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Abstract

Decision Trees are prominent prediction
models for interpretable Machine Learn-
ing. They have been thoroughly researched,
mostly in the batch setting with a fixed
labelled dataset, leading to popular algo-
rithms such as C4.5, ID3 and CART. Un-
fortunately, these methods are of heuristic
nature, they rely on greedy splits offering
no guarantees of global optimality and often
leading to unnecessarily complex and hard-
to-interpret Decision Trees. Recent break-
throughs addressed this suboptimality issue
in the batch setting, but no such work has
considered the online setting with data arriv-
ing in a stream. To this end, we devise a new
Monte Carlo Tree Search algorithm, Thomp-
son Sampling Decision Trees (TSDT),
able to produce optimal Decision Trees in an
online setting. We analyse our algorithm and
prove its almost sure convergence to the opti-
mal tree. Furthermore, we conduct extensive
experiments to validate our findings empiri-
cally. The proposed TSDT outperforms ex-
isting algorithms on several benchmarks, all
while presenting the practical advantage of
being tailored to the online setting.

1 INTRODUCTION

Interpretable Machine Learning is crucial in sensitive
domains, like medicine, where high-stakes decisions
have to be justified. Due to their extraction of simple
decision rules, Decision Trees (DTs) are very popu-
lar in this context. Unfortunately, finding the optimal
DT is NP-complete (Laurent and Rivest, 1976), and
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for this reason, popular batch algorithms greedily con-
struct a DT by splitting its leaves according to some
local gain metric, such approach is used in ID3 (Quin-
lan, 1986), C4.5 (Quinlan, 2014) and CART (Breiman
et al., 1984) to name a few. Due to this heuristic na-
ture, these approaches offer no optimality guarantees.
In fact, they often lead to suboptimal DTs that are
unnecessarily complex and hard to interpret, contra-
dicting the main motivation behind DTs.

In many modern applications, data is supplied through
a stream rather than a fixed data set, this renders most
batch algorithms obsolete, which led to the emergence
of the data stream (or online) learning paradigm (Bifet
and Kirkby, 2009). The classic batch DT algorithms
are ill-suited for online learning since they calculate
a splitting gain metric on a whole data set. In re-
sponse, Domingos and Hulten (2000) introduced the
VFDT algorithm, which constructs DTs in an online
fashion. VFDT estimates the gain of each split using
a statistical test based on Hoeffding’s inequality. This
approach yielded a principled algorithm and laid the
foundation for subsequent developments (Hulten et al.,
2001; Bifet and Gavalda, 2009; Manapragada et al.,
2018), with advances primarily focusing on improving
the quality of the statistical tests (Jin and Agrawal,
2003; Rutkowski et al., 2012, 2013). Much like their
batch counterparts, these online methods are heuristic
in nature, and consequently, they are susceptible to
the suboptimality issue.

In this work, we propose a method that circumvents
these limitations, yielding an online algorithm proven
to converge to the optimal DT. We consider online
classification problems with categorical attributes, for
which we seek the optimal DT balancing between the
accuracy and the number of splits. To achieve this,
we frame the problem as a Markov Decision Process
(MDP) where the optimal policy leads to the opti-
mal DT. We solve this MDP with a novel Monte
Carlo Tree Search (MCTS) algorithm that we call
Thompson Sampling Decision Trees (TSDT).
TSDT employs a Thompson Sampling policy that
converges almost surely to the optimal policy. In
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our experiments, we highlight the limitations of tra-
ditional greedy online DT methods, such as VFDT
and EFDT (Manapragada et al., 2018), and demon-
strate how TSDT effectively circumvents these short-
comings. Due to the lack of literature on optimal on-
line DTs, we compare TSDT with recent successful
batch optimal DT algorithms by feeding benchmark
datasets to TSDT as streams, TSDT clearly outper-
forms DL8.5 (Aglin et al., 2020) and matches or sur-
passes the performance of OSDT (Hu et al., 2019).

2 RELATED WORK

In the batch setting, the suboptimality issue of DTs
has been the subject of multiple research papers
focused mainly on mathematical programming, see
(Bennett, 1994; Bennett and Blue, 1996; Norouzi et al.,
2015; Bertsimas and Dunn, 2017; Verwer and Zhang,
2019). These methods optimise internal splits within
a fixed DT structure, making the problem more man-
ageable but potentially missing the optimal DT. Re-
cently, branch and bound methods were proposed to
mitigate this issue and yielded the DL8.5 algorithm
(Aglin et al., 2020) andOSDT (Hu et al., 2019) among
others. A subsequent algorithm, GOSDT (Lin et al.,
2020), generalises OSDT to other objective functions
including F-score, AUC and partial area under the
ROC convex hull. However, these methods are lim-
ited to binary attributes, necessitating a preliminary
binary encoding of the data. Moreover, the choice of
this binary encoding may significantly influence the
complexity of the solution, as demonstrated in our
experiments. All the aforementioned methods oper-
ate solely in the batch learning paradigm, lacking a
straightforward extension to the online setting.

The closest work to ours is perhaps (Nunes et al., 2018)
since the authors use MCTS, see (Browne et al., 2012)
for a survey about MCTS. Nunes et al. (2018) define
a rollout policy that completes the selected DT with
C4.5 on an induction set, then it estimates the value
of the selected DT by evaluating its performance on
a validation set. This approach does not differentiate
between DTs of different complexities, in fact, the au-
thors rely on a custom definition of terminal states in
terms of predefined maximum depth and number of in-
stances, alongside C4.5’s pruning strategy. Addition-
ally, by virtue of using C4.5, a pure batch algorithm,
this algorithm is not applicable for data streams.

Our proposed method is a Value Iteration approach
(Sutton and Barto, 2018) that uses Thompson Sam-
pling policy within a MCTS framework. Unlike Tem-
poral Difference methods, such as Q-Learning and
SARSA, general convergence results for Monte Carlo
methods remain an open theoretical question, noted

in (Sutton and Barto, 2018, p. 99 and p. 103) as ”one
of the most fundamental open theoretical questions”.
Some convergence results were established under spe-
cific assumptions. Wang et al. (2020) prove almost
sure optimal convergence of the policy for Monte Carlo
with Exploring Starts, while Dong et al. (2022) show
a similar result for Monte Carlo UCB. These results
pertain to MDPs with finite random length episodes
where the optimal policy does not revisit states. In
our case, although our MDP features similar proper-
ties, the rewards are unknown and merely estimated.
We investigate the convergence properties of MCTS
with Thompson Sampling policy within our specific
MDP. To the best of our knowledge, no prior work
has carried such analysis under this assumption. The
closest related work, found in (Bai et al., 2013), only
considers discounted MDPs with finite fixed horizons,
and does not provide a formal convergence proof, see
(Bai et al., 2013, Section 3.5).

3 PROBLEM FORMULATION

Let X =
(
X(1), . . . , X(q)

)
be the input with cate-

gorical attributes and Y ∈ {1, . . . ,K} the class to
predict. Data samples (Xi, Yi) arrive incrementally
through a stream, they are i.i.d. and follow a joint
probability distribution PX,Y . Let T be a DT and
L (T ) the set of leaves of T , for each leaf l ∈ L (T )
and class k ∈ {1, . . . ,K}, let p (l) = P [X ∈ l] de-
note the probability of event ”The subset of the input
space, described by leaf l, contains X” and pk (l) =
P [Y = k|X ∈ l] the probability that Y = k given
X ∈ l. For any input X we also denote l (X) the
leaf l that contains X, i.e. the leaf l such that X ∈ l.
Let H (T ) = P [T (X) = Y ] be the accuracy of T where
T (X) = T (l (X)) = Argmaxk{pk (l (X))} is the pre-
dicted class of X according to T . If we define our
objective to maximise as H (T ), then the full DT that
exhaustively employs all the possible splits is a trivial
solution. However, this solution is an uninterpretable
DT of maximum depth that just classifies the inputs
point-wise, as such, it is of no interest. We seek to
balance between maximising the accuracy and min-
imising the complexity, the latter condition is for in-
terpretation purposes. To this end, we introduce the
regularised objective:

Hr (T ) = P [T (X) = Y ]− λS (T )

Where λ ≥ 0 is a penalty parameter and S (T ) is the
number of splits in T . We note that Hu et al. (2019)
introduce a similar objective, but the authors penalise
the number of leaves |L (T ) | rather than the number
of splits S (T ). Our choice is motivated by the MDP
we define in the following section.
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3.1 Markov Decision Process (MDP)

We introduce our undiscounted episodic MDP with fi-
nite random length episodes as follows:
State: Our state space is the space of DTs.
Action: There are two types of actions, split actions
split a leaf with respect to an attribute and the termi-
nal action ends the episode, in which case we transition
from the current state T to the terminal state denoted
T which represents the same DT as T .
Transition Dynamics: When taking an action, we
transition from state T to state T ′ deterministically,
in which case we denote the transition T → T ′. The
set of next states from T is denoted Ch (T ), which sig-
nifies the children of T .
Reward: In any non-terminal state T , split actions
yield reward −λ and the terminal action yields reward
H (T ) = P [T (X) = Y ], which is unknown. r (T, T ′) is
the reward of the transition T → T ′.

In the next paragraph, we link the search for the op-
timal policy to that of the optimal DT.
A stochastic policy π maps each non-terminal state
T to a distribution over Ch (T ), for any T ′ ∈ Ch (T )
we denote π (T ′|T ) the probability of the transition
T → T ′ according to π. If π is deterministic, π (T ) is

the next state from T according to π. Let T = T (0) π→
T (1) π→ . . . ,

π→ T (N) be the episode that stems from fol-

lowing policy π starting from state T ; T (N) = T (N−1)

is terminal. The value of π at T is defined as:

Vπ (T ) = E

 N∑
j=1

r
(
T (j−1), T (j)

)
For convenience, we also define, for all terminal states
T , Vπ

(
T
)
= H

(
T
)
= H (T ). If π is deterministic,

then we get:

Vπ (T ) = λS (T ) +Hr

(
T (N−1)

)
Let R denote the root state (DT with only one leaf),
we have S (R) = 0 and therefore:

Vπ (R) = λS (R) +Hr

(
T (N−1)

)
= Hr

(
T (N−1)

)
Let π∗ ∈ ArgmaxπVπ (R), the optimal policy π∗ exists
and is deterministic because our MDP is finite. Let

R
π∗

→ . . . ,
π∗

→ T ∗ π∗

→ T ∗, then Hr (T
∗) = Vπ∗

(R) ≥
Vπ (R) for any policy π. On the other hand, any DT
T is constructed from a series of splits of the root R,
thus there always exists a policy π such that R

π→
. . . ,

π→ T
π→ T , and consequently Vπ (R) = Hr (T ). As

a result, Hr (T
∗) ≥ Hr (T ) for any DT T , establishing

the optimality of T ∗. We can find T ∗ by deriving π∗

first and then following it.

