et al., 2019;
Han and Liu, 2017). Methods that fall into this class
include SVGD and Langevin dynamics. (See Wibisono
(2018) for an overview of the connection between sam-
pling methods and optimization of distance functionals
on probability spaces.)

Variational autoencoders (Kingma et al., 2019) or
GANs (Goodfellow et al., 2020) also transport a low-
dimensional source measure to a target, learning pa-
rameterized decoders or generators by minimizing a
variety of objectives. These methods have no obvious
dynamical interpretation; their stable training and ob-
taining theoretical guarantees are challenging.

The SCONE method exploits scores but does not
make use of parametric spaces to define transport
maps. Rather than minimizing a distance functional,
we derive a generalized Newton–Raphson method on
Banach spaces to construct a zero of the operator
R(T ). This approach specifies the transport map
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as a composition of functions that is achieved in the
limit of a discrete-time dynamical system—as opposed
to a continuous-time flow—on function spaces. Our
SCONE transport defines, correspondingly, a discrete-
time dynamical system on the space of probability den-
sities, with the target being a fixed point.

4 CONVERGENCE PROOF

Here we prove the convergence of the SCONE algo-
rithm in 1, establishing a new construction of a trans-
port map. We do not compute explicit bounds on the
error norms, ∥pn − q∥. We invoke elliptic regularity
theory to establish convergence. Our Newton iterates
(10) yield second-order linear, elliptic PDEs, as we de-
scribe below. Let M be a compact subset of Rd and Ω
be an open set containing M . At each step, we solve
d second-order PDEs of the following form,

(L(x,D)v)i = fi, 1 ≤ i ≤ d, (13)

where the linear differential operator L is given by the
d× d matrix with

L(x,D)ij =
∑
|α|≤2

aijα (x)D
α.

Here, α = (α1, · · · , αd) is a multi-index, Dα =
∂α1
1 · · · ∂

αd

d , such that |α| = α1 + · · · + αd ≤ 2. Sup-
pose we parameterize the solutions vn of the system
as the gradient ∇ϕn of some differentiable function
ϕn : Ω → R. Then, substituting into (10), we obtain
the following simpler scalar equation for ϕn,

∇(∇ · ∇ϕn) +∇(∇ϕn · q) = pn − q.

Integrating this equation, we find that our Newton it-
erates, when vn = ∇ϕn satisfies,

∇ · ∇ϕn +∇ϕn · q = log(ρµn/ρ
ν) + C, (14)

where C is an integration constant and ρµn is the den-
sity of the pushforward measure, Tn♯µ. The operator,
P = ∇.∇ + q · ∇, is an elliptic operator, which en-
sures the well-posedness of solutions to (14). We re-
call the ellipticity condition of an operator, which says
that the highest-order (principal) symbol is coercive
(see e.g., the textbook of Hörmander (1963) or Dyat-
lov (2022) for notes and Gilbarg and Trudinger (1977)
for Schauder estimates).

Definition 1 (Hölder space of order k and exponent
γ). The Hölder space of order k and exponent γ, de-
noted Ck,γ(Ω), is a Banach space consisting of func-
tions that have continuous derivatives up to order k
and γ-Hölder continuous kth order derivatives. It is
complete with respect to the following norm, for k ≥ 1,
f : Ω→ R,

∥f∥k,γ := ∥f∥k + max
|α|=k

sup
x∈Ω
∥Dαf∥0,γ , (15)

where,

∥f∥k := max
|α|≤k

sup
x∈Ω
|Dαf(x)| (16)

∥f∥0,γ := ∥f∥0 + sup
x,y∈Ω,x ̸=y

|f(x)− f(y)|
|x− y|γ

. (17)

We define Hölder continuous cotangent vector fields
of the form v = ∇ϕ ∈ D∗Ω̄ for some differentiable
function ϕ, where D∗Ω̄ is used to denote the cotangent
bundle (rather than the usual T ∗Ω̄, to avoid confusion
with transport maps T ). If ϕ ∈ Ck,γ(Ω), then, we have
that the components of v (interpreted as scalar func-
tions) are Ck−1,γ(Ω). Note that, due to the (compact)
embedding of Hölder spaces, C0,γ → C0,δ for δ < γ,
f ∈ (Ck,γ(Ω))d with components fi ∈ C0,γi(Ω) im-
plies that γ ≤ mini γi. In a slight abuse of notation,
for a vector-valued function f ∈ (Ck,γ(Ω))d, including
cotangent vector fields, we write,

∥f∥2k,γ :=

d∑
i=1

∥fi∥2k,γ . (18)

We use Schauder estimates of the type below (Gilbarg
and Trudinger, 1977) from classical elliptic PDE the-
ory.

