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Abstract

Neural marked temporal point processes have
been a valuable addition to the existing
toolbox of statistical parametric models for
continuous-time event data. These models
are useful for sequences where each event is
associated with a single item (a single type of
event or a “mark”)—but such models are not
suited for the practical situation where each
event is associated with a set of items. In
this work, we develop a general framework for
modeling set-valued data in continuous-time,
compatible with any intensity-based recurrent
neural point process model. In addition, we
develop inference methods that can use such
models to answer probabilistic queries such as
“the probability of item A being observed be-
fore item B,” conditioned on sequence history.
Computing exact answers for such queries is
generally intractable for neural models due
to both the continuous-time nature of the
problem setting and the combinatorially-large
space of potential outcomes for each event.
To address this, we develop a class of impor-
tance sampling methods for querying with
set-based sequences and demonstrate orders-
of-magnitude improvements in efficiency over
direct sampling via systematic experiments
with four real-world datasets. We also illus-
trate how to use this framework to perform
model selection using likelihoods that do not
involve one-step-ahead prediction.

1 INTRODUCTION

Modeling and prediction of discrete event data in con-
tinuous time is of broad interest in machine learning
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and statistics. Such data are often modeled via marked
temporal point processes (MTPPs) where each event
is associated with a single mark (or event type) from a
finite vocabulary of marks. These models are charac-
terized by mark-specific intensities, interpreted as the
instantaneous rate of occurrence of each mark.

MTPP models are useful across a broad range of appli-
cations involving complex temporal phenomena, such as
disease transmission (Rambhatla et al., 2022; Holbrook
et al., 2022; Lee et al., 2022; Giudici et al., 2023), neu-
ronal activity (Pfaffelhuber et al., 2022; Bonnet et al.,
2023), and financial event data (Bacry and Muzy, 2014;
Hawkes, 2018; Wehrli and Sornette, 2022). Early work
on MTPPs relied largely on relatively simple parametric
modeling approaches (Hawkes, 1971; Brillinger, 1975;
Daley and Vere-Jones, 2003). More recently, there has
been significant interest in developing more flexible
neural MTPP models, such as recurrent MTPPs (Du
et al., 2016) and neural Hawkes processes (Mei and Eis-
ner, 2017). However, these models were all developed
under the assumption that no more than one event of
a single type happens at the same time.

In this paper, we are interested in the situation where
each event is associated with a set of items that occur
simultaneously, rather than being associated with a
single item (e.g., see Fig. 1). An example is shopping
data, where a set of items are purchased at the time of
each purchasing event. Given K items, one approach to
modeling such data would be to directly apply existing
MTPP models by associating each of the possible 2K

sets of items with a unique mark (Türkmen et al.,
2020; Ma et al., 2021). However, this results in an
exponential growth in the number of parameters as
a function of the number of items K. In addition,
this representation does not capture the underlying
set structure, making inference and querying difficult.
For example, simple queries such as “Is item A more
likely to be purchased than item B in the next basket?”
could require enumeration over an exponential number
of subsets containing relevant items.

To address this, we develop alternative representations
for modeling sets directly. Our general approach is
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Figure 1: Example sequence of set-valued events, where
the item space is {•, •, •, •} and H refers to history.

compatible with any intensity-based (e.g., black-box)
recurrent MTPP model. More specifically, we propose a
general framework to model set-valued continuous-time
event data based on recurrent MTPP models, where
event types are subsets of a finite set. Furthermore, we
investigate flexible sampling methods to answer general
probabilistic queries beyond predicting the next imme-
diate event, defined on (subsets of) items in the context
of 2K possible subsets. Example queries include hitting
time queries, such as “What is the probability that any
item in the subset A will occur before time t,” and A-
before-B queries that compute the probability that an
item in set A will occur before an item in set B. While
there is recent prior work on answering probabilistic
queries in the standard MTPP setting (Boyd et al.,
2023), here we study these queries for subsets, where
the queries can in general be more complicated.

Based on systematic experiments on four real-world
datasets, we empirically demonstrate that: (i) our
proposed models have significantly better predictive
power than alternative baselines; (ii) our importance-
sampling approach to querying is orders of magnitude
more efficient than naive sampling methods; and (iii)
our proposed query-based log-likelihood metrics are
effective for model selection.

2 RELATED WORK

Sequential Set Predictions There has been prior
work on modeling sequences of set-valued events for
problems such as next basket predictions in recommen-
dation systems (Rendle et al., 2010; Yu et al., 2016;
Hu and He, 2019; Shou et al., 2023) and modeling
bags of words over time in dynamic topic modeling
(Wang and McCallum, 2006; Wang et al., 2008). Their
primary focus has been on modeling and predicting
the items (products, words, etc.) in each set, condi-
tioned on known times for events. In contrast, we focus
on fully generative probabilistic models where we can
make inferences about both time and sets, allowing us
to marginalize over uncertainties about intermediate
events to answer queries about the future.

Neural MTPPs Marked temporal point processes
(MTPPs) are generative models that jointly model se-
quences of event times and types. Early work on neural
MTPPs (Du et al., 2016; Mei and Eisner, 2017) has
been followed by a burst of activity in this area, develop-

ing a variety of subsequent variations of the initial ideas
(Shchur et al., 2021), with extensions to handle miss-
ing data (Shchur et al., 2019; Mei et al., 2019; Gupta
et al., 2021), Monte Carlo inference techniques (Shelton
et al., 2018), long-term forecasting (Deshpande et al.,
2021; Xue et al., 2022), and computationally-scalable
methods for large mark vocabularies (Türkmen et al.,
2020). All of this prior work has focused on the classical
MTPP framework, where each event is associated with
a single type, whereas our approach differs in that we
allow multiple types for each event.

In earlier work, Boyd et al. (2023) introduced the idea
of probabilistic querying with continuous-time neural
MTPP models, showing that answering such queries
analytically is generally intractable, and demonstrat-
ing how importance sampling can be used to provide
approximate query answers efficiently. We build on
this work and demonstrate how to extend the querying
frameworks proposed by Boyd et al. (2023) to leverage
the structure of set-valued MTPPs.

Determinantal Point Processes (DPPs) DPPs
are probabilistic models that efficiently define a distri-
bution over all 2K subsets of K items, characterized by
negative item-to-item correlations and marginal prob-
abilities (Macchi, 1975; Kulesza et al., 2012). These
models are often appealing in that various conditioning
and inference operations involving subsets of items can
be carried out in closed form. DPPs have been success-
fully applied in various machine learning tasks such as
pose estimation (Kulesza and Taskar, 2010) and multi-
label classification (Xie et al., 2017); however, to our
knowledge there is no existing work which uses DPPs
for sequences of sets, particularly over continuous-time.

3 MODELING FRAMEWORK

3.1 Preliminaries

Let τi ∈ R≥0 be the random variable of the ith distinct
event time in a continuous-time sequence, i.e., ∀i :
τi < τi+1, where i is a positive integer, and ti is its
realization. Alongside the time of occurrence, each
event also possesses an additional piece of information,
Xi ∈ X , commonly referred to as a mark. We use Xi

and xi to denote the corresponding random variable
and realization of mark i. Define the history of the
sequence for any time interval [a, b] ⊂ R≥0 as

H[a, b] = {(τi, Xi) | ∀i ∈ N+, τi ∈ [a, b]}. (1)

The history H(a, b] and H[a, b) are defined similarly.
We use the abbreviation for the history up to, but not
including time t, as H(t) := H[0, t).