Figure 1: Each Search Node is a state and each edge
an action. The left-most edge is the terminal action,
hence why both the parent and child Search Nodes
represent the same DT. The remaining edges are split
actions with respect to the black leaf.

3.2 Tree representation of the State-Action
Space

As is custom in MCTS, the State-Action space is rep-
resented as a Tree called the Search Tree. We refer to
the nodes of the Search Tree as Search Nodes
to avoid confusion with the nodes of DTs. These
Search Nodes serve as representations of states, which
are DTs in the context of our MDP. The edges within
the Search Tree correspond to actions. Throughout
this work, we refer to DTs, states and Search Nodes
interchangeably. The root of the Search Tree is the
initial state R (the root DT), and its leaves, called
Search Leaves, are the terminal states. Figure 1 de-
picts a segment of the Search Tree.

4 TSDT

In this section, we introduce our method. If we know
Vπ∗ (

T
)

= H (T ) for all Search Leaves T , then we
can Backpropagate these values up the Search Tree
and recursively deduce Vπ∗

(T ) for all internal Search
Nodes with the Bellman Optimality Equation:

Vπ
∗
(T ) = max

T ′∈Ch(T )

{
−λ1

{
T ′ ̸= T

}
+Vπ

∗
(T ′)

}
(1)

Unfortunetely, the values Vπ∗ (
T
)
are unknown, this

prompts us to estimate them, but which Search Leaves
should we prioritise? We need a policy with an effi-
cient Exploration-Exploitation trade-off. Several no-
table options can be considered, among which UCB
(Auer et al., 2002), that was popularised, in the con-
text of MCTS, by the UCT algorithm (Kocsis and
Szepesvári, 2006). UCB is out of the scope of this
paper, we analyse it in one of our ongoing works. We
consider Thompson Sampling instead. To use this pol-
icy, we need to estimate the values within a Bayesian
framework.
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4.1 Estimating Vπ∗ (
T
)
for a Search Leaf T

For any Search Leaf T , we have:

Vπ
∗ (

T
)
= H (T ) = P [T (X) = Y ]

=
∑

l∈L(T )

p (l)E [1{T (X) = Y }|X ∈ l] (2)

From Equation (2), given observed data {(Xi, Yi)}Ni=1

in T , we define the posterior on Vπ∗ (
T
)
with:

θT =
∑

l∈L(T )

p̂ (l) θT,l (3)

Where p̂ (l) is an estimator of p (l) and θT,l follows
a posterior distribution on E [1{T (X) = Y }|X ∈ l]
given {(Xi, Yi)}Ni=1. Since E [1{T (X) = Y }|X ∈ l] is
the mean of a Bernoulli variable, we are tempted to use
its Beta conjugate prior with the following updates:

θT,l ∼ Beta (αT,l, βT,l)

αT,l = 1 +

N∑
i=1

1{Xi ∈ l}1{T (Xi) = Yi};

βT,l = 1 +

N∑
i=1

1{Xi ∈ l} −
N∑
i=1

1{Xi ∈ l}1{T (Xi) = Yi}

However, the challenge pertains to the unknown na-
ture of T (Xi) = Argmaxk{pk (l (Xi))}. We solve this
issue with the empirical average estimates:

∀l ∈ L (T ) : p̂
(i)
k (l) =

∑i
j=1 1{Xj ∈ l}1{Yj = k}∑i

j=1 1{Xj ∈ l}

T̂i (l) = Argmaxk{p̂
(i)
k (l)} (4)

Then we rather update αT,l and βT,l with:

αT,l = 1 +

N∑
i=2

1{Xi ∈ l}1{T̂i−1 (Xi) = Yi}; (5)

βT,l = 1 +

N∑
i=2

1{Xi ∈ l}

−
N∑
i=2

1{Xi ∈ l}1{T̂i−1 (Xi) = Yi} (6)

Now θT (Equation (3)) is a linear combination of the
Beta variables θT,l, and its distribution is not easy
to infer. For this reason, we consider the common
Normal approximation of the Beta distribution where
we match the first two moments.

θT,l ∼ N
(
µT,l, (σT,l)

2
)
; µT,l =

αT,l
αT,l + βT,l

(7)

(σT,l)
2
=

αT,lβT,l

(αT,l + βT,l)
2
(1 + αT,l + βT,l)

(8)

This makes θT =
∑
l∈L(T ) p̂ (l) θT,l a linear combina-

tion of Normal random variables, and therefore:

θT ∼ N
(
µT , (σT )

2
)
; µT =

∑
l∈L(T )

p̂ (l)µT,l (9)

(σT )
2
=

∑
l∈L(T )

p̂ (l)
2
(σT,l)

2
(10)

We recall that this posterior distribution is condi-
tioned on the observed data {(Xi, Yi)}Ni=1 in T . To
finalise the definition of θT , we still need to define
p̂ (l). We defer this task to Section 4.4 as we are cur-
rently lacking some key insights from the Algorithm.
For the time being, we assume having such estimator
that is completely defined by {Xi}Ni=1 and consistent

p̂ (l)
a.s−−−−→

N→∞
p (l).

4.2 Estimating Vπ∗
(T ) for an internal Search

Node T

Let T be an internal Search Node, which is a non-
terminal state. Value Iteration updates the estimate of
Vπ∗

(T ) according to the Bellman Optimality Equation
(1). Thus, we define the posterior on Vπ∗

(T ) given all
the observed data {(Xi, Yi)}Ni=1 in T as:

θT = max
T ′∈Ch(T )

{
− λ1

{
T ′ ̸= T

}
+ θT ′

}
(11)

What is the posterior distribution of θT given
{(Xi, Yi)}Ni=1?

We suppose ∀T ′ ∈ Ch (T ) : θT ′ ∼ N
(
µT ′ , (σT ′)

2
)
.

This is motivated by an inductive reasoning, indeed,
if we show that θT is Normally distributed, then since
the posteriors of all Search Leaves are Normal, as de-
fined in Section 4.1, we would recursively infer that the
posteriors of all internal Search Nodes are Normal.
Unfortunately, the maximum of Normal variables, as
defined in Equation (11), is not Normal, this observa-
tion is documented in (Clark, 1961; Sinha et al., 2007).
To solve this issue, a first approach is to use a Normal
approximation of the distribution of the maximum in
Equation (11), this is achieved by recursively applying
Clark’s mean and variance formula for the maximum
of two Normal variables as demonstrated in (Tesauro
et al., 2010, Section 4.1). This leads to our first version
of TSDT, we present the details of this Backpropaga-
tion scheme in Appendix C. Nevertheless, this approx-
imation incurs a substantial computational cost as the
number of children |Ch (T ) | increases. Moreover, as
outlined by Sinha et al. (2007), the order in which
the recursive approximations are executed may signif-
icantly affect the quality of the overall approximation.
For these reasons, we introduce an alternative, more
straightforward approach to Backpropagating the pos-
terior distributions θT ′ to θT . Specifically, we assign
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to θT the posterior distribution of the child with max-
imum posterior mean:

T̃ = ArgmaxT ′∈Ch(T ){µT ′}; θT ∼ N
(
µT̃ ,

(
σT̃
)2)
(12)

We call this second version of the Algorithm Fast-
TSDT, it is more practical than the first one and ex-
hibits better computational efficiency. While in gen-
eral, the distribution in formula (12) may not serve
as an accurate approximation for the distribution of
the maximum in Equation (11), it progressively im-
proves as θT ′ , for children T ′, concentrate around their
means. This concentration occurs as more data is ac-
cumulated within T ′, as exemplified in Equations (10)
and (8) for Search Leaves. Furthermore, it is worth
noting that Fast-TSDT displays a substantial gain in
computational efficiency and also (surprisingly!) in
performance compared to TSDT.

4.3 The Algorithm

Algorithm 1 is an abstract description of TSDT and
Fast-TSDT. In the following, we view it from the per-
spective of an incremental construction of the Search
Tree representation. Initially, our Search Tree repre-
sentation contains the root R only, then at each itera-
tion t, we follow the steps illustrated in Figure 2.

• Selection: Line 4. Starting from R, descend the
Search Tree by choosing a child according to the
current policy πt until reaching a Search Leaf.

• Simulation: Line 5. We observe newm incoming
data from the stream in T (N−1). The objective is
to use the accumulated observed data in T (N−1)

to, either initialise the posteriors of children T ′ ∈
Ch
(
T (N−1)

)
with θT ′ = θT ′ (Line 11), or to just

update the posterior of θT (N) (Line 14). These
posteriors will in turn update the posterior of θT ,
as per Section 4.2, during Backpropagation.

• Expansion: Line 7. If T (N−1) is visited for the
first time, we add its children Search Nodes T ′ ∈
Ch
(
T (N−1)

)
to our Search Tree representation.

• Backpropagation: Loop from Line 16 to 21.
Recursively update the posterior of the ancestors
θT (j) (Line 17), for j = N −1 to 0, with the inter-
nal Search Nodes posterior updates as per Section
4.2 (formula (12) for Fast-TSDT, and the recur-
sive Normal approximation of the maximum for
TSDT). At the same time, update the Thomp-
son Sampling policy (Loop from Line 18 to 20).

In line 23, after M iterations of TSDT, we define the
greedy policy π with respect to the posterior means.