Theorem 1. Let Ω be a bounded and open subset of
Rd with a smooth boundary. Let L(x,D)u = f be a
second-order strongly elliptic system, with L(x,D) =∑

|α|≤2 aα(x)D
α, and zero Dirichlet boundary condi-

tions. If the coefficients aα and the right hand side f
are in Cs,γ(Ω̄), then, u ∈ Cs+2,γ(Ω̄). In particular, for
any s ≥ 0, and γ ∈ (0, 1),

∥u∥s+2,γ ≤ K(∥f∥s,γ + ∥u∥s),

where K only depends on ∥aα∥s,γ and d.

Theorem 2 (Score-matching). Let Ω be a bounded,
open subset of Rd containing the origin, with a smooth
boundary. Let q ∈ Cs+1,·(Ω̄) be the score of a target
density ρν ∈ Cs+2,·(Ω̄). Then, for every ϵ > 0, s ∈ N
there exists a δ > 0 such that for any reference density
ρµ with associated score p such that ∥p − q∥s ≤ ϵ,
there is a transformation T ∈ Cs+2,·(M) such that (i)
G(p, T ) = q and (ii) ∥T − Id∥s+2 ≤ δ.

Proof. Define

H(v) := G(q, Id + v) =

(
q (Id +∇v)−1−

tr((Id +∇v)−1 ∇2v)

(Id +∇v)−1

)
◦ (Id + v)−1. (19)
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From definition (19), note that H(0) = q. We can
explicitly compute the first derivative of H at 0 to be

dH(0)w = −∇q w − q ∇w − tr(∇2w). (20)

We can also deduce that dH(0)∇ϕ is equivalent to
−∇Pϕ, where P = ∇ · ∇ + q · ∇ is an elliptic op-
erator, which is Fredholm on Cs+2,γ(Ω̄). Let Cs,γ(Ω̄)
denote the quotient space of Cs,γ(Ω̄) corresponding to
the equivalence relation f ∼ g if ∇f(x) = ∇g(x), at all
x ∈ Ω̄. Correspondingly, we define a closed subspace
of Cs cotangent vector fields, Vs,γ := {x → v(x) =
∇ϕ(x) ∈ D∗

xΩ̄, ϕ ∈ Cs+1,γ(Ω̄), x ∈ Ω}, with norm
∥∇ϕ∥∗ = ∥∇ϕ∥s,γ and let Bs+2,γ

θ (0) be a θ-ball around
0 in Vs+2,γ . The element, ϕ, in a sufficiently small set
around the constant element in Cs+3,γ(Ω̄) can identify
an element, ∇ϕ, of Bs+2,γ

θ (0). We note that the oper-

ator H : Bs+2,γ
θ (0) → (Cs,γ(Ω̄))d is well-defined as a

continuous operator.

When dH(0) is defined on Vs+2,γ , and using Theorem
1, we know that its kernel only contains the zero el-
ement of Vs+2,γ , which corresponds to Pϕ = const ∈
Cs,γ(Ω̄). Thus, we obtain that dH(0) : Vs+2,γ → Vs,γ

is bijective. In particular, for a fixed q, the s+2-Hölder
norm of w that solves dH(0)w = f for an f ∈ Vs,γ is
bounded above, by Theorem 1. Hence, dH(0)−1 is
continuous on Vs,γ .

