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Abstract

The agnostic setting is the hardest general-
ization of the PAC model since it is akin to
learning with adversarial noise. In this pa-
per, we give a poly (n, t, 1/ε) quantum algo-
rithm for learning size t decision trees over
n-bit inputs with uniform marginal over in-
stances, in the agnostic setting, without mem-
bership queries (MQ). This is the first algo-
rithm (classical or quantum) for efficiently
learning decision trees without MQ. First, we
construct a quantum agnostic weak learner
by designing a quantum variant of the clas-
sical Goldreich-Levin algorithm that works
with strongly biased function oracles. Next,
we show how to quantize the agnostic boost-
ing algorithm by Kalai and Kanade (2009)
to obtain the first efficient quantum agnos-
tic boosting algorithm (that has a polyno-
mial speedup over existing adaptive quan-
tum boosting algorithms). We then use
the quantum agnostic boosting algorithm to
boost the weak quantum agnostic learner
constructed previously to obtain a quantum
agnostic learner for decision trees. Using the
above framework, we also give quantum deci-
sion tree learning algorithms without MQ in
weaker noise models.

1 INTRODUCTION

Efficiently learning decision trees is a central problem
in algorithmic learning theory since any Boolean func-
tion is learnable as a decision tree (Bshouty, 1993).
There has been a large body of work (see Table 1)
centered around providing theoretical guarantees for
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learning decision trees under various generalizations
and restrictions of the Probably Approximately Cor-
rect (PAC) model introduced by Valiant (1984). The
original PAC model (Valiant, 1984) is in the noiseless
setting where the learning algorithm is trained on a
training set S = {(xi, yi)}i∈[m] consisting of m tuples
of instances xi ∈ Fn

2 and their corresponding binary
labels yi. In the random classification noise (RCN)
setting, the learning algorithm is trained on a set S′

where each label yi in S is flipped with a uniform prob-
ability p. In the agnostic setting (adversarial noise),
each label in S is flipped with some probability which
is dependent on the example. There are two types of
decision tree learning algorithms: proper learning al-
gorithms, where the output is a decision tree, and im-
proper learning algorithms, where the output hypoth-
esis is not necessarily required to be a decision tree.
Proper learning of decision trees, even in the noiseless
setting, is known to be computationally hard (Koch
et al., 2023), and all the efficient improper learning al-
gorithms (for different noise models) are designed to
use Membership Query (MQ) oracles (see Table 1).

Downsides of MQ oracles. A MQ oracle allows
a learning algorithm to fetch the label of any desired
instance in the input space, even among the ones ab-
sent in the training set. In the famous experiment by
Baum and Lang (1992), the MQ oracle was queried
by the learning algorithm on instances outside the do-
main of the labeling function. This makes MQ oracles
difficult to implement and is probably one reason that
makes them unattractive to the applied machine learn-
ing community (Bshouty and Feldman, 2002; Awasthi
et al., 2013), which brings us to the main question
tackled in this work.

Question: Does there exist a polynomial time
(improper) decision tree learning algorithm with-
out membership queries?

Quantum as the silver bullet. In practice, machine
learning algorithms use data in the training set to learn
a hypothesis. This setup can be modeled as having
query access to a random example oracle where we
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sample training points according to the uniform distri-
bution. Theoretically, it is known that the PAC+MQ
model is strictly stronger than the PAC model with
only random examples (Angluin, 1988; Bshouty, 1993;
Feldman, 2006; Valiant, 1984). Similar to the random
example oracle, access to a uniform superposition over
the training set is an equivalent and a natural require-
ment in quantum computing. This was first demon-
strated by Bshouty and Jackson (1998) where they
introduced the notion of the Quantum PAC model.
Many subsequent works (see Atıcı and Servedio (2007);
Arunachalam and Maity (2020); Izdebski and de Wolf
(2020); Chatterjee et al. (2023)) have been designed
in the realizable quantum PAC model with access to a
uniform superposition over the training examples. It
is not known whether random examples are sufficient
for any (quantum or classical) agnostic learning task,
which was another motivation behind this work.

The query models used in our quantum algorithm for
improperly learning decision trees were proposed by
Bshouty and Jackson (1998) and Arunachalam and
de Wolf (2017); and are generalizations of the random
example oracle where the learning algorithm has query
access to a superposition over all instances in the do-
main. A detailed description of the Quantum Example
(Qex) and Quantum Agnostic Example (Qaex) or-
acles is given in Section 2. While the random ex-
ample query model is weaker than the Qex model,
the MQ model is stronger than the Qex model w.r.t.
uniform marginal distribution (Bshouty and Jackson,
1998).

1.1 Our Contributions and Technical
Overview

The main contribution of this work is a quantum poly-
nomial time algorithm for improperly learning decision
trees without MQ in the agnostic setting (and hence,
in weaker noise settings). The importance is twofold.

1. To our knowledge, ours is the first quantum al-
gorithm for decision tree learning (realizable or
agnostic, with or without MQ).

2. Our algorithm is also the only known efficient ag-
nostic PAC learning algorithm for decision trees
(classical or quantum) without MQ 1.

We state a simplified version of our main result now.

Theorem 1. Given m training examples, there exists
a quantum algorithm for learning size-t decision trees
in the agnostic setting without MQ in poly (m, t, 1/ε)
time.

1Our result subsumes the classical realizable learn-
ing algorithm for monotone decision trees without MQ
by O’Donnell and Servedio (2007).
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Figure 1: Agnostically learning polynomial-sized decision
trees without MQ.

Here we note that the number of training samples m
required for learning is polynomial w.r.t. to n where
the decision trees correspond to n-bit Boolean func-
tions. Following earlier work (see Section 1.2), we also
assume a uniform marginal distribution over the in-
stances. In Table 1, we compare our decision tree
learning algorithm against existing decision tree learn-
ing algorithms. Our algorithm (see Fig. 1) follows from
the existence of

• an efficient quantum agnostic boosting algorithm
(see Section 3), and

• an efficient weak quantum agnostic learner for de-
cision trees (see Section 4).

1.1.1 Quantum agnostic boosting

Quantum boosting algorithms for the realizable set-
ting have been shown to exist (see Section 1.2), but
their existence in the agnostic setting was an open
question (Izdebski and de Wolf, 2020). The challenge
in such algorithms is precisely estimating the margins
under the presence of instance-dependent noise. Our
idea was to quantize the Kalai and Kanade (2009)
(KK) algorithm whose use of relabeling let us avoid
using the amplitude amplification subroutine (a staple
in the previous quantum boosting algorithms) explic-
itly, thereby removing a significant source of error. In
Section 3, we show that given a weak quantum ag-
nostic learner A with an associated hypothesis class C
and a set of m training examples, we can construct a
poly (m, 1/ε) time quantum boosting algorithm to pro-
duce a hypothesis that is ε close to the best hypothesis
in C.
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Table 1: Comparing different algorithms for learning size-t decision trees on n-bit Boolean functions. Note here that t and
1/ε can be as large as poly(n), which renders the running time of many of the algorithms given below as super-polynomial.
Our quantum algorithms are strictly polynomial in all parameters while being the only algorithm to work in the agnostic
and realizable settings and not use membership queries (denoted by MQ). Here we note that the number of training
samples m required for learning is poly(n). QC denotes query complexity.

Work Setting Type Noise Set-
ting

MQ Runtime

EH 1989 Classical Proper Realizable No poly
(
nlog t, 1/ε

)
KM 1991 Classical Improper Realizable Yes poly (n, t, 1/ε)

LMN 1993 Classical Proper Realizable No poly
(
nlog (t/ε)

)
MR 2002 Classical Proper Agnostic No poly

(
nlog (t/ε)

)
GKK 2008

Classical Improper Agnostic Yes poly (n, t, 1/ε)KK 2009

Feldman 2009

BLT 2020a Classical Proper Agnostic No poly
(
nlog t, 1/ε

)
This Work

Quantum Improper Realizable No poly (n, t, 1/ε) QC: O
(
1/ε2

)
Quantum Improper Agnostic No poly (n, t, 1/ε) QC:

O
(
n2/ε3

)

1.1.2 Weak Quantum Agnostic Learner for
Decision Trees

In Section 4, we construct a quantum weak agnostic
learner for size-t decision trees using O

(
n2/ε3

)
queries

to the Qaex oracle instead of the MQ oracle. The
weak learner is constructed using a new quantum vari-
ant of the Goldreich-Levin algorithm (GL) (Goldreich
and Levin, 1989). We use QGL to identify the mono-
mial that best approximates the Bayes optimal pre-
dictor. This monomial serves as our weak learner. We
are aware of only one prior quantum Goldreich-Levin
algorithm (Adcock and Cleve, 2002); however, that al-
gorithm involved different types of oracles and tackled
a problem unrelated to ours. We now briefly touch
upon the technical challenges encountered.

1. The classical GL algorithm requires obtaining
f(x) for specific instances x. Our QGL algorithm
(see Algorithm 3), instead, was designed to work
with the Qaex oracle, which generates a super-
position over all (x, f(x)) pairs. The key step in
the QGL algorithm is using a Deutsch-Jozsa-style
sampler to work in tandem with the Qaex oracle.
This brings us to the second technical challenge.

2. The true label f(x) of any x is imperative for the
classical Goldreich-Levin algorithm to work prop-

erly. However, in the agnostic scenario, both f(x)
(correct label) and 1− f(x) (incorrect label) may
be returned with non-zero probability. The proba-
bilities could also depend on x , which makes mat-
ters worse. Thus, we designed a wrapper around
Qaex denoted Oh (see Algorithm 2) employing
the recent technique of multi-distribution ampli-
tude estimation (MAE) (Bera and SAPV, 2022)
to ensure a bound on the errors.
We note here that oracles in which the probabil-
ity of label flips do not depend on x capture the
RCN model and have been studied as biased or-
acles. To differentiate, we refer to oracles where
the probability of label flips are dependent on the
instance as strongly biased oracles — these cap-
ture the agnostic setting.

3. Our QGL algorithm is run on the wrapper ora-
cle Oh. Unfortunately, the QGL algorithm itself
uses erroneous subroutines like amplitude amplifi-
cation and estimation. Such algorithms often ex-
hibit grossly incorrect behaviors (e.g., the ampli-
fication step may amplify the amplitudes of even
the undesired states due to the error arising from
amplitude estimation). We meticulously ensured
amplitude amplification and estimation work in
tandem to keep their inherent errors in control,
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particularly as the algorithm proceeds to lower
levels of the prefix search tree (where the errors
have a chance to accumulate).

Weaker Noise Settings. The agnostic setting gener-
alizes the realizable and the random classification noise
(RCN) settings; thus, our framework also learns deci-
sion trees in those settings, as explained in Section 4.2
and Section 4.3 respectively.