Then we unroll π: R = T (0) π→ T (1) π→ . . . ,
π→ T (N)

and return the proposed solution T (N) (Lines 24, 25).

To complete the description of Algorithm 1, we still
need to answer the following question: How does the
Simulation step allow us to initialise the poste-
riors for the children? To answer this question, we
introduce some new statistics.
Let T be a Search Node that was simulated, and
suppose we observe data {(Xs, Ys)}Ns=1 in T . Let
l ∈ L (T ) be a leaf of T and T (l,i) ∈ Ch (T ) the child
that stems from splitting l with respect to attribute
X(i). Our objective here is to use data {(Xs, Ys)}Ns=1

to initialise θT (l,i) = θ
T (l,i) . According to Equations

(7), (8), (9) and (10), this is achieved by calculat-
ing αT (l,i),l′ , βT (l,i),l′ for all leaves l′ ∈ L

(
T (l,i)

)
(and

also p̂ (l′) which, we remind the reader, is deferred to
Section 4.4). Let l′ ∈ L

(
T (l,i)

)
, if l′ is not a child

of l, then l′ is a common leaf between T (l,i) and T ,
thus αT (l,i),l′ = αT,l′ and βT (l,i),l′ = βT,l′ , these are
straightforwardly calculated with the observed data
{(Xi, Yi)}Ni=1 in T using Equations (4), (5) and (6).
If l′ is a child of l, then there exists j such that l′ = lij
is the child of l that corresponds to attribute X(i) be-
ing equal to j. For N ′ ≤ N , we define:

nijk (N
′, l) =

N ′∑
s=1

1{Ys = k}1{X(i)
s = j}1{Xs ∈ l}

On the subset {(Xs, Ys)}N
′

s=1, nijk (N
′, l) is the number

of inputs Xs ∈ l of class k satisfying X
(i)
s = j. Then

we can track the estimates:

T̂
(l,i)
N ′ (lij) = Argmaxk

{
nijk (N

′, l)∑
k nijk (N

′, l)

}

m (lij) =

N∑
s=2

1{T̂ (l,i)
s−1 (Xs) = Ys}1{X(i)

s = j}1{Xs ∈ l}

αT (l,i),lij = 1 +m (lij) ;

βT (l,i),lij = 1 +
∑
ijk

nijk (N, l)−m (lij)

With this, the initialisation θT (l,i) = θ
T (l,i) is now com-

plete. In summary, the introduced nijk (N
′, l) statis-

tics at the leaves l ∈ L (T ) allow us to use the accu-
mulated observed data {(Xi, Yi)}Ni=1 in T to initialise
the posterior θT ′ = θT ′ for all children T ′ ∈ Ch (T ).

In the following, we provide the optimal convergence
result for both TSDT and Fast-TSDT.

Theorem 1. Let time t denote the number of iter-
ations of TSDT and Fast-TSDT, then any Search
Node T satisfies the following:

µT
a.s−−−→
t→∞

Vπ
∗
(T ) , (σT )

2 a.s−−−→
t→∞

0
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Algorithm 1 TSDT, Fast-TSDT

1: Input: M number of iterations, m number of ob-
served samples per Simulation, λ ≥ 0.

2: Initialise π0

(
T
∣∣∣T) = 1 and fully expanded(T ) =

False for all non-terminal states T
3: for t = 1 to M do
4: Unroll πt: R = T (0) πt→ T (1) πt→ . . . ,

πt→ T (N)

5: Simulate(T (N−1))
6: if not fully expanded(T (N−1)) then
7: Expand(T (N−1))
8: fully expanded(T (N−1)) = True
9: for T ′ ∈ Ch

(
T (N−1)

)
do

10: Update the posterior of θT ′

11: Initialise θT ′ = θT ′

12: end for
13: else
14: Update the posterior of θT (N)

15: end if
16: for j = N − 1 to 0 do
17: Update the posterior of θT (j)

18: for T ′ ∈ Ch
(
T (j)

)
do

19: Update the policy at T (j) → T ′

πt+1

(
T ′
∣∣∣T (j)

)
= P

[
θT ′ = max

T”∈Ch(T (j))
{θT”}

]

20: end for
21: end for
22: end for
23: Define π (T ) = ArgmaxT ′∈Ch(T )

{
−λ1{T ′ ̸= T}+

µT ′

}
for all non-terminal states T

24: Unroll π: R = T (0) π→ T (1) π→ . . . ,
π→ T (N)

25: return T (N)

and any internal Search Node T satisfies:

πt

(
π∗ (T )

∣∣∣T) a.s−−−→
t→∞

1

Theorem 1 states the concentration of θT around the
optimal value Vπ∗

(T ) for any Search Node T . Ad-
ditionally, it asserts the concentration of the policy
πt (.|T ) around the optimal action π∗ (T ) for any inter-
nal Search Node T . This Theorem provides an asymp-
totic guarantee of optimality, which is valuable. How-
ever, it would be ideal to have some finite time guar-
antees in the form of PAC-bounds or rates of conver-
gence. Unfortunately, such guarantees are primarily
derived for simpler settings like bandit problems. In
the context of MDPs, most convergence guarantees are
asymptotic, and the issue of finite-time guarantees re-
mains open in many cases. We believe that the tail
inequality we derive in Theorem 2 marks a first step
towards achieving this goal in a future work. The idea

Figure 2: One iteration of TSDT. The Search Node

in dashed lines is the Search Leaf T (N) = T (N−1).

is that by controlling the concentration of the poste-
riors at the level of Search Leaves, it may be possible
to propagate this control up the Search Tree to the
root state R. This would allow us to derive a time-
dependent concentration probability of the posterior
of θR around the true Vπ∗

(R). However, this Back-
propagation reasoning is a non-trivial challenge that
warrants further exploration in future work.

Theorem 2. Let T be an internal Search Node with
Ch (T ) = {T1, . . . , Tw} Search Leaves and w ≥ 2.
Let t denote the number of visits of T and NTj (t)
the number of visits of Tj up to t. Define Mw =

1 +
√

2√
3
erfc−1

(
1

w−1

)
, then ∀Tj ∈ Ch (T ):

P
[
NTj (t)m ≤ log t

4|L (Tj) |Mw

]
≤

exp

[
−2

t

(
t3/4√
πϕ (t)

− log t

4m|L (Tj) |M2
w

)2
]

Where ϕ (t) =
√

log t
4 +

√
log t
4 + 2

4.4 Estimator p̂ (l)

Let T be a DT and l ∈ L (T ) some leaf. We re-
call from Equations (2) and (3) that we need an es-
timator p̂ (l) of p (l) = P [X ∈ l]. Suppose we observe
data {(Xi, Yi)}Ni=1 in T , the most straightforward es-
timator is the empirical average. However, Algorithm
1 incorporates mechanisms that make it sample effi-
cient. It does not copy Decision Tree nodes, thus the
nijk (N, η), of any node η, are updated whenever data
(Xs, Ys) is observed (during Simulation) with Xs ∈ η,
regardless of which Search Node was simulated. In ad-
dition, even though nijk (N, l) can be used to calculate
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the empirical averages:

p̂ (l) =

∑
ijk nijk (N, l)∑

l∈L(T )

∑
ijk nijk (N, l)

p̂ (lij) =

∑
k nijk (N, l)∑

l∈L(T )

∑
ijk nijk (N, η)

for any leaf l ∈ L (T ) and any child node lij of l.
nijk (N, l) cannot calculate the empirical average for
the children of lij . This limited scope, along with
not copying Decision Tree nodes, cause the observed
marginal distribution of input X to shift from the true
marginal distribution. We explain this phenomenon in
the next paragraph and illustrate it in Figure 3.

When expanding R, the observed data in r update the
empirical averages for nodes a and b, then when A is
selected, simulated and expanded, node a in C has its
empirical average estimator updated using this newly
observed data (during the Simulation of A) accumu-
lated with the old data (from the Simulation of R). On
the other hand however, for nodes c and d, the update
only involves the newly observed data in b (during the
Simulation of A). This leads to skewed estimators,
p̂ (a) overestimates p (a) while p̂ (c) and p̂ (d) underes-
timate p (c) and p (d), and the greater the difference
in depth between a and c, d, the greater the overes-
timation and underestimation effects are, we call this
phenomenon “Weights Degeneracy”.
A second source of Weights Degeneracy is not copying
the DT nodes, indeed p̂ (a) is updated not only when
A or C are simulated but also when D is simulated,
in the latter case, the sufficient statistics of p̂ (c) and
p̂ (d) are not updated at all, making the overestima-
tion/underestimation wider!

We avoid both Weights Degeneracy causes by defining
a new estimator based on the chain rule:

P [X ∈ l] =P [X ∈ l,X ∈ Parent (l) , . . . , X ∈ root]

=P [X ∈ l|X ∈ Parent (l)]× . . .× P [X ∈ root]

We estimate each term P [X ∈ η|X ∈ Parent (η)] with

p̂ (η|Parent (η)) = n(N,η)∑
ψ∈Sib(η) n(N,ψ)

, where Sib (η) is the

set of siblings of node η, including η itself, and n (N, η)
is the number of observed samples with inputs in η.
This yields the product estimator:

p̂ (l) = p̂ (l|Parent (l))× . . .× 1

Since estimates p̂ (η|Parent (η)) only involve nodes at
the same depth (η and its siblings), both sources of
Weights Degeneracy are avoided, and by the Strong
Law of Large numbers, we have the consistency:

p̂ (η|Parent (η)) a.s−−→ P [X ∈ η|X ∈ Parent (η)]

Figure 3: The Weights Degeneracy phenomenon.

Figure 4: Comparison of VFDT, EFDT, TSDT and
Fast-TSDT. Left: Frequency of perfect convergence;
Right: Average running time in seconds.

As more and more samples are observed in Parent (η),
and we deduce the consistency of our new estimator
p̂ (l)

a.s−−−−→
N→∞

p (l).