Thus, we can apply the inverse function theorem for
H. There exists an open neighborhood, Bs,γ(q, ϵ), of
radius, say ϵ, of q in Vs,γ and a continuously differen-
tiable map I : Bs,γ(q, ϵ)→ Vs+2,γ so that I◦H(v) = v.
Thus, for any p = H(v) ∈ Bs,γ(q, ϵ), the map T =
(Id + v)−1 is such that G(p, T ) = q. This proves (i).
From the continuity of I at q in Bs,γ(q, ϵ), we can
choose a δ0 > 0 such that ∥(T − Id)−1∥s+2,γ ≤ δ0.
This implies that for some δ > 0, ∥v∥s+2,γ ≤ δ, hence
proving (ii).

The above is an existence result for a transport map
and is established via the inverse function theorem for
the score operator. It is important to note that even
though the result is local (that is, for nearby proba-
bility densities), uniqueness cannot still be established
for the transport map. This is because, in the above
proof, the operator dH(0) has a non-empty kernel on
function spaces containing functions of the form, ∇ϕ,
for some ϕ ∈ Cs+2,γ(Ω̄). For any function ϕ such that
Pϕ = f + const, v = ∇ϕ solves dH(0)v = ∇f, and
therefore dH(0) is not injective. In other words, we
have not shown that there is only one transport map
between a given source and target density, even when
they are close to each other. We have defined quotient
spaces on which to define dH(0) to make it invertible,
using isomorphism theorems for vector spaces.

Proving the inverse function theorem via the Banach
fixed point theorem both establishes the existence of
the desired map T and also the means to construct T
as a fixed point iteration of the contraction map. In the
theorem below, we explicitly define such a contraction
map whose fixed point is T . Further, the fixed point
iteration of the map is equivalent to our SCONE iter-
ation. Such an interpretation of the Newton–Raphson
method as a fixed point iteration of the linearization of
the given map is indeed classical in numerical analysis,
when we are interested in finding zeros of a function
on a finite-dimensional space. The following theorem
extends this idea to infinite-dimensional spaces and
serves as the convergence proof of the SCONE method.

Theorem 3 (SCONE construction of transport).
When q ∈ (Cs,γ(Ω̄))d, there exists a θ > 0 such that for
any p in a θ-neighborhood of q, pn → q in (s, γ)-Hölder
norm, where,

vn = L(q)−1(pn − q)
pn+1 = G(pn, Id + vn), n ∈ Z+, p0 = p. (21)

Proof. Recall the definition of L(q) from (8). Note
that L(q) is not invertible on (Cs,γ(Ω̄))d, and vn in
the statement of the theorem refers to any cotangent
vector field vn = ∇ϕn such that L(q)vn = pn − q.
We show in the proof of Theorem 2 that L(q)−1 is a
homeomorphism between a θ-neighborhood of q in Vs,γ

(see the proof of 2 for the definition of this space) and
a Vs+2,γ neighborhood of zero. Thus, choosing θ > 0
sufficiently small, we can combine both the SCONE
iteration and update steps ((10) and (11)) to define
the operator,

J (v) = L−1(G(q + Lv, Id + v)− q), (22)

where we write L to indicate L(q) for a fixed target
score q. It is clear that J (0) = 0 and hence 0 is a
fixed point of J . The operator J is smooth at 0. In
particular, through direct computation, we can ver-
ify that its first derivative, dJ (0) = 0 as an operator
from Bs+2,γ

θ (0) to Vs+2,γ . Applying the mean value
theorem, we get,

∥J (v1)− J (v2)∥ ≤ ∥v1 − v2∥
sup

η∈(0,1)

∥dJ (ηv1 + (1− η)v2)∥. (23)

Since dJ (0) = 0 and dJ is continuous, we can choose
a δ < θ such that for all v ∈ Bs+2,γ

δ (0), ∥dJ (v)∥ ≤
(1/2). Thus, we obtain that J is a contraction on
Bs+2,γ

δ (0). Thus, the fixed point iteration of J , i.e.,
vn+1 = J (vn), starting from any v0 ∈ Bs+2,γ

δ (0) con-
verges to 0. Note that ∥v0∥ = ∥L−1(p0 − q)∥ ≤
C(p0 − q), from the continuity of L−1. Thus, if
p0 ∈ Bϵ(q), one can choose δ0 := min{δ, Cϵ} such
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Figure 2: Left: the solution vn after 1 (top) and 5
(bottom) iterations computed using second order fi-
nite difference with O(500) grid points. Center: the
transformed empirical density. Right: p1 (top) and p5
(bottom).

that J is a contraction on Bs+2,γ
δ0

(0) and hence, the
iteration converges.

