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Abstract

We study Markov potential games under
the infinite horizon average reward criterion.
Most previous studies have been for dis-
counted rewards. We prove that both algo-
rithms based on independent policy gradient
and independent natural policy gradient con-
verge globally to a Nash equilibrium for the
average reward criterion. To set the stage
for gradient-based methods, we first estab-
lish that the average reward is a smooth func-
tion of policies and provide sensitivity bounds
for the differential value functions, under cer-
tain conditions on ergodicity and the second
largest eigenvalue of the underlying Markov
decision process (MDP). We prove that three
algorithms, policy gradient, proximal-Q, and
natural policy gradient (NPG), converge to
an ϵ-Nash equilibrium with time complexity
O( 1

ϵ2 ), given a gradient/differential Q func-
tion oracle. When policy gradients have
to be estimated, we propose an algorithm
with Õ( 1

mins,a π(a|s)δ ) sample complexity to

achieve δ approximation error w.r.t the ℓ2
norm. Equipped with the estimator, we de-
rive the first sample complexity analysis for
a policy gradient ascent algorithm, featuring
a sample complexity of Õ(1/ϵ5). Simulation
studies are presented.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) (Buso-
niu et al., 2008; Zhang et al., 2021a) features inter-
actions among multiple agents, with each agent hav-
ing its own objective and decision-making process. It
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finds applications in various domains, such as video
games (Vinyals et al., 2019; Samvelyan et al., 2019);
robotics (Yang and Gu, 2004; Perrusqúıa et al., 2021);
economics (Zheng et al., 2022); and networked sys-
tem control (Chu et al., 2020). Unlike single-agent
RL, interactions among agents create a dynamic and
non-stationary environment, making the learning pro-
cess more challenging. Under the criterion of dis-
counted reward, theoretical investigations have exam-
ined Markov general-sum games (Song et al., 2021),
zero-sum games (Zhang et al., 2020), and Markov po-
tential games (Leonardos et al., 2021; Zhang et al.,
2021b; Ding et al., 2022).

In infinite-horizon tasks, it is more natural to use
the average reward over the entire life-span for con-
tinuing tasks where optimizing stable, long-term per-
formance becomes crucial, e.g., resource allocation in
data centers, congestion games, and control problems
(Xu et al., 2014). As shown in (Zhang and Ross,
2020), algorithms designed for discounted reward crite-
rion can lead to unsatisfactory performance under the
long-term average cost criterion. However, the average
reward criterion which suits long-term strategic games
remains largely unexplored. This paper delves into the
challenges of employing the average reward criterion in
the realm of MARL, specifically for Markov potential
games.

Among different approaches to reinforcement learning,
policy-based methods are appealing due to the ease of
applying function approximation for large state and
action spaces. However, most of the existing literature
on average reward RL is either based on model-based
methods (Auer et al., 2008; Azar et al., 2017), value-
based methods (Wei et al., 2020), or based on reduc-
tion to discounted MDPs (Jin and Sidford, 2021), with
relatively fewer works dedicated to exploring policy-
based methods (Li et al., 2022; Wei et al., 2020). This
paper examines policy-based methods in the context
of average reward Markov potential games and demon-
strates the convergence to a Nash policy, which is the
primary goal of theoretical investigations in MARL
(Leonardos et al., 2021; Ding et al., 2022; Zhang et al.,
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2022).

1.1 Contributions

• We address the problem of average reward Markov
potential games and analyze three algorithms,
policy gradient ascent, proximal-Q, and natural
policy gradient. We show that with access to a
gradient oracle, they converge to an ϵ-Nash equi-
librium with time complexity O( 1

ϵ2 ).

• When the policy gradient has to be estimated,
we propose a single-trajectory policy gradient es-
timator that estimates the policy gradient with
Õ( 1

π(a|s)δ ) sample complexity and δ approxima-

tion error w.r.t. the ℓ2 norm. We also provide
the first sample complexity bound Õ( 1

ϵ5 ) for the
projected policy gradient ascent algorithm.

• On the technical side, we rigorously show that the
average reward is an L-smooth function of the
policy under an ergodicity assumption. This is
the first theoretical analysis of policy gradient for
the average reward. We note that the concurrent
work of Bai et al. (2023) assumes L-smoothness
without proving it. We also establish sensitivity
bounds for differential value functions for general
single-agent average reward MDPs, which play an
important role in providing regret bound inde-
pendent of the size of the action set (Section 5).
These bounds can potentially be used in smooth-
ness analysis of other parameterized policy pa-
rameter classes and function approximation anal-
ysis, under a further assumption of (Xu et al.,
2020, Assumption 1).

Comparison with Previous Works To obtain a
sample complexity bound for a projected policy gradi-
ent algorithm, existing work (Leonardos et al., 2021)
attempts to establish such a bound for a policy pro-
jected from a true deterministic gradient, instead of
one projected from a gradient estimated from samples
(details in Appendix C.4). The only work that ana-
lyzes the estimation error of policy gradient under the
average reward setting that we are aware of is a recent
work (Bai et al., 2023) which separately estimates two
parts of policy gradient. Even though they have the
same sample complexity, our algorithm calls the esti-
mation algorithm O(1/⌊ 1δ ⌋) times less than theirs, thus
reducing the computational burden.

1.2 Related Works

Markov Potential Games originate from Mon-
derer and Shapley (1996), who proposed static po-
tential games. Later, Dechert and O’Donnell (2006)

addressed the problem of stochastic lake water usage
modeling it as a Markov potential game with known
transition probabilities. With the emergence of rein-
forcement learning, Leonardos et al. (2021) and Zhang
et al. (2021b) extended the Markov potential game to
the unknown dynamics setting, where they analyzed
the convergence to Nash equilibrium by extending the
policy gradient techniques developed by Agarwal et al.
(2021) and Mei et al. (2020) to the multi-agent setting.
Later Ding et al. (2022) proposed a policy ascent al-
gorithm, projecting from the Q-function instead of di-
rect policy gradient. Cen et al. (2022), Zhang et al.
(2022), and Sun et al. (2024) have studied the natural
policy gradient algorithm in the static and Markov set-
tings. Recently, variants of networked Markov poten-
tial games and α-Markov potential games have been
studied by Zhou et al. (2023) and Guo et al. (2023).
However, all these results are restricted to the dis-
counted reward setting.

Average Reward MDPs date back to the clas-
sic results of Howard (1960); Blackwell (1962); Put-
erman (2004); Kakade (2001); Sutton et al. (1999).
When system dynamics are known, average reward
MDPs can be solved by linear programming, value it-
eration, or policy iteration (Howard, 1960; Puterman,
2004). A survey can be found in Dewanto et al. (2020).
When the dynamics need to be learned, model-based
methods like UCRL2 and UCBVI were proposed in
Auer et al. (2008) and Azar et al. (2017), and the
reward-biased method originally proposed by Kumar
and Becker (1982) has been recently reexamined in
Mete et al. (2021). For model-free algorithms, Wei
et al. (2020) proposed optimistic mirror ascent, Zhang
et al. (2021c) studied TD(λ) and Q learning, and Li
et al. (2022) analyzed the policy gradient methods un-
der the mirror descent framework. Zhang and Xie
(2023) and Jin and Sidford (2021) proposed algorithms
utilizing a reduction to the discounted reward setting.

2 PRELIMINARIES

In this section, we introduce the average reward
Markov potential game (AMPG), Nash equilibria, and
differential value functions for the average reward
MDP.

2.1 Average Reward Markov Potential
Games

An N -agent infinite-horizon tabular average-reward
Markov game (AMG) is represented by a tuple
AMG(S, {Ai}Ni=1, P, {ri}Ni=1). S denotes a finite state
space, Ai is a finite action space for agent i, and
A = A1 × A2 × ... × AN is the joint action space
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for all agents. We denote by S, A1, ...,AN their re-
spective cardinalities. P denotes the transition prob-
abilities, i.e., P (·|s,a) ∈ △(S) is the probability dis-
tribution of the next state under a joint action profile
a = (a1, a2, ..., aN ) ∈ A when the current state is s,
and △(S) denotes the probability simplex over set S.
ri : S × A → [0, 1] is the one-step reward function for
agent i.

A randomized stationary policy for an agent is defined
by a map πi : S → △(Ai), i.e., πi(·|s) ∈ △(Ai). De-
note by Πi := (△(Ai))

S the set of all randomized poli-
cies for agent i. We use π = {πi}Ni=1 to represent the
joint policy of all agents, and π−i = {πj}j ̸=i to repre-
sent all policies but i. Π = Π1×Π2×. . .×ΠN is the in-
dependent joint policy set. Similarly, we denote a−i :=
{aj}j ̸=i and Π−i := Π1 × . . .Πi−1 × Πi+1 . . . × ΠN .
Under a given joint policy π, the long-term average
reward for agent i starting from initial state s is

ρπi (s) := lim inf
T→∞

1

T
Eπ

[
T−1∑
t=0

ri(s
(t), a(t))|s(0) = s

]
. (1)

In this work, we will restrict our attention to an er-
godic underlying MDP:

Assumption 1. For any joint policy π ∈ Π, the in-
duced Markov chain is irreducible and aperiodic.

Under Assumption 1, there exists a unique sta-
tionary distribution νπ ∈ △(S) independent
of the initial state s (Puterman, 2004) i.e.,

νπ(s′) = lim
T→∞

1
T Eπ

[∑T−1
t=0 I(s(t) = s′)|s(0) = s

]
=

limT→∞Eπ

[
I(s(T ) = s′)|s(0) = s

]
for any s ∈ S. As

a result, the average reward ρπi (s) = ⟨νπ, rπi ⟩ is also
independent of the initial state s and we write it as ρπi
for simplicity.

Definition 1 (Average reward Markov potential
games). The average reward Markov potential game
(ARMPG) is a special case of AMG, where there ex-
ists a potential function Φ(π) : Π1 × Π2 × ...ΠN → R,
such that for any i, πi, π

′
i ∈ Πi and π−i ∈ Π−i,

Φ(πi, π−i)− Φ(π′
i, π−i) = ρ

πi,π−i

i − ρ
π′
i,π−i

i .

Denote by CΦ := maxπ,π′ |Φ(π)−Φ(π′)| the span of the
potential function Φ. Note that CΦ ≤ N since for any
joint policies π and π′, |Φ(π)−Φ(π′)| = |ρπ−ρπ′

1,π2:N +

ρπ
′
1,π2:N − ρπ

′
1,2,π3:N + . . .+ ρπ

′
1:N−1,πN − ρπ

′ | ≤ N .

Definition 2 (Nash and ϵ-Nash equilibrium). A policy
π∗ is a Nash equilibrium if for each agent i,

ρπ
∗
i ,π

∗
−i ≥ ρπi,π

∗
−i , ∀πi ∈ Πi,

or an ϵ-Nash equilibrium if

ρπ
∗
i ,π

∗
−i ≥ ρπi,π

∗
−i − ϵ, ∀πi ∈ Πi.

It may be noted that the maximizer of the potential
function is a Nash equilibrium, while the converse may
not be true since there could be multiple Nash equi-
libria.

2.2 Value Functions and Their Properties

The differential value function

V π
i (s) := Eπ

[ ∞∑
t=0

(ri(s
(t),a(t))− ρπi )|s(0) = s

]
(2)

captures the accumulated deviation from the station-
ary performance. The differential Q function and dif-
ferential advantage function are defined respectively
as:

Qπ
i (s,a) := Eπ

[ ∞∑
t=0

(ri(s
(t),a(t))− ρπi )|s(0) = s,a(0) = a

]
,

Aπ
i (s,a) := Qπ

i (s,a)− V π(s,a).

Taking the expectation with respect to other policies
except j, we can describe how agent j affects Qπ

i by:

Q
π

j;i(s, aj) :=
∑

a−j∈A−j

π−j(a−j |s)Qπ
i (s, aj , a−j). (3)

To simplify notation, we will use Q
π

i to repre-
sent Q

π

i;i, and define rπi (s) := Ea∼π(·|s)ri(s,a),

r
π−j

i (s, aj) := Ea−j∼π−j(·|s)ri(s, aj , a−j), and

A
π

i (s, ai) :=
∑

a−i∈A−i

π−i(a−i|s)Aπ
i (s, ai, a−i).

With Pπ ∈ RS×S denoting the state transition proba-
bility matrix induced by policy π, and Pπ ∈ RSA×SA

denoting the induced state-action transition probabil-
ity matrix, the differential value function Vπ

i and dif-
ferential Q function Qπ

i are solutions of the following
equations, up to a constant shift (Puterman, 2004):

Vπ = rπi − ρπi 1S + PπV
π,

Qπ = ri − ρπi 1SA + PπQπ.
(4)

Lemma 1 (Performance difference lemma). For any
policies πj, π′

j ∈ Πj, and π−j ∈ Π−j, the difference
between the average rewards for each agent i is

ρ
πj ,π−j

i − ρ
π′
j ,π−j

i

=Es∼νπj,π−j ⟨Qπ′
j ,π−j

j:i (s, ·), πj(·|s)− π′
j(·|s)⟩

=Es∼νπj,π−j

∑
aj

πj(aj |s)A
π′
j ,π−j

j:i (s, aj).

Let −→e (s, aj) ∈ {0, 1}S×Aj denote the unit vector
where the only non-zero term has the index (s, aj).
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With the definition of Fréchet derivative (Dieudonné,
2011), we can verify that there exists a linear operator
A :=

∑
s ν

π(s)
∑

aj

−→e (s, aj)Q
π

j;i(s, aj) mapping the

set U = {u ∈ RS×Aj :
∑

a∈Aj
u(s, aj) = 0, ∀s ∈ S}

to RS×Aj s.t. lim∥u∥2→0
∥ρπj+u,π−j−ρ

πj,π−j
i −⟨A,u⟩∥2

∥u∥2
=

0. This can be shown by the performance difference
lemma.

Lemma 2 (Partial derivative). For any i, j, and any
policies πj ∈ Πj, π−j ∈ Π−j,

∂ρπi
∂πj(aj |s)

= Q
π

j;i(s, aj)ν
π(s),

∂Φ(π)

∂πj(aj |s)
= Q

π

j (s, aj)ν
π(s).

Let {λi(M)}i=1,...,n be the eigenvalues of matrix M ∈
Rn×n, where |λ1(M)| ≥ |λ2(M)| ≥ ... ≥ |λn(M)|.
The largest eigenvalue of Pπ is 1 corresponding to the
eigenvector νπPπ = νπ Puterman (2004). The second
largest eigenvalue is strictly less than 1 and is related
to the mixing time of the Markov chain induced by π
(Kale, 2013, Lemma 2.1).

Definition 3 (Li et al. (2022)). Let 1 − Γ be the
probability of the least visited state of the MDP, with
Γ := 1−minπ∈Π,s∈S ν

π(s). Note that Γ ∈ (0, 1).

Definition 4. The mixing coefficient of the MDP is
defined as:

κ0 := max
π∈Π

1

1− |λ2(Pπ)|
.

Unlike our definitions of Γ and κ0, some literature in
the field of average reward MDP employs the concepts
of hitting time thit := maxπ maxs

1
νπ(s) and mixing

time tmix := maxπ min{t ≥ 1|∥(Pπ)t(·|s) − νπ∥1 ≤
1
4 ,∀s ∈ S} of the underlying MDP, (Wei et al., 2020;
Bai et al., 2023). We can establish a close relationship
between these two sets of definitions. Specifically Γ is
related to the hitting time as thit = 1

1−Γ , and from
Lemma 3 κ0 is related to the mixing time as tmix =
O( 1

log(1− 1
κ0

)
). It is also evident that κ0 is finite under

Assumption 1 in the tabular setting.

Lemma 3. Let Cp := min{
√

S
1−Γ ,

1
1−Γ} and ϱ := 1−

1
κ0
. Then for any policy π,

sup
s
∥(Pπ)t(·|s0 = s)− νπ∥1 ≤ Cpϱ

t,∀ t > 0.

Definition 5. Define κ := maxi maxπ minb∈R∥Q
π

i +
b1∥∞ for any reward function r ∈ [0, 1].

By Lemma 3, the span of the differential Q function
can be bounded as κ ≤ ∥Qπ

i ∥∞ ≤ 1+Cp

∑∞
t=1 ϱ

t = 1+
Cpϱ
1−ϱ ≤ Cpκ0. Details are in Appendix Proposition 3.

2.3 Performance Metric

We study “independent” policy optimization. By
this we mean that at step t, each agent i updates
its policy πt

i to πt+1
i based on the information it

can collect locally without coordinating with other
agents. The goal is to find a Nash equilibrium, and
we quantitatively measure the closeness of the joint
policy πt to a Nash equilibrium by the Nash-gap(t) :=

maxi maxp∈Πi(ρ
p,πt

−i

i − ρ
πt
i ,π

t
−i

i ). The optimization al-
gorithm is evaluated by the following notions of Nash
regret,

Nash-Regret(T ) :=
1

T

T−1∑
τ=0

Nash-gap(t),

Nash-Regret∗(T ) :=
1

T

T−1∑
τ=0

Nash-gap(t)2.

