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Abstract

Double-descent refers to the unexpected drop
in test loss of a learning algorithm be-
yond an interpolating threshold with over-
parameterization, which is not predicted by
information criteria in their classical forms
due to the limitations in the standard asymp-
totic approach. We update these analyses
using the information risk minimization frame-
work and provide Akaike Information Crite-
rion (AIC) and Bayesian Information Crite-
rion (BIC) for models learned by the Gibbs
algorithm. Notably, the penalty terms for the
Gibbs-based AIC and BIC correspond to spe-
cific information measures, i.e., symmetrized
KL information and KL divergence. We ex-
tend this information-theoretic analysis to
over-parameterized models by providing two
different Gibbs-based BICs to compute the
marginal likelihood of random feature models
in the regime where the number of param-
eters p and the number of samples n tend
to infinity, with p/n fixed. Our experiments
demonstrate that the Gibbs-based BIC can
select the high-dimensional model and reveal
the mismatch between marginal likelihood
and population risk in the over-parameterized
regime, providing new insights to understand
double-descent.

1 INTRODUCTION

The classical understanding of model selection is that
more complex models can capture more complex pat-
terns but tend to overfit and have large generalization
errors (Geman et al., 1992). This tradeoff results in
a ∪-shaped curve which is characterized by the classi-
cal model selection criterion when test loss is plotted
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against model complexity. As a result, the models that
minimize test loss tend to have moderate complexity.
Recently, the success of deep learning challenges this
classical picture since neural networks are often ex-
tremely complex (e.g., able to fit random labels (Zhang
et al., 2017)) while also generalizing well to yield low
test error on unseen samples.

An emerging explanation of this behavior is double-
descent (Belkin et al., 2019), which posits that: 1) The
classical ∪-shaped curve is only valid when the number
of model parameters p is smaller than the number
of samples n. 2) In the over-parameterized regime
where p is significantly larger than n, and models are
complex enough to fit training data perfectly, test loss
can decrease with increased model complexity.

To better understand the double-descent phenomenon,
we revisit the classical derivations of information cri-
teria and discern that the penalty term in Akaike In-
formation Criterion (AIC) can be interpreted as the
generalization error within a broader learning context,
while Bayesian Information Criterion (BIC) approxi-
mates the marginal likelihood using the empirical risk
minimization solution. We further update the classi-
cal analyses of AIC and BIC using the information
risk minimization framework proposed in Zhang (2006)
by focusing on the optimal Gibbs algorithm (distri-
bution). It is shown in Aminian et al. (2021) that
the generalization error of the Gibbs algorithm can
be characterized using information measures. This
information-theoretic analysis motivates the proposed
Gibbs-based information criteria, which readily extend
to over-parameterized models.

We make the following contributions in this paper:
1. We provide information-theoretic analyses for the

generalization error and marginal likelihood of the
model learned by the Gibbs algorithm, resulting in
Gibbs-based AIC (14) and Gibbs-based BIC+ (17)
and BIC− (18), with different information measures
as the penalty terms.

2. We show that the Gibbs-based information criteria
align with the classical information criteria in the
classical large n regime theoretically (Theroem 1
and 2) and empirically.
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Figure 1: The test and training mean-squared error (MSE) (left) and the comparison of the proposed over-
parameterized BIC+ and BIC−with other classical information criteria (right) for over-parameterized RF models
plotted with varying parameter dimension p. The preferred models selected by different information criteria are
marked using stars with different colors. More details can be found in Section 5.

3. We generalize our information-theoretic analysis to
over-parameterized random feature (RF) models,
which results in over-parameterized Gibbs-based
BICs ((28) and (29)) that favor over-parameterized
RF model, while classical information criteria can-
not; see Figure 1.

4. We empirically compare the Gibbs-based BICs and
AIC in the over-parameterized RF model by de-
composing them into different terms (Section 5),
and show the mismatch between marginal likelihood
(BIC) and generalization error (AIC) in the over-
parameterized setting, where AIC exhibits double-
descent but BIC does not. Such a phenomenon is
highly affected by the choice of prior distributions.

Related Work Previous work has extended the clas-
sical BIC to high dimensions, e.g., Chen and Chen
(2008); Fan and Tang (2013). However, these works
seek to replace maximizing marginal likelihood with a
different criterion, substituting a penalty term pf(n)
in place of the p log n in BIC. A Widely Applicable
BIC (WBIC) is proposed in Watanabe (2013), which
extends the BIC to singular probabilistic models using
the asymptotic approximation of the marginal like-
lihood with Gibbs posterior in the classical large n
regime. By contrast, we retain the BIC criterion but
analyze it beyond the classical regime for the Gibbs
algorithm with an exact information-theoretic analysis.

Double-descent of the population risk with increasing
model size was introduced in Belkin et al. (2019); see
also Advani et al. (2020); Geiger et al. (2019). An
empirical demonstration of double-descent in modern
deep networks is provided in Nakkiran et al. (2019).
A variety of work develops simplified models where
the characterization of the double-descent curve can
be obtained. For example, double-descent in linear
regression models is investigated in Belkin et al. (2020);

Hastie et al. (2022); Bartlett et al. (2020); Muthukumar
et al. (2020), and in linear classification models in
Deng et al. (2022); Kini and Thrampoulidis (2020);
Gerace et al. (2020). The RF model has been adopted
to understand double-descent in Mei and Montanari
(2022), which provides a generalization analysis of the
performance achieved with ridge regression in the over-
parameterized regime. In some of our analyses, we
likewise adopt this RF model (Mei and Montanari,
2022; d’Ascoli et al., 2020; Gerace et al., 2020; Weinan
et al., 2020; Liu et al., 2022), but with a different
objective and analysis tools.

Double-descent phenomena have been explained from
different perspectives. In d’Ascoli et al. (2020); Yang
et al. (2020); Dwivedi et al. (2020), double-descent
curves are explained via a refined version of bias-
variance tradeoff, where the bias of the model decreases
monotonically with the increase of p, but the variance
increases and then decreases with p. And the connec-
tion of gradient descent dynamics and double-descent is
discussed in Weinan et al. (2020); Advani et al. (2020).
In Nakkiran (2019); d’Ascoli et al. (2020), sample-wise
double-descent is studied under linear regression, and
Heckel and Yilmaz (2020) shows that by adjusting the
step sizes, sample-wise double-descent can be elimi-
nated by early stopping.

Moreover, Germain et al. (2016) connects the PAC-
Bayes generalization bound with marginal likelihood
and approximates the KL divergence for model selection
using Markov chain Monte Carlo (MCMC) algorithms.
However, they did not consider the over-parameterized
regime. For over-parameterized models, Hodgkinson
et al. (2023) study the Interpolating BIC with a spe-
cial focus on interpolated models with zero training
loss. Our paper is most related to Immer et al. (2021);
Lotfi et al. (2022), which also examines the difference
between marginal likelihood and generalization error
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in model selection. However, by focusing on the Gibbs
algorithm, we are able to interpret the mismatch be-
tween AIC and BIC via information measures, which
is more insightful in understanding double descent and
other complex behaviors.

2 PRELIMINARIES

We consider the following standard supervised learn-
ing formulation. Let S = {Zi}ni=1 be the training set,
where each sample Zi = {(Xi, Yi)} ∈ Z are i.i.d. gen-
erated from the data distribution PZ , and with the
realization of this sequence denoted as zn = (xn, yn).
Denote the parameter of a machine learning model by
w ∈ W, where W is the parameter space. The perfor-
mance of the model is measured by a loss ℓ : W×Z → R,
and the log loss ℓlog(w, z) ≜ − logP (y|x;w) associated
with a parametric probabilistic model P (y|x;w) is of
particular interest to us.

We define the empirical risk and the population risk
associated with a given w as

LE(w, z
n) ≜

1

n

n∑
i=1

ℓ(w, zi), (1)

LP (w,PZ) ≜ EPZ

[
ℓ(w,Z)

]
, (2)

respectively. A learning algorithm can be modeled as
a randomized mapping from the training set S onto
a model parameter Ŵ according to the conditional
distribution PŴ |S .

Although the widely-used empirical risk minimiza-
tion (ERM) is deterministic optimization, it is usu-
ally solved via stochastic gradient descent (SGD),
which is random in nature. The ERM solution of log
loss is the well-known maximum likelihood estimate
(MLE), i.e., ŴML ≜ argmaxw L̂(w), where L̂(w) ≜∑n

i=1 logPk(yi|xi;w) denotes the log-likelihood of zn.