Now we show that the convergence of vn → 0 implies
the convergence of Tn to a transport T . Recall that
Tk = ◦kn=0(Id+vn), with the compositions being on the
left. Hence, ∥Tn − Tn−1∥ = ∥vn ◦ Tn−1∥ ≤ ∥vn∥ → 0.
Finally, to see that the limit T := limn→∞ Tn is a
transport, from (21) for a finite n, pn+1 = G(pn, Id +
vn) = G(p0, Tn), by applying the group property of G
iteratively. Taking the limit n→∞ on both sides, we
obtain q = G(p0, T ).

Remark 3. Instead of a Newton method, one can
also define a different fixed-point iteration on an op-
erator defined using the score-residual operator (see
Appendix A). However, under similar smoothness as-
sumptions, these fixed point iteration methods typically
show slower convergence (Smale, 1985).

5 NUMERICAL RESULTS

Here we present proof-of-concept numerical results
that demonstrate the convergence of our SCONE
transport (Algorithm 1). On 1D domains, we find that
the SCONE transport map converges to the monotone
map or the increasing rearrangement, which is optimal
with respect to any convex cost (see Chapter 2 of San-
tambrogio (2015)). We also demonstrate that SCONE
transport maps can effectively tackle multimodality in
the target. See Appendix C for details on the numer-
ical methods and additional experiments.

In Figure 2, we show the results of applying the
SCONE algorithm to a bimodal target density of the
form w1N (m1, σ

2
1) + w2N (m2, σ

2
2) (shown in orange

in the center column). The target score is shown in
orange on the right column. We see from the sec-
ond row of Figure 2 that the transformed scores and
densities match those of the target closely after just

Figure 3: Convergence of SCONE. Left: the conver-
gence of ∥vn∥. Center: transformed empirical density
after 15 iterations. Right: Tn after 15 iterations.

Figure 4: Left : SVGD with RBF kernels (median
heuristic for bandwidth) and 512 particles. Center :
parameterized monotone transport map (Parno et al.,
2022), with polynomial degree 10, 5122/11 samples,
optimized using gradient descent + line search. Right :
SCONE transport with ODE updates solved with 512
grid points.

5 iterations. We observe numerically that solving the
SCONE step (10) (which reduces to an ODE in 1D)
on a coarser grid (of size O(100)) does not affect fast
convergence when we add a small ℓ2 regularization. In
comparison, SVGD takes O(500) iterations (Liu and
Wang, 2016) with 100 particles for the same problem,
and a vanilla GAN implementation (Goodfellow et al.,
2020) can lead to unstable training and mode collapse
(Thanh-Tung and Tran, 2020; Li et al., 2018). In Fig-
ure 3, we show the convergence of the SCONE algo-
rithm to the target. We see that the identified trans-
port map converges to the optimal map (shown in blue
in the right column).

Comparison with other algorithms In Figure 4,
we compare SCONE against SVGD (Liu and Wang,
2016) and parameterized transport maps (Parno et al.,
2022) as these are the most widely used classes of al-
gorithms for Bayesian inference. With N samples, an
SVGD iteration has O(N2) cost. With G grid points,
SCONE iterations have O(G2) cost, since the linear
system to be solved at a SCONE iteration is banded.
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With P parameters and S samples to evaluate the
variational (KL) objective, the optimization step for
a parameterized transport map is O(PS). We choose
PS = N2 = G2 = 5122 so that the computational
budget per iteration remains the same across the differ-
ent methods. We see in Figure 4 (right) that densities
obtained from SCONE most closely match the target
(red) after just 5 iterations, while SVGD (left) takes
O(500) iterations to converge to a comparatively worse
solution. Parameterized transport (center) converges
quickly, with the help of a backtracking line search
optimization, but makes a significant approximation
error which persists even for higher polynomial degree
(we tested up to 20). Figure 4 thus demonstrates that
SCONE vastly outperforms SVGD and parameterized
transport algorithms for the same computational cost.