It is clear that the Nash gap is positive and policy πt is
an ϵ-Nash equilibrium if Nash-gap(t) ≤ ϵ. Moreover,
if the Nash regret (or Nash regret∗) is less than ϵ, the
policy πt∗ with t∗ ∈ argmint Nash-gap(t), is an ϵ (or√
ϵ)-Nash equilibrium.

3 POLICY GRADIENT
ALGORITHM

We now analyze the independent projected policy gra-
dient algorithm for average reward Markov potential
games. The algorithm adopts a direct policy param-
eterization. At each step, each agent i updates its
policy independently along the gradient direction and
projects it back to the policy space via ProjΠi

(π) :=
argminp∈Πi∥p− π∥2.

We first consider the oracle-based setting, where the
algorithm has access to a gradient-oracle that can ex-
actly calculate the policy gradient of a given policy.
We study the convergence performance in this setting
and its time complexity. Subsequently, we consider the
setting where there is no access to any oracle. We pro-
pose a gradient estimator based on trajectory samples,
and study its sample complexity.

The key step in the analysis relies on the smoothness
of the average value function. Unlike the discounted
setting where the gradient has a closed form expression
since I − γPπ is invertible and its power series can
be bounded (Agarwal et al., 2021; Leonardos et al.,
2021), in the average case, a similar analysis can not
be applied since γ = 1. In the following Lemma 4, with
the help of perturbation theory of stochastic matrices
we show that the average reward function is smooth
in both single-agent and multi-agent situations. The
proof is in Appendix C.2.
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Algorithm 1 Independent projected policy gradient
ascent
1: Input: learning rate β > 0

2: Initialization: π
(0)
i (ai|s) = 1/Ai for any i, s, ai

3: for t = 0 to T − 1 do
4: π

(t+1)
i = ProjΠi

(πt
i + β∇πi

ρπ
t

i ), ∀i
5: end for

Lemma 4 (Smoothness of ρ and Φ). Denote Amax :=
maxi Ai, L := κ2

0S
3/2Amax + κ0

√
SAmax, and LΦ :=

N(κ2
0S

3/2Amax + κ0(SAmax + 2Amax) +Amax).

(a) For any i, and π−i ∈ Π−i, the average value ρπi is
κ2
0S

3/2Ai + κ0

√
SAi-smooth with respect to policy πi.

Moreover, for any i, ρπi is L-smooth with respect to

policy πi, i.e. ∥∇πi
ρ
πi,π−i

i −∇πi
ρ
π′
i,π−i

i ∥2 ≤ L∥πi−π′
i∥2

for ∀ i, and πi, π
′
i ∈ Πi.

(b) The potential function Φ(π) is LΦ-smooth with re-
spect to joint policy π, i.e. ∥∇Φ(π) − ∇Φ(π′)∥2 ≤
LΦ∥π − π′∥2 for ∀ π, π′ ∈ Π.

We note that compared to the smoothness factor in
discounted reward settings ( 2γAmax

(1−γ)3 for single-agent,
2NγAmax

(1−γ)3 for multi-agent), the smoothness factor for

the average reward setting has an extra dependence
on state size S. The reason is that the second or-
der linear derivative of ρπ depends on the ℓ1 norm of
the linear derivative of νπ, while Definition 4 can only
guarantee an ℓ2 bound. The exchange between ℓ1 and
ℓ2 norms introduces the factor S.

3.1 Policy Gradient Algorithm with
Gradient Oracle

We first introduce the distribution mismatch coeffi-
cient, which also appears in the convergence behavior
of the policy gradient algorithm in discounted single-
agent MDPs (Agarwal et al., 2021) and discounted
Markov potential games (Ding et al., 2022; Leonardos
et al., 2021).

Definition 6 (Distribution mismatch coefficient).
D := maxπ,π′∈Π∥ νπ

νπ′ ∥∞.

In the average reward setting, the coefficient D can
be upper bounded by 1

1−Γ . The independent pro-
jected policy gradient ascent algorithm is given in Al-
gorithm 1, the regret of which is bounded as follows,
with its proof given in Appendix C.2.

Theorem 1. Choose learning rate β := 1
LΦ

. Then the
Nash-regret* of Algorithm 1 is bounded by

Nash-regret∗(T ) = O

(
D2LΦCΦS

T

)
.

Therefore, by setting time T :=

Algorithm 2 Policy gradient ascent with estimation

1: Input: learning rate β > 0, K, N1, N2, N3

2: Initialization: π
(0)
i (ai|s) = 1/Ai for any i, s, ai

3: for t = 0 to T − 1 do
4: agents take action independently and syn-

chronously for N1 + KN2 time steps to collect
trajectories {T t

i }
5: for agent i do
6: ĝti ← gradient estimation(T t

i , π
t
i ,K,N1, N2, N3)

7: π
(t+1)
i = ProjΠi,α

(πt
i + βĝti)

8: end for
9: end for

O
(

NCΦD2S5/2Amaxκ
2
0

ϵ2

)
, it yields an ϵ-Nash equi-

librium.

The analysis has two parts. Based on the smoothness
estimated in Lemma 4, the algorithm will converge to
a stationary point by the optimization theory of gra-
dient ascent. We then show that the stationary policy
is a Nash equilibrium in the average reward Markov
potential game, which establishes the convergence of
the algorithm.

3.2 Sample-Based Policy Gradient Estimate

In practice, we usually do not have access to a gra-
dient oracle. To apply the policy gradient algorithm,
we need to estimate the gradient from trajectory sam-
ples. We propose a gradient estimator (Algorithm 3)
which only relies on a single trajectory and is thus
more practical in real applications since it does not
require resetting the Markov process or a generative
model. The sample-based policy gradient ascent algo-
rithm is described in Algorithm 2.

The estimator ĝi in Algorithm 3 is based on Lemma 2,
which relates the policy gradient with Q

π

i (s, ai), and

we approximate it by Ri(t) =
∑N

k=0(ri(s
t+k,at+k) −

ρ̂i). It is generally hard to estimate the policy gradi-
ent in the average reward case. Unlike the discounted
reward criterion, the policy gradient might be un-
bounded under average reward setting. We resolve this
issue by adapting the sample length N based on the
mixing rate in Lemma 3. However, ĝi may have large
variance when πi(a

′
i|s′) is small. To overcome this, we

restrict the policy class to Πα := Π1,α × . . . × ΠN,α,
where Πi,α := {(1 − α)πi + αui|∀πi ∈ Πi} with
ui := (UnifAi

)S ∈ Πi being the uniform policy. Such
restriction has been considered in Leonardos et al.
(2021); Ding et al. (2022) previously. We can balance
the representation power of the policy class and the
variance of the gradient estimator by adjusting α.

Lemma 5. For any agent i, consider the gradient es-
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Algorithm 3 Gradient estimation

1: Input: trajectory T = (s0, a0i , r
0
i , ..., s

t, ati, r
t
i),

policy πi, K, N1, N2. (t = N1 +KN2 − 1)

2: ρ̂i ← 2
N1

∑N1−1

t=
N1
2

rti
3: g ← 0
4: for k = 0 to K − 1 do
5: tk ← N1 + kN2

6: R(k)←
∑tk+N2−1

τ=tk
(rτi − ρ̂i)

7: g ← g +R(k)∇πi
log πi(a

tk
i |stk)

8: end for
9: ĝi ← g

K
10: Output:ĝi

timate ĝi defined in Algorithm 3. Given the (s, a, r)-
trajectory of length KN2+N1 and the policy πi ∈ Πi,α

that generated it, the estimated gradient has ℓ2 error
bounded as

E∥ĝi −
∂ρπi
∂πi
∥22 ≤

(
1

α
+ 1

)
2AmaxN

2
2

K

+
4CpAmax

1− ϱN2

(√
2

α
+
√
2

)
N2

2

K
ϱN2

+
16AmaxC

2
p

(1− ϱ)2
N2

2

N2
1

ϱN1 +
2AmaxC

2
p

(1− ϱ)2
ϱ2N2 .

We can guarantee an ℓ2 error of O(δ) by choosingN1 =
N2 = O(log 1

δ ), and K = Õ(Amax

αδ ). A detailed proof is
in Appendix C.3.

Theorem 2. If all players independently and syn-
chronously run Algorithm 2 with learning rate β = 1

LΦ
,

the Nash regret is bounded as:

E[Nash-regret∗(T )] =O
(D2SLΦCΦ

T
+ κ2α2

+ κ2DAmaxL
2
Φδ
)
.

We can therefore determinate an ϵ-Nash equilibrium

by choosing T = O(
NCΦD2S5/2Amaxκ

2
0

ϵ2 ), α = O( ϵ
κ ), δ =

O( ϵ2

κ2DAmaxL2
Φ
), K = Õ(Amax

αδ ), and N1 = N2 = Õ(1).

Substituting the bound for κ and LΦ, the sample com-

plexity is then T (KN2 +N1) = Õ(
N3D3CΦS7A5

maxκ
9
0

ϵ5(1−Γ)3/2
).

To analyze Algorithm 2, we introduce the shadow pol-
icy π̃t+1 := ProjΠα

(πt + β∇πΦ(π
t)) projected from

the true deterministic policy gradient. The distance
between π̃t and πt is bounded by the estimation error.
Since the shadow policy π̃t can capture the optimality
criterion in the update rule in Algorithm 2, a bound
on the Nash gap with policy improvement w.r.t. po-
tential value can be provided for each time step. To-
gether with the bounded distance from true policy πt,
the conclusion follows.

Algorithm 4 Independent proximal-Q

1: Input: learning rate β > 0

2: Initialization: π
(0)
i (ai|s) = 1/Ai for any i, s, ai

3: for t = 0 to T − 1 do

4: πt+1
i (·|s) = argmax

p(·|s)∈△(Ai)

{β⟨Qπt

i (s, ·), p(·|s)⟩Ai
−

1
2∥p(·|s)− πt

i(·|s)∥22} ∀s, i
5: end for

Remark. We note that there are some mistakes in
the analysis of the sample-based policy gradient in
(Leonardos et al., 2021, Theorem 4.7) about the mini-
mizer of the Moreau envelope and the update analysis,
which are elaborated in Appendix C.4. We address the
difficulties in analyzing the sample-based policy gradi-
ent algorithm, and as far as we are aware, Theorem 2
is the first sample-based projected policy gradient al-
gorithm for Markov potential games with a rigorous
performance guarantee.

4 PROXIMAL-Q ALGORITHM

In this section, we analyze another algorithm, the
proximal-Q algorithm, under the assumption of the
availability of an oracle for the differential value func-
tion. The more general case where there is no ora-
cle, and its sample complexity analysis are addressed
in Appendix D.1. Instead of the policy gradient

∂ρπ
i

∂πi(ai|s) = Q
π

i (s, ai)ν
π(s), Algorithm 4 uses the dif-

ferential Q function as the ascent direction, which is
less sensitive for states s with a small visiting rate
νπ(s). The key part of the regret analysis is to con-
nect the one-step policy update rule with the difference
between the respective potential values. The analysis
in the discounted setting is based on the performance
difference lemma and second order performance differ-
ence lemma (Ding et al., 2022, Lemma 21), both rely-
ing on the backward induction enabled by the discount
factor γ < 1, which are unfortunately not applicable
in the average reward setting. To bound the second
order difference for the average reward, we can use its
smoothness property established in Lemma 4, or care-
fully analyze the sensitivity of the two parts Qπ and νπ

in the performance difference Lemma 1. We empha-
size that the sensitivity bounds for differential value
functions also play an important role in establishing
the regret bound independent of the size of the action
set, as shown in Section 5.

Define ∥π∥1,∞ := maxs∥π(·|s)∥1 and ∥M∥∞ :=
max∥x∥∞=1∥Mx∥∞ for matrix M. One may note that
∥M1 + M2∥∞ ≤ ∥M1∥∞ + ∥M2∥∞, ∥M1M2∥∞ ≤
∥M1∥∞∥M2∥∞, and ∥M∥∞ ≤ maxi

∑
j |Mij |.

Let Pπ,∞ := ((νπ)T , ..., (νπ)T )T , with νπ ∈ (0, 1)1×S ,
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denote the infinite-step state transition matrix. There
exists a closed form expression V π = (I − Pπ +
Pπ,∞)−1(I − Pπ,∞)rπ (Puterman, 2004).

Definition 7. For any policy π ∈ Π, (I − Pπ +
Pπ,∞) is invertible (Puterman (2004)). Define κ1 :=
maxπ∥(I − Pπ + Pπ,∞)−1∥∞.

Note that (I − Pπ + Pπ,∞)−1 = I +
∑∞

t=1(P
π −

Pπ,∞)t. By Lemma 3 and PπPπ,∞ = Pπ,∞Pπ =
Pπ,∞, Pπ,∞Pπ,∞ = Pπ,∞, we have κ1 ≤ ∥I∥∞ +∑∞

t=1∥(Pπ)t−Pπ,∞∥∞ ≤ 1+
∑∞

t=1 Cpϱ
t = 1+Cp

ϱ
1−ϱ .

Consider a general average reward MDP with reward
function r. ρπr , V

π
r and Qπ

r can be defined similarly as
in Section 2.

Lemma 6 (Sensitivity bounds for average reward
MDP). For any reward function taking values in [0, 1],
and any policies π, π′ ∈ Π, the following bounds hold:

|νπ(s)− νπ
′
(s)| ≤κ∥π − π′∥1,∞, ∀s ∈ S

|ρπr − ρπ
′

r | ≤κ∥π − π′∥1,∞,

∥V π
r − V π′

r ∥∞ ≤κ1(2 + S(κ+ κ1) + Sκκ1)∥π − π′∥1,∞,

∥Qπ
r −Qπ′

r ∥∞ ≤(κ+ 2κ1 + Sκ1(κ+ κ1) + Sκκ2
1)

× ∥π − π′∥1,∞.

Proofs are provided in Appendix D. Lemma 6 is
a general result for both single-agent and multi-
agent settings. Consider a joint policy π(a|s) :=
π1(a1|s)π2(a2|s)...πN (aN |s). If π = (πj , π−j), π′ =
(π′

j , π−j), then ||π − π′||1,∞ = ||πj − π′
j ||1,∞. The fol-

lowing proposition is directly derived from Lemma 6.

Proposition 1. ∥Qπj ,π−j

i − Q
π′
j ,π−j

i ∥∞ ≤ κQ∥πj −
π′
j∥1,∞, where κQ := κ+ 2κ1 + Sκ1(κ+ κ1) + Sκκ2

1.

Theorem 3. If the learning rate is chosen as β ≤
max{ 1−Γ

(N−1)(κQ+Sκ2)Amax
, 1−Γ
2LΦ
}, then Algorithm 4 has

a bounded Nash regret:

Nash-regret(T ) ≤
√
D(κ

√
Amax +

2

β
)
√
2βCΦ

1√
T
.

If we set the learning rate to β = 1−Γ
2LΦ

, the
time complexity for an ϵ-Nash equilibrium is T =

O(
NCΦDS3/2Amaxκ

2
0

(1−Γ)ϵ2 ). The proof is given in Ap-

pendix D.

5 NATURAL POLICY GRADIENT

Finally, we analyze the natural policy gradient (NPG)
algorithm under the average reward setting. NPG is
a powerful technique to accelerate the convergence of
policy update with Fisher information via precondi-
tioning (Kakade, 2001). We consider the independent

Algorithm 5 Independent natural policy gradient as-
cent
1: Input: learning rate β > 0

2: Initialization: π
(0)
i (ai|s) = 1/Ai for any i, s, ai

3: for t = 0 to T − 1 do

4: πt+1
i (·|s) = argmax

p(·|s)∈△(Ai)

{β⟨Qπt

i (s, ·), p(·|s)⟩Ai
−

Dp
πt
i
(s)} ∀s, i

5: end for

NPG Algorithm 5 under the availability of a differen-
tial value function oracle.

Under the softmax parameterization, the joint policy
πθ = (πθ1

1 , . . . , πθN
N ) with θ = (θ1, . . . , θN ) ∈ RSA is

πθi
i (s, a) =

exp(θs,ai
)∑

a′
i
∈Ai

θs,a′
i

. The gradient of ρ (or Φ)

w.r.t. θ is
∂ρπ

i

∂θ =
∑

s,a ν
π(s)π(a|s)∂ log π(s,a)

∂θ Qπ
i (s, a)

(Sutton et al., 1999). With the Fisher
information matrix defined as Fi(θ) :=

E
s∼νπθ ,ai∼πθi (·|s)[(

∂ log πθi (ai|s)
∂θi

)(∂ log πθi (ai|s)
∂θi

)T ]

(Kakade, 2001), the natural policy gradient update

is θt+1
i = θti + Fi(θi)

†∇θiρ
πθ

i . It can be shown that
the NPG update is equivalent to the update in
Algorithm 5 (the proof is provided in Appendix E). In

Algorithm 5, Dp
q (s) :=

∑
a p(a|s) log

p(a|s)
q(a|s) is the Kull-

back–Leibler (KL) Divergence between distributions
p(·|s) and q(·|s). There is a closed-form expression for

the update, πt+1
i (ai|s) ∝ πt

i(ai|s) exp
(
βQ

πt

i (s, ai)
)
∝

πt
i(ai|s) exp

(
βA

πt

i (s, ai)
)
, which can be verified by

the Karush–Kuhn–Tucker (KKT) condition. This
does not require the calculation of the inverse of the
Fisher information matrix and the gradient oracle, but
employs a differential value function oracle instead.