1.2 Related Work

Agnostic Boosting. Kalai et al. (2008) gave a clas-
sical agnostic boosting algorithm that achieves nearly
optimal accuracy. We follow the agnostic boosting for-
malization of Kalai et al. (2008)(as opposed to earlier
works like Ben-David et al. (2001); Gavinsky (2002)) in
this paper. Feldman (2009), and KK (2009) came up
with distribution-specific agnostic boosting algorithms
to circumvent certain impossibility results on convex
boosting algorithms (Long and Servedio, 2008). We
give a quantum version of the KK algorithm that also
achieves a quadratic speedup in the VC dimension of
the weak learner.

Agnostic Learning of Decision Trees. Ehren-
feucht and Haussler (1989) gave the first weakly
proper learning algorithm with quasi-polynomial run-
ning time and sample-complexity in the realizable set-
ting using random examples. Subsequent works on
properly learning decision trees(Mehta and Raghavan,
2002; Blanc et al., 2020a,b, 2022) either have quasi-
polynomial dependence on error parameters and in-
tensive memory requirements or require the use of
MQ (see Table 1). Recently, it was shown by Koch
et al. (2023) that efficient proper learning of decision
trees has a superpolynomial lower bound. Bshouty
(2023) showed that the superpolynomial lower bound
also holds for proper learning of monotone decision
trees.

Kushilevitz and Mansour (1991) gave the first poly-
nomial time improper decision tree learning algorithm
(we henceforth refer to this as the KM algorithm) us-
ing MQ in the realizable setting. Their approach was
later extended to the agnostic setting by Gopalan et al.
(2008); Kalai and Kanade (2009); Feldman (2009). To
our knowledge, there is no prior work on quantum ag-
nostic learning.

Quantum Boosting. Arunachalam and Maity
(2020) gave the first quantum adaptive boosting al-
gorithm, which was a quantum generalization of the
celebrated AdaBoost algorithm. Their approach was
later extended to work on non-binary weak learners by
Chatterjee et al. (2023). Both of the above boosting
algorithms generate a quadratic speedup compared to

their classical counterparts in the VC dimension of the
weak learner. This speedup is retained by our quan-
tum agnostic boosting algorithm.

2 NOTATION AND
PRELIMINARIES

Fourier Analysis of Boolean Functions. Given
any Boolean function f : Fn

2 −→ {−1, 1}, , where
Fn
2 = {0, 1}n, we can uniquely express it as f(x) =∑
S∈Fn

2
f̂(S)χS(x). Here f̂(S) = E[f(x)χS(x)] =

⟨f, χS⟩ are the Fourier coefficients corresponding to
every S, and χS(x) =

∏
i∈S(−1)xi , where xi are 0-

1 valued. χS(x) is the multilinear monomial corre-
sponding to every S (also referred to as the parity of
S). For Boolean functions, the squares of the Fourier
coefficients f̂2(S) form a probability distribution.

In algorithmic learning, our objective is to learn an
approximation of the Fourier representation2 of f by
finding the set of strings S that have high f̂(S) values.
We design a quantum variant (see Algorithm 3) of
the classical GL algorithm (Goldreich and Levin,
1989) to find terms with Fourier coefficients larger
than a threshold τ . The QGL algorithm searches a
binary tree of all possible prefixes of n-length strings;
the root corresponds to the empty prefix, and the
leaves correspond to complete strings, s.t. every
string represents a monomial. The weight of a node
a of length s is defined as Pw(a) =

∑
b∈{0,1}n−s f̂2(ab).

Agnostic PAC Learning. Consider an n-bit func-
tion or “concept" c ∈ C : Fn

2 −→ {−1, 1}. In the ag-
nostic setting (Haussler, 1992; Kearns et al., 1992), a
learning algorithm tries to learn some unknown con-
cept w.r.t. a fixed arbitrary joint distribution D over
Fn
2 × {−1, 1}. The agnostic setting is seen as learning

with adversarial noise in the following manner: Let D
be a joint distribution over the examples and the labels
Fn
2 × {−1, 1}. We can also interpret this as a distri-

bution D′ over Fn
2 , where the examples are labeled ac-

cording to some concept c′, s.t. an adversary corrupts
some η fraction of the labels given to the algorithm. In
the agnostic setting, training error of a hypothesis h,
errS(h) = PrS [h(x) ̸= y] is defined w.r.t. set S of m
labeled training examples sampled from a joint distri-
bution D over Fn

2 × {−1, 1}. The generalization error
is defined as errD(h) = PrD [h(x) ̸= y]. Correlation is
defined as follows.

Definition 1 (Correlation (Kalai and Kanade, 2009)).
The correlation of a hypothesis h ∈ H w.r.t. D over

2For a detailed survey on the connection between
Fourier representation and learning theory see Mansour
(1994).
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Fn
2 × {−1, 1} is defined as corD (h) = 1 − 2errD(h) =

ED [h(x) · y].
The optimal correlation of a class of concepts
C is defined as optcorD(C) = corD (h∗) =
argmaxh∈C corD (h).

In agnostic PAC learning, we fix some concept class C
(e.g., decision trees of fixed depth) and aim to learn a
hypothesis h close to the best possible concept copt ∈
C. Note that h may not belong to C, as in improper
learning. Boosting algorithms are an important class
of improper learning algorithms.

Agnostic Boosting. As discussed earlier, compu-
tational hardness results for polytime proper learning
led researchers to try the improper learning approach
via boosting, where they would take a “weak"-agnostic
learner and boost it to obtain a better (not necessarily
optimal as in the realizable case) generalization per-
formance. We make these notions precise below.
Definition 2 ((m,κ, η)-weak Agnostic Learner (Kalai
and Kanade, 2009)). For some κ = O (1/poly(m)),
an algorithm A learns concept class C over an arbi-
trary distribution D on X × {−1, 1}, on m examples
drawn i.i.d. from D, and outputs a hypothesis h s.t.
corD (h) ≥ η · optcorD(C)− κ.
Definition 3 (β-optimal (ε, δ)-agnostic PAC
learner (Gavinsky, 2002)). A learning algorithm A
β-optimally learns a concept class C if for every
ε, δ > 0, 0 < β ≤ 1/2, any arbitrary distribution
D over X × {−1, 1}, A takes examples drawn
i.i.d. from D, and outputs a hypothesis h s.t.
corD (h) ≥ optcorD(C) − β − ε with probability at
least 1− δ.

For brevity, we shall be referring to β-optimal (ε, δ)-
agnostic PAC learners as β-optimal agnostic PAC
learners. The goal of Agnostic Boosting (Ben-David
et al., 2001; Gavinsky, 2002) is to produce a β-optimal
learner given a (m,κ, η)-weak agnostic learner.

Kalai and Kanade (2009) introduced the concept of
training intermediate weak hypotheses on randomly
relabeled examples (instead of the traditional reweight-
ing schemes based on AdaBoost) to obtain a β-optimal
agnostic learner. In the fully supervised setting (i.e.,
w.r.t. this paper), the semantic differences between
reweighting and relabeling are negligible.

Quantum Agnostic Learning. Classical learners
have access to a random example oracle EX(f,D) for
a function f w.r.t. distribution D over Fn

2 , which
samples an instance x according to D, and returns
a labeled example ⟨x, f(x)⟩. In the agnostic case,
learners have access to the oracle AEX(D) where D
is a joint distribution over instances and labels. An

invocation of AEX returns a labeled instance ⟨x, y⟩
w.r.t. D. In the Quantum PAC model (Bshouty and
Jackson, 1998), the quantum learners have access to
a quantum example oracle QEX(f,D), s.t. each in-
vocation to QEX(f,D) produces the quantum state(∑

x∈Fn
2

√
D(x) |x, f(x)⟩

)
. In the quantum agnostic

setting (Arunachalam and De Wolf, 2018), quantum
learners can access the oracle Qaex (D), s.t. each
invocation of the oracle produces the quantum state(∑

(x,y)∈Fn
2 ×{−1,1}

√
D(x, y) |x, y⟩

)
. We now define a

(m,κ, η)-weak quantum agnostic learner.

Definition 4 ((m,κ, η)-Weak Quantum Agnostic
Learner). For some κ = O (1/poly(m)), a quantum
algorithm A that learns a concept class C over an ar-
bitrary distribution D on X ×{−1, 1}, with at most m
calls to a Qaex (D) oracle, and outputs a hypothesis
h s.t. corD (h) ≥ η · optcorD(C)− κ.

We can similarly define a quantum version of a
β-optimal agnostic learner.

Useful Quantum Algorithms.

Lemma 2 (Amplitude Amplification (Brassard et al.,
2002)). Let there be a unitary U such that U |0⟩ =√
a |ϕ0⟩ |0⟩ +

√
1− a |ϕ1⟩ |1⟩ for an unknown a such

that a ≥ p > 0 for a known p. Then there exists a
quantum amplitude amplification algorithm that makes
Θ(
√
p′/p) expected number of calls to U and U−1 and

outputs the state |ϕ0⟩ with a probability p′ > 0.

Lemma 2 allows us to boost the probability of success
of a marked state with a quadratic speedup compared
to probabilistic amplification algorithms.

Lemma 3 (Relative Error Estimation (Brassard et al.,
2002)). Given an error parameter ε, a constant k ≥ 1,
and a unitary U such that U |0⟩ =

√
a |ϕ0⟩ |0⟩ +√

1− a |ϕ1⟩ |1⟩ where either a ≥ p or a = 0. Then
there exists a quantum algorithm that produces an es-
timate ã of the success probability a with probability
at least 1 − 1

2k
such that |a− ã| ≤ εa when a ≥ p.

The expected number of calls to U and U−1 made
by our quantum amplitude estimation algorithm is
O
(

k
ε
√
p

(
1 + log log 1

p

))
.

We see that Lemma 3 can be used for mean estimation
with a relative error by setting p = O (1/m), where
|ϕ0⟩ is a superposition overm basis states. This lemma
follows from the amplitude estimation lemma (Theo-
rem 15 of Brassard et al. (2002)) by setting t = 1

m .

Lemma 4 (Multidistribution Amplitude Estimation.
Theorem 4 of Bera and SAPV (2022)). Given an ora-
cle O that acts as O |0⟩ =

∑
y αy |y⟩ (η0,y |0⟩+η1,y |1⟩),

there exists an algorithm to output the quantum state
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∑
y αy |y⟩ (η0,y |0⟩ + η1,y |1⟩) |η̃1,y⟩ in O (1/ε) queries

with a high probability, such that |η̃1,y − η1,y| ≤ ε.