6 DISCUSSION

We introduce a new notion of infinite-dimensional
score-matching that yields a Newton-type method for
sampling, and we prove sufficient conditions for its
convergence. Our method applies in settings where
scores of the source and target measures are easily
computed. We comment on theoretical and algorith-
mic features of this work that will spur further re-
search.

Learning elliptic PDEs: Many structure-
exploiting, fast, and sample-efficient methods are
emerging for learning the solution operators of linear
elliptic PDEs; see, e.g., Lu et al. (2021a); Boullé
and Townsend (2023); Schäfer and Owhadi (2021).
These methods use randomized numerical linear
algebra (Boullé and Townsend, 2023), CNN-based
encoder-decoder networks (Zhang and Garikipati,
2023), interpolation between deep neural network and
Monte Carlo approximations (Nüsken and Richter,
2023), etc. These results suggest that it is possible to
develop optimal methods, in terms of computational
and sample complexity, for learning our SCONE
update operator by exploiting low-rank structure
in its solutions. With the same goal, we will also
explore particle methods (e.g., from fluid dynamics
(Monaghan, 2012; Cottet et al., 2000)), which can also
use fast numerical linear algebra and have theoretical
guarantees.

Newton convergence: Under typical conditions, the
classical result of Kantorovich (see Galántai (2000) for
a survey) establishes quadratic convergence starting in
a ball of sufficiently small radius (as in our Theorem 3).
In future work, we will investigate damping and mod-
ified SCONE iterations to prevent divergence (Smale,
1985). We will also develop inexact and quasi-Newton
variants of SCONE, as a way of further reducing com-

putational cost (Traub and Woźniakowski, 1980) and
allowing for errors in q. We will derive theoretical con-
vergence guarantees for these modified SCONEs.
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Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
Yes, in Sections 2 and 3. Our algorithm is
also summarized in pseudocode.

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
Yes, Sections 3 and 6 include such a discus-
sion. Section 4 is a convergence proof.

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. Yes, in the appendix.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. Yes.
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(b) Complete proofs of all theoretical results.
Yes.

(c) Clear explanations of any assumptions. Yes.

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). Yes. We have included source code
for our numerical results in the supplemen-
tary material.

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). Not
applicable.

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). Yes.

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). Not applicable.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. Not applicable.

(b) The license information of the assets, if ap-
plicable. Not applicable.

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. Not applica-
ble.

(d) Information about consent from data
providers/curators. Not applicable.

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. Not applicable.

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. Not applicable.

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. Not applica-
ble.

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. Not applicable.

A Other iterations based on the
contraction mapping principle

For a fixed p, the score operator, G(p, ·), is a map
from the space of transformations to scores. We first
define a self-map corresponding to the score-residual
operator. Then, we define a fixed point iteration for
the self-map that converges in a setting where it is a
contraction.

For convenience, we denote by Gp the operator G(p, ·)
that returns the transported score, given a transport
map. Let T be a Banach space of functions on Rd and
S a Banach space of scores. Using the definition of the
score operator,

Gp(T ) ◦ T = p(∇T )−1 − tr((∇T )−1 ∇2T ) (∇T )−1 = q ◦ T,
(24)

when T is a solution of the score-matching problem.
We assume that the target score q is a homeomorphism
onto its image. This is indeed a strong condition that
multi-modal distributions, for example, do not satisfy.
Define a self-map H : T→ T

H(T ) = q−1 ◦ Gp(T ) ◦ T. (25)

Clearly, if T is a solution of the score-matching prob-
lem, it is a fixed point of H. Near a fixed point, we
can define the following fixed-point iteration of H.