We first show the monotonic improvement property of
the NPG one-step update.

Lemma 7. Let Zi,s
t :=

∑
ai
πt
i(ai|s) exp

(
βA

t

i(s, ai)
)
.

When β ≤ max{ 1−Γ
(N−1)(κQ+Sκ2) ,

1−Γ
LΦ
},

Φ(πt+1)− Φ(πt) ≥ 1

β

∑
i

E
s∼νπ

t+1
i

,πt
i
logZt,s

i ≥ 0.

In the discounted reward setting, the performance
difference lemma provides a bound for the mono-
tone improvement (Zhang et al., 2022, Lemma 20)
which is applicable only when the potential function
Φ(π) can be decomposed as the discounted summa-
tion of some state action reward function Φ(π) =
Ea∼π,s∼η

∑
t γ

tϕ(s, a). Here we do not need such
an additional assumption, but utilize the smoothness
(Lemma 4) or the sensitivity bound for differential Q
function (Lemma 6) instead.
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Let c(t) := mini mins
∑

a∗
i ∈argmaxai∈Ai

Q
πt

i (s,ai)
πt
i(ai|s),

which is also considered in Zhang et al. (2022). It
indicates the exploration power of the policy πt, i.e.,
the probability mass covering the optimal actions.
Define c := inft c(t). The following lemma shows that
c is strictly positive, which is key to bounding the
convergence rate. The proofs are given in Appendix E.

Lemma 8. If all stationary points of the po-
tential function Φ(θ) = Φ(π(θ)) are isolated,
β ≤ min{max{ 1−Γ

(N−1)(κQ+Sκ2) ,
1−Γ
LΦ
}, 1

2κ}, Algorithm 5

asymptotically converges to a Nash equilibrium. Then
c > 0.

Theorem 4. If all stationary points of the poten-
tial function Φ(θ) = Φ(π(θ)) are isolated, β ≤
min{max{ 1−Γ

(N−1)(κQ+Sκ2) ,
1−Γ
LΦ
}, 1

2κ}, the regret of Al-

gorithm 5 can be bounded as

Nash-regret∗(T ) ≤ 3CΦ

cβ(1− Γ)T
.

Substituting the bound for κ and κQ, β =
1−Γ

NS3/2κ2
0 min{Amax,

S2κ0

(1−Γ)7/2
}
, the time complexity is T =

O(
NCΦS3/2κ2

0 min{ S2κ0

(1−Γ)7/2
,Amax}

c(1−Γ)2ϵ2 ). When the action

set has a large cardinality Amax, it gives an Amax-
independent bound for the chosen learning rate.

6 EXPERIMENTS

We first illustrate the convergence of the algorithms in
the oracle setting. We randomly generate a Markov
potential game model with S = 100 states, and A1 =
4, A2 = 3, A3 = 2 actions for the N = 3 agents.
We choose the largest learning rate. This yields the
fastest convergence for each algorithm. The numeri-
cal experiments corroborate our theoretical findings in
Theorems 1, 3, and 4.

Recall that in the theorems, a small least visited rate
(LVR) (1 − Γ) has a negative impact on the conver-
gence rate. As shown in Fig. 1(a) and 1(b),the small
LVR impedes the convergence of all three algorithms.
Comparing the theoretical findings of policy gradient
and that of proximal-Q and NPG, we note that the
complexity of the former is of order S5/2 while the lat-
ter is of order S3/2. This is also verified in Fig. 1(b)
and the effect is more significant when LVR is small.
In addition, the convergence of NPG depends on the
exploration factor c(t). We generate a reward function
with a small reward gap (RG) between the optimal ac-
tion and the second best optimal one, which increases
the exploration difficulty and results in a small value of
c(t). Despite c(t) nearing 1, with very small RG, NPG
updates can become minor, causing the algorithm to

(a) Large LVR, large RG (b) Small LVR, large RG

(c) Large LVR, small RG (d) Large LVR, small RG

(e) ℓ1 accuracy (f) Nash gap

Figure 1: (a)(b)(c)(d) are results for the oracle setting.
Since the Nash gap can be as low as 0.0, we truncate
the log(Nash gap) at −35 from below. (d) depicts the
change in c(t) of the NPG algorithm for Fig. 1(c). (e)
and (f) present the results of Algorithm 2. The solid
lines are the means of trajectories over seven random
seeds and shaded regions are the standard deviations.

get stuck near a Nash equilibrium (Fig. 1(d)). Further
discussion is in Appendix A.

We further demonstrate that the proposed sample-
based independent policy gradient Algorithm 2 con-
verges to the desired policy in Fig. 1(e) and 1(f), un-

der both the ℓ1 accuracy, i.e., 1
N

∑N
i=1∥πt

i − π∗
i ∥1 and

Nash gap.

To illustrate the potential of the independent learning
scheme in averaged reward MARL, a more complex
robot navigation task is conducted. There are two
controllers (linear speed controller and angular speed
controller) in a robot with each viewed as an agent.
The agents gain rewards when the robot is moving
toward the target. We implement a practical version of
the independent average NPG algorithm with a neural
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Figure 2: Training process of robot navigation task.
The solid line is the mean of trajectories over three
random seeds and shaded regions are the standard de-
viations.

network, which is inspired by Algorithm 1 of Ma et al.
(2021), and showcase its performance in Fig. 2.

7 CONCLUSION

In this paper, we study Markov potential games under
the average reward criterion and analyze three algo-
rithms, policy gradient ascent, proximal-Q, and NPG
under the access to an oracle. We establish time com-
plexity that matches the results in discounted reward
settings. We also propose a gradient estimator, which
only relies on a single trajectory. The sample-based
policy gradient ascent algorithm is shown to converge
to a Nash equilibrium, and a sample complexity is pro-
vided. We also close several technical gaps in the anal-
ysis of policy gradient methods between the discounted
and average reward settings.
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1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
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A EXPERIMENTAL DETAILS

A.1 Oracle-based Algorithms

We provide more details regarding the numerical experiments described in Section 6. In the oracle setting, when
the state set size is greater than the size of the action set, according to Theorem 1, Theorem 3 and Theorem 4,
the time complexities for projected policy gradient ascent, proximal-Q and NPG are

O

(
NCΦS

5/2Amaxκ
2
0

(1− Γ)2ϵ2

)
, O(

NCΦS
3/2Amaxκ

2
0

(1− Γ)2ϵ2
), and O(

NCΦS
3/2Amaxκ

2
0

c(1− Γ)2ϵ2
),

respectively. Notably, projected policy gradient ascent exhibits an additional S dependency, while NPG has
an additional dependency on 1

c . Meanwhile, a small least visited rate (LVR) 1 − Γ has a negative effect on all
algorithms. To illustrate these effects, we conducted simulations on Markov potential games with large state
spaces, varying LVR (large or small), and different exploration factors (large or small c), as described in the next
paragraph.

We randomly generate a cooperative Markov potential game with the following parameters: S = 100, A1 = 4,
A2 = 3, and A3 = 2. To control the LVR (1 − Γ), the elements of the transition probability matrix P ∈
[0, 1]SA1A2A3×S are generated as follows. First, each entry is generated using a uniform distribution Unif[0, 1].
Then we randomly select half of the states (denoting chosen states by s′) and generate the probabilities P (s′|s,a)
for every action profile a according to a uniform distribution Unif[0, 0.01] (for small LVR), or Unif[0, 0.1] or
Unif[0, 1] (for large LVR). Subsequently, each row of the matrix is normalized. To reduce the exploration factor
c, we generate a reward function with a small reward gap (RG) between the reward of the best action and
that of the second best action, thereby increasing exploration difficulty and leading to a smaller c. The reward
function is identical for all agents. It is randomly generated and denoted as R ∈ [0, 1]SA1A2A3 . For scenarios
with a small RG, we use a uniform distribution Unif[0, 1] for all entries, or set reward r(s,a′) to be 0.001 smaller
than maxa r(s,a). This setup can indeed make c(t) smaller as illustrated in Fig. 1(d). In cases with a large
RG, we select an action profile for each state at random and generate rewards according to Unif[0.4, 1], with the
remaining entities generated according to Unif[0, 0.6]. We observed that a larger learning rate leads to faster
convergence, therefore, we chose the largest learning rate.

A.2 Sample-based Algorithm

In the sample-based setting, we run Algorithm 2 for a manually designed Markov potential game with S = 2,

A1 = A2 = 2, an action-independent transition probability matrix P =

(
0.9 0.1
0.3 0.7

)
, and a reward function that

is identical for each agent. The rewards for states 1 and 2 are R1 =

(
1 0.2
0.8 0.2

)
and R1 =

(
0.2 1
0.1 0.6

)
, where

columns indicate actions for agent 1, and rows indicate actions for agent 2. To achieve α = 0.01 and δ = 0.01,
Theorem 2 suggests a learning rate β ≈ 1

Nκ2
0S

3/2Amax
≈ 0.01 and trajectory lengthKN2+N1 ≈ 108. To reduce the

number of samples needed, we choose a trajectory lengthKN2+N1 = 51000 with N1 = 1000, N2 = 50,K = 1000,
and reduce the step size every 20 steps, from initially 0.5 to eventually 0.0001, to accommodate inaccurate gradient
estimates.

A.3 Robot Navigation Task

We demonstrate the efficacy of average reward MARL by solving a complex robot navigation task for TurtleBot,
a two-wheeled mobile robot (Zhou et al., 2024; Rengarajan et al., 2022a,b) in a simulation platform, Gazebo. The
navigation task is to guide the robot to any designated target within a 2-meter radius. The state space is defined
by a continuous 2-dimensional space representing the distance and relative orientation between the robot and the
target. The robot is equipped with two controllers: an angular controller with control effect ranging from -1.5
rad/s to 1.5 rad/s, and a linear velocity controller with control effect ranging from 0 cm/s to 15 cm/s. To model
the agents’ control strategy, we implemented two independent agents to manage the angular and linear speeds,
following an empirical adaptation of Algorithm 5. The reward function is formulated to be proportional to the
product of the distance and the scaled orientation between the robot and the target. Hitting the boundary incurs
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a penalty of -200, while reaching the target yields a reward of 200. Each trajectory terminates upon collision,
achievement of the goal, or after 500 simulation steps have elapsed.

All experiments were conducted on a CPU with an 11th Gen Intel(R) Core(TM) i7-11700 @ 2.50GHz.

B PROOFS OF SECTION 2

We first explore a sufficient condition for a Markov game to be a potential game. Previous works have studied
the sufficient condition for the discounted reward setting (Leonardos et al., 2021; Zhang et al., 2021a; Narasimha
et al., 2022). These conditions encompass some important Markov games.

Proposition 2. Consider a Markov game that is a static potential game ri(s,a) at every state s ∈ S, i.e.,
there exists a common potential function ϕ(s,a) and an utility function ui(s, a−i) for each agent i, such that
ri(s,a) = ϕ(s,a) + ui(s, a−i). If one of the following conditions is satisfied, then the Markov game is an average
reward Markov potential game:

1. The transition probabilities do not depend on the action a taken, i.e., P (s′|s,a) = P (s′|s) for all a.

2. For every agent i, there exist a constant ci such that u
π−i

i (s) :=
∑

a−i
(Πj ̸=iπj(aj |s))ui(s, a−j) satisfies

∇πi(·|s)⟨νπ, u
π−i

i ⟩ = ci1Ai
for every state s and policy π.

Proof. Let ϕ
π
(s) :=

∑
a π(a|s)ϕ(s,a). ρπi = ⟨νπ, ϕπ

+ u
π−i

i ⟩. If condition 1 is satisfied, νπ ≡ ν, then ⟨ν, ϕπ⟩ is
the potential function.

If condition 2 is satisfied, ρπi = ⟨νπ, ϕπ⟩ + ⟨νπ, uπ−i

i ⟩. With the interpolation of differential function, for any

policies πi, π
′
i and π−i, there exist a constant a ∈ [0, 1], π∗

i = πi + a(π′
i − πi), such that ρπi,π−i − ρ

π′
i,π−i

i =

⟨νπ, ϕπ⟩ − ⟨νπ′
i,π−i , ϕ

π′
i,π−i⟩+ ⟨πi − π′

i,∇πi(·|s)⟨νπ
∗
i ,π−i , u

π−i

i ⟩⟩ = ⟨νπ, ϕπ⟩ − ⟨νπ′
i,π−i , ϕ

π′
i,π−i⟩+ ⟨πi − π′

i, ci1Ai
⟩ =

⟨νπ, ϕπ⟩ − ⟨νπ′
i,π−i , ϕ

π′
i,π−i⟩. Therefore, ⟨νπ, ϕπ⟩ is the potential function.

Remark A fully cooperative game, where all agents have the same reward function ri ≡ r, is an important
special case of a Markov potential game. It satisfies Condition 2 in Proposition 2 with ui ≡ 0, while the lake
usage problem (Dechert and O’Donnell, 2006) satisfies Condition 1.

Lemma 9 (Restatement of Lemma 1).

ρ
π̂j ,π−j

i − ρ
π̃j ,π−j

i = Es∼νπ̂j ,π−j [⟨Q
π̃j ,π−j

j:i (s, ·), π̂j(·|s)− π̃j(·|s)⟩Aj ]

= Es∼νπ̂j ,π−j

∑
aj

π̂j(aj |s)A
π̃j ,π−j

j:i (s, aj).
(5)

Proof.

ρ
π̂j ,π−j

i − ρ
π̃j ,π−j

i

=ρ
π̂j ,π−j

i − ρ
π̃j ,π−j

i + Es′∼νπ̂j ,π−j [V
π̃j ,π−j

i (s′)]− Es∼νπ̂j ,π−j [V
π̃j ,π−j

i (s)]

=Es∼νπ̂j ,π−j ,a∼(π̂j ,π−j)
[ri(s, a)− ρ

π̃j ,π−j

i + Es′∼P (·|s,a)[V
π̃j ,π−j

i (s′)]− V
π̃j ,π−j

i (s)]

=Es∼νπ̂j ,π−j ,a∼(π̂j ,π−j)
[Q

π̃j ,π−j

i (s,a)− ⟨Qπ̃j ,π−j

j;i (·, s), π̃j(·|s)⟩Aj ]

=Es∼νπ̂j ,π−j [Eaj∼π̂i
Q

π̃j ,π−j

j;i (s, aj)− ⟨Q
π̃j ,π−j

j;i (·, s), π̃j(·|s)⟩Aj
]

=Es∼νπ̂j ,π−j [⟨Q
π̃j ,π−j

j;i (s, ·), π̂j(·|s)− π̃j(·|s)⟩Aj
]

=Es∼νπ̂j ,π−j [
∑
aj

Q
π̃j ,π−j

j;i (s, aj)π̂j(aj |s)− V
π̃j ,π−j

i (s)]

=Es∼νπ̂j ,π−j [
∑
aj

(
Q

π̃j ,π−j

j;i (s, aj)− V
π̃j ,π−j

i (s)
)
π̂j(aj |s)]

=Es∼νπ̂j ,π−j [
∑
aj

π̂j(aj |s)A
π̃j ,π−j

j;i (s, aj)].
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Lemma 10 (Restatement of Lemma 2).

∂ρπi
∂πj(aj |s)

= Q
π

j;i(s, aj)ν
π(s),

∂Φ(π)

∂πj(aj |s)
= Q

π

j (s, aj)ν
π(s)

Proof. Recall that Q
π

j:i(s, aj) =
∑

a−j∈A−j

π−j(a−j |s)Qπ
i (s, aj , a−j) =

∑
a−j∈A−j

π−j(a−j |s)(r(s,a) − ρπi +

Es′∼P (·|s,a)V
π
i (s′)). Therefore, V π

i (s) =
∑

aj
πj(aj |s)Q

π

j;i(s, aj). Differentiating with respect to πj :

∂V π
i (s)

∂πj
=

∂

∂πj

∑
aj

πj(aj |s)Q
π

j;i(s, aj)

=
∑
aj

∂πj(aj |s)
∂πj

Q
π

j;i(s, aj) +
∑
aj

πj(aj |s)
∂Q

π

j;i(s, aj)

∂πj

=
∑
aj

∂πj(aj |s)
∂πj

Q
π

j;i(s, aj) +
∑
aj

πj(aj |s)
∂

∂πj
(r

π−j

i (s, aj)− ρπi + Es′∼P (·|s,aj ,a−j),a−j∼π−j(·|s)V
π
i (s′))

=
∑
aj

∂πj(aj |s)
∂πj

Q
π

j;i(s, aj)−
∂ρπi
∂πj

+ Es′∼P (·|s,a),a∼π(·|s)
∂V π

i (s′)

∂πj
.