Marked (or multivariate) temporal point processes
(MTPPs) are a class of generative models for sequential
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Figure 2: A comparison of (a) traditional neural
MTPPs and(b) our proposed model for sequences of
sets, where the differences are highlighted in the orange
boxes. In (a) xi represents a single item, whereas in
(b) xi is a set of items.

data with continuous timestamps and marked informa-
tion.1 MTPPs are fully parameterized by non-negative,
mark-specific intensity functions λ∗

x(t) := λx(t |H(t))
which represent the instantaneous rate of occurrence
for each event type x at time t conditioned on the
entire history over the timespan [0, t). In general,
we use “∗” to indicate conditioning on H(t). Sum-
ming up all mark-specific intensities yields the to-
tal intensity λ∗(t) :=

∑
x∈X λ∗

x(t), also known as
the ground intensity. The conditional mark dis-
tribution is then defined as a ratio of intensities:
p∗(x | t) := p(Xi = x |τi = t,H(τi)) ≡ λ∗

x(t)/λ
∗(t). The

log-likelihood of a particular sequence H(T ) with N
events decomposes into the following form:

L(H(T ))=

N∑
i=1

log p∗(xi | ti)︸ ︷︷ ︸
LMark

+

N∑
i=1

log λ∗(ti)−
∫ T

0

λ∗(s)ds︸ ︷︷ ︸
LTime

.

(2)

Here, LTime is the log-likelihood of a temporal point
process that treats marks as fixed covariates and LMark
is akin to a sequential classification cross-entropy.

In recurrent MTPPs (Du et al., 2016; Mei and Eis-
ner, 2017), hidden states h(t) from continuous-time
recurrent neural networks (RNNs) are used to summa-
rize the history H(t) up to time t. This results in the

1While our treatment of MTPPs assumes that marks
are discrete and finite, the general framework allows for
continuous-valued marks as well as more complicated do-
mains, e.g., combinations of discrete- and continuous-valued
marks.

vector of marked intensities being modeled by some
parameterized transformation of the hidden state, e.g.,
λ∗
x(t) := λx(t |h(t)) := exp(ux · h(t) + bx) for x ∈ X .

Hidden states are typically computed recursively:

h(t) := f(hi, t) for ti < t ≤ ti+1 (3)
hi := g(hi−1, ti, e(xi)), (4)

where h0 is a learnable parameter and e(x) embeds the
mark x as a dense vector which we assume to take the
form of e(x) = wx for learnable vectors wx for x ∈ X .

3.2 Setting of Interest: Set-Valued Sequences

We are primarily interested in the scenario where the
marks Xi are not just simple discrete labels but possess
set structure, meaning they can be composed of some
subset of possible items. To avoid potential confusion,
we will typically refer to “marks” as “sets” to differenti-
ate from the items contained within (e.g., LMark is now
LSet). The possible items are assumed to be a fixed
set of K unique values, with the range of possible sets
spanning X := P({1, . . . ,K}), which is the power set
of the set {1, . . . ,K} and includes the empty set.

As mentioned earlier, while it is possible to naively
map each possible set in X to a unique, discrete label,
this does not take advantage of the inherent structure
present in the set-valued marks. For example, this
naive mapping would treat sets {a, b, c} and {a, b} as
completely separate values, ignoring the fact that they
share items a and b and could lead to an inordinate
amount of parameters, i.e., |X | = 2K .

Our work aims to take advantage of the structured
nature of the sets Xi to more efficiently and effectively
model an MTPP for set-valued marks. In addition, we
develop a general approach for set-valued marks so that
it allows any intensity-based recurrent MTPP model
to be used within our proposed framework. Fig. 2
provides a high-level illustration of our proposed model
and how it differs from typical neural MTPPs.

3.3 Modeling Approach

Set Representation and Intake To adapt an exist-
ing recurrent MTPP to set-valued marks, we must first
define a method of using sets as inputs when calculating
the hidden state. Put differently, we need to embed a
set into a dense vector representation in order to make
it compatible for g in Eq. (4). We propose embedding
the individual items within a given set x, and then
representing the composition of them additively:

e(x) :=

{
1
|x|
∑

k∈x wk if x ̸= ∅
0 if x = ∅

(5)
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where {wk}Kk=1 are learned. We normalize by the num-
ber of items in the set to keep embeddings of different
sets on roughly the same scale.

With the embedding of sets adapted to the same for-
mat as typical embedded marks for the original neural
MTPPs, h(t) can be computed in the usual manner
using the same f and g functions for a given base re-
current MTPP model. The parameters of f and g,
along with {wk}Kk=1, will be denoted collectively as θ,
with hidden states written as hθ(t) to emphasize this
parameterization.

Intensity Modeling Since the total number of pos-
sible sets is 2K , it becomes intractable as K grows to
model 2K different marked intensity values, each with
learnable parameters. Instead, we choose to separate
the distribution over time from the distribution over
sets by noting the following property:

λ∗
x(t) := λ∗(t)p∗(x | t). (6)

As such, it is sufficient to separately model the total
intensity function and the conditional mark distribution
over sets, where the latter is discussed further in the
sections below on set modeling.

All recurrent MTPPs support directly modeling the
total intensity of a process by assuming there is
only a single possible mark value. For example, the
neural Hawkes model computes a marked intensity
function via λ∗

x(t) = sx log(1 + exp(ux · h(t)/sx)) with
mark-specific parameters sx and ux. We adapt this
to model the total intensity by having what were
original mark-specific parameters now globally shared:
λ∗(t) = s log(1 + exp(u · h(t)/s)). All parameters that
are solely used to compute λ from the hidden state
h(t) (such as s and u from the previous example) will
be referred to as ϕ, with the total intensity written as
λ∗
ϕ(t) to denote this parameterization.

The modeling decisions made thus far allow us to de-
fine the temporal component of the log-likelihood of a
sequence H(T ) with N events as follows:

LTime(θ, ϕ;H(T ))

:=

N∑
i=1

log λϕ(ti |hθ(ti))−
∫ T

0

λϕ(s |hθ(s))ds. (7)

All that remains for our proposed framework
is to determine the conditional set distribution
p∗(x | t) := p(x | t,hθ(t)). We present two different ap-
proaches to this below.