Given a joint distribution D over X × Y, Lemma 4
allows us to estimate the conditional probability
Pr [Y = y|x] to within ε accuracy over all x in super-
position.

3 QUANTUM AGNOSTIC
BOOSTING

In this section, we describe our quantum agnostic
boosting algorithm that has query access to a (m,κ, η)-
weak quantum agnostic learner A, and to its corre-
sponding Qaex (D) oracle for an unknown joint dis-
tribution D over X ×{−1, 1}. As is common in quan-
tum boosting algorithms (see Section 1.2), we also as-
sume access to earlier hypotheses in the form of ora-
cles OH1 , OH2 , . . . , OHt−1

3. The pseudo-code for our
algorithm is given in Algorithm 1 which follows the
classical Kalai and Kanade (2009) algorithm 4.

At a very high level, Algorithm 1 iteratively com-
putes multiple hypotheses. To compute the hypoth-
esis, say Ht in iteration t, it first randomly relabels
the examples {(xi, yi)}i in a careful manner, and then
obtains a hypothesis ht from the relabeled examples.
Next, it estimates the confidence margins αt and βt,
and depending on their values, generates Ht from
ht and the hypothesis Ht−1 from the earlier itera-
tion. The best among {H1, H2, . . .} is returned as the
strong learner. We note a few key points. Firstly,
the relabeling step in the KK algorithm can be simu-
lated as replacing each example (xi, yi) with two con-
servatively weighted examples: (xi, yi) with weight
(1+wt

i)/2 and (xi, ȳi) with weight (1−wt
i)/2. We set

wt
i = min

{
1, e{−Ht−1(xi)·yi}

}
which can be shown to

be a conservative weighting function. It is easy to show
using the Chernoff-Hoeffding bounds that αt and βt
are good estimates of corD′

wt
(ht) and corD′

wt

(
−Ht−1

)
,

respectively, when m is large; here, D′
wt denotes the

distribution D relabeled by the weighting function wt.

The quantum algorithm essentially takes care of two
things: creating an oracle to return a superposition
of relabeled examples and estimating the confidence
margins αt and βt. For the latter, we use quantum
mean estimation with relative error (see Section 2) to
obtain estimates α̃t and β̃t respectively. The first task
is accomplished by performing standard operations on

3For conciseness, we refer to sign(Ht) and −sign(Ht) as
Ht and −Ht throughout this work. This notation can be
interpreted as a confidence-weighted prediction.

4For completeness, we give a short simplified analysis
of the Kalai and Kanade (2009) algorithm (henceforth re-
ferred to as the KK algorithm) in Appendix A.

Algorithm 1: Quantum Agnostic Boosting
Input: (m,κ, η)-weak quantum agnostic learner A

and its corresponding Qaex oracle.
Initialize: H0 = 0, ε > 0, T = O (1/η2ε2). Prepare a

set S of m training samples {(xi, yi)}i∈[m]

by measuring the output of Qaex .
Output: Hypothesis H t̂ for some t̂ ∈ {1, 2, . . . T}

such that errS(H t̂) = mint errS(Ht).
1 for t = 1 to T do
2 Prepare 2 +m copies of

|ψ0⟩ = 1/√m
∑

i∈[m] |xi, yi⟩.
3 Query the oracle OHt−1 to obtain 2 +m copies of

the state 1/√m
∑

i∈[m] |xi, yi⟩
∣∣wt

i

〉
.

4 On the last m copies, perform arithmetic
operations to obtain 1/√m

∑
i∈[m] |xi, yi⟩ |zi⟩.

▷ Let zi = (1+wt
i)/2, z′i = (1−wt

i)/2.
5 Obtain |ϕ3⟩ by a conditional rotation on |zi⟩.

|ϕ3⟩ = 1√
m

∑
i∈[m] |xi, yi⟩

(√
zi |0⟩+

√
z′i |1⟩

)
.

6 Perform a Cnot operation on |yi⟩ with the last
register as control to obtain m copies of
|ϕ4⟩ = 1√

m

∑
i∈[m] |xi⟩

(√
zi |yi, 0⟩+

√
z′i |ȳi, 1⟩

)
.

▷ Denote the unitary for obtaining |ϕ4⟩ by
Qaext.

7 Obtain oracle Oht corresponding to hypothesis ht

produced by weak learner A using Qaext as the
quantum example oracle instead of Qaex .

8 Invoke Oht on the 1st copy of |ϕ0⟩ to obtain
1√
m

∑
i∈[m]

∣∣xi, yi, wt
i , h

t(xi)
〉
.

▷ Let αt = 1
m

∑
i∈[m]

(
wt

iyih
t(xi)

)
.

9 Prepare the state

√
1− αt |ψ0, 0⟩+

√
αt |ψ1, 1⟩ .

Estimate αt as α̃t.
10 Invoke Oht on the 2nd copy of |ϕ0⟩ to obtain

1√
m

∑
i

∣∣xi, yi, wt
i

〉 ∣∣−Ht−1(xi)
〉
.

▷ Let βt = 1/m
∑

i∈[m]

(
wt

i · yi · −Ht−1(xi)
)
.

11 Prepare the state√
1− βt |ψ0, 0⟩+

√
βt |ψ1, 1⟩ .

Estimate βt as β̃t.
12 If α̃t > β̃t, Ht = Ht−1 + α̃t · ht. Otherwise,

Ht =
(
1− β̃t

)
Ht−1. Construct the oracle OHt .

13 Return the H t̂ with the least training error on S for
t̂ ∈ [T ].

a superposition state. We now state the main theorem
w.r.t. the complexity and correctness of Algorithm 1,
and provide further exposition and detailed proofs of
Algorithm 1 in Appendix B and Appendix C.

Theorem 5 (Quantum Agnostic Boosting). Given
a (m,κ, η)-weak quantum agnostic learner A with
a VC dimension of d, Algorithm 1 makes at most
Õ
(

1
η4ε3

√
d log 1

δ

)
queries to A and runs for an ad-
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ditional Õ
(

n2·T
η2ε

√
d log 1

δ

)
time, to obtain a quan-

tum (κ/η) optimal agnostic learner with a probabil-
ity of failure of at most 5δT for any ε > 0 and
T = O

(
1

η2ε2

)
.

Proof Sketch. Almost all steps follow the KK algo-
rithm. The first major source of error arises from the
estimation of the margins. So, let’s focus on Line 12
where Ht is generated. At this point, Algorithm 1
needs to determine the combined classifier for the next
step. Accordingly, we pick a classifier among ht and
−Ht−1 that best correlates to the optimal classifier in
the relabeled distribution and add a weighted version
of it to the earlier hypothesis Ht−1. We denote this
classifier as gt, and observe that it’s corresponding es-
timated confidence margin is γt = max (αt, βt). Of
course, the algorithm has computed only α̃t and β̃t,
and we denote max

(
α̃t, β̃t

)
as γ̃t.

Observe that∣∣∣γ̃t − corD′
wt

(
gt
)∣∣∣ ≤ ∣∣γ̃t − γt

∣∣+ ∣∣∣γt − corD′
wt

(
gt
)∣∣∣

≤ ϵγt + ηε/20

≤ ηε/10.

The first inequality follows from the triangle inequal-
ity. The second inequality follows from relative estima-
tion (Lemma 3 in Section 2) and Chernoff-Hoeffding
bounds. The final inequality stems from observing
that γt ≤ 1 and setting ϵ = ηε/20. This shows that
γ̃t is a good estimate of the correlation of gt on to
the relabeled distribution. Therefore, Algorithm 1
chooses the right hypothesis with high probability in
every iteration. Each iteration of Algorithm 1 makes
Õ
(

1
ηε

√
m log 1

δ

)
queries for estimating various quan-

tities using Lemma 3. This gives us the required query
complexity.

Finally, we note that there are three points of failure
in every iteration of Algorithm 1: (a) Estimation of γ̃t
fails w.p. ≤ 3δ, (b) weak learner A fails to produce a
hypothesis w.p. ≤ δ, and (c) estimating the correlation
of gt fails w.p. ≤ δ. Therefore the entire algorithm
fails w.p. at most 5δT . ■

4 QUANTUM DECISION TREE
LEARNING WITHOUT
MEMBERSHIP QUERIES

This section shows how to obtain efficient decision tree
learning algorithms in the agnostic setting without
membership queries, in particular, using only states
that are superpositions of pairs of random examples
and labels provided by the Qaex oracle. We use

an improper learning approach with two main steps:
Obtain a weak learner and then use an appropriate
boosting algorithm to obtain a strong learner (see
Fig. 1). Since the agnostic/adversarial noise setting
is the hardest generalization of PAC learning, it fol-
lows that the above blueprint would also work for de-
signing efficient learning algorithms for decision trees
without MQ for more restricted noise models such as
the random classification noise model, and the realiz-
able/noiseless model. In fact, there exist simpler algo-
rithms for both of these restricted settings as discussed
in Section 4.2 and Section 4.3.

4.1 The Adversarial Noise (Agnostic) setting

Here the task is to learn an unknown concept f(x)
(represented by a decision tree) given a Qaex ora-
cle. There were several difficulties in using the existing
techniques to construct a weak learner for the agnos-
tic settings. For example, in the technique proposed
by Gopalan et al. (2008), a function is implicitly con-
structed from the Aex oracle whose samples are used
as an approximation of the true labeling function; this
is, however, not possible due to the inherent differences
between Aex and Qaex oracles.

The approach taken in Section 4.2 would also not work
since it is not entirely clear how to obtain a Fourier
sampling state5 directly from the Qaex oracle with-
out an explicit oracle Of where f(x) is the unknown
concept we are trying to learn. Finally, the techniques
of Iwama et al. (2005) that we used for the random
classification noise setting also do not apply here since
it acts only with oracles Oγ

f where the bias γ is the
same for all x. However, in the agnostic setting, the
bias is dependent on x.

Algorithm 2 constructs a weak quantum agnostic
learner for decision trees from the Qaex oracle6. We
can then use Algorithm 1 to boost this weak learner
into a quantum agnostic learner for decision trees. Al-
gorithm 2 first constructs an operator Oh using the
Qaex oracle that can act as a biased oracle for some
predictor f such that f is an approximation of the
Bayes optimal predictorfB.

Internally, the algorithm checks for each x, in super-
position, which amongst α0|x and α1|x is the largest
and sets h(x) accordingly. Further, it performs mul-
tiple such checks over multiple independent copies to
reduce any error arising from the amplitude estima-
tion of the αy|x states. Next, Algorithm 2 offloads the
bulk of its work to a quantum rendering of the GL

5This is the state
(

1

2n/2

)∑
x f̂(x) |x⟩ |...⟩.