5 EXPERIMENTS

Our first experiment highlights an important weakness
of the classic greedy DT methods, and showcases how
TSDT and Fast-TSDT circumvent this shortcoming.
In the second experiment, we compare our methods
with recent optimal batch DT algorithms DL8.5 and
OSDT on standard real world benchmarks. All the
experimental details and additional results are pro-
vided in Appendix B. Furthermore, our implemented
code is available at https://github.com/Chaoukia/
Thompson-Sampling-Decision-Trees along with the
datasets we used.

We construct a challenging classification problem for
greedy DT methods. In this setting, all the attributes
are uninformative, in the sense that their true split-
ting gain metrics are all equal, making greedy meth-
ods VFDT and EFDT choose an attribute arbitrar-
ily with tie-break. Concretely, We consider a binary
classification problem with binary i.i.d. uniform at-
tributes where Y = 1 if X(1) = 0, X(2) = 0 or
X(1) = 1, X(2) = 1 and Y = 0 otherwise (Figure 6
provides a visualisation of the optimal DT). Attributes
X(3), . . . , X(q) are irrelevant, resulting in uniform class
distributions in both leaves, regardless of the attribute
chosen for the root split, even when selecting one of
the relevant attributes X(1) or X(2). Consequently,
VFDT and EFDT arbitrarily choose the attribute to

https://github.com/Chaoukia/Thompson-Sampling-Decision-Trees
https://github.com/Chaoukia/Thompson-Sampling-Decision-Trees
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Figure 5: Cross-validation test accuracy comparison between TSDT, Fast-TSDT, OSDT and DL8.5 as a
function of the number of leaves.

employ for the first split, and will continue with these
arbitrary choices until attribute X(1) or X(2) is cho-
sen, resulting in unnecessarily deep DTs. We compare
VFDT, EFDT and TSDT on settings with different
numbers of attributes q = 5, 10, 20, 50, 100. We per-
form 20 runs and report the frequency of perfect con-
vergence, i.e, convergence to the optimal DT that only
employs X(1) and X(2), and the average running time.
Figure 4 presents a clear trend: VFDT and EFDT
rarely attain perfect convergence, especially when q is
large. In contrast, both TSDT and Fast-TSDT con-
sistently achieve perfect convergence. Additionally, as
anticipated, Fast-TSDT demonstrates superior com-
putational efficiency compared to TSDT.

In our second experiment, we conduct a compari-
son between TSDT, Fast-TSDT, OSDT, and DL8.5,
even though the latter two are batch algorithms. This
choice is due to the absence of prior research on opti-
mal online DTs, to the best of our knowledge. Further-
more, the source codes of both DL8.5 and OSDT are
publicly available. Unfortunately, we could not include
a comparison with the work by Nunes et al. (2018) as
the authors have not made their code publicly accessi-
ble. In this regard, we also draw attention to (Nunes
et al., 2018, Table 1), which demonstrates how that
algorithm is prohibitively slow, taking up to 105 hours
in an instance. It is worth noting that our experiments
exclude GOSDT because our focus is on accuracy and
complexity comparison, and GOSDT is primarily an
extension of OSDT to other objective functions be-

yond accuracy. We follow the experimental protocol
from (Hu et al., 2019) with its datasets. We per-
form a 5-fold crossvalidation with different values of
the hyperparameters (maximum depth for DL8.5 and
λ for OSDT and TSDT), and we report in Figure
5 the quartiles of the test accuracy and the number
of leaves. For MONK1, Hu et al. (2019) utilised a
One-Hot Encoding that excludes the last category of
each attribute, which results in an optimal DT with
8 leaves. However, when the first category is dropped
instead, the problem becomes significantly more chal-
lenging, with an optimal DT having over 18 leaves
(further details are available in Appendix B). On this
latter problem, Figure 5 clearly indicates that Fast-
TSDT outperforms all other methods, followed by
TSDT. In fact, Fast-TSDT is the only method that
achieves 100% test accuracy with 19 leaves. Moreover,
unlike OSDT and DL8.5, our methods do not necessi-
tate binary attributes. Therefore, they can be directly
applied to the original MONK1 data. In this scenario,
the optimal DT representation of Y with the lowest
complexity consists of 27 leaves, and it is successfully
retrieved by Fast-TSDT. TSDT, on the other hand,
identifies a slightly more complex DT with 28 leaves.
For MONK2 and MONK3, Fast-TSDT demonstrates
the best accuracy to number of leaves frontier. On
the remaining datasets, our methods do not produce
DTs with a large number of leaves, and OSDT per-
forms slightly better. In Appendix B, we provide the
execution times, DL8.5 is the fastest algorithm but
also performs the least effectively, while OSDT and
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TSDT frequently reach their time limit of 10 min-
utes. On the other hand, Fast-TSDT strikes a good
balance between speed and performance.

6 CONCLUSIONS, LIMITATIONS
AND FUTURE WORK

We devised TSDT, a new family of MCTS al-
gorithms for constructing optimal online Decision
Trees. We provided strong convergence results for our
method and highlighted how it circumvents the sub-
optimality issue of the standard methods. Further-
more, TSDT showcases similar or better accuracy-
complexity trade-off compared to recent successful
batch optimal DT algorithms, all while being tailored
to handling data streams. For now, we are still lim-
ited to categorical attributes and our theoretical anal-
ysis only provides asymptotic convergence results. It
would be desirable to derive some finite-time guaran-
tees, in the form of PAC-bounds or rates of conver-
gence, this is the aim of our future work. To conclude,
this paper opens further possibilities for defining other
MCTS algorithms with different policies, such as UCB
and ϵ-greedy, in the context of optimal online DTs.
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A Table of Notations

Table 1: Table of Notation

X =
(
X(1), . . . , X(q)

)
, the input.

Y ∈ {1, . . . ,K}, the class.

T ≜ State, Decision Tree, Search Node.

T ≜ Terminal state that stems from taking the terminal action in T .

T (l,i) ≜ child Search Node of T that stems from splitting leaf l ∈ L (T )
with respect to attribute X(i).

R ≜ Root Decision Tree, initial state, root of the Search Tree.

L (T ) ≜ Set of leaves of Decision Tree T .

X ∈ l ≜ Event, the subset described by l contains X.
p (l) = P [X ∈ l], probability of X ∈ l.
pk (l) = P [Y = k|X ∈ l], probability of Y = k given X ∈ l.

l (X) ≜ Leaf l such that X ∈ l.
H (T ) = P [T (X) = Y ], accuracy of Decision Tree classifier T .

T (X) ≜ argmaxk{pk (l (X))}, predicted class of X according to DT T .

Hr (T ) ≜ Regularized Objective function of Search Node T .
Hr (T ) = P [T (X) = Y ]− λS (T ).

S (T ) ≜ Number of splits in DT T .

T → T ′ ≜ Transition from state T to state T ′.

Ch (T ) ≜ Set of children of Search Node T , also set of next states from T .

r (T, T ′) ≜ Reward of transition T → T ′.

π ≜ Policy, maps each state T to a distribution over Ch (T ).

π (T ′|T ) ≜ Probability of transition T → T ′ according to policy π.

π (T ) ≜ Next state from T according to policy π.

T (0) π→ . . . ,
π→ T (N) ≜ Episode that stems from following policy π starting from state T .

Vπ (T ) ≜ Value of following policy π starting from state T .
π∗ ∈ ArgmaxπVπ (R), optimal policy at the initial state R.

T ∗ ≜ Optimal Decision Tree with respect to Hr.

θT ≜ Posterior distribution on Vπ∗
(T ).

θT,l ≜ Posterior distribution on E [1{T (X) = Y }|X ∈ l].

p̂ (l) ≜ Estimator of p (l).

p̂
(i)
k (l) =

∑i
j=1 1{Xj∈l}1{Yj=k}∑i

j=1 1{Xj∈l}
, estimator of pk (l).

T̂i (l) = Argmaxk{p̂
(i)
k (l)}, estimator of T (l).

αT,l, βT,l = Parameters of random variable θT,l.
µT,l, σT,l = Mean and standard deviation of θT,l respectively.
µT , σT = Mean and standard deviation of θT respectively.

nijk (N, η) ≜ Given observed samples {(Xs, Ys)}Ns=1, nijk (N, η) is the number

samples with Xs ∈ η, Ys = k satisfying X
(i)
s = j.

B Experiments

• All of the experiments were run on a personal Machine (2,6 GHz 6-Core Intel Core i7), they are easily
reproducible.

• The codes for DL8.5 and OSDT are available at https://pypi.org/project/dl8.5/ and https:

//github.com/xiyanghu/OSDT.git respectively. We provide code for TSDT and Fast-TSDT at https:
//github.com/Chaoukia/Thompson-Sampling-Decision-Trees.

https://pypi.org/project/dl8.5/
https://github.com/xiyanghu/OSDT.git
https://github.com/xiyanghu/OSDT.git
https://github.com/Chaoukia/Thompson-Sampling-Decision-Trees
https://github.com/Chaoukia/Thompson-Sampling-Decision-Trees
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Figure 6: Equivalent representations of Y as a Decision Tree for the synthetic experiment.

• In practice, the variances in Equation (10) can collapse to 0 quickly, undermining exploration and slowing
down the algorithm. We mitigate this issue by introducing an exponent 0 < γ < 1 as follows:

(σT )
2
=

 ∑
l∈L(T )

p̂ (l)
2
(σT,l)

2

γ

This is also discussed in (Kocsis and Szepesvári, 2006, Section 3.1). The authors of UCT introduce an
exponent on the bias terms ct,s in practice.
In all our experiments, we use γ = 0.75.

• During the Expansion step, creating all the children of the selected Search Node T can be computationally
expensive. Therefore, whenever T is chosen, we expand it with respect to only one untreated leaf. Initially,
all leaves of T are marked as untreated. Upon selecting T , we pick the untreated leaf l ∈ L (T ) with the
highest Gini impurity to prioritize exploring promising parts of the Search Tree. We then generate the subset
of Ch (T ) by considering all possible split actions exclusively with respect to leaf l, subsequently marking l
as treated. We update πt at T only when all leaves in L (T ) have been treated. Only then, the children of
T in Ch (T ) become eligible to be considered for future Selection (and the subsequent) steps.