The expected generalization error quantifying the de-
gree of over-fitting can be expressed in the form

gen(PŴ |S , PS) ≜ EPŴ ,S

[
LP (Ŵ , PZ)− LE(Ŵ , S)

]
,

(3)
where the expectation is taken over the joint distribu-
tion PŴ ,S = PŴ |S ⊗ PS .

2.1 The Classical Forms of AIC and BIC

The standard derivation of the AIC and the BIC arises
from the classical asymptotic analysis of MLE. As-
sume we have K candidate models M1,M2, . . . ,MK ,
and each model Mk is characterized by a parametric
probabilistic model Pk(y|x;θk), a prior distribution
πk(θk), where θk ∈ Wk ⊂ Rpk is the parameter vector.
We demonstrate that AIC selects the model with the

smallest population risk, and BIC identifies the true
data-generating model by maximizing the marginal
likelihood.

AIC This criterion (Akaike, 1981) ranks statistical
models based on the Kullback-Leibler (KL) divergence
between the true data distribution PZ and the learned
parametric model. With θ̂

(k)
ML denoting the MLE of the

kth model, AIC selects the model as the solution to

argmin
k

D(PZ∥Pk(y|x; θ̂(k)
ML))

= argmin
k

EPZ

[
− logPk(y|x; θ̂(k)

ML)
]
. (4)

The term EPZ
[− logPk(y|x; θ̂(k)

ML)] can be interpreted
as the population risk LP (θ̂

(k)
ML, PZ) of the MLE under

log-loss. From this perspective, AIC measures how well
the model fits the unknown data distribution PZ , with
smaller AIC values suggesting a lower population risk.

As the true distribution PZ is unknown, the AIC is
obtained by approximating the population risk as the
sum of empirical risk, i.e., the negative log-likelihood
of θ̂

(k)
ML on training samples and a penalty term cor-

responding to the generalization error. In the classic
regime where pk is fixed and n→∞, the asymptotic
normality of MLE yields

AIC = − L̂(θ̂ML)

n
+
p

n
. (5)

Note that our form of AIC differs by a factor of 2
from its classical form to facilitate a direct comparison
to population risk and generalization error as defined
in (3). Detailed derivations are provided, for reference,
in Appendix A.

BIC This criterion (Schwarz et al., 1978) ranks sta-
tistical models by their marginal likelihoods of gen-
erating the data, where smaller values of the BIC
correspond to larger marginal likelihoods. Approxi-
mating the marginal likelihood of observing zn for Mk,
i.e., mk(z

n) ≜
∫
Pk(y

n|xn;θk)πk(θk) dθk, Laplace’s
method yields

logmk(z
n) = L̂k(θ̂

(k)
ML)−

pk
2

log n+O(1), n→∞.

In turn, BIC is obtained by dropping terms that do
not scale with n and scaling by −1/n:

BIC = − L̂(θ̂ML)

n
+
p log n

2n
. (6)

When, further, P (Mk) = 1/K, we obtain

P (Mk|zn) =
mk(z

n)P (Mk)∑K
k=1mk(zn)P (Mk)

∝ mk(z
n). (7)
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Thus, when we assume a uniform prior over different
models, the BIC ranks models by their posterior prob-
ability of generating the training data, and choosing
the smallest BIC corresponds to the maximum a pos-
teriori rule for model selection. A detailed derivation
is provided in Appendix B.

Both (5) and (6) share a common first term, represent-
ing the average negative log-likelihood of the training
data for MLE, which can be interpreted as the empir-
ical risk with log-loss, decreasing as we adopt more
complex models. We note that AIC and BIC in the
classical n→∞ regime are independent of the form of
the model family P (y|x;θ) and the prior distribution
π(θ), which makes it compatible with general distribu-
tion families subject to mild smoothness constraints.
However, they select different models because AIC and
BIC differ in the second penalty term.

2.2 Information Risk Minimization and Gibbs
Algorithm

Classical AIC and BIC depend on MLE, which can
be viewed as an ERM solution that purely minimizes
empirical risk. Instead, we motivate the Gibbs algo-
rithm using an information risk minimization frame-
work, which minimizes both empirical risk and a gen-
eralization error bound.

We start with the following mutual information-based
generalization error bound proposed in Xu and Ragin-
sky (2017).
Lemma 1. (Xu and Raginsky, 2017) Suppose the
loss function ℓ(w, z) ∈ [0, 1] is bounded, and S =
{Zi}ni=1 contains n i.i.d. training samples, then

|gen(PŴ |S , PS)| ≤
√
I(Ŵ ;S)/(2n).

From Lemma 1, we know that the mutual information
between training data S and the learned parameter
Ŵ can be used as an upper bound for generalization
error. Thus, Xu and Raginsky (2017) further considers
the following algorithm that minimizes empirical risks
regularized with mutual information,

P ∗
Ŵ |S = argmin

PŴ |S

EPŴ ,S

[
LE(Ŵ , S)

]
+

1

β
I(Ŵ ;S), (8)

where β > 0 controls the regularization term and
balances between over-fitting and generalization. As
β → ∞, it reduces back to the standard ERM algo-
rithm.

As computing I(Ŵ ;S) requires the knowledge of PŴ ,
Zhang (2006); Xu and Raginsky (2017); Perlaza et al.
(2022) further relax (8) by replacing it with an upper
bound D(PŴ |S∥π|PS) ≥ I(Ŵ ;S), where π is an arbi-
trary prior distribution over W. The following lemma
characterizes the solution to the relaxed problem.

Lemma 2. (Zhang, 2006; Perlaza et al., 2022) The
minimum value of the following information risk mini-
mization (IRM) problem is

min
PŴ |S

EPŴ ,S

[
LE(Ŵ , S)

]
+

1

β
D(PŴ |S∥π|PS)

= − 1

β
EPS

[
logEπ[e−βLE(W,S)]

]
, (9)

which is achieved by the following Gibbs algorithm

P ∗
Ŵ |S(w|s) =

π(w)e−βLE(w,s)

Eπ
[
e−βLE(W,s)

] , for β > 0. (10)

In addition, Perlaza et al. (2023) shows that the mini-
mum value of IRM can be decomposed into the empiri-
cal risk under the prior distribution and the relative
entropy D(π∥PŴ |S).

Lemma 3. (Perlaza et al., 2023) The Gibbs distribu-
tion P ∗

Ŵ |S(w|s) in form (10) satisfies

Eπ⊗PS

[
LE(W,S)

]
− 1

β
D(π∥P ∗

Ŵ |S |PS),

=− 1

β
EPS

[
logEπ[e−βLE(W,S)]. (11)

2.3 Sampling Algorithms for Gibbs
Distribution

The Gibbs distribution was first proposed by Gibbs
(1902) in statistical mechanics and further explored in
the context of information theory by Jaynes (1957).
In general, it is difficult to compute Gibbs posterior
directly due to the integral in the partition function
Eπ

[
e−βLE(W,s)

]
. In practice, we delve into two stochas-

tic algorithms, stochastic gradient Langevin dynamics
(SGLD) or Metropolis-adjusted Langevin algorithm
(MALA), to sample from the Gibbs distribution.

SGLD The SGLD algorithm is defined using the
following update formula,

Ŵt+1 = Ŵt−η∇LE(Ŵt, s)+

√
2η

β
ζt, t = 0, 1, · · · (12)

where ζt is a standard Gaussian random vector and η ≥
0 is the step size. SGLD can also be viewed as a noisy
version of standard SGD. It is shown in Raginsky et al.
(2017) that under some conditions on loss function, the
Wasserstein distance between the distribution PŴt|S
induced by SGLD and the Gibbs distribution P ∗

Ŵ |S
will converge to zero as t goes infinity. This allows
us to sample Ŵ from the Gibbs distribution using
SGLD with a sufficiently large number of iterations t.
Note that SGLD has been applied similarly to optimize
generalization bound in Dziugaite and Roy (2018).
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MALA Another approach is the Metropolis-adjusted
Langevin algorithm (MALA) (Dwivedi et al., 2018).
MALA and SGLD are first-order sampling methods
since they have similar gradient update formulas, which
guarantees that both algorithms converge to the Gibbs
distribution. MALA differs from the SGLD by intro-
ducing an additional Metropolis-adjusted step, which
provides a faster convergence rate, as shown in Dwivedi
et al. (2018); Mangoubi and Vishnoi (2019); Holzmüller
and Bach (2023). A more detailed discussion of our
implementations of SGLD and MALA can be found in
Appendix C.