Set Modeling: Dynamic Bernoulli Our first ap-
proach to set modeling will be referred to as a Dy-
namic Bernoulli model. Specifically, given a hidden

state hθ(t), the conditional set distribution of the next
set X is parameterized via

p(X = x | t,h(t)) :=
K∏

k=1

ρk(t)
1(k∈x)(1− ρk(t))

1(k/∈x)

ρk(t) := σ(vk · n(h(t)) + bk), (8)

where 1(·) is the indicator function, σ(·) is the sig-
moid function, n is a feed-forward neural network, and
vk and bk are learnable parameters for k = 1, . . . ,K.
The values ρk(t) can be interpreted as the probabil-
ity of item k appearing in the set X at time t. This
model assumes that the presence of each item is condi-
tionally independent, conditioned on the history h(t).
It should be noted that the model allows for there
to be significant marginal correlation between items
in a set, especially considering the flexibility of the
feedforward network n. More formally, we assume
(k ∈ Xi ⊥ k′ ∈ Xi) | τi,H[0, τi−1], but marginally,
it follows that (k ∈ Xi ̸⊥ k′ ∈ Xi) | H[0, τi−1] for
k ̸= k′ ∈ {1, . . . ,K} due to how h(t) evolves over time.

All of the parameters of n as well as vk and bk for
all k will be referred to as ω, with the conditional set
distribution written as p∗ω(x | t). The set-specific contri-
bution to the log-likelihood of the Dynamic Bernoulli
model is defined in the following manner:

LSet(ω, θ;H(T )) :=

N∑
i=1

log pω(xi | ti,hθ(ti)) (9)

=

N∑
i=1

K∑
k=1

1(k∈xi) log ρk(ti)+1(k /∈xi) log(1−ρk(ti)).

Set Modeling: Dynamic DPPs A potential limi-
tation of the Dynamic Bernoulli approach is that cor-
relations between items are not modeled beyond condi-
tioning on hidden states h(t). An instance where this
might matter is when the presence of one item actively
inhibits the other in a set, but both are marginally
likely to occur conditioned on the history.

With this in mind we can model a more expressive set
distribution by utilizing determinantal point processes
(DPPs) (Kulesza et al., 2012). DPPs are a class of
distributions over sets that allow for modeling marginal
likelihoods of item inclusions as well as negative pair-
wise correlations. They can be fully parameterized by
a K×K symmetric and positive semidefinite matrix L.
Namely, p(X = x) = det(Lx)

det(L+I) , where Lx = (Lij)i,j∈x ∈
R|x|×|x| and I is the K ×K identity matrix.

One way to allow a DPP to condition on the history
up to time t (and thus allow it to be “dynamic”) is to
parameterize the L matrix as a function of the hidden
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state h(t). We consider the following parameterization:

pω(x | t,hθ(t)) :=
det(Lx(t))

det(L(t) + I)
(10)

Lx(t) := (Lij(t))i,j∈x (11)

Lij(t) := ni(h(t))
wi ·wj

∥wi∥∥wj∥
nj(h(t)) (12)

where n : Rd → RK is a feedforward neural network
with parameters ω and wi and wj are the item embed-
ding vectors defined in Eq. (5).

The set-specific contribution to the log-likelihood for
using Dynamic DPPs is defined as follows:

LSet(ω, θ;H(T )) :=

N∑
i=1

log pω(xi | ti,hθ(ti)) (13)

=

N∑
i=1

log det(Lxi(ti))− log det(L(ti) + I).

See Appendix B.3 for discussions on parallelizing com-
putation with varying sizes of sets xi.

Optimization Details To model the conditional set
distribution for each of the Dynamic Bernoulli and DPP
models, we learn parameters θ, ϕ, and ω jointly using
stochastic gradient methods. Given a dataset of M
sequences over varying timespans, D := {Hi(Ti)}Mi=1,
we minimize the negative log-likelihood with the
following objective function: −L(θ, ϕ, ω;D) =

−
∑M

i=1 [LSet(ω, θ;Hi) + LTime(ϕ, θ;Hi)] . Should the
integral in LTime not be tractable for a given recurrent
MTPP base model, we approximate it using Monte-
Carlo samples as described in Mei and Eisner (2017).

4 PROBABILISTIC QUERIES

By being fully probabilistic over entire sequences of
events H(T ), we arrive at a model that possesses beliefs
about future trajectories that encompass more than
just the immediate next event’s set-value and/or time
of occurrence. For instance, MTPPs in general are able
to assign probabilities to when the next time a specific
mark will occur, often referred to as the hitting time, as
well as how likely one mark will occur before another
mark. Due to the autoregressive nature of MTPPs,
this information is not readily available; however, Boyd
et al. (2023) demonstrated how to efficiently estimate
these probabilistic beliefs using importance sampling.

In this section, we will demonstrate how to adapt these
importance sampling techniques for estimating hitting
time and A-before-B queries to take advantage of the
structure inherent to the set-valued marks. This will
enable us to estimate probabilities concerning item-
level queries. These queries include examples such as

🞫
✓

✓

Figure 3: Example sequences for hitting time queries.

“When will item k occur next?” and “Will item i occur
before item j?” For brevity, we will discuss only the
resulting estimators (for these two kinds of queries) in
the context of the Dynamic Bernoulli model for sets.

In the context of prior work on querying with MTPPs,
we build on the proposal distribution from Boyd et al.
(2023), but with several novel aspects. (i) Since we
ask item-level queries in the context of sets, direct
application of Boyd et al. (2023)’s method yields in-
tractable estimators, for the same reason that directly
modeling λ∗

x(t) for 2K set-specific intensities is not
practical. Thus, we model the structure of sets so that
the conditional set distributions provide convenient
and tractable marginalization properties for relevant
subsets, making query estimation feasible. To achieve
this, we discuss two equivalent sampling methods in
Appendix A.3. (ii) For A-before-B queries, we take the
set-based scenario into account where multiple items
can occur at the same time: our resulting estimator
is unbiased and more accurate (Appendix A.2), unlike
Boyd et al. (2023)’s estimator for single-mark MTPPs.
(iii) An additional novelty is the application of the new
set-based query estimators to the problem of model
selection, which we discuss in more detail in Section 5.

4.1 Hitting Time Queries

Without loss of generality, we suppress the notation
for conditioning on partially observed sequences and
present all derivations and notation below for uncondi-
tional queries. We also suppress all parameter notation
(e.g., replacing pω with p), as our focus in querying is
on queries with a pre-trained model. Additional details
for our proposed importance sampling framework (e.g.,
full proofs) are provided in Appendix A.

We are interested in the distribution of the first time
of occurrence for any item in the non-empty subset
A ⊆ {1, . . . ,K} denoted as hit(A); see Fig. 3 for an
illustration. We can define a naive estimator by simply
representing any query as an expected value,

p(hit(A) ≤ t) = EH[0,t] [1(hit(A) ≤ t)] , (14)

and approximate it using a Monte-Carlo estimate of
1(hit(A) ≤ t) with H[0, t] drawn from the MTPP. The
variance of this estimator can be vastly reduced (thus,
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improving the relative efficiency) by utilizing impor-
tance sampling. Similar to Boyd et al. (2023), we define
the proposal distribution q as an MTPP with intensity
µ∗
x(t) = 1(A ∩ x = ∅)λ∗

x(t). It follows that the total
proposal intensity, which is used for sampling (Ogata,
1981), is µ∗(t) = λ∗(t)p∗(Ac | t) where Ac is the com-
plement of A and p∗(A | t) is the probability of having
any of the items in A occur at time t: p∗(A ∩ x ≠ ∅| t).
For the Dynamic Bernoulli model, this simplifies to
p∗(A | t) = 1−

∏
k∈A(1− p∗(k | t)).