Synthetic Experiment: We use the default hyperparameters for VFDT and EFDT, for TSDT and Fast-
TSDT, we set M = 400,m = 100, λ = 0.05.

Real World datasets: We ran both our methods with M = 1000 iterations for MONK1 Original and MONK1
Drop Last, and withM = 10000 iterations on the remaining datasets. All instances of TSDT and Fast-TSDT use
m = 100 number of samples per Simulation step. To get our accuracy-complexity frontier figures, we run the
experiments with multiple values of λ for TSDT, Fast-TSDT and OSDT, and different values of the depth limit
for DL8.5.

• For DL8.5, the depth limits range from 1 to 6 exactly as reported by Lin et al. (2020).

• For TSDT, Fast-TSDT and OSDT, the set of λ values is 0.1, 0.01, 0.0025, 0.0001, which is a subset of the
values used by Lin et al. (2020). For all algorithms, we set a time limit of 10 minutes.

In Figure 8, OSDT reaches its time limit on all the datasets except MONK1, where the last category is dropped
by the Binary Encoding. TSDT displays a similar behaviour but in less experiments than OSDT. On the other
hand, while it is true that DL8.5 is clearly the fastest algorithm, it is also the algorithm that exhibits the least
efficient accuracy-complexity frontier. In fact, when comparing the training accuracies in Figure 7 and the test
accuracies in Figure 5, we notice a clear overfitting trend by DL8.5 unlike the remaining algorithms. To conclude,
we argue that Fast-TSDT displays the best trade-off between optimality and execution time.

One of the main demonstrations of OSDTwas its Decision Tree solution to MONK1 Drop Last, and depicted
in (Hu et al., 2019, Figure 6) in the comparison against BinOCT. Fast-TSDT consistently achieves the same
solution with 8 leaves, represented in Figure 10, in much less time as documented in Figure 8. Moreover, as
stated in Section 5, Hu et al. (2019) drop the last category of each attribute in their One-Hot Encoding of
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Figure 7: Cross-validation training accuracy of TSDT, OSDT and DL8.5 as a function of the number of leaves.
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Figure 8: Cross-validation execution times of TSDT, OSDT and DL8.5 as a function of the number of leaves.
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MONK1. However, without some form of prior knowledge, such choice is just arbitrary, and other options can
be considered as well. The issue that arises from this is that these different options lead to solutions of different
complexities as we explain in the following. In Figure 18, we aim at encoding some attribute variable X that
takes three possible values (categories). One-Hot Encoding encodes X using two binary variables X0 and X1,
if we drop the last category of X then we represent X = 0 with X0 = 1, and X = 1 with X1 = 1; but to
encode X = 2 (the excluded category), we need X0 = 0, X1 = 0, which translates into a branch with two
splits. Now, let us consider the following classification problem with P [Y = 1|X = 2] = 0,P [Y = 1|X ̸= 2] = 1,
then dropping the last category during One-Hot Encoding leads to an optimal Decision Tree with two splits, as
represented in Figure 18, while dropping any other category instead leads to an optimal Decision Tree with only
one split. In Monk 1, a similar phenomenon occurs where the choice of binary encoding has a significant impact
on the complexity of the optimal DT. Indeed, dropping the last category leads to a simple solution with only 8
leaves, however, dropping the first category instead leads to a more complicated ad hard to find solution. In this
case, Figures 7 and 5 clearly demonstrate that Fast-TSDT consistently achieves a better solution than DL8.5
and OSDT. Figure 11 illustrates a 19-leaf solution that Fast-TSDTretrieves, achieving 100% training and test
accuracies, no similar solution has been found by DL8.5 and OSDT.

Figure 9: Fast-TSDT’s solution to Monk 1 Original, the true optimal solution of least complexity.

Figure 10: Fast-TSDT’s solution to Monk 1 Drop Last, the true optimal solution of least complexity.

Figure 11: Fast-TSDT’s solution to Monk 1 Drop First, this solution has 19 leaves and achieves 100% training
and test accuracies; DL8.5 and OSDT were unsuccessful in retrieving such solution.



Online Learning of Decision Trees with Thompson Sampling

Figure 12: Fast-TSDT’s solution to Monk 2, this solution has 17 leaves and achieves 89.6% training accuracy
and 73.5% test accuracies.

Figure 13: Fast-TSDT’s solution to Monk 3, this solution achieves 93.8% training accuracy and 92% test
accuracy.

Figure 14: Fast-TSDT’s solution to Tic-Tac-Toe, this solution achieves 79.8% training accuracy and 81.8% test
accuracy.

Figure 15: Fast-TSDT’s solution to Car Evaluation, this solution achieves 89.9% training accuracy and 90.8%
test accuracy.
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Figure 16: Fast-TSDT’s solution to Compas, this solution achieves 66.4% training accuracy and 66% test
accuracy.

Figure 17: Fast-TSDT’s solution to Fico, this solution achieves 69.4% training accuracy and 71.8% test accuracy.

Figure 18: How the choice of which category to drop during One-Hot Encoding influences the resulting splits.

C TSDT’s Backpropagation details

In this section, we present the details of the Backpropagation step performed by our first version of TSDT.
Let T be an internal Search Node, which is an internal state, and let Ch (T ) = {T1, . . . , Tm}. We recall from
Equation (11) that we have:

θT = max
1≤j≤m

{
− λ1

{
Tj ̸= T

}
+ θTj

}
Following the Inductive reasoning in Section 4.2, we suppose that ∀1 ≤ j ≤ m : θTj ∼ N

(
µTj ,

(
σTj
)2)

. Now, θT

is a maximum over Normal variables that are conditionally independent given the observed data {(Xi, Yi)}Ni=1

in T . We know that θT is not Normally distributed, but we can approximate its distribution with a Gaussian
as is discussed in (Sinha et al., 2007). Let us first consider the case with two independent Normal variables
θ1 ∼ N

(
µ1, σ

2
1

)
, θ2 ∼ N

(
µ2, σ

2
2

)
. Let θ = max{θ1, θ2}, then the mean µ and variance σ2 of θ satisfy:

µ = µ1Φ (α) + µ2Φ (−α) + ϕ (α)σm (13)

σ2 =
(
µ2
1 + σ2

1

)
Φ (α) +

(
µ2
2 + σ2

2

)
Φ (−α) + (µ1 + µ2)σmϕ (α)− µ2 (14)
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Where σm = σ2
1 + σ2

2 , α = µ1−µ2

σm
, and ϕ and Φ are respectively the probability density function and the

cumulative distribution function of N (0, 1) (see (Clark, 1961), (Tesauro et al., 2010)). The distribution of θ can
be approximated with a Normal distribution by matching their first two moments, for short we call it Clark’s
approximation; Sinha et al. (2007) provide an error analysis of this approximation. This motivates rewriting θT
as a nested pair-wise maximum:

θT = max
{
− λ1

{
T1 ̸= T

}
+ θT1 ,max{−λ1

{
T2 ̸= T

}
+ θT2 , . . . ,max{−λ1

{
Tm−1 ̸= T

}
+ θTm−1 ,

− λ1
{
Tm ̸= T

}
+ θTm}} . . .

}
max{−λ1

{
Tm−1 ̸= T

}
+θTm−1 ,−λ1

{
Tm ̸= T

}
+θTm}} is a maximum of two (conditionally) independent Normal

variables, thus we approximate its distribution as a Normal with Clark’s approximation, and we recursively use
Clark’s approximation on the unfolding maximums of pairs to approximate the posterior distribution of θT as

a Normal θT ∼ N
(
µT , (σT )

2
)
, µT and (σT )

2
are calculated with a recursive application of equations (13) and

(14). A similar approximation was used by Tesauro et al. (2010) in the context of MCTS with a Bayesian
approach, but the policy the authors considered is not Thompson Sampling but rather a form of UCB that uses
the quantiles of the posterior distributions to derive the index of the UCB policy.

D Proofs

To prove Theorem 1, we use and inductive reasoning that starts from Search Leaves.

Lemma 3. Let T be a Search Leaf and time t the number of times T is selected, then we have:

µT
a.s−−−→
t→∞

Vπ
∗
(T ) , (σT )

2 a.s−−−→
t→∞

0

Proof of Lemma 3. Let us start with the variance as it is a simpler result to prove. From the definition of αT (t)
and βT (t), we have αT (t)+βT (t) = tm+1, where we recall that m is the number of observed samples from the
stream in a single Simulation step. Therefore we have:

(σT )
2
=

αT (t)βT (t)

(αT (t) + βT (t))
2
(αT (t) + βT (t) + 1)

=
αT (t)βT (t)

(tm+ 1)
2
(tm+ 2)

≤ (tm+ 1)
2

(tm+ 1)
2
(tm+ 2)

≤ 1

tm+ 2

Therefore (σT )
2
converges, not only almost surely, but even surely to 0 as t → ∞.