3 GIBBS-BASED INFORMATION
CRITERIA

We now develop information-theoretic analyses for
Gibbs-based AIC and BIC, following the same clas-
sical principles. AIC captures the population risk, and
BIC approximates the log marginal likelihood. We
demonstrate that our proposed Gibbs-based informa-
tion criteria align with the classical information criteria
in the traditional large n regime and discuss how our
information-theoretic analysis can be generalized to
the over-parameterized regime.

3.1 Gibbs-based AIC

As we discussed in Section 2.1, the penalty term in AIC
can be viewed as the generalization error of MLE with
log-loss. Thus, we start with the following result from
Aminian et al. (2021), which provides an exact char-
acterization for the generalization error of the Gibbs
algorithm using information measure.

Proposition 1. (Aminian et al., 2021) For the Gibbs
algorithm defined in (10), the expected generalization
error is

gen(P ∗
Ŵ |S , PS) = ISKL(P

∗
Ŵ |S , PS)/β, (13)

where ISKL(P
∗
Ŵ |S , PS) is the symmetrized KL informa-

tion between Ŵ and S, defined as follows

ISKL(PY |X , PX) ≜ D(PX,Y ∥PX⊗PY )+D(PX⊗PY ∥PX,Y ).

Notably, information risk minimization in (8) regu-
larizes the mutual information I(Ŵ ;S) as a proxy of
the generalization error, but the exact generalization
error of the Gibbs algorithm is the symmetrized KL
information, which is always larger than the mutual
information.

As discussed in Section 2.3, we can obtain samples from
the Gibbs distribution with SGLD or MALA. Thus,
the population risk of the Gibbs algorithm can be

approximated by LP (ŴGibbs, PZ) ≈ LE(ŴGibbs, z
n) +

1
β ISKL(P

∗
Ŵ |S , PS), which motivates the following Gibbs-

based AIC:

AIC+ ≜ LE(ŴGibbs, z
n) +

1

β
ISKL(P

∗
Ŵ |S , PS). (14)

Observe that the penalty term in Gibbs-based AIC is
an information measure that captures its generaliza-
tion error. By investigating the asymptotic behavior of
ISKL(P

∗
Ŵ |S , PS), we have the following theorem charac-

terizes the Gibbs-based AIC in the classical asymptotic
regime.

Theorem 1. (proved in Appendix D) Consider the log-
loss ℓ(w, z) = − logP (y|x;w), and set β = n. Under
proper regularization assumptions in Appendix D, the
Gibbs-based AIC has the following form in the regime
where p is fixed and n→∞:

AIC+ = LE(ŴGibbs, z
n) +

p

n
. (15)

Evidently, our information-theoretic analysis has the
same AIC penalty term for the AIC+ in the classical
regime, which suggests that the generalization error of
the Gibbs algorithm (SGLD or MALA) has the same
order of p/n as that of the MLE (SGD) in this regime.

3.2 Gibbs-based BICs

The Gibbs-based BIC is constructed by computing the
marginal likelihood m(zn) using the information risk
minimization framework. As such, it differs from the
standard approach in classical (MLE-based) BIC, as
no Laplace approximation is needed.

We now show that the minimum value achieved by the
Gibbs algorithm with log-loss in the information risk
minimization is the negative log-marginal likelihood.

Proposition 2. (proved in Appendix E) For the Gibbs
algorithm P ∗

Ŵ |S defined in (10), if we adopt the log-loss
function ℓ(w, z) = − logP (y|x;w), and set β = n, the
marginal likelihood is

− 1

n
logm(zn)

= EP∗
Ŵ |S=zn

[
LE(Ŵ , zn)

]
+

1

n
D(P ∗

Ŵ |S=zn∥π) (16)

= Eπ
[
LE(Ŵ , zn)

]
− 1

n
D(π∥P ∗

Ŵ |S=zn).

Motivated by Proposition 2, we propose two differ-
ent Gibbs-based BICs to approximate the marginal
likelihood:

BIC+ ≜ LE(ŴGibbs, z
n) +

1

n
D(P ∗

Ŵ |S=zn∥π), (17)
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BIC− ≜ Eπ
[
LE(W, z

n)
]
− 1

n
D(π∥P ∗

Ŵ |S=zn). (18)

Interestingly, given that the empirical risk term is eval-
uated under the predetermined prior distribution, it
is unnecessary to sample from the Gibbs posterior to
evaluate BIC−. The BIC− can be directly obtained by
computing the second KL divergence term depending
on P ∗

Ŵ |S=zn
.

To compare BIC+ with the classical BIC, it suffices
to investigate the asymptotic behavior of the KL di-
vergence between the Gibbs posterior distribution and
the prior as n→∞. The final expression of the Gibbs-
based BIC+ is formally stated in the following Theo-
rem.

Theorem 2. (proved in Appendix F) Under proper reg-
ularization assumptions in Appendix F, the Gibbs-based
BIC+ has the following form in the classical regime
where p is fixed and n→∞,

BIC+ ≜ LE(ŴGibbs, z
n) +

p

2n
log n. (19)

As expected, we have the same BIC penalty term for
the BIC+ in the classical regime. The experimental
results in Appendix I show that the proposed Gibbs-
based AIC and BIC are comparable to their classic
counterparts. In the over-parameterized regimes, they
are not, as we now develop.

4 BICS FOR
OVER-PARAMETERIZED RF
MODEL

As shown in Figure 1 (right), the classical AIC and
BIC fail to capture the double-descent trend exhibited
by the test MSE of the RF model. This is due to the
fact that the generalization error and marginal likeli-
hood have different behaviors in the over-parameterized
regime, which cannot be characterized by the classi-
cal asymptotic analysis. The classical analyses heavily
rely on the asymptotic normality of MLE and Laplace
approximation under certain regularization assump-
tions, which ignores the prior distribution as n→∞.
Unfortunately, none of these properties hold in the
over-parameterized regime where p ≫ n, as there ex-
ist an infinite number of possible model parameters
that could interpolate n samples perfectly, making the
classical AIC and BIC ill-defined.

However, the Gibbs-based AIC+ in (14), BIC+ in (17),
and BIC− in (18) defined using different information
measures can be generalized to over-parameterized mod-
els, as Proposition 1 and 2 hold regardless of the values
of p and n. Since AIC+ mainly captures the gener-
alization error of the Gibbs algorithm, which can be

estimated using validation data in practice, our fo-
cus lies in extending the analysis of BIC+ and BIC−

to approximate the marginal likelihood in the over-
parameterized regime.

Owing to the complex nature of fitting in the over-
parameterized regime, we do not pursue a general
asymptotic formula that applies to all model archi-
tectures, as in the classic regime. Instead, we refine
the Gibbs-based BIC analysis to this regime for the
random feature (RF) model.

4.1 Random Feature Model

The RF model (Rahimi and Recht, 2008) takes the
form of a two-layer neural network with fixed random
weights in the first layer. The output of RF model with
input data x ∈ Rd is

g(x) ≜
p∑
j=1

f
( ⟨x,Fj⟩√

d

)
wj = f

(x⊤F√
d

)
w, (20)

where w ∈ Rp denotes the weights of the model. More-
over, Fj ∈ Rd denotes the jth random feature vector,
which is the jth column of the random feature matrix
F ∈ Rd×p whose entries are drawn i.i.d. from N (0, 1).
Finally, f(·) is a point-wise activation function. In our
setting, there are n training samples zn = {(xi, yi)}ni=1,
and the xi are drawn i.i.d. from N (0, Id).

The parametric distribution family induced by the
random feature model takes the form

P (yn|xn;w) (21)

=
1

(2πσ2)n/2
exp

(
− 1

2σ2

n∑
i=1

(
y − f

(x⊤
i F√
d

)
w
)2)

,

with a fixed random feature matrix F , and a Gaussian
prior distribution w ∼ N (0, σ

2

λnIp). The weights of
the RF model w can be trained using the regularized
log-loss

L(w) =
1

2σ2
∥Y −Bw∥22 +

n

2
log(2πσ2) +

λn∥w∥22
2σ2

,

where B ≜ f(XF /
√
d) ∈ Rn×p, (22)

and we collect the training data in a matrix X ∈ Rn×d
and a vector Y ∈ Rn to simplify the notation.