It can then be shown that the CDF of the hitting time
takes the following form:

p(hit(A) ≤ t) := 1− Eq
H[0,t]

[
exp

(
−
∫ t

0

λ∗(s)p∗(A |s)ds
)]

where Eq is the expected value with respect to the pro-
posal distribution q. This also produces an estimator
through a Monte-Carlo estimate using H(t) ∼ q.

4.2 A-before-B queries

Let A and B be two non-overlapping subsets of items.
We are interested in which subset has an item that
occurs before any items in the other subset occur.
This can be analyzed by asking p(hit(A) < hit(B)).
Since we are estimating the probability of this sce-
nario with finite-length sampled sequences, to remain
unbiased we must slightly alter the query of interest
to p(hit(A) < hit(B),hit(A) ≤ t). As before, we can
easily derive a naive estimator for this query:

p(hit(A) <hit(B),hit(A) ≤ t)

= EH[0,t] [1(hit(A) < hit(B), hit(A) ≤ t)] .

Using a proposal marked intensity µ∗
x(t) := 1((A∪B)∩

x = ∅)λ∗
x(t) with total intensity µ∗(t) := λ∗(t)p∗((A ∪

B)c | t) allows for the following importance sampled
estimator:

p(hit(A) < hit(B), hit(A) ≤ t) (15)

= Eq
H[0,t]

[∫ t

0

exp

(
−
∫ s

0

λ∗
A∪B(s

′)ds′
)
λ∗
A∩¬B(s)ds

]
,

where the marked intensities use the factorization in
Eq. (6) and p∗(A ∩ ¬B | t) is the probability of any
item in A occurring and no item in B occurring,
which is p∗(A ∩ x ≠ ∅, B ∩ x = ∅ | t). It simplifies
to p∗(A ∩ ¬B | t) = p∗(A | t)(1− p∗(B | t)) for the Dy-
namic Bernoulli model.

There are four different scenarios that can occur when
comparing hit(A) and hit(B) up to a finite length of
time t: (i) (hit(A) < hit(B), hit(A) ≤ t), (ii) (hit(B) <
hit(A), hit(B) ≤ t), (iii) hit(A) = hit(B) ≤ t, and (iv)
(hit(A) > t,hit(B) > t). Importance sample estimators
for (ii) and (iii) can be achieved by swapping A ∩ ¬B

in Eq. (15) with ¬A ∩B and A ∩B respectively. (iv)
can be estimated by subtracting estimates of (i-iii)
from 1, due to the law of total probability.

5 EXPERIMENTAL RESULTS

We investigate the prediction performance of our pro-
posed dynamic models and the querying efficiency of
our proposed sampling methods using four real-world
datasets. Our results show that the proposed dynamic
models systematically outperform static alternatives
and baselines in terms of the log-likelihood of test se-
quences. For query-answering, we also demonstrate
that importance sampling is orders of magnitude more
efficient in the number of samples (to achieve the same
variance) compared to naive sampling, while maintain-
ing (or even reducing) wall-clock runtime. Furthermore,
both test sequence log-likelihood and our proposed
query-based log-likelihood favor dynamic models that
jointly model time and sets. Our code and data are
publicly available2.

5.1 Datasets

Table 1 summarizes the four real-world user behavior
datasets in our experiments, where each sequence rep-
resents a user. Instacart3 contains samples of grocery
orders for customers. We preprocessed the data into
sequences of time-stamped sets of products that belong
to 21 departments that we interpret as items. Last.fm
(McFee et al., 2012) records the listening habits of ap-
proximately 1000 users, where the tracks are mapped
to 15 genres jointly by artist and title via monthly
Discogs Release4. MovieLens 25M (Harper and Kon-
stan, 2015) has movie ratings from users and we used
the data from 2016; the 20 different genres of movies
are treated as items. For the Last.fm and MovieLens
datasets, a track or a movie can have multiple genres.
Each set of genres associated with a track or a movie is
interpreted as an event. Finally, MOOC (Kumar et al.,
2019) includes 97 distinct user actions involving online
course activities that are considered as items. For all
datasets, we randomly selected 75% of sequences for
training, 10% for validation, and 15% for test. The test
split was only used for reporting the results. Additional
dataset details are described in Appendix B.1.

5.2 Baselines and Model Fitting

In our experiments, we evaluate the predictions and
query computation for models of different complexi-

2https://github.com/yuxinc17/set_valued_mtpp
3https://www.kaggle.com/competitions/instacart-

market-basket-analysis
4https://discogs.com

https://github.com/yuxinc17/set_valued_mtpp
https://www.kaggle.com/competitions/instacart-market-basket-analysis
https://www.kaggle.com/competitions/instacart-market-basket-analysis
https://discogs.com
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Table 1: Summary Statistics for Datasets

Dataset # Seq. K Tmax Avg.length

Instacart 174,615 21 366 17
Last.fm 10,705 15 744 207
MovieLens 11,198 20 8,781 65
MOOC 6,892 97 715 52

ties, including our proposed dynamic models, simple
baselines, and ablations of our models that lie between
these endpoints. The models differ in terms of how
the temporal and set components in each are modeled.
Note that existing MTPP models assume no more than
one event of a single type can occur simultaneously,
and therefore are not directly comparable because like-
lihoods would not be commensurate.

Our simplest baseline uses a homogeneous Poisson
model as the temporal component and a static Bernoulli
model for the set distribution (where the Bernoulli
probabilities correspond to the marginal probabilities
in the dataset for each item), referred to below as the
StaticB-Poisson model. This simple baseline provides
useful context for evaluating the effectiveness of more
complex models for set-valued data over time.

In terms of our proposed models, for the temporal com-
ponent we use the neural Hawkes (NH) model (Mei
and Eisner, 2017) as a specific instantiation of the re-
current MTPP component. In the Bernoulli variants
of our model, this is coupled with (i) our proposed Dy-
namic Bernoulli model for the set-component or (ii) the
marginal (static) Bernoulli option as a baseline (same
model for sets as the Poisson baseline), referred to be-
low as DynamicB-NH and StaticB-NH respectively. In
the DPP variants, we couple the NH temporal compo-
nent of the model with (i) the Dynamic-DPP approach
for modeling the set component, or (ii) again with the
marginal (static) DPP, referred to as DynamicDPP-NH
and StaticDPP-NH respectively. The static versions of
our models can be viewed as ablations that model time
and set structure separately, where the sets are not
conditioned on hidden states and therefore invariant of
time. More details on models and training procedures
are Appendix B.2.

5.3 Results: Test Sequence Log-Likelihood

Table 2 summarizes the average log-likelihood results
for all test sequences across the four datasets. For
all datasets, our dynamic models systematically pro-
duce significantly lower negative test log-likelihoods
−L compared to the static baselines. The neural tem-
poral component (NH) is also clearly superior to the
Poisson baseline.