Now, let us show the result for the mean, we have:

µT =
αT (t)

tm+ 1
=

1

1 + tm
+

1

1 + tm

tm∑
i=2

1
{
T̂i−1 (Xi) = Yi

}
We know that, for any l ∈ L (T ) such that p (l) > 0, which are the only leaves that can contain inputs Xi, the
number of observed samples grows to infinity almost surely as t → ∞, therefore, by the Strong Law of Large
numbers we have:

∀k ∈ {1 . . . ,K} : p̂
(i)
k (l)

a.s−−−→
i→∞

pk (l)

Which means that:

P
[
∀ϵ > 0,∃I > 0,∀i ≥ I,∀k ∈ {1, . . . ,K} :

∣∣∣p̂(i)k (l)− pk (l)
∣∣∣ ≤ ϵ

]
= 1 (15)
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Take ϵ = 1
2 mink ̸=k′

{∣∣∣pk (l)− pk′ (l)
∣∣∣}, in light of Equation (15) we have:

P
[
∃τ > 0,∀i ≥ τ,∀k ∈ {1, . . . ,K} :

∣∣∣p̂(i)k (l)− pk (l)
∣∣∣ ≤ ϵ

]
= 1

=⇒ P
[
∃τ > 0,∀i ≥ τ : Argmaxk{pk (l)} = Argmaxk{p̂

(i)
k (l)}

]
= 1

=⇒ P
[
∃τ > 0,∀i ≥ τ : T̂i (l) = T (l)

]
= 1 (16)

Let us define τ > 0 the random time such that:

∀i ≥ τ : T̂i−1 (Xi) = T (Xi)

Since Equation (16) is satisfied for all leaves l ∈ L (T ), we have P [τ < ∞] = 1.
Let 0 < ϵ′ < ϵ, we want to show that:

P
[
∃τ ′ > 0,∀t > τ ′ :

∣∣∣µT − Vπ
∗
(T )

∣∣∣ ≤ ϵ′
]
= 1

By marginalising over τ > 0, we have:

P
[
∃τ ′ > 0,∀t > τ ′ :

∣∣∣µT − Vπ
∗
(T )

∣∣∣ ≤ ϵ′
]

(17)

=
∑
t′>0

P
[
∃τ ′ > 0,∀t > τ ′ :

∣∣∣µT − Vπ
∗
(T )

∣∣∣ ≤ ϵ′
∣∣∣τ = t′

]
P [τ = t′] (18)

Note that in this marginalisation, the term P [τ = ∞] is absent because P [τ = ∞] = 0.
From the definition of τ , we can write µT as follows:

∀t > τ : µT =
1

1 + tm
+

1

1 + tm

τm∑
i=2

1
{
T̂i−1 (Xi) = Yi

}
+

1

1 + tm

tm∑
i=τm+1

1
{
T (Xi) = Yi

}
Now, given τ = t′, then for all t > t′ we have the following:

∣∣∣µT − Vπ
∗
(T )

∣∣∣ ≤ ∣∣∣ 1

1 + tm
+

1

1 + tm

t′m∑
i=2

1
{
T̂i−1 (Xi) = Yi

}∣∣∣+ ∣∣∣ 1

1 + tm

tm∑
i=t′m+1

1
{
T (Xi) = Yi

}
− Vπ

∗
(T )

∣∣∣
For the first term of the RHS, we have:

∣∣∣ 1

1 + tm
+

1

1 + tm

t′m∑
i=2

1
{
T̂i−1 (Xi) = Yi

}∣∣∣ ≤ ∣∣∣ 1

1 + tm
+

t′m− 1

1 + tm

∣∣∣ −→
t→∞

0

Hence, there exists τ1 > 0 such that:

∀t > τ1 :
∣∣∣ 1

1 + tm
+

1

1 + tm

t′m∑
i=2

1
{
T̂i−1 (Xi) = Yi

}∣∣∣ ≤ ϵ′

3

For the second term of the RHS, we bound it first as follows:∣∣∣ 1

1 + tm

tm∑
i=t′m+1

1
{
T (Xi) = Yi

}
− Vπ

∗
(T )

∣∣∣ ≤ ∣∣∣ 1

tm− t′m

tm∑
i=t′m+1

1
{
T (Xi) = Yi

}
− Vπ

∗
(T )

∣∣∣
+
∣∣∣ ( 1

1 + tm
− 1

tm− t′m

) tm∑
i=t′m+1

1
{
T (Xi) = Yi

}∣∣∣
By the Strong Law of Large numbers, with probability 1, there exists τ2 > 0 such that:

∀t > τ2 :
∣∣∣ 1

tm− t′m

tm∑
i=t′m+1

1
{
T (Xi) = Yi

}
− Vπ

∗
(T )

∣∣∣ ≤ ϵ′

3
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On the other hand: ∣∣∣ ( 1

1 + tm
− 1

tm− t′m

) tm∑
i=t′m+1

1
{
T (Xi) = Yi

}∣∣∣ ≤ t′m+ 1

1 + tm
−→
t→∞

0

Therefore, there exists τ3 > 0 such that:

∀t > τ3 :
∣∣∣ ( 1

1 + tm
− 1

tm− t′m

) tm∑
i=t′m+1

1
{
T (Xi) = Yi

}∣∣∣ ≤ ϵ′

3

Now take τ ′ = max{τ1, τ2, τ3}, then we have:∣∣∣µT − Vπ
∗
(T )

∣∣∣ ≤ ϵ′

3
+

ϵ′

3
+

ϵ′

3
= ϵ′

Therefore, conditionally on τ = t′, with probability 1, there exists τ ′ > 0 such that ∀t > τ ′ :
∣∣∣µT −Vπ∗

(T )
∣∣∣ ≤ ϵ′,

i.e:
P
[
∃τ ′ > 0,∀t > τ ′ :

∣∣∣µT − Vπ
∗
(T )

∣∣∣ ≤ ϵ′
∣∣∣τ = t′

]
= 1

From Equation (18), we deduce that:

∀0 < ϵ′ < ϵ : P
[
∃τ ′ > 0,∀t > τ ′ :

∣∣∣µT − Vπ
∗
(T )

∣∣∣ ≤ ϵ′
]
=
∑
t′>0

P [τ = t′] = 1

=⇒ P
[
∀0 < ϵ′ < ϵ,∃τ ′ > 0,∀t > τ ′ :

∣∣∣µT − Vπ
∗
(T )

∣∣∣ ≤ ϵ′
]
= 1

=⇒ µT
a.s−−−→
t→∞

Vπ
∗
(T )

Lemma 4. For any Search Node T with t the number of visits of its parent and NT (t) the number of times T
has been visited up to time t, we have:

NT (t)
a.s−−−→
t→∞

∞

Proof of Lemma 4. Let P (T ) denote the parent of T , for convenience, we denote Ch (P (T )) = {T1, . . . , Tn}
and T = Tj , now we want to show that NTj (t)

a.s−−−→
t→∞

∞. To do so, we want to prove the following result:

P
[
θTj ≤ maxi̸=j{θTi}

]
< 1 at all times t, i.e, the probability of choosing Tj is always non-zero. We consider the

auxiliary problem with Ch′ (P (T )) = {Tj , T ′} where

θT ′ ∼ N
(
µT ′ , (σT ′)

2
)
, µT ′ = max

i̸=j
{µTi}+ fn (t) , σT ′ = max

i̸=j
{σTi}

Where we will define fn (t) such that P [θT ′ ≥ maxi̸=j{θTi}] ≥ 1
2 at all times t. In this case, we have the following

bound: P
[
θTj ≤ maxi ̸=j{θTi}

]
≤ P

[
θTj ≤ θT ′

]
. We use the union bound:

P
[
θT ′ ≥ max

i ̸=j
{θTi}

]
≥ 1−

∑
i ̸=j

P [θT ′ < θTi ]

Since ∀i ̸= j : θT ′ − θTi ∼ N
(
µT ′ − µTi , (σT ′)

2
+ (σTi)

2
)
, we have:

P [θT ′ < θTi ] =
1

2
erfc

maxk ̸=j{µTk} − µTi + fn (t)√
2
[
(σT ′)

2
+ (σTi)

2
]


≤ 1

2
erfc

(
fn (t)

2σT ′

)
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Hence:

P
[
θT ′ ≥ max

i ̸=j
{θTi}

]
≥ 1− n− 1

2
erfc

(
fn (t)

2σT ′

)
Thus, we want fn (t) satisfying erfc

(
fn(t)
2σT ′

)
≤ 1

n−1 .

Take fn (t) = gn (t)σT ′ , hence it suffices to take gn (t) = 2erfc−1
(

1
n−1

)
and thus fn (t) = 2σT ′erfc−1

(
1

n−1

)
.

On the other hand, we have the following:

P
[
θTj > θT ′

]
=

1√
π

∫ ∞

µ
T ′−µTj√

2

[
(σT ′ )2+(σTj )

2
]
e−u

2

du > 0

Therefore we deduce that:

∀t > 0 : P
[
θTj ≤ max

i̸=j
{θTi}

]
≤ P

[
θTj ≤ θT ′

]
< 1

To show that NTj (t)
a.s−−−→
t→∞

∞, we will equivalently prove:

P
[
∃M > 0,∀t > 0 : NTj (t) < M

]
= 0

The event {∃M > 0,∀t > 0 : NTj (t) < M} can be rewritten as the event {∃τ > 0,∀t ≥ τ : θTj ≤ maxi ̸=j{θi}},
which means that there exists a time τ > 0 such that, from then on, Tj will never be chosen again. Therefore:

P
[
∃M > 0,∀t > 0 : NTj (t) < M

]
= P

[
∃τ > 0,∀t ≥ τ : θTj ≤ max

i̸=j
{θi}

]
≤
∑
τ>0

P
[
∀t ≥ τ : θTj ≤ max

i̸=j
{θi}

]
≤
∑
τ>0

∏
t≥τ

P
[
θTj ≤ max

i̸=j
{θi}

]
≤
∑
τ>0

∏
t≥τ

P
[
θTj ≤ θT ′

]
The third line comes from the fact that {θTi} are independent. We recall that for all t ≥ τ :

P
[
θTj ≤ θT ′

]
=

1√
π

∫ µ
T ′−µTj√

2

[
(σT ′ )2+(σTj )

2
]

−∞

e−u
2

du ≤ 1√
π

∫ 1+fn(τ)−µTj√
2σTj

−∞

e−u
2

du < 1

This comes from the fact that ∀1 ≤ i ≤ n : 0 ≤ µi ≤ 1 and fn (t) is a decreasing function of t because σT ′

decreases with t. Since ∀t ≥ τ : Tj is not chosen, then µTj and σTj remain constant, and therefore:

∏
t≥τ

1√
π

∫ 1+fn(τ)−µTj√
2σTj

−∞

e−u
2

du = 0

Thus we deduce that:
P
[
∃M > 0,∀t > 0 : NTj (t) < M

]
= 0

Which concludes our proof.

Corollary 5. Let t be the number of iterations of TSDT , then the number of visits of any Search Node diverges
almost surely to ∞ as t → ∞.

Proof of Corollary 5. Corollary 5 is straightforward to prove by Induction using Lemma 4 and the fact that t is
the number of visits of the Root Search Node.
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In what follows, let T denote an internal Search Node with Ch (T ) = {T1, . . . , Tn} and T1 the optimal child, i.e
Vπ∗

(T1) = max1≤j≤n{Vπ
∗
(Tj)}.