As discussed in Mei and Montanari (2022); d’Ascoli
et al. (2020), a significant benefit of using the ran-
dom feature model is that, unlike in standard linear
regression, the dimensionality of the input data d is
not entangled with the number of parameters p.
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4.2 Gibbs-based BICs for Over-parameterized
RF Model

To generalize Gibbs-based BICs to the over-
parameterized RF model, it suffices to focus on the
second KL-divergence term in (17) and (18). In the ran-
dom feature model, it can be shown (see Appendix G
for details) that the Gibbs algorithm reduces to the
Gaussian posterior distribution P ∗

Ŵ |S ∼ N (Ŵλ,Σw),
with the mean Ŵλ = (λnIp +B⊤B)−1B⊤Y , and co-
variance matrix Σw = σ2(λnIp +B⊤B)−1.

Thus, the KL-divergence between the Gibbs posterior
distribution and prior N (0, σ

2

λnIp) is given by

D(P ∗
Ŵ |S=zn∥π) = (23)

1

2

[λn
σ2
∥Ŵλ∥22 + log

det( σ
2

λnIp)

det(Σw)
+ tr(

λn

σ2
Σw)− p

]
.

And the the KL-divergence between the prior
N (0, σ

2

λnIp) and Gibbs distribution is given by

D(π∥P ∗
Ŵ |S=zn) = (24)

1

2

[
Ŵ⊤
λ (Σw)

−1Ŵλ − log
det( σ

2

λnIp)

det(Σw)
+ tr(

σ2

λn
Σ−1
w )− p

]
.

To obtain a convenient expression for the remaining de-
terminant and trace terms, we first impose restrictions
on the activation function f(·). Therefore, these two
terms can be characterized using random matrix theory
by studying the eigenvalues of Σ ≜ B⊤B/(λn) + Ip
in the over-parameterized regime. In particular, for
activation functions f(·) that satisfy conditions

E[f(ε)] = 0, E[f(ε)2] = 1, E[f ′(ε)] = 0,∣∣E[f(ε)k]∣∣ <∞, for k > 1, (25)

where ε ∼ N (0, 1), the following theorem characterizes
the KL divergence term in the over-parameterized RF
model.
Theorem 3. For activation functions f(·) satisfying
the conditions in (25), as n, d, p→∞ with p/d→ r1,
n/d → r2, and r1/r2 = r, where r1, r2 ∈ (0,∞), we
have

1

n
D(P ∗

Ŵ |S=zn∥π)

→ λ

2σ2
∥Ŵλ∥22 −

λ

8
F( 1

λ
, r) +

1

2
V (1/λ, r) (26)

almost surely, where

V (γ, r) ≜ r log
(
1 + γ − 1

4
F(γ, r)

)
− 1

4γ
F(γ, r)

+ log
(
1 + γr − 1

4
F(γ, r)

)
, (27)

F(γ, r) ≜
(√

γ(1 +
√
r)2 + 1−

√
γ(1−

√
r)2 + 1

)2

.

Sketch of Proof. The proof is based on the results from
Pennington and Worah (2017), which shows that the
distribution of the eigenvalues of the random matrix
B⊤B/n converges to the Marchenko-Pastur distribu-
tion with shape parameter r (a well-studied distribution
in random matrix theory (Tulino et al., 2004)). The
detailed proof is provided in Appendix H.

Remark 1. An example of an activation function
that satisfies all the assumptions we made in (25)
is f(x) = (x2 − 1)/

√
2. More examples of such ac-

tivation functions can be found in Pennington and
Worah (2017). We further note that the assumption
E[f ′(ε)] = 0 on the activation function is used only to
obtain a simple closed-form for the KL divergence, a
more general result by considering the Stieltjes trans-
form of B⊤B/n for other activation functions is pro-
vided in Appendix H.

Theorem 3 motivates us to define the following Gibbs-
based BICs for the over-parameterized RF model to
approximate the marginal likelihood,

BIC+ ≜ LE(ŴGibbs, z
n) +

λ

2σ2
∥Ŵλ∥22︸ ︷︷ ︸

ℓ2 term

(28)

−λ
8
F( 1

λ
, r) +

1

2
V (1/λ, r)︸ ︷︷ ︸

covariance term

.

BIC− ≜ Eπ
[
LE(W, z

n)
]
− 1

2n
Ŵ⊤
λ (Σw)

−1Ŵλ (29)

− 1

2n
tr(Ip +

1

λn
B⊤B

)
+

1

2
V (1/λ, r) +

p

2n
.

Depending on the specific sampling method employed,
as detailed in Section 2.3, the term LE(ŴGibbs, z

n)
can be estimated with either LE(ŴSGLD, z

n) or
LE(ŴMALA, z

n). When σ is comparatively small and
λ is comparatively large, ∥Ŵλ∥22 can be substituted by
∥ŴSGLD∥22 or ∥ŴMALA∥22, as the posterior is primarily
driven by the mean. The penalty term of BIC+ consists
of the ℓ2 norm of the learned weights, and two other
terms capture the log determinant and trace in the
over-parameterized regime, which will be referred to as
the covariance term altogether in the next section.

5 EXPERIMENT AND DISCUSSION

In this section, we instantiate a two-layer RF model
described in (20), where the first layer is designated for
feature mapping and is kept random, and we only train
the parameter in the second layer. See Appendix I for
experimental details and additional results.

We evaluate the over-parameterized Gibbs-based BIC+

and BIC− using n = 200 samples generated by the
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Figure 2: A comparison between different BICs in over-parameterized RF model when λ = 0.001 (left); A
comparison between BIC+ (middle) and population risk (right) with varying λ.

linear model

yi = x⊤
i w

∗+ϵi, w∗ ∈ Rd, ∥w∗∥22 = 1, ϵi ∼ N (0, σ2
d),

with input dimension d = 400, noise σ2
d = 0.1, and we

use MALA to sample from Gibbs distribution1.

Selection of σ2. By examining the mean of the Gibbs
posterior, given as Ŵλ = (λnIp +B⊤B)−1B⊤Y , and
its covariance Σw = σ2(λnIp +B⊤B)−1, it becomes
evident that σ2 impacts only the variance of the pos-
terior and not its mean. A large σ2 can introduce
instability in the sampling from the posterior and de-
teriorate the test performance. Thus, in our configu-
ration, we opt for a smaller σ = 0.05 to ensure good
model performance, even if it results in a larger scaling
factor for empirical risk. In our upcoming discussion,
We will investigate how the other parameter λ in the
prior distribution influences the posterior.

Double-descent of population risk. As depicted
in Figure 1 (left), the peak of test loss is located at
the interpolation threshold, i.e., when p = n = 200,
resulting in the highest generalization error. As p
continues to increase, the test error begins to decline
again, even falling below the levels observed in the
under-parameterized regime p < n.

Comparison of different BICs. In the right panel of
Figure 1 and Figure 2 (left), it is evident that the clas-
sic BIC prefers moderate model due to the ill-defined
issue we discussed before. In Figure 2 (left), we also
compare our Gibbs-based BICs with the WBIC pro-
posed in Watanabe (2013). The analysis of WBIC is
based on approximating the marginal likelihood for
singular models in the classical large n regime, and
such an approximation becomes inaccurate in the con-
sidered over-parameterized regime. Thus, WBIC also
fails to capture the marginal likelihood, whereas our
over-parameterized BIC+ and BIC− in (28) and (29)

1The code of our experiment is available at https://gi
thub.com/HaoboChen11/Gibbs-Based-Information-Cri
teria-and-the-Over-Parameterized-Regime.

based on the exact forms of the marginal likelihood,
succeeds in selecting the large model.

Mismatch between BIC and population risk.
Note that even though the Gibbs-based BICs might
favor a larger model for increased values of p, it does
not exhibit double-descent behavior. This discrepancy
becomes evident when examining Figure 2 (middle)
and Figure 2 (right), where BIC exhibits a distinctive
pattern compared to the population risk. A similar mis-
match between marginal likelihood and generalization
for ERM has been observed in Lotfi et al. (2022).