In comparing the Dynamic Bernoulli and Dynamic
DPP models, the differences in log-likelihoods L are
very small relative to the scale of log-likelihood improve-
ment in going from static to dynamic models. Further,
as mentioned earlier, the DPP variant scales much more
poorly as a function of the number of items K (and was
not scalable in our experiments for the MOOC dataset
with K = 97). Given these observations, in our experi-
ments in the remainder of the paper, we focus on the
Dynamic Bernoulli model since it represents a useful
practical trade-off between prediction performance and
computational cost. Note that our proposed querying
scheme, based on importance sampling, can also be
used with the Dynamic DPP model, and we provide a
sketch of the general approach in Appendix A.3.

We also report results in Table 2 for the decomposition
of the full log-likelihood L into its components LTime
and LSet (Eq. (2)). From these results, we see that
static models can have slightly better performance
in terms of just the temporal component of the log-
likelihood LTime. This is because the RNN for static
models focuses only on modeling LTime; marginal set
distributions are learned from the data. For dynamic
models, sets are conditioned on history; the RNN is
used for both time and set prediction. Given that in
these experiments the RNN capacity of the dynamic
model is the same as the static model, the static models
can achieve slightly better results for LTime; this gap
can be reduced by increasing the capacity of the RNN.
Empirically, for example, doubling the hidden state size
of the Dynamic Bernoulli model for MovieLens achieves
negative test log-likelihoods −LTime = −200.94 and
−LSet = 432.54. Further discussion is in Appendix C.4.

5.4 Results: Querying

We evaluate our querying methods from two perspec-
tives: (i) the relative efficiency of the importance esti-
mate compared to naive sampling, and (ii) the average
query log-likelihood with respect to a trained model.

Efficiency for Hitting Time Queries Relative ef-
ficiency is defined as the ratio between the variance
of naive estimates and the variance of importance es-
timates, and is widely used in assessing two unbiased
estimators (Van der Vaart, 2000). This number can be
interpreted as the number of samples that would be
required for naive samples to achieve the same level of
accuracy in estimation, e.g., to a particular degree of
numerical precision in absolute error for the estimate.

For hitting time queries we are interested in the proba-
bility p(hit(A) ≤ t | H), defined as the probability that
one or more items in the set A are observed before a
fixed time t (where A and t are hyperparameters of the
query), conditioned on sequence history. While our im-
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Table 2: Negative test sequence log-likelihood, −L from
Eq. (2), across four datasets, with different static and
dynamic variants of models. Also shown is the decom-
position of each −L score into time LTime and set LSet
components. We highlight the results for −L to denote
the first (bold) and second (underline) best-performing
models overall for each dataset. “–” entries indicate
that a method required greater memory resources than
were available.

Dataset Model −L(↓) −LTime(↓) −LSet(↓)
Instacart

StaticB-Poisson 205.11 58.17 146.94

StaticB-NH 198.22 51.30 146.92
StaticDPP-NH 203.35 51.37 151.98

DynamicB-NH 168.04 51.46 116.58
DynamicDPP-NH 170.68 51.41 119.27

Last.fm
StaticB-Poisson 1027.14 377.17 649.97

StaticB-NH 415.00 -234.91 649.92
StaticDPP-NH 411.68 -235.70 647.38

DynamicB-NH 259.08 -223.59 482.67
DynamicDPP-NH 258.82 -223.33 482.15

MovieLens
StaticB-Poisson 741.55 276.49 465.07

StaticB-NH 263.78 -201.19 464.97
StaticDPP-NH 259.95 -203.95 463.90

DynamicB-NH 236.80 -195.78 432.58
DynamicDPP-NH 236.35 -194.15 430.50

MOOC
StaticB-Poisson 439.74 169.77 269.97

StaticB-NH 189.54 -81.66 271.20
StaticDPP-NH – – –

DynamicB-NH 45.30 -77.06 122.35
DynamicDPP-NH – – –

portance sampling approach is compatible with subsets
of any size, in the experiments below we report on the
simplest case where A contains a single item. We also
experiment with varying numbers of items in A and
analyze the runtime of importance sampling and naive
approach, and find that importance sampling takes less
wall-clock time per sample than naive sampling with
a gain in time for an increasing number of items in A;
see Appendix C.2 for more results and discussion.

We use 1000 queries, 1000 importance samples, and
2000 integration points in our experiments for all
datasets and models. For each test sequence, we define
a query p(hit(A) ≤ t|H) by conditioning on the first
five events H and t = min((τ6−τ5)×10, 10). The single
item in A is chosen from existing items in H for the
MOOC dataset due to the large number of items, and
is chosen randomly from all possible items for the other
three datasets. Note that the item is not guaranteed

Figure 4: Relative efficiency for queries of the form
p(hit(A) ≤ t | H) for two model variants. Blue and
red dashed lines refer to the multiplicative runtime of
importance sampling compared to naive sampling.

to occur in the remaining observed sequence.

Fig. 4 plots the relative efficiency for both static and
dynamic models on four datasets. We observe that
importance sampling is vastly more sample-efficient
(y-axis) for both static and dynamic models, where the
gains have some dependence on the query probability
being estimated (x-axis). In other words, importance
samples significantly reduce variance compared to naive
samples, while maintaining comparable runtimes in
terms of wall-clock time (dashed lines).

Efficiency for A-before-B Queries Given the his-
tory of a sequence, we are interested in the probability
of the order of the first occurrence of two items A,B dur-
ing an observation window into the future. We define
the A-before-B query as p(hit(A) < hit(B),hit(A) ≤
t | H). We adopt the same general settings as described
above for hitting time queries with one difference: we
choose two random items A and B from the existing
items in H for all datasets except for the Instacart
dataset, and choose the two items randomly from all
items for the Instacart datasets.

Relative efficiency results for A-before-B queries are
shown in Fig. 5. As with hitting time queries we see
orders of magnitude improvements in efficiency using
importance sampling, again with comparable wall-clock
computation times per sample.

Note that the relative runtime between naive and im-
portance samples varies across queries and datasets.
Importance samples can be sometimes faster (0.5× to
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Figure 5: Relative efficiency results for the query
p(hit(A) < hit(B), hit(A) ≤ t | H) with the same
format as Fig. 4.

0.9× in Fig. 4), but this is not always the case (2×
to 3×, i.e., slower, in Fig. 5). (i) Importance samples
can in some situations be faster because the proposal
distribution essentially zeros out some intensities. Con-
sequently, fewer events are sampled on average. (ii)
Importance samples can also sometimes be slower than
naive sampling, because additional computations such
as integral estimates are performed for each sample
to estimate query probability. There is a trade-off be-
tween sampling fewer events and more computation
per sample. Additional discussion related to runtimes
can be found in Appendix C.2.

In general, we have observed empirically that impor-
tance samples consistently have runtimes that are com-
parable to those of naive sampling. This is true for
both the NH model discussed above as well as for
other instantiations of recurrent MTPP models such as
RMTPP (Fig. 7 in Appendix C.1) and slightly different
model architectures (Figs. 11 and 12) in Appendix C.3.

Model Comparison using Query Likelihoods
Model comparisons for probabilistic sequential models
are often made by computing the likelihood of test
sequences, involving sums of log-probabilities for ob-
served “next events” conditioned on observed histories
(as in Table 2). Our querying approach allows us in
principle to compute log-likelihoods of propositions that
are beyond next-event prediction, e.g., how well do two
models compare in terms of their log-likelihoods for
predicting actual hitting times on a particular dataset?