Multiplying each side with νπ(s), taking the summation over s, with the definition of stationary distribution
Es∼νπ,s′∼P (·|s,a),a∼π(·|s) = Es′∼νπ , we obtain:∑

s

νπ(s)
∂V π

i (s)

∂πj
=
∑
s

νπ(s)
∑
aj

∂πj(aj |s)
∂πj

Q
π

j;i(s, aj)−
∂ρπi
∂πj

+ Es′∼νπ

∂V π
i (s′)

∂πj
,

0 =
∑
s

νπ(s)
∑
aj

∂πj(aj |s)
∂πj

Q
π

j;i(s, aj)−
∂ρπi
∂πj

,

∂ρπi
∂πj

=
∑
s

νπ(s)
∑
aj

−→e (s, aj)Q
π

j;i(s, aj).

By the definition of the potential function, it can be noted that ∂Φ(π)
∂πj(aj |s) =

∂ρπ
j

∂πj(aj |s) = Q
π

j (s, aj)ν
π(s).

Lemma 11 (Kale, 2013, Theorem 3.1, equation (4)). Given a Markov chain with transition probability matrix
P ∈ RS×S, let ν be its stationary distribution. For any s, s′ ∈ S, we have:

|P
t(s′|s)
ν(s′)

− 1| ≤ λ2(P )t√
ν(s)ν(s′)

.

Lemma 12 (Restatement of Lemma 3). There exist constants Cp := min{
√

S
1−Γ ,

1
1−Γ} and ϱ := 1 − 1

κ0
such

that for any policy π:
sups∥(Pπ)t(·|s0 = s)− νπ∥1 ≤ Cpϱ

t,∀ t > 0.

Proof. For any policy π ∈ Π, | (P
π)t(s′|s)
νπ(s′) − 1| ≤ λ2(P

π)t√
νπ(s)νπ(s′)

by Lemma 11. Then
∑

s′ |(Pπ)t(s′|s) − νπ(s′)| ≤

λ2(P
π)t
∑

s′

√
νπ(s′)
νπ(s) ≤

(
1− ( 1

1−λ2(Pπ) )
−1
)t∑

s′

√
νπ(s′) 1√

1−Γ
≤ (1− 1

κ0
)t
√

S
1−Γ .

Similarly, recall | (P
π)t(s′|s)
νπ(s′) − 1| ≤ λ2(P

π)t√
νπ(s)νπ(s′)

≤ λ2(P
π)t

1−Γ , then
∑

s′ |(Pπ)t(s′|s) − νπ(s′)| ≤ λ2(P
π)t

1−Γ = (1 −
1
κ0
)2 1

1−Γ .

Proposition 3. For any policy π and any agent i, the differential Q function has a bounded ℓ∞ norm:

∥Qπ
i ∥∞ ≤ Cpκ0.
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Proof. For any s,a and joint policy π, |Qπ
i (s,a)| = |Eπ[

∑∞
t=0(ri(s

t,at) − ρπi )|s0 = s,a0 = a]| ≤ 1 +

|Es′∼P (·|s,a)
∑∞

t=1⟨(Pπ)t(·|s′)− νπ, rπ⟩| ≤ 1 +
∑∞

t=1 Cpϱ
t = 1 +

Cpϱ
1−ϱ = 1 + Cp(κ0 − 1) < Cpκ0.

C PROOFS OF SECTION 3

C.1 Auxiliary Lemmas

Lemma 13 (Leonardos et al., 2021, Lemma 4.1). Let π = (π1, π2, ..., πN ) be the policy profile for all agents and
let π′ = π+λ∇πΦ(π) be the result from a gradient step on the potential function with learning rate λ > 0. Then

ProjΠ1×...×ΠN
(π′) = (ProjΠ1

(π′
1), ...,ProjΠN

(π′
N )).

Lemma 14 (Agarwal et al., 2021, Proposition B.1). Let f(π) be an l-smooth function. Define the gradient
mapping G(π) := 1

β (ProjΠ(π+β∇πf(π))−π). Then the update rule for the projected gradient is π+ = π+βG(π).

If ∥G(π)∥2 ≤ ϵ, then

max
π++δ∈Π,∥δ∥2≤1

δT∇πf(π
+) ≤ ϵ(βl + 1).

There is a typographical mistake in proposition B.1 of Agarwal et al. (2021); the underlying max should be taken
on π+ + δ ∈ Π instead of π + δ ∈ Π.

Lemma 15 (Bubeck et al., 2015, Lemma 3.6). Let f be an l-smooth function over a convex domain C. Let
x ∈ C, x+ = ProjC(x− β∇f(x)). Then :

f(x+)− f(x) ≤ (
l

2
− 1

β
)∥x− x+∥22.

Lemma 16. Assume function f(·) is l-smooth over a convex set C. Let x+ := PC(x− βg) with x ∈ C. Then

f(x+)− f(x) ≤ (
3l

4
− 1

β
)∥x− x+∥22 +

1

l
∥∇xf(x)− g∥22.

Proof.

f(x+)− f(x) ≤⟨∇f(x), x+ − x⟩+ l

2
∥x+ − x∥22

=⟨g, x+ − x⟩+ l

2
∥x+ − x∥22 + ⟨∇f(x)− g, x+ − x⟩

(a)

≤ − 1

β
∥x− x+∥22 +

l

2
∥x+ − x∥22 +

1

2
(
2

l
∥∇xf(x)− ∇̂xf(x)∥22 +

l

2
∥x+ − x∥22)

=(
3l

4
− 1

β
)∥x− x+∥22 +

1

l
∥∇xf(x)− g∥22.

We use the property of projection in (a) ⟨x+ − (x− βg), x+ − x⟩ ≤ 0 and ⟨x, y⟩ ≤
1
a∥x∥2

2+a∥y∥2
2

2 for any positive
constant a.

C.2 Proofs of Lemma 4 and Theorem 1

Lemma 17 (Restatement of Lemma 4). Denote Amax := maxi Ai, L := κ2
0S

3/2Amax + κ0

√
SAmax, and LΦ :=

N(κ2
0S

3/2Amax + κ0(SAmax + 2Amax) +Amax).

(a) For any i, and π−i ∈ Π−i, the average value ρπi is κ2
0S

3/2Ai + κ0

√
SAi-smooth with respect to policy πi.

Moreover, for any i, ρπi is L-smooth with respect to policy πi, i.e. ∥∇πi
ρ
πi,π−i

i −∇πi
ρ
π′
i,π−i

i ∥2 ≤ L∥πi − π′
i∥2 for

∀ i, and πi, π
′
i ∈ Πi.

(b) The potential function Φ(π) is LΦ-smooth with respect to policy profile π, i.e. ∥∇Φ(π) − ∇Φ(π′)∥2 ≤
LΦ∥π − π′∥2 for ∀ π, π′ ∈ Π.
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Proof. By the potential function property Φ(πi, π−i)−Φ(π′
i, π−i) = ρ

πi,π−i

i −ρ
π′
i,π−i

i , ∂
∂πi

Φ(πi, π−i) =
∂

∂πi
ρ
πi,π−i

i ,

and ∇πΦ = (
∂ρπ

1

∂π1
, ...,

∂ρπ
N

∂πN
)T . To show the smoothness,

∥∇πΦ(π)−∇πΦ(π
′)∥22

=

N∑
i=1

∥∇πi
Φ(π)−∇πi

Φ(π′)∥22

=

N∑
i=1

∥∇πi
Φ(π)−∇πi

Φ(π′
1, π2∼N ) +∇πi

Φ(π′
1, π2∼N )−∇πi

Φ(π′
1,2, π3∼N ) + . . .

+∇πi
Φ(π1∼(N−1), π

′
N )−∇πi

Φ(π′)∥22

≤
N∑
i=1

N∑
j=1

N∥∇πiΦ(π1∼j−1, π
′
j∼N )−∇πiΦ(π1∼j , π

′
j+1∼N )∥22

=

N∑
i=1

N∑
j=1

N∥∂ρ
π1∼j−1,π

′
j∼N

i

∂πi
− ∂ρ

π1∼j ,π
′
j+1∼N

i

∂πi
∥22.

If we can show
∂ρπ

i

∂πi
is LΦ

N -lipschitz for any πj within Πj , the above inequality implies that ∥∇πΦ(π)−∇πΦ(π
′)∥22 ≤∑N

i=1

∑N
j=1

L2
Φ

N ∥πj − π′
j∥22 = L2

Φ∥π − π′∥22. In the following proof, we will fix i and denote ρ = ρi.

Define ρ(ϵ) = ρ
πi+ϵui,π−i

i and ρ(τ, ϵ) = ρ
πi+ϵui,πj+τuj ,π−ij

i . We wish to show that |d
2ρ

dϵ2 | ≤ L, | d
2ρ

dϵdτ | ≤
LΦ

N for any
ui, uj , and any ϵ, τ ∈ R such that πi + ϵui ∈ Πi, ∥ui∥2 ≤ 1, πj + τuj ∈ Πj , ∥uj∥2 ≤ 1 and any π ∈ Π. Note that∑

ai
ui(ai|s) = 0,

∑
aj

uj(aj |s) = 0 for any s.

We first note that the unit eigenvectorX(ϵ) of the perturbed square matrix Pπ+ϵPui corresponding to the simple
eigenvalue 1 is an analytic function Kazdan (1995). Recall that for any ϵ, X(ϵ) = cνπi+ϵui,π−i for some constant
c ̸= 0, thus

∑
s∈S Xs(ϵ) ̸= 0. νπi+ϵui,π−i = (

∑
s Xs(ϵ))

−1X(ϵ) is therefore analytic, which guarantees the
existence of directional derivatives of both νπi+ϵui,π−i and ρϵ. Then by Garrett (2005), νϵ,τ = νπi+ϵui,πj+τuj ,π−ij

is jointly analytic, and thus d2νπi+ϵui,πj+τuj,π−ij

dϵdτ and d2ρ
dϵdτ exist.

We first show |d
2ρ

dϵ2 | ≤ L. Since ρ(ϵ) =
∑

s,a ν
π(s)π(a|s)r(s,a) =

∑
s,ai

νπi+ϵui,π−i(s)(πi(ai|s) +
ϵui(ai|s))rπ−i(s, ai), we have

dρ(ϵ)

dϵ
=
∑
s,ai

νπi+ϵui,π−i(s)ui(ai|s)rπ−i(s, ai) +
∑
s,ai

dνπi+ϵui,π−i(s)

dϵ
(πi(ai|s) + ϵui(ai|s))rπ−i(s, ai),

d2ρ(ϵ)

dϵ2
= 2

∑
s,ai

dνπi+ϵui,π−i(s)

dϵ
ui(ai|s)rπ−i(s, ai) +

∑
s,ai

d2νπi+ϵui,π−i(s)

dϵ2
(πi(ai|s) + ϵui(ai|s))rπ−i(s, ai).

(6)

Since the stationary distribution satisfies νπi+ϵui,π−i
−→
1 ≡ 1, we have dνπi+ϵui,π−i

dϵ

−→
1 = 0 and d2νπi+ϵui,π−i

dϵ2
−→
1 =

0. In other words, dνπi+ϵui,π−i

dϵ and d2νπi+ϵui,π−i

dϵ2 are orthogonal to
−→
1 . Taking derivatives on both sides of

νπi+ϵui,π−i = νπi+ϵui,π−iPπi+ϵui,π−i gives

dνπi+ϵui,π−i

dϵ
= νπi+ϵui,π−i

dPπi+ϵui,π−i

dϵ
+

dνπi+ϵui,π−i

dϵ
Pπi+ϵui,π−i ,

d2νπi+ϵui,π−i

dϵ2
= νπi+ϵui,π−i

d2Pπi+ϵui,π−i

dϵ2
+ 2

dνπi+ϵui,π−i

dϵ

dPπi+ϵui,π−i

dϵ
+

d2νπi+ϵui,π−i

dϵ2
Pπi+ϵui,π−i .

(7)

By Definition 4 and the fact that dνπi+ϵui,π−i

dϵ is orthogonal to the all-1 vector 1,

∥dν
πi+ϵui,π−i

dϵ
∥2 ≤ ∥νπi+ϵui,π−i

dPπi+ϵui,π−i

dϵ
∥2 + |λ2(P

πi+ϵui,π−i)|∥dν
πi+ϵui,π−i

dϵ
∥2,
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which implies ∥dν
πi+ϵui,π−i

dϵ ∥2 ≤ κ0∥νπi+ϵui,π−i dP
πi+ϵui,π−i

dϵ ∥2.

Denote P
π−i

(s′|s, ai) :=
∑

a−i
π−i(a−i|s)P (s′|s, ai, a−i). We have dPπi+ϵui,π−i

dϵ (s′|s) =
∑

ai
ui(ai|s)P

π−i
(s′|s, ai),

since Pπi+ϵui,π−i(s′|s) =
∑

ai

∑
a−i

π−i(a−i|s)(πi(ai|s) + ϵui(ai|s))P (s′|s, a). For any ν ∈ ∆(S),

∥ν dP
πi+ϵui,π−i

dϵ
∥22 =

∑
s′

(
∑
s

ν(s)
∑
ai

P
π−i

(s′|s, ai)u(ai|s))2

≤
∑
s′

(maxs|
∑
ai

P
π−i

(s′|s, ai)u(ai|s)|)2
(a)

≤
∑
s′

(
1

2
maxs∥u(·|s)∥1)2

(b)

≤ SAi

4
.

(a) follows from
∑

ai
u(ai|s) = 0 for any s and the fact that |

∑
ai
P (s′|s, ai)u(ai|s)| is dominated by either the

positive part or the negative part of u(·|s). (b) is due to ∥u(·|s)∥1 ≤
√
Ai∥u(·|s)∥2 and ∥u(·|s)∥2 ≤ 1. Thus,

∥dν
πi+ϵui,π−i

dϵ
∥2 ≤κ0∥νπi+ϵui,π−i

dPπi+ϵui,π−i

dϵ
∥2 ≤

κ0

√
SAi

2
.

Since d2Pπi+ϵui,π−i

dϵ2 = 0, we have ∥d
2νπi+ϵui,π−i

dϵ2 ∥2 ≤ 2κ0∥dν
πi+ϵui,π−i

dϵ
dPπi+ϵui,π−i

dϵ ∥2 by Eq. (7).

∥dν
πi+ϵui,π−i

dϵ

dPπi+ϵui,π−i

dϵ
∥2

(a)

≤
√∑

s′

∥dν
πi+ϵui,π−i

dϵ
∥22
∑
s

(
∑
ai

P
π−i

(s′|s, ai)u(ai|s))2

≤
√∑

s′

∥dν
πi+ϵui,π−i

dϵ
∥22
∑
s

Ai

∑
ai

u(ai|s)2

(b)

≤
√∑

s′

∥dν
πi+ϵui,π−i

dϵ
∥22Ai ≤

κ0SAi

2
,

(8)

where (a) follows from ⟨x, y⟩ ≤ ∥x∥2∥y∥2 and (b) is due to ∥u∥2 ≤ 1. Thus ∥d
2νπi+ϵui,π−i

dϵ2 ∥2 ≤ κ2
0SAi.

Substituting the above inequalities back to d2ρ(ϵ)
dϵ2 in Eq. (6),

|d
2ρ(ϵ)

dϵ2
|
(a)

≤ 2∥dν
πi+ϵui,π−i

dϵ
∥2
√

Ai∥ui∥2 + ∥
d2νπi+ϵui,π−i

dϵ2
∥1 ≤ κ0

√
SAi + κ2

0S
3/2Ai ≤ L.

(a) is due to
∑

s,ai

dνπi+ϵui,π−i (s)
dϵ ui(ai|s)rπ−i(s, ai) ≤ ∥dν

πi+ϵui,π−i

dϵ ∥2
√∑

s(
∑

ai
ui(ai|s)rπ−i(s, ai))2 ≤

∥dν
πi+ϵui,π−i

dϵ ∥2
√∑

s∥ui(·|s)∥21.