We further investigate the inconsistency between the
marginal likelihood and population risk for the Gibbs
algorithm in Figure 3. Unlike the classical BIC, where
the penalty term p log n/(2n) is order-wise larger than
the p/n term in classical AIC, it can be seen that the KL
divergence term in the over-parameterized BIC+ can
be significantly smaller than the generalization error
ISKL in Figure 3, depending on the value of λ and p.
Thus, the mismatch between marginal likelihood (BIC)
and population risk (AIC) is even more complicated in
the over-parameterized setting due to the influence of
prior distribution.

Similarity between KL divergence and general-
ization. When comparing the KL divergence term of
BIC+ in Figure 3 (left) and the generalization error
in Figure 3 (right) with the same λ, a similar trend
emerges as p increases. To understand such similar-
ity between the two terms, we decompose the penalty
term of the over-parameterized BIC+ in Figure 4 into
ℓ2 term, covariance term.

As shown in Figure 4, when p ≤ n, the model prior can
be ignored, and the training loss becomes the dominant
factor of BIC+ (training loss is plotted in Appendix I
due its large scale). In this case, the KL divergence
and the covariance term increase with p, corresponding
to the classical BIC. When p ≥ n, the KL divergence
penalty term dominates the over-parameterized BIC+.
In this regime, multiple weights can fit the training

https://github.com/HaoboChen11/Gibbs-Based-Information-Criteria-and-the-Over-Parameterized-Regime
https://github.com/HaoboChen11/Gibbs-Based-Information-Criteria-and-the-Over-Parameterized-Regime
https://github.com/HaoboChen11/Gibbs-Based-Information-Criteria-and-the-Over-Parameterized-Regime


Haobo Chen†, Gregory W. Wornell‡, Yuheng Bu†

Figure 3: A comparison between the KL-divergence term in BIC+ (left) and the generalization error term in
AIC+ (right) with varying λ. Note the different scales in the vertical axis.

Figure 4: A decomposition of the terms in over-parameterized BIC+ in (28) with λ = 0.001 (left), and
λ = 0.0001(right).

data perfectly. From Figure 4, we note that regardless
of the chosen λ, the ℓ2 term exhibits double-descent be-
havior and decreases as p increases. This suggests that
the Gibbs algorithm prefers the weights with smaller
ℓ2 norm to fit the data. Note that similar phenom-
ena are observed for SGD, and generalization error
bounds using different weights norms are established
in Neyshabur et al. (2017); Bartlett et al. (2017), i.e.,
a smaller ℓ2 norm can lead to a better generalization
performance. Thus, the behavior of the ℓ2 norm may
elucidate why, for a given λ value, both KL diver-
gence and the generalization error ISKL exhibit similar
double-descent behavior.

Mismatch between KL divergence and general-
ization. The comparison between Figure 3 (left) and
Figure 3 (right) with different values of λ reveals a mis-
match between KL divergence and generalization error.
A closer examination of Figure 4 (left) and Figure 4
(right) shows that larger λ results in a larger ℓ2 term
in KL divergence. Note that ∥Ŵλ∥22 is increasing with
smaller λ, but the ℓ2 term in KL divergence equals to
λ

2σ2 ∥Ŵλ∥22. Consequently, the KL divergence places a
more substantial penalty on larger values of λ, which
explains the mismatch between the KL divergence and
ISKL with different priors by varying λ. A comprehen-

sive discussion can be found in the experimental results
section, Appendix I.

6 CONCLUDING REMARKS

In this paper, we introduce novel information criteria
based on the Gibbs algorithm to capture the double-
descent behavior observed in over-parameterized mod-
els, thereby extending the analysis of classical AIC and
BIC to modern regimes. Demonstrated to be effective
in selecting suitable models within over-parameterized
regimes, our criteria reveal that the mismatch between
the log marginal likelihood and the test error can be
captured by the disparity between two information
measures. Interestingly, such a phenomenon highly de-
pends on the selection of the prior distributions, which
is quite different from traditional understanding in the
classical regime.

Importantly, our Gibbs-based AIC and BICs, grounded
in information measures, can adapt to a broad spectrum
of models, beyond asymptotic regimes. Therefore, a
promising future direction is to extend our analysis to
other models, e.g., multi-layer RF models, which bear
a closer resemblance to deep neural networks.
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Supplementary Materials

A DERIVATION OF CLASSICAL AIC

We start by formally presenting the regularization conditions required for the standard asymptotic normality of
MLE in the classical regime.
Assumption 1. Regularity Conditions for MLE

1. Identifiability: P (y|x;θ) ̸= P (y|x;θ′
) for θ ̸= θ

′
.

2. Θ is an open subset of Rp.

3. The function logP (y|x;θ) is three times continuously differentiable with respect to θ.

4. There exist functions F1(z) : Z → R,F2(z) : Z → R and M(z) : Z → R, such that

EZ∼P (z;θ)

[
M(Z)

]
<∞,

and the following inequalities hold for any θ ∈ Θ,∣∣∣∣∂ logP (y|x;θ)∂θi

∣∣∣∣ < F1(z),

∣∣∣∣∂2 logP (y|x;θ)∂θi∂θj

∣∣∣∣ < F1(z),∣∣∣∣∂3 logP (y|x;θ)∂θi∂θj∂θk

∣∣∣∣ < M(z), i, j, k = 1, 2, · · · , p.

5. The following inequality holds for an arbitrary θ ∈ Θ and i, j = 1, 2, ..., p,

0 < E
[∂ logP (y|x;θ)

∂θi

∂ logP (y|x;θ)
∂θj

]
<∞.

In the following, we provide proof of the classical AIC for reference.

The AIC model selection in (4) is equivalent to:

argmin
k

EPZ

[
− logPk(y|x; θ̂(k)

ML)
]
= argmin

k
EPS

[
LE(θ̂

(k)
ML, S)

]
+ gen(θ̂

(k)
ML, PZ). (30)

As n → ∞, under the above regularization conditions, which guarantee that θ̂ML is unique, the asymptotic
normality of the MLE states that the distribution of θ̂ML converges to

N (θ∗,
1

n
J(θ∗)−1I(θ∗)J(θ∗)−1), with θ∗ ≜ argmin

θ∈Θ
D(PZ∥P (y|x;θ)), (31)

where
J(θ) ≜ EPZ

[
−∇2

θ logP (y|x;θ)
]

and I(θ) ≜ EPZ

[
∇θ logP (y|x;θ)∇θ logP (y|x;θ)⊤

]
. (32)

When the true model is in the parametric family PZ = P (y|x;θ∗), we have J(θ∗) = I(θ∗), which is the Fisher
information matrix.

Thus, the generalization term can be written as

−gen(θ̂ML, PZ) = EPS

[
LE(θ̂ML, S)

]
− LP (θ̂ML, PZ)

= EPS

[
LE(θ̂ML, S)

]
− EPS

[
LE(θ

∗, S)
]
+ EPS

[
LE(θ

∗, S)
]
− LP (θ̂ML, PZ)

= EPS

[
LE(θ̂ML, S))− LE(θ∗, S)

]
+ LP (θ

∗, PZ)− LP (θ̂ML, PZ). (33)

As θ̂ML minimizes LE(θ̂ML, S), we take the Taylor expansion of LE(θ∗, S) around the point θ̂ML

LE(θ
∗, S) = LE(θ̂ML, S) +

1

2
(θ∗ − θ̂ML)

⊤J(θ̂ML)(θ
∗ − θ̂ML) + · · · . (34)
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And the Taylor expansion of LP (θ̂ML, PZ) around θ∗ yields

LP (θ̂ML, PZ) = LP (θ
∗, PZ) +

1

2
(θ∗ − θ̂ML)

⊤J(θ∗)(θ∗ − θ̂ML) + · · · . (35)

If we use the quadratic approximation of (34) and (35) in (33), we can get the following asymptotic expression
for the generalization error

gen(θ̂ML, PZ) =
1

n
tr(I(θ∗)J(θ∗)−1), (36)

where the last step is due to the asymptotic normality of the MLE, and J(θ̂ML) will converge to its expectation by
the consistency of MLE and the strong law of large numbers. For the case where the true model is in the parametric
family PZ = P (y|x;θ∗), J(θ∗) = I(θ∗), gen(θ̂ML, PZ) = p/n. Thus, plug the asymptotic generalization error
term back in (30) can get,