6Algorithm 2 is detailed in Appendix E.
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Algorithm 2: Weak Quantum Agnostic Learner
Input: The Qaex oracle, t. Initialize δ = 1/10, γ ≤ min

{
δ/4nt2, ε

2
/8
}
.

Output: A (m, 1/t, ε) WL for size-t decision trees.
1 Query the Qaex oracle to obtain |ψ1⟩ =

∑
x,y

√
Dx,y |x⟩ |y⟩ = 1√

2n

∑
x |x⟩

(∑
y αy|x |y⟩

)
.

2 Perform ℓ independent estimations of MAE(ε,1− 8/π2) conditioned on the second register to obtain
1√
2n

∑
x |x⟩

(∑
y αy|x |y⟩

) (
βgx

∣∣α̃1|x
〉
+ βbx |Err⟩

)⊗ℓ. ▷ Let ℓ = O (log 1/γ).

3 On each of the ℓ registers, perform thresholding on 3rd register to obtain
1√
2n

∑
x |x⟩

(
β̂gx |h(x)⟩ |ϕ′(x)⟩+ β̂bx

∣∣∣h(x)〉 |ϕ′′(x)⟩
)⊗ℓ

. ▷ Let h(x) = I
[
α̃1|x >

1√
2

]
.

4 Perform majority on |h(x)⟩ registers over all ℓ copies to create 1√
2n

∑
x |x⟩ |ξ(x)⟩ |h

∗(x)⟩.
5 Let Oh be the combined unitary from steps 1 to 4.
6 Perform a binary search over the intervals (τ ′, τ ] of size ϵ/16 on (0, 1], to find the largest τ such that

QGL(Oh, n, τ, ϵ, δ/4 log(ε)) outputs a tuple (l, S̃) with l = 1. The search terminates if τ ≤ 1/t.
7 Return the parity monomial χS̃ as our weak learner.

algorithm denoted QGL7.

QGL tries to approximate a decision tree with a mono-
mial, and it’s operations are motivated by the classical
GL algorithm (see Section 2). The technical difficulty
was to generalize it to take as input a strongly biased
oracle instead of an (error-free) oracle for a Boolean
function and further enhance it to contain three kinds
of errors: (a) errors from the biased oracle, (b) errors
arising from amplitude estimation, and (c) errors from
amplitude amplification (the state that we will amplify
may contain false positives arising due to the first two
errors, and those will now be incorrectly amplified).

We now state the main theorem for obtaining Quan-
tum Weak Learners, with a detailed proof in Ap-
pendix E.1.
Theorem 6 (Weak Agnostic Learner for size-t De-
cision Trees). Let η = 1/t, and let κ ∈ [0, 1/2).
Given access to a Qaex oracle, Algorithm 2 makes
m = Õ

(
n

ηκ3 · log 1
κ

)
calls to the Qaex oracle and

runs for an additional Õ
(

n
ηκ3 · log 1

κ

)
time to obtain a

(m,κ, η)-weak quantum agnostic learner for size-t de-
cision trees w.h.p.

Proof Sketch. Let C be a family of size-t decision trees
with c ∈ C as the optimal classifier. Using the Fourier
expansion of c and applying Definition 1 we have
corD (c(x)) =

∑
S⊆[n] ĉ(S)corD (χS(x)). Kushilevitz

and Mansour showed that
∑

S⊆[n] |ĉ(S)| ≤ t. Using
an averaging argument, we have maxS |corD (χS(x))| ≥
1
t corD (c(x)).

We now claim that Algorithm 2 produces S̃ s.t.
|maxS corD (χS(x))− corD (χS̃(x))| ≤ ε. This claim
follows from the detailed analysis of the QGL algo-
rithm (Algorithm 3; see Appendix D.1 for details).

7For details refer to Algorithm 3 detailed in Ap-
pendix D.

Given S̃, we have corD (χS̃(x)) ≥ 1
t corD (c(x)) − ε.

This is an
(
m, ε, 1t

)
-weak quantum agnostic learner

w.r.t c (from Definition 4). ■

We state the main result of this work now.

Theorem 7 (Restating Theorem 1). For any δ > 0,
ε ∈ (0, 1/2), there exists a quantum learning algorithm
with VC dimension d that makes Õ

(
nt5

√
d

ε6 log (1/δ)
)

queries to the Qaex oracle and takes an additional
Õ
(

n3t5
√
d

ε6 log (1/δ)
)

time for (tε)-optimal agnostic
PAC learning size-t decision trees on n-bits.

Proof Sketch. We use the weak quantum agnostic
learner for size-t decision trees constructed in Algo-
rithm 2 (set κ = ϵ and η = 1

t in Theorem 6) as a weak
learner for the quantum agnostic boosting algorithm
as described in Algorithm 1. By Theorem 5, the out-
put of Algorithm 1 is a (tε)-optimal agnostic learner
for size-t decision trees. ■

4.2 The Noiseless (Realizable) Setting

Many quantum algorithms use the Fourier sampling
oracle to obtain speedups over their classical counter-
parts. A Fourier sampling oracle (Bernstein and Vazi-
rani, 1993a) yields the state

∑
S⊆[n] f̂(S) |S⟩, given ac-

cess to an oracle for the function f , and upon measure-
ment, returns S such that f̂2(S) is the largest with
high probability. It is, therefore, natural to use as f
the labeling function in a realizable setting. Further,
we can use the majority of several Fourier samples,
from multiple copies of the above state, as a realizable
weak learner for size-t decision trees from Of without
using membership queries (see Appendix E.2 for de-
tails). This weak learner can be fed into quantum re-
alizable boosting algorithms Arunachalam and Maity
(2020); Izdebski and de Wolf (2020) to obtain a strong
PAC learner for size-t decision trees.
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Algorithm 3: QGL algorithm
Input: Oracle Oh, n, threshold τ , accuracy

ϵ ∈ (0, τ), error δ′ ∈ (0, 1/2)

Output: A tuple (l, S̃) such that if l = 1 then
ĥ(S̃) ≥ τ − ϵ and if l = 0 then ĥ(S) < τ, ∀S

Initialize: Set LF to be the first level that has the
number of nodes r to be at least 1

τ2 nodes.
Set Li,g = LF .

Initialize: Set q = ⌈log(1/ϵ)⌉+ 5 and δ′ = δτ2/8n.
1 Prepare the state |ψ1⟩ = 1√

r

∑
p′∈Li,g

|p′⟩
2 do
3 Append |+⟩ |0⟩ |0n⟩ |0n⟩ |0q, 0⟩⊗O(log(1/δ′)) |0⟩ to

the state.
4 Prepare the state |ν1⟩ in the fourth register and

the state |νp2 ⟩ in the fifth register.
▷ |ν1⟩ and |νp2 ⟩ are defined in

Appendix D.1.
5 Perform the swap test with 3rd register as the

control state and 4th and 5th registers as the
target state to obtain

1√
2|Li,g|

∑
p∈Li,g×{0,1}

|P ⟩
(
|0q⟩ |0⟩

)⊗ℓ |0⟩ .

▷ Li,g is the set of “good” prefixes of
level i− 1.

▷ |P ⟩ = |p⟩ (σ0,p |0⟩ |ϕ0,p⟩+ σ1,p |1⟩ |ϕ1,p⟩).
▷ ▷ Let ℓ = O (log 1/δ′).

6

7 Perform M.A.E.(ϵ/2, 1− 8
π2 ) to estimate σ0,p and

obtain a state of the form

1√
2|Li,g|

∑
p∈Li,g×{0,1}

|P ⟩ |W ⟩⊗ℓ |0⟩ .

▷ |W ⟩ =
(
υp,g |σ̃0,p⟩+ υp,b |Ep⟩

)
|0⟩ .

8 In each of the O(log(1/δ′)) estimate registers,
mark all the estimates that are at least
1
2
+ 1

2
(τ − ϵ).

9 Perform a majority over all the O(log(1/δ′))
indicator registers and store the majority in the
last register.

10 Amplify the probability of measuring the last
register as |1⟩ to obtain the following state of the
form with error at most δ′/2n

αi,g

∑
p∈Li+1,g

|p, ξp, 1⟩+ αi,b

∑
p∈Li+1,b

|p, ξp, 0⟩ .

Measure the last qubit as m. If m = 0 and i ̸= n,
return to step 1.

11 while i ̸= n+ 1

12 Measure the first register as S̃ and return (m, S̃)

4.3 The Random Classification Noise setting

In this model, the labels associated with instances suf-
fer from an independent random noise, and we can

model it as a biased oracle Oϵ
f for the true labeling

function f(x) s.t. Oϵ
f |x⟩

∣∣0m−1
〉
|0⟩ gives us the state

|x⟩
(
α |ux⟩ |f(x)⟩ + β |wx⟩

∣∣∣f(x)〉) with |α|2 ≥ 1
2 + ϵ.

Iwama et al. (2005) showed that for any O(T ) query
quantum algorithm that solves a problem with high
probability using access to a perfect oracle, there ex-
ists an O(T/ϵ) query quantum algorithm that solves
the same problem with high probability but using ac-
cess to an ϵ-biased oracle 8.Thus, to obtain a weak
learner in the RCN setting, we only need to design a
QGL variant using an unbiased oracle, and then use
the result by Iwama et al. (2005) to adapt it for a
biased oracle. It suffices to state that the QGL algo-
rithm in Algorithm 3 also works for unbiased oracles.

5 DISCUSSION

Rudin et al. (2022) lists decision tree learning as one
of ten grand challenges in interpretable machine learn-
ing. Current state-of-the-art decision tree learning al-
gorithms (Table 1) make use of membership queries
that detract from human explainability. Therefore,
there is a well-motivated need to move away from
MQ and towards weaker query models. We give such
an algorithm using Qaex queries in this work. We
also remark here that the agnostic setting is partic-
ularly suitable for NISQ devices. However, since the
boosting algorithms proposed in this work appear too
complex to be implemented on NISQ hardware, sim-
pler alternatives may be appealing, particularly to the
practitioners of quantum ML. The ultimate goal is to
obtain efficient learning algorithms for decision trees
in the agnostic setting by only using random examples
(from the training set). Another immediate follow-up
would be obtaining lower bounds for improper learning
of decision trees without MQ in the agnostic setting.
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CHECKLIST

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]
Detailed Exposition for Algorithm 1, Al-
gorithm 2, and Algorithm 3 are given in
Appendix A.1, Appendix E.1, and Ap-
pendix D.1 respectively.

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]
Detailed analysis and proofs for Algorithm 1,
Algorithm 2, and Algorithm 3 are given
in Appendix A.1, Appendix E.1, and Ap-
pendix D.1 respectively.

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Not Applicable]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]
See Theorem 1, Theorem 5, and Theorem 6

(b) Complete proofs of all theoretical results.
[Yes]
See Appendix A.1, Appendix E.1, and Ap-
pendix D.1.