Tn+1 = H(Tn) = q−1 ◦ Gp(Tn) ◦ Tn, (26)

with an arbitrary map T0. When H is a contraction
near its fixed point, say, T ∗, then Tn defined in (26)
converges to T ∗, by the contraction mapping principle.
Consider one sufficient condition: when the functional
derivativeD(Gp(T )◦T )(T ∗) and the gradient∇q−1 are
small in the operator norms and C0 norm respectively.
Then, one obtains thatH is contraction, and hence the
fixed-point iteration defined above converges to a fixed
point or a transport map.

However, this is only a sufficient condition for conver-
gence. When H is not contractive, the fixed point it-
erations may not converge, or may exhibit slower than
exponential convergence. When T is large enough to
contain multiple fixed points of H, the iterations may
oscillate between basins of attraction of multiple fixed
points. Note that the sufficient conditions forH to be a
contraction impose restrictions on the behavior of the
score operator near the fixed point and on the second-
order derivatives of the target, which may preclude
multi-modality in the target. The SCONE method,
on the other hand, does not explicitly impose such a
restriction at the fixed point and is hence more general.
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B SCONE example

As the first example, suppose the target is a univari-
ate Gaussian with mean m and variance s2, while the
source distribution is a standard normal in 1D. In this
case, q(x) = −(x−m)/s2 and p(x) = −x. The SCONE
update vn satisfies the following ODE:

pn − q = v′′n + qv′n + q′vn. (27)

At n = 0, pn = p. The above ODE is defined on
an unbounded domain, without specific decay rates
for the solution at the boundaries, ±∞. This allows
for unbounded solutions. Notice that the solution is
always affine since, at n = 0, the left-hand side is
affine. Subsequently, the update equation is satisfied
by affine functions vn at every n and hence Tn, which
is a composition of affine functions, is affine. By com-
paring coefficients to solve for the update equations,
we can obtain recurrence relationships for the slopes
and intercepts of vn, Tn+1 := (Id + vn) ◦ Tn, and
pn = (p/T ′

n) ◦ T−1
n . We can inductively show that

all three are affine functions for all n. In particular,
if pn(x) = anx + bn and vn(x) = (An − 1)x + Bn, we
obtain,

An = −ans2/2 + 1/2

Bn = −bns2 +m/2− anms2/2,

by comparing coefficients in the update (27). Then,
the update for the score gives,

an+1 = an/A
2
n, bn+1 = −anBn/A

2
n +Bn/A

2
n.

Considering the set of sequences {an, bn, An, Bn}n, it
is clear from the relationships above that when An → 1
and Bn → 0, an → (−1/s2) and bn → m/s2. Thus,
when the iterations for Tn converge, or equivalently,
when vn → 0, pn → q. Moreover, in this case, the
limit T is the function T (x) = sx+m, which coincides
with the increasing rearrangement on R (and hence
the optimal map). The intermediate distributions cor-
responding to the scores pn are all Gaussian.

Notice that since this convergence can be established
for all s and m, it suggests that SCONE transport
converges even when in Hölder norm, ∥p − q∥ is not
small. That is, even though the derivation of the is
premised on the local expansion of the score operator
around (q, Id), the smallness of p − q and T − Id is
not a necessary condition for the convergence of the
method.

C Additional experiments

Considering 1D targets, we first give proof-of-concept
numerical results to validate our SCONE construc-
tion. We consider two smooth densities supported

Figure 5: Numerical validation of SCONE transport
on 1D densities: the first row depicts results after 1
iteration of our Newton method and the second row
after 5 iterations. The scalar field v, the histogram ap-
proximations of the target density and the target score
are plotted for the two different targets described in
section C. The results of the computed transformed
densities and scores from the SCONE iteration are
compared against the target densities and scores in
columns 2 and 3.