AIC = − L̂(θ̂ML)

n
+
p

n
. (37)

B DERIVATION OF CLASSICAL BIC

The Taylor expansion of the log-likelihood function L̂(θ) around θ̂ML yields

L̂(θ) = L̂(θ̂ML)−
n

2
(θ − θ̂ML)

⊤J(θ̂ML)(θ − θ̂ML) + · · · . (38)

Similarly, we can expand the prior distribution π(θ) with Taylor series around θ̂ML as

π(θ) = π(θ̂ML) + (θ − θ̂ML)
⊤∇π(θ)

∣∣
θ=θ̂ML

+ · · · . (39)

The Laplace approximation takes advantage of the fact that when n is sufficiently large, the integrand is
concentrated in a neighborhood of the mode of L̂(θ), i.e., the maximum likelihood (ML) estimator θ̂ML. Thus,

m(zn)

=

∫
exp{L̂(θ)}π(θ)dθ

≈
∫

exp
{
L̂(θ̂ML)−

n

2
(θ − θ̂ML)

⊤J(θ̂ML)(θ − θ̂ML)
}(
π(θ̂ML) + (θ − θ̂ML)

⊤∇π(θ)
∣∣
θ=θ̂ML

)
dθ

(a)
≈ exp{L̂(θ̂ML)}π(θ̂ML)

∫
exp

{
− n

2
(θ − θ̂ML)

⊤J(θ̂ML)(θ − θ̂ML)
}
dθ

= exp{L̂(θ̂ML)}π(θ̂ML)(2π)
p/2n−p/2|J(θ̂ML)|−1/2,

where (a) follows from the following fact∫
(θ − θ̂ML)

⊤ exp
{
− n

2
(θ − θ̂ML)

⊤J(θ̂ML)(θ − θ̂ML)
}
dθ = 0. (40)

Taking the logarithm of this expression and multiplying it by − 1
n , we obtain

− 1

n
log(m(zn)) ≈ − 1

n
L̂(θ̂ML) +

p

2n
log

n

2π
+

1

n
log |J(θ̂ML)| −

1

n
log π(θ̂ML). (41)

Note that J(θ̂ML) is a random Hessian matrix. As n → ∞, J(θ̂ML) will converge to its expectation by the
consistency of MLE and the strong law of large numbers. Thus, both log |J(θ̂ML)| and log π(θ̂ML) have order less
than O(1) with respect to the sample size n, and can be ignored in the BIC, which gives the following classical
form of BIC:

BIC = − L̂(θ̂ML)

n
+
p log n

2n
. (42)
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C DETAILS OF SGLD AND GIBBS ALGORITHM

In Raginsky et al. (2017), it is shown that the following SGLD updates

Ŵt+1 = Ŵt − η∇FZ(W ) +

√
2η

β
ζt, t = 0, 1, ..., (43)

will converge to the Gibbs algorithm satisfying PŴ |Z ∝ exp(−βFZ(Ŵ )).

A detailed description of Metropolis adjusted Langevin algorithm is provided in Algorithm C.

Algorithm 1 Metropolis adjusted Langevin algorithm (MALA)
Require: Step size η and a sample w0 from a starting distribution µ0

Ensure: Sequence w1, w2, ...
1: for i = 0, 1, ... do
2: wi+1 ∼ N

(
wi − η∇FZ(wi), 2ηβ Id

)
% Propose a new state

3: αi+1 = min

{
1,

exp(−FZ(wi+1)−β∥wi−wi+1+η∇FZ(wi+1)∥2
2/4η)

exp(−FZ(wi)−β∥wi+1−wi+η∇FZ(wi)∥2
2/4η)

}
4: Ui+1 ∼ U [0, 1]
5: if Ui+1 ≤ αi+1 then
6: wi+1 ← wi+1 % accept the sample
7: wi+1 ← wi % reject the sample
8: end if
9: end for

Note that our Gibbs algorithm contains an arbitrary prior distribution π, i.e., PŴ |S ∝ π(Ŵ ) exp−nLE(Ŵ ,S). To
have the same format as FZ(W ), we let

FZ(w) = LE(w, s)−
1

n
log π(w). (44)

Thus, the loss function used in the SGLD or MALA update becomes

ℓ(w, zi) = − logP (yi|xi, w)−
1

n
log π(w). (45)

When the prior follows a Gaussian distribution π(w) ∼ N (0, σ
2

λnIp), the second term in the loss function can
be viewed as a regularization term derived from the log prior. It is crucial to notice that the empirical log loss
in the subsequent SGLD or MALA computation only includes the LE(w, s) term and does not incorporate the
regularization term. As shown in Raginsky et al. (2017), the regularizer term does not violate the assumptions
used in the loss function, ensuring that our loss function will also converge to the desired Gibbs distribution.

In Figure 5 and Figure 6, when examining both the training error and the learned parameter norm over different
epochs, we observe that both algorithms converge to a similar value. However, it is noteworthy that MALA
exhibits a faster convergence in terms of the number of epochs, as suggested by existing theoretical results.

When the number of training samples n is smaller, as in Figure 5, despite the computational overhead introduced
by the additional Metropolis-adjusted step, MALA still outpaces SGLD by approximately 3 seconds. However,
for larger sample sizes in Figure 6, this Metropolis-adjusted step incurs more computational time. Consequently,
MALA’s convergence time slightly exceeds SGLD’s by 0.4 seconds. Thus, in our experiments, we recommend
using MALA for smaller sample sizes, while for larger samples, like when n = 600 in the Classic regime, SGLD is
more computationally efficient.

D PROOF OF THEOREM 1

We note that the original idea of this result is coming from the discussion in Section 4 of Aminian et al. (2021).

We further assume that the parametric family {P (z|w),w ∈ W} and prior π(w) satisfy all the regularization
conditions required for the Bernstein–von-Mises theorem (Van der Vaart, 2000) and the asymptotic Normality of
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Figure 5: The training MSE losses of MALA and SGLD are presented on the left, with a comparative analysis of
their ℓ2 norms shown on the right. These results were obtained for n = 200, using a learning rate of 0.001 and a
parameter dimension of p = 600 with λ = 0.01, averaged across ten runs. In terms of computational time, SGLD
required an average of 10.4 seconds to converge over 300 epochs, while MALA took an average of 7 seconds to
converge over 200 epochs.

Figure 6: The training MSE losses of MALA and SGLD are presented on the left, with a comparative analysis of
their ℓ2 norms shown on the right. These results were obtained for n = 800, using a learning rate of 0.001 and a
parameter dimension of p = 600 with λ = 0.01, averaged across ten runs. In terms of computational time, SGLD
required an average of 12.4 seconds to converge over 200 epochs, while MALA took an average of 12 seconds to
converge over 100 epochs.

the maximum likelihood estimate (MLE), including Assumption 1 and the condition that π is continuous and
π(w) > 0 for all w ∈ W.

For the Gibbs algorithm P ∗
Ŵ |S defined in (10), if we adopt the log-loss function ℓ(w, z) = − logP (y|x;w), and set

β = n, the Gibbs algorithm directly corresponds to the Bayesian posterior of the parametric family with prior
distribution π. Therefore, in the asymptotic regime where p is fixed and n→∞, Bernstein–von-Mises theorem
under model mismatch (Van der Vaart, 2000; Kleijn et al., 2012) states that we could approximate the Gibbs
algorithm in (10) by

N (ŴML,
1

n
J(w∗)−1),

with w∗ and J(w) defined in a similar manner as in (31). As n → ∞, the asymptotic Normality of the MLE
states that the distribution of ŴML will converge to

N (w∗,
1

n
J(w∗)−1I(w∗)J(w∗)−1).