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Not Applicable]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Not
Applicable]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Not Applicable]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Not Applicable]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Not Applicable]

(b) The license information of the assets, if ap-
plicable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Not Applicable]
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Appendix

A The Kalai-Kanade Algorithm

Algorithm 4: The Kalai-Kanade algorithm
Input: (m,κ, η)-weak agnostic learner A with complexity R, and m labeled training samples S = {(xi, yi)}i∈[m].
Output: (κ/η)-optimal hypothesis H t̂ for 1 ≤ t̂ ≤ T such that errS(H t̂) = argminterrS(H

t).
Data: Initialize H0 = 0, and a worst-case guess for T .

1 for t = 1 to T do
2 Define wt

i = −ϕ′(zi) = min
{
1, e{−Ht−1(xi)·yi}

}
.

3 Relabeling Step: Set ỹi = yi w.p. (1 + wt
i)/2, and w.p. (1− wt

i)/2 set ỹi = ȳi.
4 Pass the set of relabeled samples S̃ = {(xi, ỹi)}i∈[m] to A to obtain intermediate hypothesis ht.
5 Let αt =

1
m

∑
i∈[m]

(
wt

i · yi · ht(xi)
)
, and βt = 1

m

∑
i∈[m]

(
wt

i · yi · −Ht−1(xi)
)
.

6 If αt > βt, set Ht = Ht−1 + αt · ht. Otherwise, set Ht = (1− βt)H
t−1.

We first define the conservative weighting function used to relabel training samples.
Definition 5 (Conservative weighting function). A function w : X × {−1, 1} −→ [0, 1] is conservative for any
function h : X −→ {−1, 1} if w(x,−h(x)) = 1 for all x ∈ X .

Consider the potential function

ϕ(z) =

{
1− z if z ≤ 0

e−z if z > 0
.

Observe that the weights in the Kalai-Kanade algorithm are set to the negative gradients of ϕ whose argument
contains a combined hypothesis from the previous iterations; therefore, we try to use the weak learner to form a
combined hypothesis that lowers the potential function in gradient descent like fashion. We note here that ϕ(z)
is differentiable everywhere and −ϕ′(z) ∈ {1/e, 1}. We state the following lemma using this fact and Taylor’s
expansion.
Claim 1 (Lemma 2 of Kalai and Kanade (2009)). ϕ(z)− ϕ(z + ε) ≥ −ϕ′(z) · ε− ε2

2 .

The Kalai-Kanade algorithm produces a combined classifier Ht on round t, which has a lower potential than
Ht−1 until the potential eventually drops from 1 in iteration t = 1 to (or gets arbitrarily close to) 0 for some
iteration t̂. Since there is a lower bound on how much the potential can drop every round, this gives us an upper
bound on the number of iterations until the Kalai-Kanade algorithm converges. Finally, we see that when the
potential drops to its lowest value, the combined classifier H t̂ qualifies as an agnostic learner. Let D be any
arbitrary joint distribution over X × {−1, 1}. We denote the resulting relabeled distribution9 (relabeled using
any weighting function w : X × {−1, 1} −→ [0, 1]) by D′

w.
Claim 2 (Lemma 1 of Kalai and Kanade (2009)). Given any arbitrary distribution D over X × {−1, 1}, an
optimal classifier c and a classifier h s.t. c, h : X −→ [−1, 1], and a weighting function w : X × {−1, 1} −→ [0, 1]
which is conservative for h, we can show that corD′

w
(c)− corD′

w
(h) ≥ corD (c)− corD (h).

Proof. From Algorithm 4, we can see that E
{x,y}∈D′

w

[h(x) · y] = E
{x,y}∈D

[h(x) · y · w(x, y)]. We now evaluate the

quantity corD′
w
(c)− corD′

w
(h) using Definition 1.

corD′
w
(c)− corD′

w
(h) = corD′

w
(c)− corD′

w
(h) + corD (c)− corD (h)− corD (c) + corD (h)

= corD (c)− corD (h) + corD′
w
(c)− corD (c)− corD′

w
(h) + corD (h)

= corD (c)− corD (h) + E
{x,y}∈D

[c(x) · y · (1− w(x, y))]− E
{x,y}∈D

[h(x) · y · (1− w(x, y))]

= corD (c)− corD (h)− E
{x,y}∈D

[(c(x)− h(x)) · y · (1− w(x, y))] .

9Technically, this is D′
wt , but the usage should be apparent from the context.
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The proof follows from Definition 5, and the fact that w(x, y) = −ϕ′(h(x)y). When h(x) = y, we have w(x, y) =
1/e =⇒ 1 − w(x, y) > 0, and c(x) · y ≤ 1 (true for any classifier). Therefore corD′

w
(c) − corD′

w
(h) ≥

corD (c) − corD (h). Alternatively, when h(x) = −y, we have w(x, y) = 1 =⇒ 1 − w(x, y) = 0 which implies
corD′

w
(c)− corD′

w
(h) = corD (c)− corD (h). ■

Consider the case when corD′
w
(C) = 0. In this case, the optimal classifier behaves like a random guesser under

the relabeled distribution. Therefore, either the combined classifier Ht−1 is worse than random guessing (since
it was used to set the weights for relabeling), and we should use its negation as a weak agnostic learner, or the
hypothesis returned by the weak learner trained on the relabeled distribution is close to optimal. Therefore, we
need to pick either of these to add to the combined classifier for the next iteration. The selected hypothesis is
denoted by gt. The Kalai-Kanade algorithm combines the existing combined classifier and gt (weighted by its
correlation γt) to form the combined classifier for the tth iteration. Next we state a result that lower bounds the
drop in potential in every iteration.

Claim 3 (Lemma 3 of Kalai and Kanade (2009)). Given any function H : X −→ R, hypothesis h : X −→ [−1, 1],
a weight γ ∈ R, an arbitrary joint distribution D ∼ X × {−1, 1}, a weighting function w(x, y) = −ϕ′(y ·H(x)),
and a relabeled distribution D′

w, we have E
{x,y}∼D

[ϕ(y ·H(x))]− E
{x,y}∼D

[ϕ (y · (H + γh) (x))] ≥ corD′
w
(h)− γ2

2 .

The proof follows directly by plugging in appropriate values for z and ε in Claim 1 and taking an expectation
over both sides. The main result of Kalai and Kanade (2009), which shows that the combined classifier output
by the Kalai-Kanade algorithm is an agnostic learner, is as follows.

Lemma 8 (Theorem 1 of Kalai and Kanade (2009)). Let A be an (m,κ, η)-weak agnostic learner w.r.t. some
concept class C s.t. VCdim(C) = d. Then, for any ε, δ > 0, there exists an agnostic boosting algorithm that uses
m = O

(
1

η2ε2 log
1
δ

)
examples and T = O

(
1

η2ε2

)
iterations, makes Õ

(
T ·d
η2ε log

1
δ

)
queries to A and runs for an

additional Õ
(

n2·T ·d
η2ε log 1

δ

)
to output a hypothesis h with probability at least 1 = O (δT ), such that corD (h) ≥

optcorD(C)− κ
η − ε.

For a large enough training set size, we can give a tight enough estimate for the correlation of the new classifier
gt, which is an (m,κ, η)-weak agnostic learner. We also see from Claim 3 that a confidence-based weighted
combination drops the potential, and we can lower bound this drop in potential. Therefore, we can obtain an
upper bound on the number of iterations of Algorithm 4, such that the potential function eventually reaches the
minimum possible value. The proof follows from the fact that when the potential function reaches the minimum
possible value, the corresponding combined classifier is a κ/η-optimal agnostic learner.

A.1 Proof of Lemma 8

Claim 4. Either the weak hypothesis produced by Algorithm 4 on the tth iteration, or the negation of the combined
hypotheses up to the t− 1th step has a correlation greater than ηε

3 .

Proof. Consider the optimal hypothesis c ∈ C, and the combined hypothesis produced by Algorithm 4 at iteration
t − 1 to be Ht−1. If Ht−1 is not a β-optimal agnostic learner, then we have corD (c) > corD

(
Ht−1

)
+ β + ε.

Plugging in Claim 2, we have corD′
w
(c) > corD′

w

(
Ht−1

)
+ β + ε.

First consider the case corD′
w
(c) > β+ ε

2 , where β = κ
η . Consider the hypothesis ht produced by the weak learner

at the tth iteration in Algorithm 4. By the weak learning assumption, we have corD′
w
(ht) ≥ η · corD′

w
(c)−κ =⇒

corD′
w
(ht) ≥ ηε

2 .

Now consider the other case β + ε
2 > corD′

w
(c). This implies that corD′

w

(
−Ht−1

)
> ε

2 . ■

Lemma 8 (Theorem 1 of Kalai and Kanade (2009)). Let A be an (m,κ, η)-weak agnostic learner w.r.t. some
concept class C s.t. VCdim(C) = d. Then, for any ε, δ > 0, there exists an agnostic boosting algorithm that uses
m = O

(
1

η2ε2 log
1
δ

)
examples and T = O

(
1

η2ε2

)
iterations, makes Õ

(
T ·d
η2ε log

1
δ

)
queries to A and runs for an

additional Õ
(

n2·T ·d
η2ε log 1

δ

)
to output a hypothesis h with probability at least 1 = O (δT ), such that corD (h) ≥

optcorD(C)− κ
η − ε.
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Proof. Since η ∈
[
0, 12

)
, we have from Claim 4 that corD′

w
(gt) ≥ ηε

3 , where gt is the better of the two candidate
hypotheses at iteration t. Now, consider the margin γt of the best classifier gt at iteration t obtained using m
training samples.

γt =
1

m

∑
i∈[m]

gt(xi) · yi · wt(xi, yi).

This margin is simply the estimated correlation of gt. Using Chernoff-Hoeffding bounds and setting m =

O
(

1
η2ε2 log

1
δ

)
, we have

∣∣γt − corD′
w
(gt)

∣∣ ≤ O (ηε) with high probability. Setting the appropriate values for

corD′
w
(gt) allows us to lower bound the potential drop to at least O

(
η2ε2

)
in iteration t > 0 using Claim 3.

Since the potential function is bounded in the range [0, 1], and the potential drops by at least O
(
η2ε2

)
, in

O
(

1
η2ε2

)
iterations, Algorithm 4 must produce a hypothesis such that the potential function drops to its lowest

value. Consider the iteration τ in which potential drops to its lowest. From Claim 2 we have

corD′
w
(c)− corD′

w
(gτ ) ≥ corD (c)− corD (gτ )

=⇒ corD (gτ ) ≥ corD (c)−
[
corD′

w
(c)− corD′

w
(gτ )

]
.