We will next show | d
2ρ

dϵdτ | ≤
LΦ

N . Use νϵ,τ := νπi+ϵui,πj+τuj ,π−ij , P ϵ,τ := Pπi+ϵui,πj+τuj ,π−ij . Differentiating twice
gives

d2ρ(ϵ, τ)

dϵdτ
=
∑
s,a

d2νϵ,τ (s)

dϵdτ
(πi(ai|s) + ϵui(ai|s))(πj(aj |s) + τuj(aj |s))π−ij(a−ij |s)r(s,a)

+
∑
s,a

dνϵ,τ (s)

dϵ
(πi(ai|s) + ϵui(ai|s))uj(aj |s)π−ij(a−ij |s)r(s,a)

+
∑
s,a

dνϵ,τ (s)

dτ
ui(ai|s)(πj(aj |s) + τuj(aj |s))π−ij(a−ij |s)r(s,a)

+
∑
s,a

νϵ,τ (s)ui(ai|s)uj(aj |s)π−ij(a−ij |s)r(s,a),

|d
2ρ(ϵ, τ)

dϵdτ
| ≤∥d

2νϵ,τ

dϵdτ
∥1 + 2

√
Aj∥

dνϵ,τ

dϵ
∥2∥uj∥2 + 2

√
Ai∥

dνϵ,τ

dτ
∥2∥ui∥2 + ∥νϵ,τ∥1 max

s
∥ui(·|s)∥1 max

s
∥uj(·|s)∥1

≤
√
S∥d

2νϵ,τ

dϵdτ
∥2 + 2

√
Aj∥

dνϵ,τ

dϵ
∥2 + 2

√
Ai∥

dνϵ,τ

dτ
∥2 +

√
AiAj .
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Similarly, as before, d2νϵ,τ

dϵdτ = νϵ,τ d2P ϵ,τ

dϵdτ + (dν
ϵ,τ

dτ )(dP
ϵ,τ

dϵ ) + (dν
ϵ,τ

dϵ )(dP
ϵ,τ

dτ ) + (d
2νϵ,τ

dϵdτ )P ϵ,τ , ∥dν
ϵ,τ

dϵ ∥2 ≤
κ0

√
SAi

2 ,

∥dν
ϵ,τ

dτ ∥2 ≤
κ0

√
SAj

2 , d2P ϵ,τ (s′|s)
dϵdτ =

∑
ai,aj

P
π−ij

(s′|s, ai, aj)ui(ai|s)uj(aj |s). For any ν ∈ ∆(S):

∥ν d
2P ϵ,τ

dϵdτ
∥22 =

∑
s′

(
∑
s

ν(s)
∑
ai,aj

P (s′|s, ai, aj)ui(ai|s)uj(aj |s))2

≤
∑
s′

(max
s
|
∑
ai,aj

P (s′|s, ai, aj)ui(ai|s)uj(aj |s)|)2

≤
∑
s′

(max
s

∑
ai,aj

|ui(ai|s)uj(aj |s)|)2

≤ S(max
s
∥ui(·|s)∥1 max

s
∥uj(·|s)∥1)2 ≤ SAiAj .

For the last inequality, we use ∥x∥1 ≤
√
n∥x∥2 and ∥ui∥2 ≤ 1, ∥uj∥2 ≤ 1.

∥d
2νϵ,τ

dϵdτ
∥2 ≤ κ0

(
∥νϵ,τ d

2P ϵ,τ

dϵdτ
∥2 + ∥

dνϵ,τ

dτ

dP ϵ,τ

dϵ
∥2 + ∥

dνϵ,τ

dϵ

dP ϵ,τ

dτ
∥2
)

≤ κ0

(
∥νϵ,τ d

2P ϵ,τ

dϵdτ
∥2 +

κ0SAi

2
+

κ0SAj

2

)
(apply Eq. (8))

≤ κ0(
√
SAiAj +

κ0S(Ai +Aj)

2
)

|d
2ρ(ϵ, τ)

dϵdτ
| ≤ κ0(S

√
AiAj +

κ0S
3/2(Ai +Aj)

2
+ 2
√
SAiAj) +

√
AiAj ≤

LΦ

N
.

Therefore, the LΦ-smoothness follows.

Theorem 5 (Restatement of Theorem 1). Choose learning rate β = 1
LΦ

. Then Nash-regret* of Algorithm 1 is
bounded by

Nash-regret∗(T ) ≤32D2SCΦN(κ2
0S

5/2Amax + κ0(SAmax + 2Amax) +Amax)

T

=O(
D2κ2

0S
5/2AmaxNCΦ

T
).

Proof. First, we bound the Nash-gap for time t:

Nash-gap(t)
(a)
= ρ

πt,∗
i ,πt

−i

i − ρπ
t

i

= E
s∼ν

π
t,∗
i

,πt
−i
[⟨Qπt

i (s, ·), πt,∗
i (·|s)− πt

i(·|s)⟩]

≤
∑
s

νπ
t,∗
i ,πt

−i(s)

(
max

π′(·|s)∈∆(Ai)
⟨Qπt

i (s, ·), π′(·|s)− πt
i(·|s)⟩

)
(b)

≤ max
s

νπ
t,∗
i ,πt

−i(s)

νπt(s)
⟨∇πi

Φ(πt), π′ − πt
i⟩

(c)

≤ 2D
√
S max
πt
i+δ∈Πi,∥δ∥2≤1

δT∇πiΦ(π
t)

(d)

≤ 2D
√
S∥πt

i − πt−1
i ∥2(L+ LΦ)

≤ 2(1 +
1

N
)D
√
S∥πt − πt−1∥2LΦ.

In (a) we use i to denote the agent that achieves the maximum of Nash-gap, i.e., i ∈ argmaxi maxp∈Πi(ρ
p,πt

−i −
ρ
πt
i ,π

t
−i

i ), and πt,∗
i ∈ argmaxp∈Πi

(ρp,π
t
−i−ρπ

t
i ,π

t
−i

i ). (b) is true since maxπ′(·|s)∈∆(Ai)⟨Q
πt

i (s, ·), π′(·|s)−πi
t(·|s)⟩ ≥ 0
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and ∂Φ(πt)
πi(ai|s) = νπ

t

(s)Q
πt

i (s, ai). We also use π′ to represent the policy that achieves the maximum. (c) is due

to ∥π′ − πt
i∥22 ≤

∑
s∥π′(·|s) − πt

i(·|s)∥21 ≤ 4S. (d) is obtained from Lemma 14 and that Φ(πi, π−i) is L-smooth
w.r.t. πi for any π−i ∈ Π−i.

Since 1 + 1
N ≤ 2, we can bound the Nash-regret* as follows

T∑
t=1

Nash-gap(t)2 ≤ 16D2L2
ΦS

T∑
t=1

∥πt − πt−1∥22

(a)

≤ 16D2L2
ΦS

T∑
t=1

2

LΦ
(Φ(πt−1)− Φ(πt))

= 32D2LΦS(Φ(π0)− Φ(πT ))

≤ 32D2LΦCΦS,

Nash-regret∗(T ) ≤ 32D2LΦCΦS

T
.

(a) is due to Lemma 15 by applying f = −Φ.

C.3 Proof of Lemma 5 and Theorem 2

Lemma 18 (Restatement of Lemma 5). For any agent i, consider the gradient estimate ĝi defined in Algorithm 3.
Given the (s, a, r)-trajectory of length KN2+N1 and the policy πi ∈ Πi,α that generated it, under the assumption
that all the other policies π−i are fixed during the generation of the trajectory, the estimated gradient has ℓ2 error
bounded as

|E[ρ̂i]− ρπi | ≤
2Cp

(1− ϱ)N1
ϱN1/2,

E(ρ̂i − ρπi )
2 ≤ (2 + 4Cp

ϱ

1− ϱ
)
1

N1
,

∥Eĝi −
∂ρπi
∂πi
∥22 ≤ C2

pAmax

(
N2

2

1− ϱ2N2
ϱ2N1 +

1

(1− ϱ)2
8N2

2

N2
1

ϱN1 +
2

(1− ϱ)2
ϱ2N2

)
,

E∥ĝi −
∂ρπi
∂πi
∥22 ≤ (

1

α
+ 1)

2AmaxN
2
2

K
+

4CpAmax

1− ϱN2
(

√
2

α
+
√
2)

N2
2

K
ϱN2 +

16AmaxC
2
p

(1− ϱ)2
N2

2

N2
1

ϱN1 +
2AmaxC

2
p

(1− ϱ)2
ϱ2N2 .

Proof. Note that E[ρ̂i] = E[E[ρ̂i|s0]], E[ρ̂i]− ρπi = E[E[ρ̂i|s0]− ρπi ],

|E[ρ̂i|s0]− ρπi | = |
∑
s

(
2

N1

N1−1∑
t=

N1
2

(Pπ)t(s|s0)− νπ(s))
∑
a

π(a|s)ri(s, a)|

= | 2
N1

N1−1∑
t=

N1
2

(
∑
s

((Pπ)t(s|s0)− νπ(s))
∑
a

π(a|s)ri(s, a)|

≤ 2

N1

N1−1∑
t=

N1
2

∑
s

|(Pπ)t(s|s0)− νπ(s)|

≤ 2

N1

N1−1∑
t=

N1
2

Cpϱ
t

≤ 2

N1
Cpϱ

N1/2
1

1− ϱ
.
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Therefore, |E[ρ̂i]− ρπi | ≤ 2
N1

Cpϱ
N1/2 1

1−ϱ . Use Fk to denote all the (s, a, r) pairs until episode k.

E(ρ̂i − ρπi )
2 = E(

2

N1

N1−1∑
t=

N1
2

rti − ρπi )
2

=
4

N2
1

(

N1−1∑
t=

N1
2

E(rti − ρπi )
2 + 2

∑
t<τ

E[(rti − ρπi )(r
τ
i − ρπi )])

≤ 2

N1
+

8

N2
1

∑
t<τ

E[(rti − ρπi )E[rτi − ρπi |Ft]]

≤ 2

N1
+

8

N2
1

∑
t<τ

E[|rti − ρπi ||E[rτi − ρπi |Ft]|]

≤ 2

N1
+

8

N2
1

∑
t<τ

E|E[rτi − ρπi |Ft]|

≤ 2

N1
+

8

N2
1

∑
t<τ

Cpϱ
τ−t =

2

N1
+

8

N2
1

N1−1∑
τ=

N1
2

τ−1∑
t=

N1
2

Cpϱ
τ−t

≤ 2

N1
+ Cp

8

N2
1

ϱ

1− ϱ

N1

2
= (

1

2
+ Cp

ϱ

1− ϱ
)
4

N1
.

Note that tk = N1 + kN2 is the starting time step for the k-th episode, R(k) =
∑tk+N2−1

τ=tk
(rτi − ρ̂i) is the

accumulated bias for the N2-length interval. Then ĝi = 1
K

∑K−1
k=0 R(k)∇πi

log πi(a
tk
i |stk) ∈ RS×Ai , where

∇πi
log πi(ai|s) = 1

πi(ai|s)
−→e (s,ai) ∈ RS×Ai is a unit vector with the only non-zero element corresponding to

(s, ai).

∥Eĝi −
∂ρπi
∂πi
∥22

=∥ 1
K

K−1∑
k=0

E[R(k)∇πi log πi(a
tk
i |s

tk)]− Es∼νπ,ai∼πi(·|s)[Q
π

i (s, ai)∇πi
log πi(ai|s)]∥22

≤∥ 1
K

K−1∑
k=0

(E[R(k)∇πi
log πi(a

tk
i |s

tk)]− E
stk∼νπ,a

tk
i ∼π(·|s)[R(k)∇πi

log πi(a
tk
i |s

tk)])∥22

+ ∥ 1
K

K−1∑
k=0

(E
stk∼νπ,a

tk
i ∼π(·|s)[R(k)∇πi

log πi(a
tk
i |s

tk)]− Es∼νπ,ai∼π(·|s)[Q
π

i (s, ai)∇πi
log πi(ai|s)])∥22

≤∥ 1
K

K−1∑
k=0

tk+N2−1∑
τ=tk

∑
stk ,a

tk
i ,sτ ,aτ

i

∇πi
log πi(a

tk
i |s

tk)(P(stk , atki )− νπ(stk , atki ))P(sτ , aτi |stk , a
tk
i )(r(sτ , aτi )− ρ̂i)∥22

+
1

K

K−1∑
k=0

∥E
stk∼νπ,a

tk
i ∼π(·|s)[(R(k)−Q

π

i (s
tk , atki ))∇πi log πi(a

tk
i |s

tk)]∥22

≤∥ 1
K

K−1∑
k=0

tk+N2−1∑
τ=tk

∑
stk ,a

tk
i

−→e
stk ,a

tk
i
|(Pπ)tk(stk |s0)− νπ(stk)|∥22

+
1

K

K−1∑
k=0

∥
∑
a
tk
i

∑
stk

νπ(stk)−→e
stk ,a

tk
i
E[(R(k)−Q

π

i (s
tk , atki ))|stk , atki ]∥22

≤ 1

K

K−1∑
k=0

N2
2

∑
a
tk
i

∑
stk

|(Pπ)tk(stk |s0)− ν(stk)|2 + 1

K

K−1∑
k=0

∑
a
tk
i

∑
stk

νπ(stk)2|E[(R(k)−Q
π

i (s
tk , atki ))|stk , atki ]|2.
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Starting from any s0 = s and a0i = ai, the difference between R =
∑N2−1

t=0 (rti − ρ̂) and Q
π

i (s, ai) can be bounded
as below:

|E[
N2−1∑
t=0

(ri(s
t, at)− ρ̂)−

∞∑
t=0

(ri(s
t, at)− ρπi )]|

=|E[
N2−1∑
t=0

(ρπi − ρ̂i)]− E[
∞∑

t=N2

(ri(s
t, at)− ρπi )]|

≤N2
2Cp

(1− ϱ)N1
ϱN1/2 +

∞∑
t=N2

Cpϱ
t

=N2
2Cp

(1− ϱ)N1
ϱN1/2 +

Cp

1− ϱ
ϱN2 .

Therefore, we can bound ∥Eĝi − ∂ρπ
i

∂πi
∥22 as:

∥Eĝi −
∂ρπi
∂πi
∥22 ≤

1

K

K−1∑
k=0

N2
2Amax(Cpϱ

tk)2 +Amax(N2
2

N1
Cpϱ

N1/2
1

1− ϱ
+ Cpϱ

N2
1

1− ϱ
)2

=
1

K

K−1∑
k=0

N2
2Amax(Cpϱ

N1+kN2)2 +Amax(N2
2

N1
Cpϱ

N1/2
1

1− ϱ
+ Cpϱ

N2
1

1− ϱ
)2

≤C2
pAmax

(
N2

2

1− ϱ2N2
ϱ2N1 +

1

(1− ϱ)2
8N2

2

N2
1

ϱN1 +
2

(1− ϱ)2
ϱ2N2

)
.

Denote R(k) := Estk∼νπ,atk∼π(·|s)[R(k)∇πi log πi(a
tk
i |stk)]. As above, we can bound the variance as:

E∥ĝi −
∂ρπi
∂πi
∥22 ≤2E∥

1

K

K−1∑
k=0

R(k)∇πi
log πi(a

tk
i |s

tk)− Estk∼νπ,atk∼π(·|s)[R(k)∇πi
log πi(a

tk
i |s

tk)]∥22

+ 2∥Estk∼νπ,atk∼π(·|s)[R(k)∇πi
log πi(a

tk
i |s

tk)]− Es∼νπ,a∼π(·|s)[Q
π
i (s, a)∇πi

log πi(ai|s)]∥22

≤ 2

K2

K−1∑
k=0

E∥R(k)∇πi
log πi(a

tk
i |s

tk)−R(k)∥22

+
4

K2

∑
k<τ

E⟨R(k)∇πi log πi(a
tk
i |s

tk)−R(k), R(τ)∇πi log πi(a
tτ
i |s

tτ )−R(τ)⟩

+ 2Amax(N2
2

N1
Cpϱ

N1/2
1

1− ϱ
+ Cpϱ

N2
1

1− ϱ
)2.

We bound the first two terms separately.

E∥R(k)∇πi log πi(a
tk
i |s

tk)−R(k)∥22
≤2E∥R(k)∇πi log πi(a

tk
i |s

tk)∥22 + 2∥R(k)∥22

=2
∑

stk ,a
tk
i

P(stk)πi(a
tk
i |s

tk)E[∥ 1

πi(atk |stk)
R(k)−→e

stk ,a
tk
i
∥22|stk , a

tk
i ]

+ 2∥
∑
stk

νπ(stk)
∑
a
tk
i

E[R(k)−→e
stk ,a

tk
i
|stk , atki ]∥22

=2
∑

stk ,a
tk
i

P(stk)
1

πi(a
tk
i |stk)

E[R(k)2|stk , atki ] + 2
∑
stk

νπ(stk)2
∑
a
tk
i

E[R(k)|stk , atki ]2

≤2Amax

α
N2

2 + 2AmaxN
2
2 , ∀k,
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and

E[⟨R(k)∇πi
log πi(a

tk
i |s

tk)−R(k), R(τ)∇πi
log πi(a

tτ
i |s

tτ )−R(τ)⟩]
=E⟨R(k)∇πi

log πi(a
tk
i |s

tk)−R(k),E[R(τ)∇πi
log πi(a

tτ
i |s

tτ )−R(τ)|Fk]⟩

≤E
[
∥R(k)∇πi log πi(a

tk
i |s

tk)−R(k)∥2∥E[R(τ)∇πi log πi(a
tτ
i |s

tτ )−R(τ)⟩|Fk]∥2
]

≤E
[
∥R(k)∇πi log πi(a

tk
i |s

tk)−R(k)∥2∥
∑
stτ

((Pπ)tτ−tk(stτ |stk)− νπ(stτ ))
∑
atτ
i

E[R(τ)−→e stτ ,atτ
i
|stτ , atτi ]∥2

]
(a)

≤E
[
∥R(k)∇πi log πi(a

tk
i |s

tk)−R(k)∥2
∑
s

|(Pπ)tτ−tk(s|stk)− νπ(s)|
√
N2

2Amax

]
≤E∥R(k)∇πi log πi(a

tk
i |s

tk)−R(k)∥2Cpϱ
(τ−t)N2N2

√
Amax

(b)

≤
√
E∥R(k)∇πi

log πi(a
tk
i |stk)−R(t)∥22Cpϱ

(τ−t)N2N2

√
Amax

(c)

≤

(√
2Amax

α
N2

2 +
√
2AmaxN2

2

)
Cpϱ

(τ−t)N2N2

√
Amax

=

(√
2

α
+
√
2

)
Cpϱ

(τ−t)N2AmaxN
2
2 .