Thus, the Gibbs distribution P ∗
Ŵ |S can be approximated as a Gaussian channel regardless of the choice of prior

π(w). Then, the symmetrized KL information can be computed using (Palomar and Verdú, 2008, Theorem 14),
which characterizes the symmetrized KL information over a vector Gaussian channel, i.e.,

ISKL(P
∗
Ŵ |S , PS)

n
=

tr(I(w∗)J(w∗)−1)

n
= O( p

n
). (46)
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When the true data distribution is within the model family, we can have I(w∗) = J(w∗). Therefore, for the
Gibbs algorithm P ∗

Ŵ |S defined in (10), if we adopt the log-loss function ℓ(w, z) = − logP (y|x;w), and set β = n,
and let n→∞ with fixed p, we can get the following asymptotic expression for the generalization error,

ISKL(P
∗
Ŵ |S , PS)

β
=
p

n
. (47)

Plug this result back to (14), the Gibbs-based AIC can be written as,

AIC+ = LE(ŴGibbs, z
n) +

p

n
. (48)

E PROOF OF PROPOSITION 2

If we adopt the log-loss function ℓ(w, z) = − logP (y|x;w), and set β = n, the Gibbs distribution in (10) can be
viewed as the Bayesian posterior distribution, i.e.,

P ∗
Ŵ |S(w|z

n) =

π(w)
n∏
i=1

P (yi|xi;w)

V (zn)
, with V (zn) =

∫
π(w)

n∏
i=1

P (yi|xi;w)dw. (49)

Therefore,

EP∗
Ŵ |S=zn

[
LE(Ŵ , zn)

]
+

1

n
D(P ∗

Ŵ |S=zn∥π)

= EP∗
Ŵ |S=zn

[
LE(Ŵ ,zn)

]
+

1

n
EP∗

Ŵ |S=zn

[
log

exp
(
− nLE(Ŵ , zn)

)
V (zn)

]
= − 1

n
log V (zn)

= − 1

n
logm(zn),

(50)

which completes the proof for the first equality.

Using Lemma 3, with the same Bayesian posterior distribution,

Eπ⊗PS

[
LE(W,S)

]
− 1

β
D(π∥P ∗

Ŵ |S |PS),

= − 1

β
EPS

[
logEπ[e−βLE(W,S)] (51)

= − 1

n
logm(zn),

which completes the proof for the second equality.

F PROOF OF THEOREM 2

Recall the Gibbs-based BIC is given by

BIC+ ≜ LE(ŴGibbs, z
n) +

1

n
D(P ∗

Ŵ |S=zn∥π). (52)

Thus, we just need to characterize the asymptotic behavior of the KL divergence term in the regime where p is
fixed and n→∞. Note that The KL divergence can be written as

1

n
D(P ∗

Ŵ |S=zn∥π) = −
1

n
h(P ∗

Ŵ |S=zn)−
1

n
EP∗

Ŵ |S=zn
[log π(Ŵ )], (53)

it should be noticed that h(P ∗
Ŵ |S=zn

) is the differential entropy, and P ∗
Ŵ |S=zn

will converge to N (ŴML,
1
nJ(w

∗)−1)

by Bernstein–von-Mises theorem as shown in Appendix D. Then, the second term above will reduce to
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1
n log π(ŴML), and converges to zero as n → ∞. Using the same Gaussian approximation, the differential
entropy term can be computed as

h(P ∗
Ŵ |S=zn) =

p

2
log(

2πe

n
) +

1

2
log |J(w∗)−1|. (54)

As n→∞, ŴGibbs → ŵML. Therefore, the Gibbs BIC can be asymptotically approximated by

BIC+ = LE(ŴGibbs, s) +
1

n
D(P ∗

Ŵ |S=zn∥π)

= LE(ŴGibbs, s)−
1

n
h(P ∗

Ŵ |S=zn)−
1

n
EP∗

Ŵ |S=zn
[log π(Ŵ )]

= LE(ŵML, s) +
p

2n
log

n

2πe
+

1

2n
log |J(w∗))| − 1

n
log π(ŴML). (55)

Thus, both the terms p log 2πe, log |J(w∗)| and log π(ŴML) have order less than O(1) with respect to the sample
size n, and can be ignored in the Gibbs-based BIC.

Comparing the above result with the log-marginal likelihood in (41), the penalty term in BIC+ differs from
the classic BIC by p

2n log e. This is due to the fact that we evaluate the same marginal likelihood m(zn) using
different algorithms, and the empirical risk achieved by SGLD or MALA is different from that of the SGD.

G GIBBS DISTRIBUTION OF RANDOM FEATURE MODEL

For random feature model with the prior distribution π(w) ∼ N (0, σ
2

λnIp) and LE(w, s) = − 1
n

∑n
i=1 log(yi|xi,w),

the log-posterior log(P ∗
Ŵ |S(w|S)) ∝ log π(w) + log(e−nLE(w,s)) , where

LE(w, s) =
1

2nσ2
∥Y −Bw∥22 +

1

2
log(2πσ2).

Thus, the Gibbs algorithm, in this case, is given by the following Gaussian posterior distribution, as shown
in Murphy (2007),

P ∗
Ŵ |S ∼ N (Ŵλ,Σw), (56)

where Ŵλ = (λnIp +B⊤B)−1B⊤Y , and Σw = σ2(λnIp +B⊤B)−1.

H PROOF OF THEOREM 3

We note that the KL divergence between two Gaussian distributions can be written as

D(N (µ1,Σ1)∥N (µ2,Σ2)) =
1

2

[
(µ2 − µ1)

⊤Σ−1
2 (µ2 − µ1) + tr(Σ−1

2 Σ1)− p+ log
detΣ2

detΣ1

]
.

The KL divergence between the Gibbs posterior of the RF model and the prior can be computed by,

1

n
D(P ∗

Ŵ |S=zn∥π) =
1

2n

[
Ŵ⊤
λ (

σ2

λn
Ip)

−1Ŵλ + tr(
λn

σ2
Σw) + log

det( σ
2

λnIp)

det(Σw)
− p

]
(57)

=
1

2n

[
λn

σ2
∥Ŵλ∥22 + tr

(
(Ip +

B⊤B

λn
)−1

)
+ log det(Ip +

B⊤B

λn
)− p

]
.

The trace and the log determinant of the random matrix Σ = B⊤B
λn + Ip can be computed using the following

results from Pennington and Worah (2017), which characterizes the probability density function of the eigenvalues
of the random matrix B⊤B/n in the over-parameterized regime.

Lemma 4. (Pennington and Worah, 2017) Let the matrix M = 1
nB

⊤B ∈ Rp×p, where B = f
(

XF√
d

)
∈ Rn×p, all

the elements in F ∈ Rd×p and X ∈ Rn×d are generated i.i.d from N (0, 1). Suppose that the activation function
has zero mean and finite moments, i.e.,

E[f(ε)] = 0, E[f(ε)k] <∞, for k > 1, ε ∼ N (0, 1). (58)



Haobo Chen†, Gregory W. Wornell‡, Yuheng Bu†

and define constants η and ξ as

η ≜ E[f(ε)2], ξ ≜ E[f ′(ε)]2, ε ∼ N (0, 1), (59)

as n, d, p → ∞ with d/p → ψ, d/n → ϕ, where ψ, ϕ ∈ (0,∞), then the Stieltjes transform G(z) of the spectral
density of random matrix M satisfies

dFM (x) =
1

π
lim
ϵ→0+

ImG(x− iϵ), G(z) =
ψ

z
A
( 1

zψ

)
+

1− ψ
z

, (60)

A(t) = 1 + (η − ξ)tAϕ(t)Aψ(t) +
Aϕ(t)Aψ(t)tξ

1−Aϕ(t)Aψ(t)tξ
, (61)

where Aϕ(t) = 1 + (A(t)− 1)ϕ and Aψ(t) = 1 + (A(t)− 1)ψ.

This lemma characterizes the spectral density of random matrix M for any zero-mean activation functions.
However, these implicit equations need to be evaluated numerically, and it is hard to obtain a closed-form
expression or provide more insights.

If we further assume that the assumptions in (25) are satisfied, i.e., E[f(ε)2] = 1, and E[f ′(ε)]2 = 0, then the
result in Lemma 4 can be simplified significantly, as the probability density of the eigenvalues for random matrix
M will converge to the well-known Marchenko-Pastur distribution with shape parameter r = p/n, i.e.,

dFM (x) → (1− 1

r
)+δ(x) +

√
(x− a)+(b− x)+

2πrx
, (62)

as n, d, p all go to infinity, where (z)+ ≜ max{0, z}, and a ≜ (1−
√
r)2, and b ≜ (1 +

√
r)2. Thus, we focus on

this case to obtain a convenient, closed-form expression for KL divergence.