More specifically, for hitting times we can define a log-
likelihood score for p(hit(A) ≤ t | H) as L = yp̂+ (1−

Figure 6: Average negative test log-likelihood (±1 std.
dev.) of hitting time (top) and A-before-B (bottom)
queries across 4 datasets. Lower values are better:
the lower bound is 0 and the upper dashed line is the
negative log-likelihood of randomly guessing outcomes.

y)(1− p̂), where p̂ is an importance sampling estimate
and y := 1(hit(A) ≤ t | H). We compute a similar log-
likelihood for A-before-B queries, but we account for
the four different outcomes as outlined in Section 4.2.

Fig. 6 shows the results for computing log-likelihood
scores (averaged over the same queries described earlier)
for both hitting time probabilities (top) and A-before-
B probabilities (bottom). Each bar-plot compares
the StaticB-NH model with the DynamicB-NH model
across the 4 datasets used in our earlier experiments.
The dynamic model is strongly favored over the static
model on three of the datasets and the difference is not
statistically significant for MovieLens (overlapping stan-
dard deviations), in broad agreement with the results
in Table 2. Note that this type of model comparison is
practical computationally using importance sampling,
but not with naive sampling, opening up the option of
richer data-driven model comparisons for MTPPs.

6 CONCLUSION

In this work we proposed a framework that models
the joint likelihood of continuous-time set sequences
for both temporal and set distributions, built on re-
current MTPP models. Across four real-world user
behavior datasets, our proposed model achieves better
predictive performance than baselines, both over se-
quences and various probabilistic queries. In addition,
our importance sampling approach is orders of magni-
tude more efficient than naive methods in answering
probabilistic queries in the context of subsets. Future
work could include exploration of more complex set
structures (e.g., conditionally modeling positive and
negative item-inclusion correlations) and extensions to
modeling subsets of continuous values.
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A QUERY DERIVATION

We derive importance sampling expressions for both hitting time queries and A-before-B queries. Our derivations
are formulated in the context of subsets, where we focus on relatively simple types of subsets. It is straightforward
to extend to more general queries that can be represented as Boolean expressions, as discussed for the case of
hitting time queries in Appendix A.1.

A.1 Hitting Time Queries

Define the proposal distribution q as an MTPP with intensity µ∗
x(t) = 1(A ∩ x = ∅)λ∗

x(t). Hitting time queries
can then be derived as follows:

p (hit(A) ≤ t) = 1− p (hit(A) > t)

= 1− p
(
∀(τ,X)∈H[0,t]A /∈ X

)
= 1− EH[0,t]∼q

[
1
(
∀(τ,X)∈H[0,t]A /∈ X

) p(H[0, t])

q(H[0, t])

]
= 1− EH[0,t]∼q

[
p(H[0, t])

q(H[0, t])

]

= 1− EH[0,t]∼q

 ∏H
i=1 λ

∗
xi
(ti) exp

(
−
∫ t

0
λ∗(s)ds

)
∏H

i=1 λ
∗
xi
(ti) exp

(
−
∫ t

0

∫
x∈X\A λ∗

x(s)dxds
)


= 1− EH[0,t]∼q

 exp
(
−
∫ t

0
λ∗(s)ds

)
exp

(
−
∫ t

0

∑
x∈X\A λ∗

x(s)ds
)


= 1− EH[0,t]∼q

[
exp

(
−
∫ t

0

∑
x∈A

λ∗
x(s)ds

)]

= 1− EH[0,t]∼q

[
exp

(
−
∫ t

0

λ∗(s)p̂A(s)ds

)]
,

where p(H) denotes the distribution under the original MTPP and p̂A is the probability that any item in A
occurs. The hitting time query can be extended to a general DNF representation by deriving the query in terms
of subsets when making restrictions on items. For example, p(hit(A ∨B) ≤ t) can be derived by replacing p̂A by
p̂A∪B in the final line of derivation. Additionally, as an example of handling more complex Boolean queries, a
disjunction such as p(hit((A∧B)∨C) ≤ t) (for subsets A,B,C) can be decomposed using ∪, and the conjunction
p(hit(A ∧ B) ≤ t) can be calculated as 1 − p(hit(A) > t) − p(hit(B) > t) + p(hit(A ∪ B) > t), as long as the
probabilities of these collections of subsets are available.

A.2 A-before-B Queries

Using a similar proposal distribution q as an MTPP with intensity µ∗
x(t) := 1((A ∪ B) ∩ x = ∅)λ∗

x(t),
the total intensity is µ∗(t) := λ∗(t)p∗((A ∪ B)c | t), where (A ∪ B)c is the complement of (A ∪ B). For
p (hit(A) ≤ hit(B), hit(A) ≤ t), considering the fact that the probability of hit(A) = t is infinitesimal, then for
any fixed t we have:
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p (hit(A) < hit(B), hit(A) ≤ t) =

∫ t

0

p (hit(A) < hit(B), hit(A) ∈ [s, s+ ds)) ds

=

∫ t

0

EH[0,t]∼p [1 (hit(A) < hit(B))1 (hit(A) ∈ [s, s+ ds))] ds

=

∫ t

0

EH[0,t]∼p

[
EH[0,t]∼p|H(t) [1 (hit(A) < hit(B))1 (hit(A) ∈ [s, s+ ds))]

]
ds

=

∫ t

0

EH[0,t]∼p

[
1 (hit(A) ≥ t,hit(B) ≥ t)λ∗

A∩(¬B)(s)
]
ds

=

∫ t

0

EH[0,t]∼q

[
exp

(
−
∫ s

0

λ∗
A∪B(s

′)ds′
)
λ∗
A∩(¬B)(s)

]
ds

= EH[0,t]∼q

[∫ t

0

exp

(
−
∫ s

0

λ∗
A∪B(s

′)ds′
)
λ∗
A∩(¬B)(s)ds

]
.

The last line holds by applying Fubini’s theorem where the sums are special cases of integrals for discrete measures.
Similarly, we can derive:

p (hit(A) = hit(B), hit(A) ≤ t) = EH[0,t]∼q

[∫ t

0

exp

(
−
∫ s

0

λ∗
A∪B(s

′)ds′
)
λ∗
A∩B(s)ds

]
p (hit(A) ≤ hit(B), hit(A) ≤ t) = EH[0,t]∼q

[∫ t

0

exp

(
−
∫ s

0

λ∗
A∪B(s

′)ds′
)
λ∗
A(s)ds

]
p (hit(A) > hit(B), hit(B) ≤ t) = EH[0,t]∼q

[∫ t

0

exp

(
−
∫ s

0

λ∗
A∪B(s

′)ds′
)
λ∗
(¬A)∩B(s)ds

]
,

and p(hit(A) > t,hit(B) > t) can be calculated as the complement of the other three scenarios at any time t.