Substituting corD′
w
(c) > κ

η + ε
2 (since the potential is lowest at this iteration) and corD′

w
(gτ ) ≥ ηε

3 , we have

corD (Hτ ) ≥ corD (c)− κ
η−ε. Therefore, we have that in O

(
1

η2ε2

)
iterations, Algorithm 4 produces a

(
κ
η

)
-optimal

agnostic learner. ■

B Details of Quantum Agnostic Boosting Algorithm (Algorithm 1)

Prepare a set S of m training samples {(xi, yi)}i∈[m] by measuring the output of Qaex . At the start of every
iteration, we prepare 2 +m copies of the uniform state

|ψ0⟩ = |ϕ0⟩ =
1√
m

∑
i∈[m]

|xi, yi⟩ .

Then, we query the t− 1th oracle OHt−1 .

1√
m

∑
i∈[m]

|xi, yi⟩ |0⟩ |0⟩
OHt−1−−−−→ 1√

m

∑
i∈[m]

|xi, yi⟩
∣∣∣∣−Ht−1(xi) · yi︸ ︷︷ ︸

〉
zi

|0⟩

−→ 1√
m

∑
i∈[m]

|xi, yi⟩ |zi⟩
∣∣wt

i

〉
.

The second step uses arithmetic operations to compute wt
i = min

{
1, e{−Ht−1(xi)·yi}

}
. We uncompute the |zi⟩

register using one query to the OHt−1 oracle to obtain 2 +m copies of the state

|ϕ2⟩ =
1√
m

∑
i∈[m]

|xi, yi⟩
∣∣wt

i

〉
.

Take the first m copies of |ϕ2⟩, and perform arithmetic operations to obtain m copies of the state

1√
m

∑
i∈[m]

|xi, yi⟩
∣∣∣∣1 + wt

i

2

〉
.

Perform a conditional rotation on the third register to obtain the state |ϕ3⟩ as shown in Line 5.

|ϕ3⟩ =
1√
m

∑
i∈[m]

|xi, yi⟩

(√
1 + wt

i

2
|0⟩+

√
1− wt

i

2
|1⟩

)
.
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After we perform the C-NOT, we get Q copies of a state |ϕ4⟩ with conservatively relabeled samples, as shown in
Line 6.

|ϕ4⟩ =
1√
m

∑
i∈[m]

|xi⟩

(√
1 + wt

i

2
|yi, 0⟩+

√
1− wt

i

2
|ȳi, 1⟩

)
.

We denote the unitary for obtaining |ϕ4⟩ as Qaext. Now, we pass Qaext to the (m,κ, η)-weak quantum agnostic
learner A, to obtain query access to the tth intermediate hypothesis ht. Note that the weak learner A obtains
the intermediate hypothesis using Qaext as the quantum example oracle instead of Qaex .

At this point, we have two copies of |ϕ2⟩ left over. On the first copy, use the Oht oracle to obtain∣∣ψ1
3

〉
=

1√
m

∑
i∈[m]

|xi, yi⟩
∣∣wt

i

〉 ∣∣wt
i · yi · ht(xi)

〉
.

Perform a conditional rotation on the last register to obtain∣∣ψ1
4

〉
=

1√
m

∑
i∈[m]

√
κi |xi, yi⟩

∣∣wt
i

〉
|κi⟩ |1⟩

+
1√
m

∑
i∈[m]

√
1− κi |xi, yi⟩

∣∣wt
i

〉
|κi⟩ |0⟩

where κi = wt
i · yi · ht(xi). We can rewrite the first part as

√
αt

∑
i∈[m]

√
κi∑

i∈[m] κi
|xi, yi⟩

∣∣wt
i , κi, 1

〉
.

We perform quantum amplitude estimation with relative error ε, conditioned on the |1⟩ register, to obtain an
estimate α̃t. On the second copy, use the OHt−1 oracle to obtain the state∣∣ψ2

3

〉
=

1√
m

∑
i∈[m]

|xi, yi⟩
∣∣wt

i

〉 ∣∣wt
i · yi · −Ht−1(xi)

〉
.

Let κi = wt
i · yi · −Ht−1(xi). Perform a conditional rotation on the last register to obtain the state∣∣ψ2

4

〉
=

1√
m

∑
i∈[m]

√
κi |xi, yi⟩

∣∣wt
i

〉
|κi⟩ |1⟩

+
1√
m

∑
i∈[m]

√
1− κi |xi, yi⟩

∣∣wt
i

〉
|κi⟩ |0⟩ .

We can rewrite the first part as

√
βt
∑
i∈[m]

√
κi∑

i∈[m] κi
|xi, yi⟩

∣∣wt
i , κi, 1

〉
.

Again, we perform quantum amplitude estimation with relative error ε to obtain an estimate for β̃t. We now
state the following claims.

Claim 5. Algorithm 1 computes estimates of margins α̃t and β̃t s.t. γ̃t = max
(
α̃t, β̃t

)
using Õ

(
1
ηε

√
m log 1

δ

)
queries.

∣∣∣γ̃t − corD′
wt

(gt)
∣∣∣ ≤ ηε/10 with probability ≥ 1− 3δT .

Claim 5 shows that we can estimate the correlation of the best classifier gt at every step t > 0 with a high
probability.

Claim 6. Algorithm 1 takes as input an (m,κ, η)-weak quantum agnostic learner and outputs a (κ/η)-quantum
agnostic learner with a probability of failure of at most 5δT .



Chatterjee, Tharrmashastha, Bera

Claim 6 shows that our algorithm succeeds with high probability.

Claim 7. Given a weak (m,κ, η)-weak quantum agnostic learner A with a VC dimension of d, Algorithm 1
makes at most Õ

(
1

η4ε3

√
d log 1

δ

)
queries to A.

Claim 7 gives an upper bound on the query complexity of our boosting algorithm.

Combining the three claims, we get Theorem 5, which states that the hypothesis h produced by our agnostic
boosting algorithm is very close to the accuracy of the best hypothesis in the concept class C with high probability,
essentially guaranteeing that our boosting algorithm agnostically learns C. All the proofs are given in Appendix C.

C Analysis of Algorithm 1

The analysis of Algorithm 1 relies heavily on the analysis of the classical Kalai-Kanade algorithm as presented
in Appendix A and Appendix A.1.

C.1 Proof of Correctness

The following claim shows us that the estimated quantity γ̃t in every iteration of Algorithm 1 is good.

Claim 5. Algorithm 1 computes estimates of margins α̃t and β̃t s.t. γ̃t = max
(
α̃t, β̃t

)
using Õ

(
1
ηε

√
m log 1

δ

)
queries.

∣∣∣γ̃t − corD′
wt

(gt)
∣∣∣ ≤ ηε/10 with probability ≥ 1− 3δT .

Proof. Let gt be the classifier chosen by Algorithm 1 at the tth iteration. We denote the correlation of gt w.r.t.
the relabeled distribution as corD′

w
(gt). Using Definition 1, we can restate this as

corD′
wt

(
gt
)
= E

xi,yi∼D

[
wt

i · yi · gt(xi)
]
. (1)

Let Xi = wt
i · yi · gt(xi) be a random variable. Applying Definition 5, we get that Xi ∈

[
− 1

e , 1
]
. Let γt =

1
m

∑
i∈[m]Xi. Then by applying Chernoff-Hoeffding bounds, we have

Pr
[∣∣∣γt − corD′

wt

(
gt
)∣∣∣ ≥ ηε

20

]
≤ 2 · exp

(
−2η2ε2

400∑m
i=1

(
1 + 1

e

)2
)

≤ 2δ.

Therefore by setting m = 200
η2ε2 log

1
δ , we can obtain with probability at least 1− 2δ,∣∣γt − corD′

w

(
gt
)∣∣ ≤ ηε

20
. (2)

We can obtain an estimate γ̃t of γt using Lemma 3 with probability at least 1− δ, such that∣∣γ̃t − γt
∣∣ ≤ ϵ · γt. (3)

We note here that Eq. (3) and Claim 4 together make it impossible for the estimate γ̃t to be so far from the
actual margin γt, that we end up choosing the classifier with the worse correlation.

Use triangle inequality on Eq. (2) and Eq. (3), we obtain with probability at least 1− 3δ,∣∣∣γ̃t − corD′
wt

(
gt
)∣∣∣ ≤ ∣∣∣γ̃t − γt + γt − corD′

wt

(
gt
)∣∣∣

≤
∣∣γ̃t − γt

∣∣+ ∣∣∣γt − corD′
wt

(
gt
)∣∣∣

≤ ϵ · γt + ηε

20
.

(4)



Efficient Quantum Agnostic Improper Learning of Decision Trees

In the last step we observe that γt can be at most 1. Setting ϵ = ηε
20 gives us the required upper-bound on∣∣∣γ̃t − corD′

wt
(gt)

∣∣∣. As a final point, we get the required query complexity by plugging the terms of Eq. (3) into
Lemma 3. ■

We now show that our boosting algorithm actually boosts the given weak learner to produce an agnostic learner.

Claim 6. Algorithm 1 takes as input an (m,κ, η)-weak quantum agnostic learner and outputs a (κ/η)-quantum
agnostic learner with a probability of failure of at most 5δT .

Proof. Using Claim 5 and Claim 3, we obtain that the drop in potential for Algorithm 1 at every iteration is
bounded by at most O

(
η2ε2

)
. We now follow the proof for Lemma 8 given in Appendix A.1 to show that

Algorithm 1 produces a (κ/η)- agnostic learner in at most O
(

1
η2ε2

)
iterations.

We allow the algorithm to fail with probability 3δ during estimation of γ̃t (see Claim 5). We allow the algorithm
to fail with another δ probability while invoking the weak learner to produce a hypothesis ht at the tth iteration.
Finally, estimating the correlation of the constructed hypothesis gt can fail with an additional probability of δ
at every iteration. ■

C.2 Complexity Analysis

Claim 7. Given a weak (m,κ, η)-weak quantum agnostic learner A with a VC dimension of d, Algorithm 1
makes at most Õ

(
1

η4ε3

√
d log 1

δ

)
queries to A.

Proof. The quantum algorithm runs for O
(

1
η2ε2

)
iterations (see Claim 6). From Claim 5, we see that each

iteration makes Õ
(√

m
ηε log 1

δ

)
queries. Plugging in sample complexity upper bounds from Arunachalam and

De Wolf (2018), we have m = Θ̃
(

d
η2

)
for both the classical and quantum case10, where d is the VC-dimension

of the
(

κ
η

)
-optimal agnostic learner. This gives us a total of Õ

( √
d

η4ε3 log
1
δ

)
queries made by Algorithm 1. ■

We note here that the classical algorithm has a query complexity of Õ
(

d
ε2 log

1
δ

)
(Arunachalam and De Wolf,

2018). Therefore, we have a polynomial blowup in the given parameters, while we have a quadratic speedup in
the VC dimension of the agnostic learner. We restate the main theorem here for completeness.