Lemma 6. Let time t denote the number of times that T has been visited. Suppose that ∀j ∈ {1, . . . , n} :

Vπ∗
(Tj)

a.s−−−−−−−→
NTj (t)→∞

µTj , σTj
a.s−−−−−−−→

NTj (t)→∞
0 , then we have:

lim
t→∞

πt (T1|T ) = 1

Note that we abuse the notation a little bit here. Indeed, in the main paper πt is the policy after t iterations of
TSDT, but here πt denotes the policy after choosing T for t times.

Proof of Lemma 6. We define the following events at time t:

M (t, ϵ) =

n⋂
j=1

{∣∣∣∣∣µTj − Vπ
∗
(Tj)

∣∣∣∣∣ ≤ ϵ

}

V (t, ϵ) =

n⋂
j=1

{(
σTj
)2

<
ϵ

2

}

and t (ϵ) > 0 the random time such that ∀t > t (ϵ) : M (t, ϵ) and V (t, ϵ) happen. By Lemma 4, we have

∀j ∈ {1, . . . , n} : NTj (t)
a.s−−−→
t→∞

∞, therefore P [t (ϵ) < ∞] = 1. Let i (t) denote the chosen child at time t, we

have P [i (t) = T1] = πt (T1|T ). The introduction of i (t) is purely for convenience purposes. We write:

P [i (t) = T1] =
∑
τ>0

P
[
i (t) = T1

∣∣∣t (ϵ) = τ
]
P [t (ϵ) = τ ]

≥
∑

1≤τ≤t

P
[
i (t) = T1

∣∣∣t (ϵ) = τ
]
P [t (ϵ) = τ ]

Conditionally on t (ϵ) = τ , for t ≥ τ we have the following:

P
[
i (t) = T1

∣∣∣t (ϵ)] = P
[
∀j ̸= 1 : θT1

> θTj

∣∣∣M (t, ϵ) ,V (t, ϵ)
]

≥ 1−
∑
j ̸=1

P
[
θT1

≤ θTj

∣∣∣M (t, ϵ) ,V (t, ϵ)
]

Before we continue, we introduce the following notation ∀j ̸= 1 : ∆j = Vπ∗
(T1)− Vπ∗

(Tj) > 0,∆ = minj ̸=1 ∆j .
Let C > 0 and define ϵ = ∆

4C , then for all j ̸= 1:

P
[
θT1 ≤ θTj

∣∣∣M (t, ϵ) ,V (t, ϵ)
]

≤ P

[
θT1

≤ θTj

∣∣∣∣∣∣∣∣µT1
− Vπ

∗
(T1)

∣∣∣ < ∆j

4C
,
∣∣∣µTj − Vπ

∗
(Tj)

∣∣∣ < ∆j

4C
, (σT1

)
2
<

∆j

8C
,
(
σTj
)2

<
∆j

8C

]

≤ 1√
π

∫ ∞

4C

e−u
2

du =
1

2
erfc (4C)

Hence, we deduce that:

P
[
i (t) = T1

∣∣∣t (ϵ)] ≥ 1− |Ch (T ) | − 1

2
erfc (4C)

and thus:

P [i (t) = T1] ≥
[
1− |Ch (T ) | − 1

2
erfc (4C)

] ∑
1≤τ≤t

P [t (ϵ) = τ ]

Since
∑
τ≥1 P [t (ϵ) = τ ] = 1 (because P [t (ϵ) = ∞] = 0), by taking the limit, we get:

lim
t→∞

P [i (t) = T1] ≥ 1− |Ch (T ) | − 1

2
erfc (4C)
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Since this is satisfied for all C > 0 and limC→∞ erfc (4C) = 0, we deduce that:

lim
t→∞

P [i (t) = T1] = lim
t→∞

πt (T1|T ) = 1

Lemma 7. Let time t denote the number of times that the parent of T has been visited. Under the same
assumptions as Lemma 6, T satisfies:

µT
a.s−−−→
t→∞

Vπ
∗
(T ) , (σT )

2 a.s−−−→
t→∞

0

Proof of Lemma 7. By Induction on n = |Ch (T ) |, if n = 2 we have:

µT = µT1
Φ (α) + µT2

Φ (−α) + ϕ (α)σm

(σT )
2
=
[
(µT1

)
2
+ (σT1

)
2
]
Φ (α) +

[
(µT2

)
2
+ (σT2

)
2
]
Φ (−α) + (µT1

+ µT2
)σmϕ (α)− (µT )

2

Where σm = (σT1
)
2
+ (σT2

)
2
, α = µ1−µ2

σm
, and ϕ and Φ are respectively the probability density function and the

cumulative distribution function of N (0, 1). Using Lemma 4, we have NT1 (t)
a.s−−−→
t→∞

∞ and NT2 (t)
a.s−−−→
t→∞

∞,

therefore µT1

a.s−−−→
t→∞

Vπ∗
(T1) , σT1

a.s−−−→
t→∞

0 and µT2

a.s−−−→
t→∞

Vπ∗
(T2) , σT2

a.s−−−→
t→∞

0, which yields σm
a.s−−−→
t→∞

0 and

α
a.s−−−→
t→∞

∞, using these results with the formulas above, we deduce that:

µT
a.s−−−→
t→∞

Vπ
∗
(T1) = max{Vπ

∗
(T1) ,Vπ

∗
(T2)}, σT

a.s−−−→
t→∞

0

Now suppose the result holds true for some n ≥ 2 and now consider Ch (T ) = {T1, . . . , Tn+1}. We define

θT ′ (t) ∼ N
(
µT ′ , (σT ′)

2
)
which approximates recursively the maximum for {T2, . . . , Tn+1}. By the Induction

hypothesis, we have:

µT ′
a.s−−−→
t→∞

max{Vπ
∗
(T2) , . . . ,Vπ

∗
(Tn+1)}, σT ′

a.s−−−→
t→∞

0

Now we have θT (t) ∼ N
(
µT , (σT )

2
)
approximating the maximum for {T1, T

′}. By the Induction hypothesis

again, we have:

µT
a.s−−−→
t→∞

Vπ
∗
(T1) = max{Vπ

∗
(T1) ,Vπ

∗
(T ′)}, σT

a.s−−−→
t→∞

0

This concludes the Induction proof.

Proof of Theorem 1. By backward induction starting from the Search Leaves and going up to the Root Search
Node, using Lemmas 3, 4, 7 and Corollary 5, it is straightforward to deduce the main result.

Lemma 8. Let T be a Search Leaf, with t the number of visits of its parent and NT (t) the number of visits of
T up to time t. Then we have:

∀C > |L (T ) | : NT (t)m ≤ 1

2

(
C

|L (T ) |

) 1
2

=⇒ (σT )
2 ≥ 1

C

Proof of Lemma 8. We have:

(σT )
2
=
∑
l

(p̂ (l))
2
(σT,l)

2
; (σT,l)

2
=

αT,lβT,l

(αT,l + βT,l)
2
(1 + αT,l + βT,l)

Let nT,l =
∑t
i=2 1{Xi ∈ l} the number of samples effectively observed in leaf l of T up to the tth visit of the

parent of T . Then from Equation (5) and (6), we have the following αT,l + βT,l = 2 + nT,l and αT,lβT,l =
αT,l (2 + nT,l − αT,l) knowing that 1 ≤ αT,l ≤ 1 + nT,l.
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Consider the function f : x 7→ x (2 + nT,l − x) defined on [1, 1 + nT,l], f has a minimum f (1) = f (1 + nT,l) =
1 + nT,l, and therefore:

(σT,l)
2 ≥ 1 + nT,l

(2 + nT,l)
2
(3 + nT,l)

Now consider the function g : x 7→ 1+x
(2+x)2(3+x)

defined for x ≥ 0, g is differentiable on R∗
+ and g′ (x) =

−2−6x−2x2

(2+x)3(3+x)2
< 0, hence g is decreasing. Therefore, for C > nT,l we get:

(σT,l)
2 ≥ g (nT,l) ≥ g (C)

Furthermore, the total number of observed samples in T is obviously larger than the number of observed samples

in leaf l ∈ L (l), thus nT,l ≤ NT (t)m ≤ 1
2

√
C

|L(T )| . Let us choose C > 5, this leads to:

(σT )
2 ≥ g (C)

∑
l∈L(T )

p̂ (l)

(σT )
2 ≥ 1

|L (T ) |
1 + C

(2 + C)2 (3 + C)

≥ 1

|L (T ) |
C(√

2C
)2

(2C)

≥ 1

4|L (T ) |C2

The second inequality comes from the fact that the uniform distribution minimises the collision probability.

By taking C = 1
2

(
C

|L(T )|

) 1
2

, we deduce the result of the Lemma.

Proof of Theorem 2. Let us first consider the case with n = 2, i.e Ch (T ) = {T1, T2} and then we will generalise
the result for an arbitrary n ≥ 2. We have M2 = 1, thus we want to show that:

P
[
NT2

(t)m ≤ log t

4|L (T2) |

]
≤ exp

−2

t

 t3/4

√
π

(√
log t
4 +

√
log t
4 + 2

) − log t

4m|L (T2) |


2

The result will be valid for T1 as well without loss of generality.