A.3 Sampling Details

We utilize the property λ∗
x(t) := λ∗(t)p∗(x | t) to sample from the proposal distribution. More specifically, for

any subset A, λ∗
A(t) := λ∗(t)p∗(A | t) where p∗(A | t) is determined by the modeling assumption on the set

distribution. This can be calculated in directly for Dynamic DPP models as p∗(A | t) = det(LA(t))
det(L(t)+I) where L

is the L-ensemble indexed by the elements of X . For Dynamic Bernoulli models, this expression simplifies to
p∗(A | t) = 1−

∏
k∈A(1− p∗(k | t)).

There are two equivalent methods to sample from λ∗
A(t). The first approach involves a two-step rejection sampling

procedure. Similar to sampling from MTPPs where events can only contain one item, we first decide whether to
accept a proposal time based on the total intensity λ∗(t), and then sample from the set distribution. If the set
contains items that are not allowed by the proposal distribution, we reject the event entirely and move forward.
Alternatively, a second approach is to reweigh the total intensity if p∗(A | t) is in closed form or is simple to
compute. Then we can directly sample the proposal time from λ∗

A(t) = λ∗(t)p∗(A | t), and simply re-sample the
set if it contains items that are not allowed in the proposal distribution.

The second approach is more efficient with the models that we propose and is what we used in our experiments
in the paper. The first approach may, however, be preferred for more complex queries in situations where the
distribution on sets is more complicated, i.e., when p∗(A | t) is computationally expensive to estimate.

B EXPERIMENTAL DETAILS

All experiments are performed on NVIDIA GeForce RTX 2080 Ti.

B.1 Data Preprocessing

For all datasets, we randomly selected sequences into 75%/10%/25% partitions for training/validation/test.
Anonymized user IDs are used for each user. Event times are in hours (e.g., 1.324 hours) for all datasets except
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for Instacart where event times are in days (e.g., 2.476 days). Each sequence in each dataset is standardized to
start at time t = 0.

Instacart5 records customer orders with the order number and the time gap from the last order from a customer.
We took the “prior” and “train” parts of the original dataset. This leads to a total of 3,346,083 orders with sets of
products from 206,209 users. We generated one sequence per customer and used the union of subsets if a user has
multiple orders occurring at the same time. We mapped the products into 21 distinct department IDs, leaving
3,325,578 orders. Finally, we filtered customer sequences to retain sequences that have at least 5 events but no
more than 200 events. The resulting dataset contains 174,615 sequences from different customers.

Last.fm6 (McFee et al., 2012) contains listening behaviors of 992 users and we mapped the tracks jointly by
artist and title into 15 genres on Discogs7. We created user sequences by choosing months where a user has
between 5 and 500 events, and identified distinct genres as sets for each event in a sequence, potentially resulting
in multiple sequences per user. After these preprocessing steps, we obtained a total of 10,705 sequences.

MovieLens 25M (Harper and Konstan, 2015) contains 25 million ratings for 62,000 movies from 162,000 users.
We used user sequences from the year 2016. The movies are categorized into 20 genres, and each movie can
belong to multiple genres that are interpreted as items in sets. After filtering sequences to have between 5 and
200 events, we are left with 11,198 user sequences.

The MOOC user action dataset (Kumar et al., 2019) represents course activities of 7,047 users with 97 different
possible activities (“items”). Activities that have the same timestamp correspond to sets. This dataset is skewed in
that only 3.7% of events have more than a single activity (or item); this is compatible with our general framework
since sets can contain a single item. After filtering sequences to have between 5 and 200 events, we have 6,892
user sequences.

B.2 Model Architecture and Training Details

Each event in the sequence is represented as a multi-hot encoding vector Xi = [Xi,1, Xi,2, ..., Xi,K ] with 0/1
elements. The event vector is calculated using Eq. (5) in the main paper from the embedding weights. For the
temporal component, using the neural Hawkes model, we apply the Softplus function after a linear mapping of
hidden states h(t) to obtain the total intensity λ∗(t), where we set s = 1 in λ∗(t) = s log(1 + exp(u · h(t)/s))
for simplicity. In addition, we use a simple linear mapping between hidden states h(t) and item probabilities in
Eq. (8). We also perform an ablation study using two layers for nonlinear mapping and the results are presented
in Appendix C.3.

The hyperparemeters for model training on each of the four datasets are summarized in Table 3 for all variants
of models. We choose a larger hidden state size for MovieLens because of the very large variation in time gaps
between events (from small to large) relative to the other datasets, and we use a larger embedding size for MOOC
because of the relatively large number of items relative to the other datasets.

Table 3: Hyperparameters for Model Architecture for Training

Dataset Embedding Size Hidden State Size

Instacart 16 64
Last.fm 16 64
MovieLens 16 128
MOOC 32 64

In addition, we apply the following default hyperparameter settings for experiments across all model variants and
all datasets. The learning rate is fixed at 0.001 with no weight decay, except for a linear warm-up learning rate
being applied for the first 1% iterations before achieving 0.001. We use a batch size of 128, and a fixed number of
300 epochs for training. The Adam stochastic gradient algorithm (Kingma and Ba, 2015) is used for optimization,
where we cap the gradient at 10, 000 for stability in training.

5https://www.kaggle.com/competitions/instacart-market-basket-analysis
6http://ocelma.net/MusicRecommendationDataset/lastfm-1K.html
7https://www.discogs.com/search/

https://www.kaggle.com/competitions/instacart-market-basket-analysis
http://ocelma.net/MusicRecommendationDataset/lastfm-1K.html
https://www.discogs.com/search/
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B.3 Discussion on DPP Variants

In our experiments with DPP, our implementation is based on the following expression for the likelihood:
p(A) = det(IAK

′ + IĀ(I − K′)). Here K′ is the marginal kernel in DPPs that can be computed as K′ =
L(L+ I)−1 = I− (L+ I)−1, IA is the diagonal matrix with ones in diagonal entries if the index corresponds to
item belonging to A and zeros otherwise, and IĀ has ones in diagonal entries if the index corresponds to item
not in A. This formulation allows us to parallelize the computation with varying sizes of sets Xi using standard
machine learning frameworks such as PyTorch that require tensors to have the same shape on every dimension.

We did not conduct querying experiments for our DPP models for computational reasons, i.e., the standard
DPP model scales in terms of time complexity as O(K3), and the eigendecomposition can also be numerically
unstable as K grows. In principle, DPP approaches that are more computationally tractable could be pursued as
alternatives within our framework.

B.4 Empirical Distributions of A-before-B Queries

As described in Section 5.4 in the main paper, we define an A-before-B query to be of the form p(hit(A) <
hit(B), hit(A) ≤ t|H) conditioned on the history for each test sequence. Table 4 summarizes the empirical
distribution for the four scenarios (for each of the four datasets), showing relatively balanced distributions for
each scenario given our querying setup.

Table 4: Empirical counts of the four scenarios listed in Section 4.2, where we suppress the notation that the
smaller value between hit(A) and hit(B) is less than or equal to t unless stated otherwise.