Figure 6: On the left column, we show the convergence
of our algorithm (∥vn∥ → 0) for the two different target
densities given in section C. The center and right hand
side figures compare the optimal map computed ana-
lytically against the SCONE transport map computed
numerically after one and five iterations respectively.
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on [0, 1] as our targets: ρν1 = ((x + 1)3 − 1)/7 and
ρν2 = 4/3 − (2 − x)2/3. These densities are shown as
histograms in the second column of Figure 5. In 1D,
the PDE that needs to be solved at every SCONE it-
eration is an ODE, which we solve using a finite differ-
ence method with 128 grid points and zero Dirichlet
boundary conditions on [0, 1]. Our source density is
the uniform (Lebesgue) density on [0, 1] whose score
is the zero function. As shown in Figure 5 (third col-
umn), the transformed score matches the target score
within a few SCONE iterations. The solution v also
quickly approaches the zero function as confirmed in
the first column of Figure 5 and Figure 6(left), thus
establishing numerically the convergence of our con-
struction (see Theorem 3 in the main text). On one-
dimensional domains, the optimal transport map (for a
variety of costs) is simply the increasing rearrangement
(see (Santambrogio, 2015), Chapter 2), which can be
computed analytically in our setting, and is shown in
the second and third columns of Figure 6. As shown,
the SCONE construction converges to this transport
map.

C.1 1D unbounded target: bimodal Gaussian
with equally weighted modes

Next, we consider a one-dimensional bimodal Gaussian
target (shown in Figure 7), 0.5N (−2, 1) + 0.5N (2, 1).
We again solve the ODE with finite difference on
[−10, 10]. The source is taken to be the standard Gaus-
sian (unimodal distribution). In Figure 7, the first
row presents results obtained after 1 iteration of our
SCONE algorithm; the second row, after 3 iterations.
We see that, after just 1 iteration, the two modes are
detected, although the density and scores are not well-
approximated. After 3 iterations, the empirical den-
sity (shown in blue) of the samples transported by the
SCONE transport map match the target density (or-
ange line plot) closely. As shown in Figure 7 (second
row), as the SCONE update solution v declines, the
density and the scores approach their target values.
In Figure 8 (left), we show the convergence of the so-
lution v. From the figure, the convergence appears to
be exponentially fast, with the rate decreasing after
the first 4 iterations. The final transport map (right)
is taken after 5 iterations, which accurately models
the target density (center). A grid size of 4096 is
used for solving the SCONE iteration, but grid size
reductions O(1000) produces similar convergence re-
sults. We find that more iterations are needed when
the modes are well-separated, e.g., sampling from an
equally weighted bimodal distribution with modes cen-
tered at -4 and 2 required around 20 iterations.

Figure 7: SCONE algorithm results: the target distri-
bution, shown in orange in the center column, is an
equally weighted bimodal Gaussian. The application
of the SCONE algorithm, as described in section C.1,
is shown in the first row after 1 iteration and in the sec-
ond row after 3 iterations. The scalar field v, the his-
togram approximations of the target density and the
target score are plotted in the first, second and third
columns, respectively. The results of the computed
transformed densities and scores from the SCONE it-
eration are compared against the target densities and
scores in columns 2 and 3.

Figure 8: Convergence of SCONE iteration: the target
distribution, shown in orange in the center column, is
an equally weighted bimodal Gaussian. The applica-
tion of the SCONE algorithm, as described in section
C.1, results in the convergence of ∥vn∥, shown in the
first column. The final SCONE transport map after 5
iterations is on the right (blue).
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C.2 1D unbounded target: bimodal Gaussian
with unequally weighted modes

Previously in section C.1, when the target consisted
of equally weighted modes, we used a finite difference
method to solve the ODE, and then function interpo-
lation to evaluate v at the samples. Using these in-
terpolated values, the score function, p was updated,
and the iterations continued by solving the ODE again.
This vanilla scheme leads to numerical blow-up when
the target has unequal weights. The reason is that er-
rors in the solution of v leads to the divergence of our
Newton-like method. We observe that adding a small
regularization term in the finite-difference ODE solu-
tion (ℓ2 regularization parameter set to 0.01), along
with refining the grid near the points where q′ is large,
induces convergence. The results are in the main text
(section 5).

We provide the source code implementing the SCONE
algorithm on all the examples above in (Chandramoor-
thy, 2023). This contains ‘oneD.py’ that implements
the SCONE algorithm on all the examples above. The
source file ‘oneD nonUni.py’ implements adaptive grid
refinement in the finite-difference solver. The unit
tests that generate all the figures in this section are
in ‘tests/test 1D.py’. The code is written in Python
and uses numpy and scipy.
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