Theorem 5 (Quantum Agnostic Boosting). Given a (m,κ, η)-weak quantum agnostic learner A with a VC
dimension of d, Algorithm 1 makes at most Õ

(
1

η4ε3

√
d log 1

δ

)
queries to A and runs for an additional

Õ
(

n2·T
η2ε

√
d log 1

δ

)
time, to obtain a quantum (κ/η) optimal agnostic learner with a probability of failure of at

most 5δT for any ε > 0 and T = O
(

1
η2ε2

)
.

D Quantum Goldreich-Levin Algorithm

Claim 8. Given an oracle Oh, threshold τ , accuracy ϵ and error parameter δ, Algorithm 3 performs
O( n

ϵ2τ log
(

δτ2

n

)
) queries to Oh and outputs a pair (l, S̃) such that if l = 1, then ĥ(S̃) ≥ τ − ϵ, else if l = 0, then

∄S such that ĥ(S) ≥ τ , both w.p. ≥ 1− δ.

D.1 Proof of correctness of Algorithm 3:

We first present how the state evolves at each level of the quantum Goldreich-Levin algorithm. Consider the ith
level. Let Li denote the ith level of the Goldreich-Levin tree. Also, let Li,g be the set of “good" prefixes of level

10Refer Theorem 14 of Arunachalam and De Wolf (2018) for the optimal quantum agnostic sample complexity.
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Figure 2: A partial QGL tree (up to 3 levels) indicating the level ordered traversal of “good" prefixes, that have Pw
above threshold τ . Bad prefixes are indicated using red arrows. The sub-trees of bad prefixes are not explored further.
The set of good prefixes for level i + 1 is decided in superposition over the set of good prefixes of level i. Shaded boxes
indicate nodes evaluated in superposition.

Algorithm 5: IGL: Interval-Search Goldreich Levin (Bera and Tharrmashastha, 2021)
Input: Oracle Oh, n, accuracy ϵ and probability of error δ.

1 Set k =
⌈
log2

1
ϵ

⌉
+ 1 ▷ k is the smallest integer s.t. 1

2k
≤ ϵ

2
; thus, ϵ

4
< 1

2k
≤ ϵ

2

2 Set gap g = 1
8

(
ϵ− 1

2k

)
and threshold τ = 1

2
. ▷ 8g + 1

2k
= ϵ =⇒ 3

2
ϵ
16

≥ g ≥ ϵ
16

3 for i = 1 . . . k do
4 Invoke QGL(Oh, n, τ, g,

δ
k
) → (l, S̃).

5 If l = 0, set τ = τ + 1
2i+1 . Else set τ = τ − 1

2i+1 .
6 If 1

2i+1 < g/2 or τ ≤ 1
t

return S̃.

i − 1. (By “good," we mean the prefixes p such that Pw(p) is greater than the threshold.) The state obtained
at the end of the i− 1th level will be of the form

|ψi⟩ =


1

|Li,g|
∑

p′∈Li,g
|p′⟩ |ϕp′⟩ , i ̸= F

1√
r

∑
p′∈LF

|p′⟩ , i = F.

Let k = O (log(1/δ′)). We append the state |+⟩ |0⟩1+2n
(|0q⟩ |0⟩)⊗k |0⟩ to |ψi⟩ to get∣∣∣ψ(1)

i

〉
=

1√
|Li,g |

∑
p′∈Li,g

|p′⟩ |+⟩ |ϕp′⟩ |0⟩ |0n⟩ |0n⟩
(
|0q⟩ |0⟩

)⊗k

|0⟩

=
1√

2|Li,g |

∑
p′∈Li,g

|p′⌢0⟩ |ϕp′⟩ |0⟩ |ρ⟩ |0n⟩ |0n⟩ (|0q⟩ |0⟩)⊗k |0⟩

+ |p′⌢1⟩ |ϕp′⟩ |0⟩ |ρ⟩ |0n⟩ |0n⟩ (|0q⟩ |0⟩)⊗k |0⟩

=
1√

2|Li,g |

∑
p∈Li,g×{0,1}

|p⟩ |ϕp⟩ |0⟩ |0n⟩ |0n⟩ (|0q⟩ |0⟩)⊗k |0⟩

= R1R2R3R4R5R6R7R8 (say)

where p′⌢0 and p′⌢1 are p′ concatenated with 0 and 1 respectively, |+⟩ = (|0⟩+|1⟩)/
√
2, R6R7 =

R6,1R7,1 · · ·R6,kR7,k.

Notice that the first register contains an equal superposition of all the immediate children of the “good" prefixes
of the previous level. In the next step, we prepare the state |ν1⟩ in R4 where

|ν1⟩ =
1

2n/2

∑
x

|x⟩
[
ηg,x(−1)h(x) |h(x)⟩ |ψx,g⟩+ ηx,b(−1)h(x)

∣∣∣h(x)〉 |ψx,b⟩
]
.

We also prepare the state |νp2 ⟩ in R5 where

|νp2 ⟩ =
1

2n/2

∑
x

|x⟩ (−1)x1·p
[
ηg,x |h(x)⟩ |ψx,g⟩+ ηx,b

∣∣∣h(x)〉 |ψx,b⟩
]
.
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Then, we perform the swap test with R3 as the control qubit and R4 and R5 as the target qubits. This gives us,

σ0,p |0⟩ |ϕ0,p⟩+ σ1,p |1⟩ |ϕ1,p⟩

as the state of the registers R3, R4 and R5 for each p where |σ0,p|2 = 1
2 + 1

2 | ⟨ν1|ν
p
2 ⟩ |2.

Next, for each j = 1, · · · , O(log(1/δ′)), we use M.A.E to ϵ/2-estimate |σ0,p|2 in R6,i with error at most 1 − 8
π2

and flip the state in R7,i to |1⟩ if the estimate is at least 1
2 − 1

2 (τ − ϵ). Notice that this essentially marks all the
“good" states but with an error 1− 8

π2 , i.e., the algorithm acts as a biased oracle to mark the “good" states.

As the next step, we perform a majority over O(log(1/δ′)) R7,i copies and store the result in R8. This is followed
by an amplitude amplification to obtain the “good" states with high probability. For the correctness of majority
followed by amplitude amplification, we direct the reader to Appendix H of Bera and SAPV (2022). As the last
step for this level, we measure R8. If the measurement outcome is 1, then the post-measurement state would
contain an equal superposition of all the “good" prefixes of that level.

Now, we analyze the quality of the estimate returned by the algorithm. Recall that the sum of the squares of
the Fourier coefficients of a function h at all points with prefix p can be given as Pwh(p)

=
∑

s∈{0,1}n−|p|

ĥ2(p⌢s)

= EX1,X2,Z1,Z2

[
(−1)f(X

⌢
1 X2)⊕f(Z⌢

1 Z2)⊕p·X1⊕p·Z1
]

=
1

22n

∑
x1,x2,z1,z2

(−1)f(x
⌢
1 x2)⊕f(z⌢

1 z2)⊕p·x1⊕p·z1

where the random variables X1 and Z1 are samples uniformly from {0, 1}|p| and X2 and Z2 are samples uniformly
from {0, 1}n−|p|.

Now, consider the following states

|ν1⟩ =
1

2n/2

∑
x

|x⟩
(
ηg,x(−1)h(x) |h(x)⟩ |ψx,g⟩+ ηx,b(−1)h(x)

∣∣∣h(x)〉 |ψx,b⟩
)

and

|νp2 ⟩ =
1

2n/2

∑
x

|x⟩ (−1)x1·p
(
ηg,x |h(x)⟩ |ψx,g⟩+ ηx,b

∣∣∣h(x)〉 |ψx,b⟩
)

where x1 is the first |p| bits of x. Let W =
∣∣ ⟨ν1|νp2 ⟩ ∣∣2. Naturally, if ηx,b = 0, W directly yields us Pwh(p). i.e,

W =
( 1

2n

∑
x

(−1)h(x)⊕x1.p
)2

=
1

22n

∑
x,z∈{0,1}n

(−1)h(x)⊕h(z)⊕p·x1⊕p·z1 = Pwh(p).

However, if ηxb
̸= 0 for some x, then the cross terms would push the inner product away from Pwh(p). Here, we

show that if one is interested only in an ϵ-estimate of Pwh(p), then under certain conditions on ηx,b, an ϵ-estimate
of the inner product is not too far away from Pwh(p). More concretely, we show that for an ϵ/2-estimate Ŵ of
W, ∣∣∣Ŵ − Pwh(p)

2
∣∣∣ ≤ ϵ

with probability at least 1− δ if γ = maxx{ηx,b} ≤ ϵ/8.

Let ηx,b ̸= 0 for some x’s. Then, we have

W =
1

22n

∑
x,z∈{0,1}n

(−1)p·x1⊕p·z1
[
η2x,gη

2
z,g(−1)h(x)⊕h(z) + η2x,bη

2
z,g(−1)h(x)⊕h(z)+

η2x,gη
2
z,b(−1)h(x)⊕h(z) + η2x,bη

2
z,b(−1)h(x)⊕h(z)

]



Chatterjee, Tharrmashastha, Bera

This implies

W − Pw2
h(p)

=
1

22n

∑
x,z∈{0,1}n

(−1)p·x1⊕p·z1
[
η2x,gη

2
z,g(−1)h(x)⊕h(z) + η2x,bη

2
z,g(−1)h(x)⊕h(z) + η2x,gη

2
z,b(−1)h(x)⊕h(z)

+ η2x,bη
2
z,b(−1)h(x)⊕h(z)

]
− 1

22n

∑
x,z∈{0,1}n

(−1)h(x)⊕h(z)⊕p·x1⊕p·z1

=
1

22n

∑
x,z∈{0,1}n

(−1)p·x1⊕p·z1
[
η2x,gη

2
z,g(−1)h(x)⊕h(z) + η2x,bη

2
z,g(−1)h(x)⊕h(z) + η2x,gη

2
z,b(−1)h(x)⊕h(z)

+ η2x,bη
2
z,b(−1)h(x)⊕h(z) − (−1)h(x)⊕h(z)

]

For any fixed x, z ∈ {0, 1}n, let

∆x,z = η2x,gη
2
z,g(−1)h(x)⊕h(z) + η2x,bη

2
z,g(−1)h(x)⊕h(z) + η2x,gη

2
z,b(−1)h(x)⊕h(z) + η2x,bη

2
z,b(−1)h(x)⊕h(z) − (−1)h(x)⊕h(z).