Dataset hit(A) = hit(B) ≤ t hit(A) < hit(B) hit(B) < hit(A) hit(A) > t,hit(B) > t

Instacart 74 298 286 342
Last.fm 122 309 301 268
MovieLens 128 341 351 180
MOOC 1 162 162 675

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 Recurrent Marked Temporal Point Processes Results

To illustrate that our framework is general and compatible with any recurrent MTPP model, we investigated the
use of the Recurrent Marked Temporal Point Processes (RMTPP) as an instantiation for the temporal component
of our proposed model. We use the Instacart dataset as an example and directly learn the total intensity as
well as the set structure from the hidden states h(t) in the same manner as for the neural Hawkes instantiation.
Other training, sampling, and experimental details are the same as the experiments using neural Hawkes as the
temporal model. Table 5 presents the test sequence log-likelihood. The dynamic models systematically outperform
static models, and neural Hawkes models generally learn a better temporal representation than RMTPP models.
Fig. 7 plots the relative efficiency for both temporal models for the Static and Dynamic Bernoulli variants. We
observe consistent gains in sample size using importance sampling relative to naive sampling. Fig. 8 shows the
corresponding query log-likelihood where dynamic models are consistently superior over static models. The
differences between neural Hawkes and RMTPP temporal models are not substantial.
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Table 5: Negative test sequence log-likelihood, −L from Eq. (2) , for the Instacart dataset, with different static
and dynamic variants of models, comparing NH and RMTPP for the dynamic components. Also shown is the
decomposition of each −L into time LTime and set LSet components. We highlight the results for −L to denote
the first (bold) and second (underline) best-performing models overall.

Model −L(↓) −LTime(↓) −LSet(↓)
StaticB-Poisson 205.11 58.17 146.94

StaticB-NH 198.22 51.30 146.92
StaticB-RMTPP 203.08 56.15 146.93
StaticDPP-NH 203.35 51.37 151.98
StaticDPP-RMTPP 208.36 56.14 152.22

DynamicB-NH 168.04 51.46 116.58
DynamicB-RMTPP 173.29 56.08 117.21
DynamicDPP-NH 170.68 51.41 119.27
DynamicDPP-RMTPP 175.87 56.08 119.79

Figure 7: Relative efficiency for hitting time queries of the form p(hit(A) ≤ t | H) and A-before-B queries of
the form p(hit(A) < hit(B), hit(A) ≤ t | H) for two model variants with neural Hawkes and RMTPP temporal
models. Blue and red dashed lines refer to the multiplicative runtime of importance sampling compared to naive
sampling.

Figure 8: Average negative test log-likelihood (±1 std. dev.) of hitting time queries p(hit(A) ≤ t | H) and
A-before-B queries p(hit(A) < hit(B), hit(A) ≤ t | H) estimates for two temporal models and two variants. Lower
values are better: the lower bound is 0 and the upper dashed line is the negative log-likelihood of randomly
guessing outcomes.

C.2 Runtime Comparisons

We conducted runtime experiments on hitting time queries of the form p(hit(A) ≤ t | H) for Static and Dynamic
Bernoulli models coupled with neural Hawkes processes on four datasets. In these experiments, we vary the
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number of items in A by using different percentages of items out of all possible items, while other settings are
the same as the main paper. The included items are randomly chosen from existing items in the conditioned
history for the MOOC dataset and from all items for the other datasets. We compare the wall-clock runtime in
seconds per sample by plotting the ratio between importance sampling and naive sampling. The value indicates
the multiplicative wall-clock time per sample that importance sampling takes compared to naive sampling.

Figs. 9 and 10 show that the ratio is consistently smaller than 1, demonstrating that importance sampling is
more efficient in wall-clock runtime. We gain more efficiency in importance sampling with an increasing number
of items associated with the query (approximately linear), because our proposal distribution effectively zeros out
the intensities for the proportion of items included in A.

Figure 9: Runtime analysis for Static Bernoulli models. The x-axis refers to the percentage of items associated
with the query p(hit(A) ≤ t | H). The y-axis refers to the multiplicative increase in wall-clock time per sample of
naive sampling compared to importance sampling.

Figure 10: Runtime analysis for Dynamic Bernoulli models with the same format as Fig. 9.

C.3 Ablation Study of Dynamic Bernoulli

In all our previous experiments, we used a linear layer for n in ρk(t) := σ(vk · n(h(t)) + bk) (Eq. (8)). We
use DynamicB-NH-2 to refer to the model using two layers in n for non-linear mappings. Results in Table 6
and Figs. 11 to 13 show that the difference between single layer and multiple layers are not substantial.
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Table 6: Comparing single-layer and 2-layer (indicated as “-2”) configurations for set modeling. Same form as in
Table 5.

Dataset Model −L(↓) −LTime(↓) −LSet(↓)
Instacart

StaticB-Poisson 205.11 58.17 146.94

StaticB-NH 198.22 51.30 146.92
DynamicB-NH 168.04 51.46 116.58

DynamicB-NH-2 167.93 51.37 116.56

Last.fm
StaticB-Poisson 1027.14 377.17 649.97

StaticB-NH 415.00 -234.91 649.92
DynamicB-NH 259.08 -223.59 482.67

DynamicB-NH-2 262.26 -219.28 481.54

MovieLens
StaticB-Poisson 741.55 276.49 465.07

StaticB-NH 263.78 -201.19 464.97
DynamicB-NH 236.80 -195.78 432.58

DynamicB-NH-2 238.15 -193.26 431.41

MOOC
StaticB-Poisson 439.74 169.77 269.97

StaticB-NH 189.54 -81.66 271.20
DynamicB-NH 45.30 -77.06 122.35

DynamicB-NH-2 43.99 -75.72 119.71

Figure 11: Relative efficiency for queries of the form p(hit(A) ≤ t | H) for two model variants. Blue and red
dashed lines refer to the multiplicative runtime of importance sampling compared to naive sampling.

Figure 12: Relative efficiency for queries of the form p(hit(A) < hit(B),hit(A) ≤ t | H) for two model variants.
Blue and red dashed lines refer to the multiplicative runtime of importance sampling compared to naive sampling.
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Figure 13: Comparing single-layer and 2-layer configurations for set modeling. Average negative test log-likelihood
(±1 std. dev.) of hitting time queries (top) and A-before-B queries (bottom) across 4 datasets. Lower values
are better: the lower bound is 0 and the upper dashed line is the negative log-likelihood of randomly guessing
outcomes.

C.4 Ablation Study of Hidden State Size

We empirically demonstrate that the gap of LTime between static and dynamic models with the same RNN
capacity can be reduced by increasing the size of hidden states. Using the MovieLens dataset and the neural
Hawkes base model as an example, we train all models with different capacities for a fixed number of 300 epochs
and report the negative log-likelihood of test sequences. Before overfitting, we observe that the gap between
LTime for dynamic and static models decreases while maintaining good performance on LSet.

Table 7: Comparing different hidden state size configurations for model architecture. Same form as in Table 6.
Model(-NH) Hidden State Size −L(↓) −LTime(↓) −LSet(↓)
StaticB 128 263.78 -201.19 464.97

DynamicB

128 236.80 -195.78 432.58
256 231.60 -200.94 432.54
512 247.24 -200.75 447.99
1024 365.47 -201.68 567.15

StaticDPP 128 259.95 -203.95 463.90

DynamicDPP

128 236.35 -194.15 430.50
256 232.93 -199.85 432.78
512 274.98 -199.25 474.22
1024 521.21 -165.30 686.51
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