At time t, child T2 is chosen if θT2
≥ θT1

, which motivates us to study P [θT2
≥ θT1

]:

We know that θT2
− θT1

∼ N
(
µT2

− µT1
, (σT2

)
2
+ (σT1

)
2
)
, hence:

P [θT2
≥ θT1

] = P
[
θT2

≥ θT1

∣∣∣µT2
< µT1

]
P [µT2

< µT1
] + P

[
θT2

≥ θT1

∣∣∣µT2
≥ µT1

]
P [µT2

≥ µT1
]

Since P
[
θT2

≥ θT1

∣∣∣µT2
< µT1

]
≤ P

[
θT2

≥ θT1

∣∣∣µT2
≥ µT1

]
, we have:

P [θT2
≥ θT1

] ≥ P
[
θT2

≥ θT1

∣∣∣µT2
< µT1

]
≥ 1√

π

∫ ∞

µT1
−µT2√

2

[
(σT1)

2
+(σT2)

2
]
e−u

2

du

≥ 1√
π

∫ ∞

µT1
−µT2√

2(σT2)
2

e−u
2

du
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In what follows, we consider NT2 (t)m ≤ C
2|L(T )| , and we will define C as a function of t later. According to

Lemma 8 we have (σT2
)
2 ≥ |µT1−µT2 |

C , thus
µT1−µT2√
2(σT2)

2
≤
√

C(µT1−µT2)
2 ≤

√
C
2 since by definition, all the means

µTi ∈ [0, 1]. This leads to:

P
[
θT2

≥ θT1

∣∣∣ (σT2
)
2 ≥ |µT1

− µT2
|

C

]
≥ 1√

π

∫ ∞

√
C
2

e−u
2

du

≥ 1

2
erfc

(√
C

2

)

erfc (.) denotes the complementary error function. Using the lower bound in (Kschischang, 2017), we deduce
that:

P
[
θT2

≥ θT1

∣∣∣ (σT2
)
2 ≥ |µT1 − µT2 |

C

]
≥ 1

2
erfc

(√
C

2

)
≥

exp
(−C

2

)
√
π
(√

C
2 +

√
C
2 + 2

) (19)

Since ∀t′ ≤ t : NT2 (t
′) ≤ NT2 (t), we haveNT2 (t)m ≤ C

2|L(T )| =⇒ NT2 (t
′)m ≤ C

2|L(T )| =⇒ (σT2)
2 ≥

∣∣∣µT1−µT2∣∣∣
C ,

and Inequality (19) holds for all 1 ≤ t′ ≤ t. Hence we write:

P
[
NT2

(t)m ≤ C

2|L (T2) |

]
= P

[
NT2

(t)m ≤ C

2|L (T2) |
, (σT2

)
2 ≥ |µT2 − µT1 |

C

]

= P

NT2
(t)m ≤ C

2|L (T2) |
,∀1 ≤ t′ ≤ t : (σT2

)
2 ≥

∣∣∣µT2
− µT1

∣∣∣
C


≤ P

NT2
(t)m ≤ C

2|L (T2) |

∣∣∣∣∣∀1 ≤ t′ ≤ t : (σT2
)
2 ≥

∣∣∣µT2
− µT1

∣∣∣
C



Given the event

{
∀1 ≤ t′ ≤ t : (σT2

)
2 ≥

∣∣∣µT2−µT1 ∣∣∣
C

}
, at each time 1 ≤ t′ ≤ t : T2 is chosen with probability

P

θT2
≥ θT1

∣∣∣∣∣ (σT2
)
2 ≥

∣∣∣µT2−µT1∣∣∣
C

.
Let C =

exp(−C
2 )

√
π
(√

C
2 +

√
C
2 +2

) and define the i.i.d. random variables Z1, . . . , Zt such that ∀i : Zi ∼ Bernoulli (C).

Inequality (19) and Lemma 8 lead to:

P
[
NT2

(t)m ≤ C

2|L (T2) |

]
= P

NT2
(t)m ≤ C

2|L (T2) |
,∀1 ≤ t′ ≤ t : (σT2

)
2 ≥

∣∣∣µT2
− µT1

∣∣∣
C


≤ P

NT2 (t)m ≤ C

2|L (T2) |

∣∣∣∣∣∀1 ≤ t′ ≤ t : (σT2)
2 ≥

∣∣∣µT2 − µT1

∣∣∣
C


≤ P

[
t∑
i=1

Zi ≤
C

2m|L (T2) |

]

Using Hoeffding’s inequality, for ϵ > 0 we have P
[∑t

i=1 Zi − tC ≤ −ϵ
]
≤ exp

(
− 2ϵ2

t

)
.
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Thus, by setting ϵ = tC − C
2m|L(T2)| > 0, we deduce:

P
[
NT2

(t)m ≤ C

2|L (T2) |

]
≤ P

[
t∑
i=1

Zi ≤
C

2m|L (T2) |

]

≤ exp

−
2
(
tC − C

2m|L(T2)|

)2
t


Now let us find an adequate expression of C as a function of t, hence we will write C (t) , C (t).

We recall that ϵ = tC − C(t)
2m|L(T2)| > 0, thus a first condition is to have C (t) < 2m|L (T2) |tC, which means that

C (t) has to be sublinear.

Recall that C (t) =
exp(−C(t)

2 )
√
π

(√
C(t)

2 +

√
C(t)

2 +2

) , thus:

C (t) < 2m|L (T2) |t
exp

(
−C(t)

2

)
√
π

(√
C(t)
2 +

√
C(t)
2 + 2

)
√
π

2m|L (T2) |
C (t)

(√
C (t)

2
+

√
C (t)

2
+ 2

)
< t exp

(
−C (t)

2

)
For any α > 0, we cannot have C (t) = tα because the RHS would converge to 0 as t → ∞ while the LHS would
diverge to ∞. Hence, we consider C (t) = a log t for some a > 0.

√
π

2m|L (T2) |
a log (t)

(√
a log t

2
+

√
a log t

2
+ 2

)
< t exp

(
−a log t

2

)
< t1−

a
2

Thus we must have 0 < a < 2.

P
[
NT2

(t)m ≤ a log t

2|L (T2) |

]
≤ exp

−
2

(
t1−

a
2

√
π
(√

a log t
2 +

√
a log t

2 +2
) − a log t

2m|L(T2)|

)2

t


Since 2

t

(
t1−

a
2

√
π
(√

a log t
2 +

√
a log t

2 +2
) − a log t

2m|L(T2)|

)2

= O
(
t1−a

)
, we must have 0 < a < 1; by taking a = 1

2 , we get:

P
[
NT2

(t)m ≤ log t

4|L (T2) |

]
≤ exp

−2

t

 t3/4

√
π

(√
log t
4 +

√
log t
4 + 2

) − log t

4m|L (T2) |


2

Following the exact same steps, we can show that if |µT2
− µT1

| ≤ M where M > 0 some constant, we would
have:

P
[
NT2 (t)m ≤ log t

4|L (T2) |M

]
≤ exp

−2

t

 t3/4

√
π

(√
log t
4 +

√
log t
4 + 2

) − log t

4m|L (T2) |M2


2

This result constitutes our induction hypothesis for the following generalisation.
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Let us now address the setting with Ch (T ) = {T1, . . . , Tn} where n ≥ 2, and let i ∈ {1, . . . , n}. Our idea is to
transform this problem into a problem with two children and use the induction hypothesis.

We consider a new child T ′ with parameters θT ′ ∼ N
(
µT ′ , (σT ′)

2
)
such that:

µT ′ = max
j ̸=i

{µTj}+ fn (t)

σT ′ = max
j ̸=i

{σTj}

fn (t) is a function that we will derive later on.
Consider the setting with the new set of children Ch′ (T ) = {T ′

i , T
′} where θTi = θT ′

i
and |L (Ti) | = |L (T ′

i ) |.
For any C > 0, we want P [NTi (t)m ≤ C] ≤ P

[
NT ′

i
(t)m ≤ C

]
, to achieve this, it suffices to have

P
[
θT ′ ≥ maxj ̸=i{θTj}

]
≥ 1

2 because it means that the probability of choosing T ′
i in the problem with Ch′ (T )

is lower than the probability of choosing Ti in the problem with Ch (T ), which leads to P [NTi (t)m ≤ C] ≤
P
[
NT ′

i
(t)m ≤ C

]
. Using the union bound, we have:

P
[
θT ′ ≥ max

j ̸=i
{θTj}

]
≥ 1−

∑
j ̸=i

P
[
θT ′ < θTj

]
Since ∀j ̸= i : θT ′ − θTj ∼ N

(
µT ′ − µTj , (σT ′)

2
+
(
σTj
)2)

, we have:

P
[
θT ′ < θTj

]
=

1

2
erfc

maxk ̸=i{µTk} − µTj + fn (t)√
2
[
(σT ′)

2
+
(
σTj
)2]


≤ 1

2
erfc

(
fn (t)

2σT ′

)
Hence:

P
[
θT ′ ≥ max

j ̸=i
{θTj}

]
≥ 1− n− 1

2
erfc

(
fn (t)

2σT ′

)
Thus, we want fn (t) satisfying erfc

(
fn(t)
2σT ′

)
≤ 1

n−1 .

Take fn (t) = gn (t)σT ′ , hence it suffices to take gn (t) = 2erfc−1
(

1
n−1

)
and thus

fn (t) = 2σT ′erfc−1

(
1

n− 1

)

In order to use the induction hypothesis, let us bound
∣∣∣µT ′ − µTj

∣∣∣:∣∣∣µT ′ − µTj

∣∣∣ = ∣∣∣max
j ̸=i

{µTj}+ fn (t)− µTi (t)
∣∣∣

≤ 1 + 2σT ′erfc−1

(
1

n− 1

)

For any j ̸= i, we have
(
σTj
)2 ≤

√
1
12 , thus

∣∣∣µT ′ − µTj

∣∣∣ ≤ 1 +
√

2√
3
erfc−1

(
1

n−1

)
.

By defining Mn = 1 +
√

2√
3
erfc−1

(
1

n−1

)
, we use the induction hypothesis to deduce that:

P
[
NT ′

i
(t)m ≤ log t

4|L (T ′
i ) |Mn

]
≤ exp

−2

t

 t3/4

√
π

(√
log t
4 +

√
log t
4 + 2

) − log t

4m|L (T ′
1) |M2

n


2



Online Learning of Decision Trees with Thompson Sampling

Since P
[
NTi (t)m ≤ log t

4|L(Ti)|Mn

]
≤ P

[
NT ′

i
(t)m ≤ log t

4|L(T ′
i)|Mn

]
, we deduce that:

P
[
NTi (t)m ≤ log t

4|L (Ti) |Mn

]
≤ exp

−2

t

 t3/4

√
π

(√
log t
4 +

√
log t
4 + 2

) − log t

4m|L (Ti) |M2
n


2
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