The following lemma from Sections 2.2.2 and 2.2.3 in Tulino et al. (2004) characterizes the η-transform and
Shannon transform of the Marchenko-Pastur distribution.
Lemma 5. The η and Shannon transform of a nonnegative random variable X are defined as

ηX(γ) ≜ E[
1

1 + γX
], VX(γ) ≜ E[log(1 + γX)], (63)

respectively. If X is distributed according to Marchenko-Pastur distribution with shape parameter r = p/n, then

ηX(γ) = 1− F(γ, r)
4rγ

, (64)

VX(γ) = log

(
1 + γ − 1

4
F(γ, r)

)
+

1

r
log

(
1 + γr − 1

4
F(γ, r)

)
− 1

4rγ
F(γ, r), (65)

where

F(γ, r) ≜
(√

γ(1 +
√
r)2 + 1−

√
γ(1−

√
r)2 + 1

)2

. (66)

Equipped with the aforementioned tools from random matrix theory, we could proceed our analysis,

1

n
log det

(
Ip +

1

λn
B⊤B

)
=
r

p

p∑
i=1

log
(
1 +

1

λ
λi(

1

n
B⊤B)

)
, (67)

where the notation λi(·) denote the eigenvalues of the matrix for i = 1, · · · , p. As shown in Lemma 5, we have

1

p

p∑
i=1

log
(
1 +

1

λ
λi(

1

n
B⊤B)

)
→

∫ ∞

0

log
(
1 +

x

λ
)dFnM (x) = VX(1/λ) (68)

almost surely, when n, d, p→∞, p/n = r. Thus, in the over-parameterized regime, we have

1

n
log det

(
Ip +

1

λn
B⊤B

)
→ r · VX(1/λ) = V (1/λ, r). (69)
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Figure 7: A comparison between 1/n(log |Σ|+ tr(Σ)−1 − p) and the asymptotic approximation of the covariance
term in Theorem 3 for different values of λ and for different activation functions: f(x) = (x2 − 1)/

√
2 (left),

ReLU (middle) and Sigmoid (right). We adopt the same experiment settings as in Section 5, and we change
r = p/n by fixing n = 200 and varying p.

The trace term can be simplified as,

1

n
tr(Ip +

1

λn
B⊤B

)−1
=
r

p

p∑
i=1

1(
1 + 1

λλi(
1
nB

⊤B)
) , (70)

which will converge to the following expression by Lemma 5, when n, d, p→∞, p/n = r,

r

p

p∑
i=1

1(
1 + 1

λλi(
1
nB

⊤B)
) → r

∫ ∞

0

1

1 + x
λ

dFnM (x) = r(1−
F( 1λ , r)
4r 1

λ

). (71)

Combine (69) and (71) with (57), we obtain the following result

1

n
D(P ∗

Ŵ |S=zn∥π)→
λ

2σ2
∥Ŵλ∥22 −

λ

8
F( 1

λ
, r) +

1

2
V (1/λ, r). (72)

H.1 Empirical Behavior of Covariance Term

To show that Theorem 3 can provide a good approximation for the asymptotic behavior of the log determinant
and trace term in (23), we plot in Figure 7 both the term 1/n(log |Σ| + tr(Σ)−1 − p) with finite data and
1
2V (1/λ, r)− λ

8F(
1
λ , r) in the over-parameterized regime for different activation functions with varying regularizer

parameters λ. As shown from Figure 7 (left), our theoretical results provide a good proxy for the asymptotic
behavior of the covariance term, even for activation functions (e.g., ReLU and Sigmoid in Figure 7 (middle and
right)) that do not satisfy the assumptions in Theorem 3. This implies that the particular choice of activation
function does not significantly influence the asymptotic behavior of the covariance term in Gibbs-based BIC.

I ADDITIONAL EXPERIMENTAL RESULTS

I.1 Experimental Details

In our experiments, the setup for the random feature model is akin to a two-layer neural network with a ReLU
activation function. The first layer is initialized with a Gaussian distribution N (0, 1√

d
) and remains unchanged

throughout the training. The second layer, which starts off with zero values, is trained using the log loss function.

We set the step size for both SGD and MALA to 0.01. The training process of MALA typically converges around
100 epochs. However, to ensure convergence to the Gibbs distribution, we continue to run MALA for a substantial
number of epochs (600 in our experiment) even after achieving the minimum training loss. In addition, although
we trained the noise variance in the classic regime to calibrate it to an appropriate scale, we fixed the noise
variance σ to 0.05 due to the high variability in model complexity in the over-parameterized regime.

Our experiments, implemented in PyTorch requires less than 24 hours of training computation time on a single
RTX 3090 GPU. To ensure result accuracy and plot error bars, we perform 50 runs for each setting.
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Figure 8: A comparison of SGD and SGLD in terms of MSE (left). Comparisons of the classical AIC with
AIC+ in (15) (middle), and the classical BIC with BIC+ in (19) (right). All experiments are conducted in the
classical n≫ p setting, with n = 600, p = [30, ..., 120] and σ2 = 0.7. The preferred models selected by different
information criteria are marked using stars with different colors.

I.2 RF model loss

Keeping remind that the following loss function is only used in MALA training process,

L(w) = −
n∑
i=1

(
logP (yi|xi, w)−

1

n
log π(w)

)
(73)

=
1

2σ2

n∑
i=1

(
yi − f

(
x⊤
i F√
d

)
w

)2

+
n

2
log(2πσ2) +

λn∥w∥22
2σ2

. (74)

For traditional AIC and BIC, we optimize the following log-likelihood using SGD,

L(w) =
1

2σ2

n∑
i=1

(
yi − f

(
x⊤
i F√
d

)
w

)2

+
n

2
log(2πσ2). (75)

I.3 Gibbs-based AIC and BIC in Classic Regime

We instantiate a two-layer RF model described in (20), where the first layer is designated for feature mapping
and is kept random, and we only train the parameter in the second layer. We use the regularized negative
log-likelihood in (22) as the loss function for SGLD to compute both AIC+ in (15) and BIC+ in (19), which is
different from the SGD algorithm used in classical AIC and BIC.

For simplicity, we generate n = 600 training samples from this linear model

yi = x⊤
i w

∗ + ϵi, w∗ ∈ Rp, ∥w∗∥22 = 1, ϵi ∼ N (0, σ2
d), (76)

with p = 80, and noise σ2
d = 0.2.

In Figure 8 (Left), we plot the training and test MSEs achieved using SGD and SGLD, respectively. Although
SGD and SGLD might yield different model parameters, they exhibit a similar trend in terms of MSE and
Log-Loss. The discrepancy in the training algorithms does not significantly impact model selection. Figure 8
(middle) demonstrates that both AIC and AIC+ follow a similar trend to the test MSE, selecting the model
(p = 110) that achieves the smallest population risk. On the other hand, due to larger penalty terms, BIC and
BIC+ favor simpler models and identify the model most likely to generate the training data. As shown in Figure 8
(right), the classical BIC selects the model with p = 70, while BIC+ favors the model with p = 80. In summary,
our observations suggest that AIC+ and BIC+ based on SGLD exhibit similar model selection capabilities to the
traditional AIC and BIC in the classical large n regime.

I.4 Additional Baseline comparison

In Figure 9, we generated n = 200 data by a RF model yi = f
(

x⊤
i F√
d

)
w + ϵi, with F ∈ R400×600, i.e., the number

of random features p = 600, and the dimension of X is d = 400. The variance of the noise ϵi ∼ N (0, 0.1), which
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Figure 9: the comparison of the proposed over-parameterized BIC+ with true marginal likelihood and other
classical information criteria for over-parameterized RF models plotted with varying parameter dimension p.

is different from the σ = 0.2 in the likelihood function and the Gaussian prior. We fit the data using the RF
model with different dimensions p to see if our BIC+ can effectively identify the correct model order, rather than
just selecting larger models.

We randomly select p features from the true F when p ≤ 600, and we generate extra random features using
standard Gaussian if p goes beyond 600. As demonstrated in Figure 9, our Gibbs-based BIC+ can reliably
select the true model with moderate size instead of simply picking the largest model. In addition, we also plot
the baseline that represents the true marginal likelihood without any approximation. Our BIC+ has a similar
behavior, and both BIC+ and the true marginal likelihood select the correct model with p = 600.
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