In (a) we used the fact ∥x∥2 ≤ ∥x∥1 in (a). (b) is due to Jensen’s inequality, (c) is due to
√
a2 + b2 ≤ a+ b for

any positive a, b. Therefore, we can bound the variance as

E∥ĝi −
∂ρπi
∂πi
∥22 ≤ 2(

1

α
+ 1)AmaxN

2
2

1

K
+

4Cp

1− ϱN2
(

√
2

α
+
√
2)AmaxN

2
2 ϱ

N2
1

K

+ 2Amax(N2
2

N1
Cpϱ

N1/2
1

1− ϱ
+ Cpϱ

N2
1

1− ϱ
)2.

Theorem 6 (Restatement of Theorem 2). If all agents independently and synchronously run Algorithm 2 with
learning rate β ≤ 1

LΦ
, then Nash regret is bounded by:

Nash-regret∗(T ) ≤ 48D2S(L+
1

β
)2β

N

T
+ 12κ2α2 +

(
48D2S(L+ 1

β )
2β

LΦ
+ 6κ2Amaxβ

2 + 24D2S(2Lβ + 1)2

)
δ.

Proof. Let π̃t+1
i = PΠi,α

(πt
i+β∇πi

ρπ
t

i ) be the projection after a exact gradient step. Since πt+1
i = PΠi,α

(πt
i+βĝti),
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we have ∥π̃t+1
i − πt+1

i ∥2 ≤ β∥∇πiρ
πt

i − ĝti∥2 by the non-expansion of projection. Then

Nash-gap(t)

(a)
=ρ

πt,∗
i ,πt

−i

i − ρπ
t

i

=E
s∼ν

π
t,∗
i

,πt
−i
[⟨Qπt

i (s, ·), πt,∗
i (·|s)− πt

i(·|s)⟩]

=E
s∼ν

π
t,∗
i

,πt
−i
[⟨Qπt

i (s, ·), πt,∗
i (·|s)− π̃t

i(·|s)⟩] + E
s∼ν

π
t,∗
i

,πt
−i
[⟨Qπt

i (s, ·), π̃t
i(·|s)− πt

i(·|s)⟩]

≤E
s∼ν

π
t,∗
i

,πt
−i
[⟨Qπt

i (s, ·), πt,∗
i (·|s)− π̃t

i(·|s)⟩] + κmax
s
∥π̃t

i(·|s)− πt
i(·|s)∥1

≤E
s∼ν

π
t,∗
i

,πt
−i
[⟨Qπt

i (s, ·), (1− α)πt,∗
i (·|s) + αui(·|s)− π̃t

i(·|s)⟩] + αE
s∼ν

π
t,∗
i

,πt
−i
[⟨Qπt

i (s, ·), πt,∗
i (·|s)− ui(·|s)⟩]

+ κ
√

Amax∥π̃t
i − πt

i∥2
(b)

≤E
s∼ν

π
t,∗
i

,πt
−i
[ max
π′
i∈Πi

⟨Qπt

i (s, ·), (1− α)π′
i(·|s) + αui(·|s)− π̃t

i(·|s)⟩] + 2α∥Qπt

i ∥∞ + κ
√
Amax∥π̃t

i − πt
i∥2

(c)

≤ max
s

νπ
t,∗
i ,π−i

t (s)

νπt(s)
⟨∇πiΦ(π

t), (1− α)π′
i + αui − π̃t

i⟩+ 2ακ+ κ
√
Amax∥π̃t

i − πt
i∥2

≤2D
√
S max
π̃t
i+δ∈Πi,α,∥δ∥2≤1

δT∇πi
Φ(πt) + 2ακ+ κ

√
Amax∥π̃t

i − πt
i∥2

≤2D
√
S max
π̃t
i+δ∈Πα,∥δ∥2≤1

δT∇πiΦ(π̃
t
i , π

t
−i) + 2D

√
S max
π̃t
i+δ∈Πi,α,∥δ∥2≤1

δT (∇πiΦ(π
t)−∇πiΦ(π̃

t
i , π

t
−i))

+ 2ακ+ κ
√
Amax∥π̃t

i − πt
i∥2

(d)

≤2D
√
S∥π̃t

i − πt−1
i ∥2(L+

1

β
) + 2D

√
SL∥πt

i − π̃t
i∥2 + 2ακ+ κ

√
Amax∥π̃t

i − πt
i∥2

=2D
√
S(L+

1

β
)∥π̃t

i − πt−1
i ∥2 + 2ακ+ (κ

√
Amax + 2D

√
SL)∥π̃t

i − πt
i∥2

≤2D
√
S(L+

1

β
)(∥π̃t

i − πt
i∥2 + ∥πt

i − πt−1
i ∥2) + 2ακ+ (κ

√
Amax + 2D

√
SL)∥π̃t

i − πt
i∥2

≤2D
√
S(L+

1

β
)∥πt

i − πt−1
i ∥2 + 2ακ+ (κ

√
Amax + 2D

√
S(2L+

1

β
))β∥∇πi

ρπ
t−1

i − ĝt−1
i ∥2.

In (a) we have used i to denote the agent that achieves the maximum of Nash gap, i.e., i ∈
argmaxi maxp∈Πi

(ρp,π
t
−i − ρ

πt
i ,π

t
−i

i ), and πt,∗
i ∈ argmaxp∈Πi

(ρp,π
t
−i − ρ

πt
i ,π

t
−i

i ). We use ⟨x, y⟩ ≤ ∥x∥∞∥y∥1
and ∥πi(·|s)∥1 = 1 in (b). (c) is true since maxπ′(·|s)∈∆(Ai)⟨Q

πt

i (s, ·), π′(·|s) − πi
t(·|s)⟩ ≥ 0. We also use π′

i to
represent the policy that achieves the maximum. (d) comes from Lemma 14 (note that Πi,α is convex) and that
Φ(π) is L-smooth w.r.t. πi for any π−i ∈ Π−i.

Applying Lemma 16 with f = −Φ, E[Φ(πt+1) − Φ(πt)] ≥ ( 1β −
3LΦ

4 )E∥πt − πt+1∥22 − 1
NL

∑
i δ. Choosing a

learning rate β ≤ 1
LΦ

, 4βE[Φ(πt+1)− Φ(πt)] + 4β
LΦ

∑
i δ ≥ E∥πt − πt+1∥22, we arrive at
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E[Nash-gap(t)2] ≤12D2S(L+
1

β
)2E∥πt − πt−1∥22 + 12α2κ2 + 3(κ

√
Amax + 2D

√
S(2L+

1

β
))2β2δ,

E[
1

T

T∑
t=1

Nash-gap(t)2] ≤12D2S(L+
1

β
)2

E[
1

T

T∑
t=1

4β(Φ(πt+1)− Φ(πt)] +
4β

LΦT

∑
i,t

δ

+ 12α2κ2

+ (6κ2Amaxβ
2 + 24D2S(2Lβ + 1)2)δ

≤48D2S(L+
1

β
)2βE[Φ(πT )− Φ(π0)]

1

T
+ 12α2κ2

+

(
48D2S(L+ 1

β )
2βCΦ

LΦ
+ 6κ2Amaxβ

2 + 24D2S(2Lβ + 1)2

)
δ

≤48D2S(L+
1

β
)2β

CΦ

T
+ 12α2κ2

+

(
48D2S(L+ 1

β )
2βCΦ

LΦ
+ 6κ2Amaxβ

2 + 24D2S(2Lβ + 1)2

)
δ.

C.4 Notes of Previous Work

The proof of Theorem 4.7 in Leonardos et al. (2021), where they established a sample complexity result, appears
to have two mistakes. In their latest version, the first equation on p. 16 was derived based on:

−Φµ(y
t+1) +

1

λ
∥πt − yt+1∥22 ≤ ϕλ(π

t), (9)

where yt+1 = ProjΠ(π
t + η∇πΦµ(π

t)), ϕλ(π
t) = miny∈Π(−Φµ(y) +

1
λ∥y − πt∥22). Note that Eq. (9) is equivalent

to yt+1 reaching the minimizer of ϕλ(π
t). However, it should be noted that the minimizer of Moreau envelope

argminy∈Π(−Φµ(y) +
1
λ∥y − πt∥22) may not be the one step updated policy of the projected gradient ascent

algorithm. A counterexample can be found in Beck, 2017, chapter 6.2.3. In Davis and Drusvyatskiy, 2018,
Theorem 2.1, which the proof in (Leonardos et al., 2021) mostly follow, yt+1 was defined as the minimizer of the
Moreau envelope argminy∈Π(−Φµ(y) +

1
λ∥y − πt∥22), and it was only established that ∥∇πϕλ(π

t)∥2 is bounded,
not that ∥∇πΦµ(π

t)∥2 is bounded. However, the latter appears critical in establishing the bounded Nash gap in
Leonardos et al., 2021, Theorem 4.7.

Furthermore, Eq. (14) in Leonardos et al. (2021) shows that there exists a time t∗ s.t. ∥yt∗+1 − πt∗∥2 can
be bounded. Subsequently, the authors used their Lemma D.3 and Lemma 4.2 to show a bounded Nash gap.
However, Lemma D.3 only guarantees that yt

∗+1, instead of πt∗ , is a ϵ-stationary point, accordingly an ϵ-Nash
equilibrium. It should further be noted that y is not tractable with a finite number of samples.

D PROOFS OF SECTION 4

Lemma 19 (Restatement of Lemma 6). For any reward function r ∈ [0, 1], any policies π, π′ ∈ Π, the following
bounds hold, where we replace Vi with Vr to indicate a general reward function:

|νπ(s)− νπ
′
(s)| ≤ κ∥π − π′∥1,∞,∀s ∈ S

|ρπr − ρπ
′

r | ≤ κ∥π − π′∥1,∞,

∥V π
r − V π′

r ∥∞ ≤ κ1(2 + S(κ+ κ1) + Sκκ1)∥π − π′∥1,∞,

∥Qπ
r −Qπ′

r ∥∞ ≤ (κ+ 2κ1 + Sκ1(κ+ κ1) + Sκκ2
1)× ∥π − π′∥1,∞.

Proof. First, we provide the sensitivity analysis of the policy-induced reward and the state transition probability
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matrix:

|rπ(s)− rπ
′
(s)| = |

∑
a

(π(a|s)− π′(a|s))r(s, a)| ≤ ∥π(·|s)− π′(·|s)∥1, ∀s ∈ S,

|Pπ(s′|s)− Pπ′
(s′|s)| = |

∑
a

(π(a|s)− π′(a|s))P (s′|s, a)| ≤ ∥π(·|s)− π′(·|s)∥1, ∀s, s′ ∈ S.

From Definition 5 and Lemma 1, taking I(· = s) as the reward function, it follows that ∥νπ−νπ′∥∞ ≤ κ∥π−π′∥1,∞.

Similarly by the performance difference lemma, |ρπ − ρπ
′ | ≤ κ∥π − π′∥1,∞.

Hπ −Hπ′
=(I − Pπ + Pπ,∞)−1(I − Pπ,∞)− (I − Pπ′

+ Pπ′,∞)−1(I − Pπ′,∞)

=
(
(I − Pπ + Pπ,∞)−1 − (I − Pπ′

+ Pπ′,∞)−1
)
(I − Pπ,∞) + (I − Pπ′

+ Pπ′,∞)−1(Pπ′,∞ − Pπ,∞)

=
(
(I − Pπ + Pπ,∞)−1(Pπ − Pπ,∞ − Pπ′

+ Pπ′,∞)(I − Pπ′
+ Pπ′,∞)−1

)
(I − Pπ,∞)

+ (I − Pπ′
+ Pπ′,∞)−1(Pπ′,∞ − Pπ,∞),

∥V π − V π′
∥∞ =∥Hπrπ −Hπ′

rπ
′
∥∞

=∥Hπ(rπ − rπ
′
) + (Hπ −Hπ′

)rπ
′
∥∞

≤∥Hπ(rπ − rπ
′
)∥∞ + ∥(I − Pπ′

+ Pπ′,∞)−1(Pπ′,∞ − Pπ,∞)rπ
′
∥∞

+ ∥
(
(I − Pπ + Pπ,∞)−1(Pπ − Pπ,∞ − Pπ′

+ Pπ′,∞)(I − Pπ′
+ Pπ′,∞)−1

)
(I − Pπ,∞)rπ

′
∥∞

≤∥Hπ∥∞∥rπ − rπ
′
∥∞ + ∥(I − Pπ′

+ Pπ′,∞)−1∥∞∥Pπ′,∞ − Pπ,∞∥∞
+ ∥(I − Pπ + Pπ,∞)−1(Pπ − Pπ,∞ − Pπ′

+ Pπ′,∞)(I − Pπ′
+ Pπ′,∞)−1∥∞

(a)

≤2κ1∥rπ − rπ
′
∥∞ + κ1∥νπ − νπ

′
∥1 + κ2

1∥Pπ − Pπ′
∥∞ + κ2

1∥νπ − νπ
′
∥1

≤κ1(2 + Sκ+ κ1S + κ1Sκ)∥π − π′∥1,∞.

Above (a) is due to ∥Pπ′,∞ − Pπ,∞∥∞ ≤ ∥νπ − νπ
′∥1, ∥Pπ − Pπ′∥∞ ≤ maxs

∑
s′ |Pπ(s′|s) − Pπ′

(s′|s)| and
∥(I − Pπ,∞)rπ

′∥∞ ≤ 1. Now

|Qπ(s, a)−Qπ′
(s, a)| = |ρπ − ρπ

′
+ ⟨P (·|s, a), V π − V π′

⟩|,

∥Qπ −Qπ′
∥∞ ≤ |ρπ − ρπ

′
|+ ∥V π − V π′

∥∞ ≤ (κ+ 2κ1 + Sκ1(κ+ κ1) + Sκκ2
1)∥π − π′∥1,∞.

Remark In the case of large state set S but with finite cardinality S < ∞, the general parameterized policy
classes (Xu et al., 2020, Assumption 1) is commonly utilized. With the (Xu et al., 2020, Assumption 1(3)),
∥Qπw − Qπw′∥∞ ≤ κQ∥π − π′∥1,∞ ≤ κQCπ∥w − w′∥2, thus their derivatives in Appendix B still hold. The
smoothness of average reward with respect to the general parameterized policy classes can be shown.

Lemma 20 (policy improvement (a)). Let πt to be the policy at time t of Algorithm 4,

Φ(πt+1)− Φ(πt) ≥ 1

β

(
1− β

(N − 1)(κQ + Sκ2)Amax

2(1− Γ)

) N∑
i=1

∑
s

νπ
t+1
i ,πt

−i(s)∥πt+1
i (·|s)− πt

i(·|s)∥22.

Proof. As in Ding et al. (2022), we can derive a bound of Φt+1 − Φt with the decomposition:

Φt+1 − Φt =

N∑
i=1

(Φ(πt+1
i , πt

−i)− Φ(πt
i , π

t
−i))︸ ︷︷ ︸

Diff1

+

N∑
i=1

N∑
j=i+1

(Φ(πt,t+1
−(i,j), π

t+1
i , πt+1

j )− Φ(πt,t+1
−(i,j), π

t
i , π

t+1
j )− Φ(πt,t+1

−(i,j), π
t+1
i , πt

j) + Φ(πt,t+1
−(i,j), π

t
i , π

t
j))︸ ︷︷ ︸

Diff2

,

(10)
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(where πt,t+1
−(i,j) := (πt

1∼i−1,i+1∼j−1, π
t+1
j+1∼N ) ).