Using the equality 1− η2x,gη
2
z,g = η2x,gη

2
z,b + η2x,bη

2
z,g + η2x,bη

2
z,b in the above equation, we get

∆x,z = η2x,bη
2
z,g

[
(−1)h(x)⊕h(z) − (−1)h(x)⊕h(z)

]
+ η2x,gη

2
z,b

[
(−1)h(x)⊕h(z) − (−1)h(x)⊕h(z)

]
+ η2x,bη

2
z,b

[
(−1)h(x)⊕h(z) − (−1)h(x)⊕h(z)

]
giving the equation

W − Pw2
h(p) =

1

22n

∑
x,z∈{0,1}n

∆x,z.

Notice that for any a, b, c, d ∈ {0, 1}, −2 ≤
[
(−1)a⊕b − (−1)c⊕d

]
≤ 2. From this observation, we get that

∆x,z ≥ −2
(
η2x,bη

2
z,g + η2x,gη

2
z,b + η2x,bη

2
z,b

)
and

∆x,z ≤ 2
(
η2x,bη

2
z,g + η2x,gη

2
z,b + η2x,bη

2
z,b

)
.

Now,

η2x,bη
2
z,g + η2x,gη

2
z,b + η2x,bη

2
z,b

= η2x,bη
2
z,g + η2z,b(η

2
x,g + η2x,b)

= η2x,bη
2
z,g + η2z,b

≤ η2x,b + η2z,b

≤ 2γ.

The second-last inequality follows since η2z,g ≤ 1 and the last equality follows because η2x,b ≤ γ and η2z,b ≤ γ.
This gives us that −4γ ≤ ∆x,z ≤ 4γ implying

−4γ ≤ 1

22n

∑
x,z∈{0,1}n

∆x,z ≤ 4γ.
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Or, ∣∣W − Pw2
h(p)

∣∣ ≤ 4γ.

Now, if γ ≤ ϵ/8, then 4γ ≤ ϵ/2. Then, for any ϵ/2-estimate of W, we have,∣∣Ŵ − Pw2
h(p)

∣∣ ≤ ∣∣Ŵ −W
∣∣+ ∣∣W − Pw2

h(p)
∣∣ ≤ ϵ.

Now, we show that if δ′ < δτ2/4n, then the probability that this algorithm fails is at most δ. The error induced
due to estimation is at most δ′. The number of candidate prefixes at any level for which estimates are obtained
is at most 2/τ2. Using union bound on errors, the error at any level is at most the sum of errors due to the
estimation and the amplification routines. This gives us δlevel ≤ 2δ′

τ2 + δ
2n . Hence, the total error of the algorithm

at most n ·
(
2δ′

τ2 + δ
n2

)
= 2nδ′

τ2 + δ
2 . Setting δ′ ≤ δτ2

4n , the upper bound on the total error is δ.

E Quantum Decision Tree Learning: Agnostic Setting

We detail the steps of Algorithm 2 as follows:

1. We start with the state
∑

x,y

√
Dx,y |x⟩ |y⟩. Assuming a uniform marginal distribution over X , this can be

written as 1√
2n

∑
x |x⟩

(∑
y αy|x |y⟩

)
.

2. We make k = O
(
log 1

γ

)
independent estimations using Lemma 4 (M.A.E.) with parameters (ε, 1 − 8/π2)

to obtain the state

1√
2n

∑
x

|x⟩

(∑
y

αy|x |y⟩

)(
βgx

∣∣α̃1|x
〉
+ βbx |Err⟩

)⊗k
.

We note here that we want to set the value of h(x) as the label in the third register with the larger conditional
probability.

3. On each of the k = O
(
log 1

γ

)
registers, perform thresholding to obtain

1√
2n

∑
x

|x⟩
(
β̂gx |h(x)⟩ |ψ′(x)⟩+ β̂bx

∣∣∣h(x)〉 |ψ′′(x)⟩
)⊗k

.

4. Perform majority on O
(
log 1

γ

)
copies of |h(x)⟩.

5. Let the product of unitaries from steps 1 to 5 be denoted as Oh. Run Algorithm 5 with the oracle Oh and
accuracy and error parameters as ϵ and δ to obtain a string S̃.

6. Return χS̃(x) as our desired weak learner.

E.1 Proofs of Agnostic Setting

We now state the following claims, which prove the correctness and give us the query and time complexity of
Algorithm 2. First, we restate Claim 8, which is proven in Appendix D.
Claim 8. Given an oracle Oh, threshold τ , accuracy ϵ and error parameter δ, Algorithm 3 performs
O( n

ϵ2τ log
(

δτ2

n

)
) queries to Oh and outputs a pair (l, S̃) such that if l = 1, then ĥ(S̃) ≥ τ − ϵ, else if l = 0, then

∄S such that ĥ(S) ≥ τ , both w.p. ≥ 1− δ.

Claim 9. Algorithm 2 performs Õ
(

n
ηκ3 · log 1

κ

)
queries to Qaex using the QGL algorithm (Algorithm 3) where

κ is the accuracy parameter. The time complexity for Algorithm 2 is the same as its query complexity with a
logarithmic overhead.

Claim 10. IGL (Algorithm 5) produces S̃ such that |corD (χS̃(x))−maxS corD (χS(x))| ≤ κ.

The proofs for Claim 9 and Claim 10 follows directly from Claim 8 and Algorithm 5.
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Lemma 9 (Kushilevitz and Mansour (1991)). Given a size-t decision tree f , the L1 norm of its support is
upper-bounded by t, i.e.,

∑
S

∣∣∣f̂(S)∣∣∣ ≤ t. Such a function f is said to be t-sparse.

Claim 11. The parity monomial χS̃ produced by Algorithm 2 is a weak agnostic learner.

Proof. Let C be a family of size-t decision trees, and let c ∈ C be the optimal classifier. Using the Fourier
expansion of c and applying Definition 1 we have

corD (c(x)) =
∑
S⊆[n]

ĉ(S)corD (χS(x)) .

From Lemma 9 we have
∑

S⊆[n] |ĉ(S)| ≤ t. Using an averaging argument, we have

maxS |corD (χS(x))| ≥
1

t
corD (c(x)) . (5)

Given any estimated mode S̃ such that

|corD (χS̃(x))−maxS corD (χS(x))| ≤ κ

using Eq. (5), we have

corD (χS̃(x)) ≥
1

t
corD (c(x))− κ.

From Definition 4, we see that this is indeed an
(
m,κ, 1t

)
-weak quantum agnostic learner w.r.t. c. ■

Claim 9 gives us the final query complexity and runtime for Algorithm 2 as stated in Theorem 6. Claim 10, and
Claim 11 guarantee that Algorithm 2 produces a weak learner for size-t decision trees in polynomial running
time. We restate Theorem 6 below for completeness.

Theorem 6 (Weak Agnostic Learner for size-t Decision Trees). Let η = 1/t, and let κ ∈ [0, 1/2). Given access
to a Qaex oracle, Algorithm 2 makes m = Õ

(
n

ηκ3 · log 1
κ

)
calls to the Qaex oracle and runs for an additional

Õ
(

n
ηκ3 · log 1

κ

)
time to obtain a (m,κ, η)-weak quantum agnostic learner for size-t decision trees w.h.p.

E.2 Proofs of Realizable Setting

It is well known that the output state of the Fourier Sampling algorithm can be given as |ψ⟩ =
∑

S f̂(S) |S⟩.
Measuring the state |ψ⟩ yields subset S with probability f̂(S)

2
. We use 1/ε2 queries to the Fourier sampling

oracle Of to estimate the mode S̃ of the output distribution with ε error. This yields the χS̃ term of Claim 11.

Claim 12. Any weak agnostic learner w.r.t. h obtained by Algorithm 2 is also a weak agnostic learner w.r.t to
the Bayes optimal predictor fB.

Proof. Using Lemma 4, we have that
∣∣α1|x − α̃1|x

∣∣ ≤ ε, for some ε > 0. In Algorithm 2, we set h(x) =

I
[
α̃1|x > 1/

√
2
]
. Therefore, we have |errD (h)− errD (fB)| ≤ 2ε. This implies that |corD (f)− corD (fB)| ≤ 4ε or

corD (f) ∈ [corD (fB)− 4ε, 1]. The upper bound is 1 since the Bayes predictor is the optimal predictor. Therefore
given h s.t., corD (h) ≥ η · corD (f)− κ′, we have corD (h) ≥ η · corD (fB)− κ for appropriate κ′, κ > 0. ■

The Bayes predictor fB is the optimal predictor on a joint distribution D over X × {0, 1}, and defined as
fB(x) = argmaxy∈{0,1} PrD

[y|x], ∀x ∈ X .

Claim 13. χS̃ is a weak realizable learner for size-t decision trees.

Proof. From Claim 12, we know that corD (χS̃) ≥ 1
t corD (f) − κ. For the realizable setting, corD (f) = 1.

Therefore by setting , errD (χS̃) ≤ 1
2 − O

(
1
n

)
we prove that χS̃ is a weak realizable learner for size-t decision

trees. ■
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F Discussion on Iwama et al. (2005)

Iwama et al. (2005) showed that for any T query quantum algorithm A that solves a problem with error at most
δ using a perfect oracle, there exists an O (T/ε) query algorithm A′ that solves the same problem with error at
most δ/6 using an ε-biased oracle. Note that here we are not referring to strongly-biased oracles.

Let us assume that the oracle invoked by A is perfect. Then if a T -query algorithm A solves a problem with
error at most δ < 1/2, then it is possible to construct an algorithm to solve the same problem with error at most
δ′ by taking the majority of O

(
8(1−δ)
(1−2δ)2 log (1/δ

′)
)

invocations of A.

In the case of an ε-biased oracle, the oracle outputs the correct value with probability 1/2 + ε. If one tries to
directly use A, since errors add up linearly in quantum (Bernstein and Vazirani, 1993b), the errors at each step
of A will add up to O(Tε).

Alternatively, one can perform some k many invocations of the biased oracle, obtain the majority, and use the
value of the majority as the oracle output. This will serve as an “almost” perfect oracle. If the error at each
step is bounded to at most δ/T , then we obtain an algorithm that solves the problem with error at most δ. If
we were to bound the error due to the oracle at each step to at most δ, then we need to find the right value
of k. Since the oracle outputs the correct value with probability 1/2 + ε, using Hoeffding’s inequality, we can
obtain the right value of k as k = Ω(log(1/δ)/ε2). This would increase the query complexity of the algorithm
to Õ(T/ε2). On the other hand, Iwama et al. (2005) showed that the same problem can be solved using just
Õ(T/ε) queries.
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