First we bound each term in Diff2:

Φ(πt,t+1
−(i,j), π

t+1
i , πt+1

j )− Φ(πt,t+1
−(i,j), π

t
i , π

t+1
j )− Φ(πt,t+1

−(i,j), π
t+1
i , πt

j) + Φ(πt,t+1
−(i,j), π

t
i , π

t
j)

=ρ
πt,t+1
−(i,j)

,πt+1
i ,πt+1

j

i − ρ
πt,t+1
−(i,j)

,πt
i ,π

t+1
j

i − ρ
πt,t+1
−(i,j)

,πt+1
i ,πt

j

i + ρ
πt,t+1
−(i,j)

,πt
i ,π

t
j

i

=E
s∼ν

π
t,t+1
−(i,j)

,π
t+1
i

,π
t+1
j

[⟨Q
πt,t+1
−(i,j)

,πt
i ,π

t+1
j

i (·, s), πt+1
i (·|s)− πt

i(·|s)⟩Ai
]

− E
s∼ν

π
t,t+1
−(i,j)

,π
t+1
i

,πt
j
[⟨Q

πt,t+1
−(i,j)

,πt
i ,π

t
j

i (·, s), πt+1
i (·|s)− πt

i(·|s)⟩Ai
]

=E
s∼ν

π
t,t+1
−(i,j)

,π
t+1
i

,π
t+1
j

[⟨Q
πt,t+1
−(i,j)

,πt
i ,π

t+1
j

i (·, s)−Q
πt,t+1
−(i,j)

,πt
i ,π

t
j

i (·, s), πt+1
i (·|s)− πt

i(·|s)⟩Ai
]

+
∑
s

(ν
πt,t+1
−(i,j)

,πt+1
i ,πt+1

j (s)− ν
πt,t+1
−(i,j)

,πt+1
i ,πt

j (s))⟨Q
πt,t+1
−(i,j)

,πt
i ,π

t
j

i (·, s), πt+1
i (·|s)− πt

i(·|s)⟩Ai

≥−max
s
∥Q

πt,t+1
−(i,j)

,πt
i ,π

t+1
j

i (·, s)−Q
πt,t+1
−(i,j)

,πt
i ,π

t
j

i (·, s)∥∞ max
s
∥πt+1

i (·|s)− πt
i(·|s)∥1

− κS∥νπ
t,t+1
−(i,j)

,πt+1
i ,πt

j − ν
πt,t+1
−(i,j)

,πt+1
i ,πt+1

j ∥∞ max
s
∥πt+1

i (·|s)− πt
i(·|s)∥1

≥− κQ∥πt+1
j − πt

j∥1,∞∥πt+1
i − πt

i∥1,∞ − κ2S∥πt+1
j − πt

j∥1,∞∥πt+1
i − πt

i∥1,∞
=− (κQ + Sκ2)∥πt+1

j − πt
j∥1,∞∥πt+1

i − πt
i∥1,∞

(a)

≥ − κQ + Sκ2

2
(∥πt+1

j − πt
j∥21,∞ + ∥πt+1

i − πt
i∥21,∞),

where (a) is due to ab ≤ a2+b2

2 for any a, b. Therefore, we have

Diff2 ≥ −
(N − 1)(κQ + Sκ2)

2

N∑
i=1

∥πt+1
i − πt

i∥21,∞

≥ − (N − 1)(κQ + Sκ2)Amax

2(1− Γ)

N∑
i=1

E
s∼ν

π
t+1
i

,πt
−i
∥πt+1

i (·|s)− πt
i(·|s)∥22.

To bound Diff1, we write

Diff1 =

N∑
i=1

ρ
πt+1
i ,πt

−i

i − ρ
πt
i ,π

t
−i

i =

N∑
i=1

E
s∼ν

π
t+1
i

,πt
−i
[⟨Qπt

i (s, ·), πt+1
i (·|s)− πt

i(·|s)⟩Ai
]

≥ 1

β

N∑
i=1

E
s∼ν

π
t+1
i

,πt
−i
∥πt+1

i (·|s)− πt
i(·|s)∥22.

(11)

The last inequality comes from the optimality criterion of the update rule in Algorithm 4. The update πt+1
i (·|s) ∈

argmaxp(·|s)∈∆(Ai){β⟨Q
πt

i (s, ·), p(·|s)⟩Ai
− 1

2∥p(·|s) − πt
i(·|s)∥22} is a concave maximization problem. Therefore,

βQ
πt

i (s, ·)− πt+1
i (·|s) + πt

i(·|s) is not an increasing direction:

⟨βQπt

i (s, ·)− πt+1
i (·|s) + πt

i(·|s), p(·|s)− πt+1
i (·|s)⟩Ai

≤ 0, ∀p(·|s) ∈ ∆(Ai). (12)

The last inequality of Eq. (11) is derived by substituting p = πt
i in the above inequality.

Lemma 21 (policy improvement (b)). Let πt to be the policy at time t of Algorithm 4,

Φ(πt+1)− Φ(πt) ≥ 1

β
(1− β

LΦ

1− Γ
)

N∑
i=1

E
s∼ν

π
t+1
i

,πt
−i
∥πt+1

i (·|s)− πt
i(·|s)∥22.
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Proof. Bound each term in Diff2 of Eq. (10):

Φ(πt,t+1
−(i,j), π

t+1
i , πt+1

j )− Φ(πt,t+1
−(i,j), π

t
i , π

t+1
j )− Φ(πt,t+1

−(i,j), π
t+1
i , πt

j) + Φ(πt,t+1
−(i,j), π

t
i , π

t
j)

= ρ
πt,t+1
−(i,j)

,πt+1
i ,πt+1

j

i − ρ
πt,t+1
−(i,j)

,πt
i ,π

t+1
j

i︸ ︷︷ ︸
I1

− (ρ
πt,t+1
−(i,j)

,πt+1
i ,πt

j

i − ρ
πt,t+1
−(i,j)

,πt
i ,π

t
j

i )︸ ︷︷ ︸
I2

. (13)

From the derivative of Lemma 4
∂2ρπ

i

∂πi
is LΦ

N -Lipschitz w.r.t. πi or πj , for any πi, πj . We aim to bound I1 − I2

with l2 norms of ∥πt
i −πt+1

i ∥2 and ∥πt
j−πt+1

j ∥2. Using the interpolation for a differentiable function, there exists
a, b ∈ [0, 1], such that

I1 =ρ
πt,t+1
−(i,j)

,πt+1
i ,πt+1

j

i − ρ
πt,t+1
−(i,j)

,πt
i ,π

t+1
j

i = ⟨∂ρ
π
i

∂πi

(
πt,t+1
−(i,j), π

t+1
i + a(πt

i − πt+1
i ), πt+1

j

)
, πt+1

i − πt
i⟩,

I2 =ρ
πt,t+1
−(i,j)

,πt+1
i ,πt

j

i − ρ
πt,t+1
−(i,j)

,πt
i ,π

t
j

i = ⟨∂ρ
π
i

∂πi

(
πt,t+1
−(i,j), π

t+1
i + b(πt

i − πt+1
i ), πt

j

)
, πt+1

i − πt
i⟩,

I1 − I2 =⟨∂ρ
π
i

∂πi

(
πt,t+1
−(i,j), π

t+1
i + a(πt

i − πt+1
i ), πt+1

j

)
− ∂ρπi

∂πi

(
πt,t+1
−(i,j), π

t+1
i + a(πt

i − πt+1
i ), πt

j

)
, πt+1

i − πt
i⟩

+ ⟨∂ρ
π
i

∂πi

(
πt,t+1
−(i,j), π

t+1
i + a(πt

i − πt+1
i ), πt

j

)
− ∂ρπi

∂πi

(
πt,t+1
−(i,j), π

t+1
i + b(πt

i − πt+1
i ), πt

j

)
, πt+1

i − πt
i⟩

≥ − ∥∂ρ
π
i

∂πi
(πt,t+1

−(i,j), π
t+1
i + a(πt

i − πt+1
i ), πt+1

j )− ∂ρπi
∂πi

(πt,t+1
−(i,j), π

t+1
i + a(πt

i − πt+1
i ), πt

j)∥2∥πt+1
i − πt

i∥2

− ∥∂ρ
π
i

∂πi
(πt,t+1

−(i,j), π
t+1
i + a(πt

i − πt+1
i ), πt

j)−
∂ρπi
∂πi

(πt,t+1
−(i,j), π

t+1
i + b(πt

i − πt+1
i ), πt

j)∥2∥πt+1
i − πt

i∥2

≥− LΦ

N
∥πt+1

j − πt
j∥2∥πt+1

i − πt
i∥2 −

LΦ

N
|a− b|∥πt

i − πt+1
i ∥2∥πt+1

i − πt
i∥2

≥− LΦ

2N
(∥πt+1

j − πt
j∥22 + ∥πt+1

i − πt
i∥22)−

LΦ

N
∥πt

i − πt+1
i ∥22

=− LΦ

2N
∥πt+1

j − πt
j∥22 −

3LΦ

2N
∥πt+1

i − πt
i∥22.

Since the permutation of agents’ indexes does not change the above result, we have:

Diff2 ≥ −(N − 1)
LΦ

N

∑
i

∥πt+1
i − πt

i∥22

≥ −LΦ

∑
i

∑
s

∥πt+1
i (·|s)− πt

i(·|s)∥22

≥ − LΦ

1− Γ

N∑
i=1

E
s∼ν

π
t+1
i

,πt
−i
∥πt+1

i (·|s)− πt
i(·|s)∥22.

Therefore, by the same bound for Diff1 in Lemma 20 we can lower bound the policy improvement as

Φ(πt+1)− Φ(πt) ≥ (
1

β
− LΦ

1− Γ
)

N∑
i=1

E
s∼ν

π
t+1
i

,πt
−i
∥πt+1

i (·|s)− πt
i(·|s)∥22.

Theorem 7 (Restatement of Theorem 3). If β ≤ max{ 1−Γ
(N−1)(κQ+Sκ2)Amax

, 1−Γ
2LΦ
}, Algorithm 4 has a bounded

Nash regret:

Nash-regret(T ) ≤
√
D(κ

√
Amax +

2

β
)
√

2βCΦ
1√
T
. (14)
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Proof.

Nash-gap(t) = max
i

(max
π′
i

ρ
π′
i,π

t
−i

i − ρ
πt
i ,π

t
−i

i )

(1)
= E

s∼ν
πi,π

t
−i
[⟨Qπt

i (s, ·), πi(·|s)− πt
i(·|s)⟩Ai ]

= E
s∼ν

πi,π
t
−i
[⟨Qπt

(s, ·), πt+1
i (·|s)− πt

i(·|s)⟩Ai︸ ︷︷ ︸
I1

+ ⟨Qπt

(s, ·), πi(·|s)− πt+1
i (·|s)⟩Ai︸ ︷︷ ︸

I2

].

In (1), we use πi to represent the policy that achieves argmaxπ′
i
in the previous expression and assume that i

attains the maximum in maxi. We will bound I1 and I2 separately.

Recall Eq. (12) for any p in the feasible policy set, ⟨βQπt

i (s, ·)− πt+1
i (·|s) + πt

i(·|s), p(·|s)− πt+1
i (·|s)⟩Ai ≤ 0. We

can bound I1 and I2 as

I2 = ⟨Qπt

i (s, ·), πi(·|s)− πt+1
i (·|s)⟩Ai

≤ 1

β
⟨πt+1

i (·|s)− πt
i(·|s), πi(·|s)− πt+1

i (·|s)⟩Ai

(a)

≤ 1

β
∥πt+1

i (·|s)− πt
i(·|s)∥∞∥πi(·|s)− πt+1

i (·|s)∥1

≤ 2

β
∥πt+1

i (·|s)− πt
i(·|s)∥∞

≤ 2

β
∥πt+1

i (·|s)− πt
i(·|s)∥2,

I1 = ⟨Qπt

i (s, ·), πt+1
i (·|s)− πt

i(·|s)⟩Ai

(b)

≤ κ∥πt+1
i (·|s)− πt

i(·|s)∥1
≤ κ

√
Ai∥πt+1

i (·|s)− πt
i(·|s)∥2.

(15)

(a) and (b) result from ⟨x, y⟩ ≤ ∥x∥1∥y∥∞.

Therefore we can bound the Nash-gap as:

Nash-gap(t) ≤
∑
s

νπi,π
t
−i(s)(κ

√
Ai +

2

β
)∥πt+1

i (·|s)− πt
i(·|s)∥2

≤
∑
s

νπi,π
t
−i(s)(κ

√
Amax +

2

β
)∥πt+1

i (·|s)− πt
i(·|s)∥2

≤
√
D(κ

√
Amax +

2

β
)
∑
s

√
νπi,πt

−i(s)

√
νπ

t+1
i ,πt

−i(s)∥πt+1
i (·|s)− πt

i(·|s)∥22,

T−1∑
t=0

Nash-gap(t)
(a)

≤
√
D(κ

√
Amax +

2

β
)

√√√√T−1∑
t=0

∑
s

νπ
t+1
i ,πt

−i(s)

√√√√T−1∑
t=0

∑
s

∑
i

νπ
t+1
i ,πt

−i(s)∥πt+1
i (·|s)− πt

i(·|s)∥22

=
√
D(κ

√
Amax +

2

β
)
√
T

√√√√T−1∑
t=0

∑
s

∑
i

νπ
t+1
i ,πt

−i(s)∥πt+1
i (·|s)− πt

i(·|s)∥22.

(a) is due to the Cauchy-Schwarz inequality.

From Lemma 20 and Lemma 21, we have:

Φ(πt+1)− Φ(πt) ≥ 1

β

(
1− βmin{ (N − 1)(κQ + Sκ2)Amax

2(1− Γ)
,

LΦ

1− Γ
}
) N∑

i=1

∑
s

νπ
t+1
i ,πt

−i(s)∥πt+1
i (·|s)− πt

i(·|s)∥22.
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Algorithm 6 proximal-Q algorithm with sample estimates

1: Input: learning rate β, gradient estimation parameters B, N1

2: Initialization: π
(0)
i (ai|s) = 1/Ai for any s ∈ S, ai ∈ Ai

3: for t = 0 to T − 1 do
4: all agents take action independently and synchronously for B time steps to collect trajectories {T t

i }
5: for agent i do
6: for s ∈ S do
7: q̂ti(s, ·)← Q estimation(T t

i , s, π
t
i , B,N1)

8: end for
9: π

(t+1)
i (·|s) = argmax

p(·|s)∈△α(Ai)

{β⟨q̂πt

i (s, ·), p(·|s)⟩Ai
− 1

2∥p(·|s)− πt
i(·|s)∥22}, ∀s ∈ S

10: end for
11: end for

Algorithm 7 Q estimation Wei et al., 2020, Lemma 6

1: Input: trajectory T = (s0, a0i , r
0
i , ..., s

B , aBi , r
B
i ), state s, policy πi, parameters B and N1

2: τ ← 0
3: k ← 0
4: while τ ≤ B −N1 do
5: if sτ = s then
6: k ← k + 1
7: R←

∑τ+N1−1
t=τ rti

8: yk ← R
πi(aτ

i |s)
1[a = aτi ] (yk ∈ RAi)

9: τ ← τ + 2N1

10: else
11: τ ← τ + 1
12: end if
13: end while
14: if k ̸= 0 then
15: return 1

k

∑k
j=1 yj

16: else
17: return 0
18: end if

Therefore, by substituting learning rate β ≤ 1
2 max{ 2(1−Γ)

(N−1)(κQ+Sκ2)Amax
, 1−Γ

LΦ
},

T−1∑
t=0

Nash-gap(t) ≤
√
D(κ

√
Amax +

2

β
)
√
T

√√√√T−1∑
t=0

2β(Φ(πt+1)− Φ(πt))

≤
√
D(κ

√
Amax +

2

β
)
√
T
√

2βCΦ.

D.1 Sample Complexity of proximal-Q

Lemma 22 (Wei et al., 2020, Lemma 6). Let Et[x] denote the expectation of a random variable x conditioned
on all history before episode t (note that πt is updated at the end of episode t − 1). If B is large enough, such
that there exists N2 < B with Cpϱ

N2 ≤ 1
2 (1−Γ), then for any t, s, ai, the estimated q̂ from Algorithm 7 satisfies:
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Et[(q̂
t
i(s, ai)− (Q

πt

i (s, ai) +N1ρ
πt

i ))2] ≤6(1 + 2Cpϱ
2N1

1− Γ

B

2N1
)

(
N2

1

α
+

C2
p

(1− ϱ)2
+

C2
pϱ

2N1

(1− ϱ)2

)
(1− 1−Γ

2 )n
′
+ 2N1+n′N2

B

1− (1− 1−Γ
2 )⌊

B−N1
N2

⌋

+ (1 +
2Cpϱ

2N1

1− Γ

B

2N1
)(
2C2

pϱ
2N1

(1− ϱ)2
+ (1− 1− Γ

2
)⌊

B−N1
N2

⌋ Cp

1− ϱ
).

(16)

For completeness, we provide a brief proof below.

Proof. We define some notation first. Let τj be the evoked time at line 5 (sτj = s), wj be the waiting time,

where wj = τj − (τj−1 + 2N1) for j > 1, and w1 = τ1 for j = 1. Furthermore, let qπi (s, ai) = Q
π

i (s, a) +N1ρ
π,

q̂πi,j(s, ·) = yj(·) where yj is defined in line 8 of Algorithm 7, and q̂πi (s, ·) = 1
k

∑k
j=1 q̂

π
i,j(s, ·) if k > 0; otherwise,

q̂πi = 0.

The main difficulty of analyzing the bias and variance of q̂πi (s, ai) lies in the random number k, which is the
times state s is visited (used in line 14 of Algorithm 7), determined by {w1, w2, ...} only. In the proof of Wei
et al. (2020), they first calculate the bias and variance under an ”imaginary” world, where the state distribution
is reset to νπ at any time τj + 2N1. Then, they demonstrate that the event {τ1, τ2, ...} has a similar probability
measure between the real world and the imaginary world. Since τj+1 and τj are independent, it is easier to
bound the bias and variance under an imaginary world. We use E′ to denote the expectation in the imaginary
world and E for the real world.

Step 1: Bound the bias and variance under imaginary world

E′[q̂πi (s, ai)] =P(w1 ≤ B −N1)E′[
1

k

k∑
j=1

E′[q̂πi,j(s, ai)|w1]|w1 ≤ B −N ] + P(w1 > B −N1)× 0

(a)
=P(w1 ≤ B −N1)E′[

1

k
(

k∑
j=1

qπi (s, ai)− δ(s, ai))]

(b)
=qπi (s, ai)− δ′(s, ai).

In (a), tail is defined as δ(s, ai) := EP,π[
∑∞

t=N1+1(r(s, a) − ρπ)|s0 = s, a0i = ai]. It is easy to bound it by

|δ(s, ai)| ≤
∑∞

t=N1
Cpϱ

t = Cpϱ
N1 1

1−ϱ . In (b), δ′(s, ai) = (1− P(w1 ≤ B −N1))(q
π
i (s, ai)− δ(s, ai)) + δ(s, ai).

To give a bound for δ′(s, ai), let’s analyze |qπi (s, ai)| and P(w1 ≤ B−N1) separately. By Proposition 3 |qπi (s, ai)| ≤
Cpκ0 +N1. 1−P(w1 ≤ B−N1) is the probability of never visiting s during time 0 to time B−N1. If B is large
enough, there exists N2 < B such that Cpϱ

N2 ≤ 1
2 (1− Γ), which means |P(sN2 = s|s0 = s′)− νπ(s)| ≤ 1

2 (1− Γ)

and P(sN2 = s|s0 = s′) ≥ νπ(s)− 1
2 (1−Γ) ≥ 1

2 (1−Γ) for any s′. Therefore, P(w1 > B−N1) ≤ (1− 1−Γ
2 )⌊

B−N1
N2

⌋.

|E′[q̂πi (s, ai)]− qπi (s, ai)| =|δ′(s, ai)|

≤(1− 1− Γ

2
)⌊

B−N1
N2

⌋(Cpκ0 +N1) + Cpϱ
N1

1

1− ϱ
.
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To bound the variance, denote ∆j = q̂πi,j(s, ai)− qπi (s, ai) + δ(s, ai). Then E′[∆j |wj ] = 0.

E′[(q̂πi (s, ai)− qπi (s, ai))
2]

=P(w1 ≤ B −N1)E′[(q̂πi (s, ai)− qπi (s, ai))
2|w1 ≤ B −N1] + P(w1 > B −N1)|qπi (s, ai)|2

≤E′[(
1

k

k∑
j=1

∆j − δ(s, ai))
2|w1 ≤ B −N1] + (1− 1− Γ

2
)⌊

B−N1
N2

⌋(Cpκ0 +N1)
2

≤E′[2(
1

k

k∑
j=1

∆j)
2 + 2δ(s, ai))

2|w1 ≤ B −N1] + (1− 1− Γ

2
)⌊

B−N1
N2

⌋(Cpκ0 +N1)
2

≤E′[2(
1

k

k∑
j=1

∆j)
2|w1 ≤ B −N1] +

2C2
pϱ

2N1

(1− ϱ)2
+ (1− 1− Γ

2
)⌊

B−N1
N2

⌋(Cpκ0 +N1)
2

≤E′[
2

k2

k∑
j=1

E′[∆2
j |w1]|w1 ≤ B −N1] +

2C2
pϱ

2N1

(1− ϱ)2
+ (1− 1− Γ

2
)⌊

B−N1
N2

⌋(Cpκ0 +N1)
2

(a)

≤6

(
N2

1

πi(ai|s)
+ 2C2

pκ
2
0πi(ai|s) + 2N2

1πi(ai|s) +
C2

pϱ
2N1πi(ai|s)
(1− ϱ)2

)
E′[

1

k
|w1 ≤ B −N1]

+
2C2

pϱ
2N1

(1− ϱ)2
+ (1− 1− Γ

2
)⌊

B−N1
N2

⌋(Cpκ0 +N1)
2.

In (a) we use E′[∆2
j |w1] ≤ πi(ai|s)(3 N2

1

πi(ai|s)2 + 3(2C2
pκ

2
0 + 2N2

1 ) + 3
C2

pϱ
2N1

(1−ϱ)2 ).

If trajectory length B is large enough, there exists a waiting period length n′N2 such that k0 = ⌊ B
2N1+n′N2

⌋ > 1,

P(k ≤ k0) ≤ P(w1 ≥ n′N2) ≤ (1 − 1−Γ
2 )n

′
is small enough. Then we can bound the average visiting time and

variance by:

E′[
1

k
|w1 ≤ B −N1] ≤

P(k ≤ k0)× 1 + P(k > k0)
1
k0

P(w1 ≤ B −N1)

≤
(1− 1−Γ

2 )n
′
+ 2N1+n′N2

B

1− (1− 1−Γ
2 )⌊

B−N1
N2

⌋
,

E′[(β̂π
i (s, a)− βπ

i (s, ai))
2] ≤6

(
N2

1

πi(ai|s)
+ 2C2

pκ
2
0πi(ai|s) + 2N2

1πi(ai|s) +
C2

pϱ
2N1πi(ai|s)
(1− ϱ)2

)
(1− 1−Γ

2 )n
′
+ 2N1+n′N2

B

1− (1− 1−Γ
2 )⌊

B−N1
N2

⌋

+
2C2

pϱ
2N1

(1− ϱ)2
+ (1− 1− Γ

2
)⌊

B−N1
N2

⌋ Cp

1− ϱ
.

Step2: bound the difference between imaginary world and real world

Since q̂πi (s, ai) is determined by X = (k, τ1, T1, τ2, T2, ..., τk, Tk), let q̂πi (s, ai) = f(X). Then
E[q̂πi (s,ai)]
E′[q̂πi (s,ai)]

=∑
x f(x)P(X=x)∑
x f(x)P′(X=x) ≤ maxx

P(X=x)
P′(X=x) . We can bound P(X=x)

P′(X=x) , ∀x as follow:

P(X = x)

P′(X = x)
=

P(τ2|τ1, T1)...P(τk|τk−1, Tk−1)

P′(τ2|τ1, T1)...P′(τk|τk−1, Tk−1)

(a)

≤ (max
s′

P(sτ1+2N1 = s′|τ1)
νπ(s′)

) . . . (max
s′

P(sτk−1+2N1 = s′|τk−1)

νπ(s′)
)

≤(1 + Cpϱ
2N1

1− Γ
)

B
2N1 ≤ e

Cpϱ2N1

1−Γ
B

2N1 ≤ 1 +
2Cpϱ

2N1

1− Γ

B

2N1
.
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Here (a) is derived by that:

P(τj+1|τj , Tj) =
∑
s′ ̸=s

P(τj + 2N1 = s′|τj , Tj)P(st ̸= s,∀ t ∈ [τj + 2N1 + 1, τj+1 − 1], sτ2 = s|τj + 2N1 = s′),

P′(τj+1|τj , Tj) =
∑
s′ ̸=s

νπ(s′)P(st ̸= s,∀ t ∈ [τj + 2N1 + 1, τj+1 − 1], sτ2 = s|τj + 2N1 = s′),

for τj+1 ̸= τj + 2N1. When τj+1 = τj + 2N1, we have:

P(τj+1|τj , Tj) = P(τj + 2N1 = s|τj , Tj), P′(τj+1|τj , Tj) = νπ(s).

Therefore, the following result can be derived:

E[(q̂πi (s, ai)− qπi (s, ai))
2] ≤E′[(q̂πi (s, ai)− qπi (s, ai))

2](1 +
Cpϱ

2N1

νπ(s)

B

N1
)

≤6(1 + Cpϱ
2N1

1− Γ

B

N1
)

(
N2

1

α
+

2C2
p

(1− ϱ)2
+ 2N2

1 +
C2

pϱ
2N1

(1− ϱ)2

)
(1− 1−Γ

2 )n
′
+ 2N1+n′N2

B

1− (1− 1−Γ
2 )⌊

B−N1
N2

⌋

+ (1 +
Cpϱ

2N1

1− Γ

B

N1
)(
2C2

pϱ
2N1

(1− ϱ)2
+ (1− 1− Γ

2
)⌊

B−N1
N2

⌋ Cp

1− ϱ
).

Let n′ = N1 = O(log 1
αδ ), N2 = O(log 1

1−Γ ), B = Õ( 1
αδ ). For any agent i, time t, state s, and action ai,

Et[(q̂
π
i (s, ai)− qπi (s, ai))

2] ≤ δ.

Lemma 23. (Policy improvement)

Φ(πt+1)− Φ(πt) ≥
(
1

β
− 1

2
− LΦ

1− Γ

) N∑
i=1

E
s∼ν

π
t+1
i

,πt
−i
∥πt+1

i (·|s)− πt
i(·|s)∥22

− 1

2

N∑
i=1

E
s∼ν

π
t+1
i

,πt
−i
[
∑
ai

(q̂π
t

i (s, ai)− qπ
t

i (s, ai))
2].

Proof. We use the same decomposition as Eq. (10).

Similar as Lemma 21, Diff2 ≥ − LΦ

1−Γ

∑N
i=1 E

s∼ν
π
t+1
i

,πt
−i
∥πt+1

i (·|s)− πt
i(·|s)∥22.

Note that πt+1
i (·|s) = argmax

p(·|s)∈△α(Ai)

{β⟨q̂πt

i (s, ·), p(·|s)⟩Ai − 1
2∥p(·|s)−πt

i(·|s)∥22)}. Deriving from the optimality we

have:

⟨βq̂πt
i (s, ·)− πt+1

i (·|s) + πt
i(·|s), p(·|s)− πt+1

i (·|s)⟩Ai
≤ 0, ∀p(·|s) ∈ ∆α(Ai). (17)
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To bound Diff1,

Diff1 =

N∑
i=1

ρ
πt+1
i ,πt

−i

i − ρ
πt
i ,π

t
−i

i

=

N∑
i=1

E
s∼ν

π
t+1
i

,πt
−i
[⟨Qπt

i (s, ·), πt+1
i (·|s)− πt

i(·|s)⟩Ai
]

=

N∑
i=1

E
s∼ν

π
t+1
i

,πt
−i
[⟨Qπt

i (s, ·) +N1ρ
πt

i , πt+1
i (·|s)− πt

i(·|s)⟩Ai
]

=

N∑
i=1

E
s∼ν

π
t+1
i

,πt
−i
[⟨q̂π

t

i (s, ·), πt+1
i (·|s)− πt

i(·|s)⟩Ai
]

+

N∑
i=1

E
s∼ν

π
t+1
i

,πt
−i
[⟨qπ

t

i (s, ai)− q̂π
t

i (s, ·), πt+1
i (·|s)− πt

i(·|s)⟩Ai
]

(a)

≥ 1

β

N∑
i=1

E
s∼ν

π
t+1
i

,πt
−i
∥πt+1

i (·|s)− πt
i(·|s)∥22 −

N∑
i=1

E
s∼ν

π
t+1
i

,πt
−i

∥q̂πt

i (s, ·)− qπ
t

i (s, ·)∥22 + ∥πt+1
i (·|s)− πt

i(·|s)∥22
2

=(
1

β
− 1

2
)

N∑
i=1

E
s∼ν

π
t+1
i

,πt
−i
∥πt+1

i (·|s)− πt
i(·|s)∥22 −

1

2

N∑
i=1

E
s∼ν

π
t+1
i

,πt
−i
[
∑
ai

(q̂π
t

i (s, ai)− qπ
t

i (s, ai))
2].

(a) is derived by applying p = πt
i to equation (27).

Theorem 8. If all players run Algorithm 6 independently and synchronously, β ≤ (1+ 2LΦ

1−Γ )
−1, the Nash regret

will be bounded by:

E[Nash-regret(T )] ≤ (
2√
β
+ κ
√
Amaxβ)

√
2ND

T
+ (

2√
β
+ κ
√
β)D

√
NAmaxδ + 2

√
Amaxδ + 2κα.

Proof.

Nash-gap(t)

=max
i

(max
π′
i

ρ
π′
i,π

t
−i

i − ρ
πt
i ,π

t
−i

i )

(a)
=E

s∼ν
πi,π

t
−i
[⟨Qπt

i (s, ·), πi(·|s)− πt
i(·|s)⟩Ai

]

=E
s∼ν

πi,π
t
−i
[⟨Qπt

i (s, ·), (1− α)πi(·|s) + αui(·|s)− πt
i(·|s)⟩Ai ] + αE

s∼ν
πi,π

t
−i
[⟨Qπt

i (s, ·), πi(·|s)− ui(·|s)⟩Ai ]

≤E
s∼ν

πi,π
t
−i
[⟨Qπt

i (s, ·), (1− α)πi(·|s) + αui(·|s)− πt
i(·|s)⟩Ai

] + 2ακ

=E
s∼ν

πi,π
t
−i
[⟨Qπt

i (s, ·), (1− α)πi(·|s) + αui(·|s)− πt+1
i (·|s)⟩Ai

] + E
s∼ν

πi,π
t
−i
[⟨Qπt

i (s, ·), πt+1
i (·|s)− πt

i(·|s)⟩Ai
]

+ 2ακ

=E
s∼ν

πi,π
t
−i
[⟨q̂π

t

i (s, ·), (1− α)πi(·|s) + αui(·|s)− πt+1
i (·|s)⟩Ai

]

+ E
s∼ν

πi,π
t
−i
[⟨qπ

t

i (s, ·)− q̂π
t

i (s, ·), (1− α)πi(·|s) + αui(·|s)− πt+1
i (·|s)⟩Ai

]

+ E
s∼ν

πi,π
t
−i
[⟨Qπt

i (s, ·), πt+1
i (·|s)− πt

i(·|s)⟩Ai ] + 2ακ.

(18)
In (a), we assume agent i achieved the maxi and πi achieved maxπ′

i
.

By Eq. (17):

⟨βq̂ti(s, ·)− πt+1
i (·|s) + πt

i(·|s), (1− α)πi(·|s) + αui(·|s)− πt+1
i (·|s)⟩Ai

≤ 0,
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we can bound the first term of Eq. (18) as:

⟨q̂π
t

i (s, ·), (1− α)πi(·|s) + αui(·|s)− πt+1
i (·|s)⟩Ai ≤

1

β
⟨πt+1

i (·|s)− πt
i(·|s), (1− α)πi(·|s) + αui(·|s)− πt+1

i (·|s)⟩Ai

≤ 2

β
∥πt+1

i (·|s)− πt
i(·|s)∥2.

The last inequality comes from ∥π′(·|s)− π(·|s)∥2 ≤ ∥π′(·|s)− π(·|s)∥1 ≤ 2.

Therefore, the Nash gap can be bounded as:

Nash-gap(t)

(a)

≤E
s∼ν

πi,π
t
−i
[
2

β
∥πt+1

i (·|s)− πt
i(·|s)∥2 + 2∥qπ

t

(s, ·)− q̂π
t

(s, ·)∥2 + κ
√

Amax∥πt+1
i (·|s)− πt

i(·|s)∥2 + 2ακ]

=(
2

β
+ κ
√

Amax)E
s∼ν

πi,π
t
−i
∥πt+1

i (·|s)− πt
i(·|s)∥2 + 2E

s∼ν
πi,π

t
−i
∥qπ

t

(s, ·)− q̂π
t

(s, ·)∥2 + 2ακ

≤( 2
β
+ κ
√

Amax)

√
∥ν

πi,πt
−i

νπt ∥∞
∑
s

√
νπi,πt

−i(s)νπ
t+1
i ,πt

−i(s)

√
∥πt+1

i (·|s)− πt
i(·|s)∥22

+ 2E
s∼ν

πi,π
t
−i
∥qπ

t

(s, ·)− q̂π
t

(s, ·)∥2 + 2ακ

≤( 2
β
+ κ
√

Amax)
√
D
∑
s

√
νπi,πt

−i(s)

√
νπ

t+1
i ,πt

−i(s)∥πt+1
i (·|s)− πt

i(·|s)∥22

+ 2E
s∼ν

πi,π
t
−i
∥qπ

t

(s, ·)− q̂π
t

(s, ·)∥2 + 2ακ.

Applying Lemma 23 and the approximation error bound leads to

E[E
s∼ν

πi,π
t
−i
∥qπ

t

(s, ·)− q̂π
t

(s, ·)∥2] ≤
√

E[E
s∼ν

πi,π
t
−i
∥qπt(s, ·)− q̂πt(s, ·)∥22]

(a)
=

√
E[
∑
s

νπi,πt
−i(s)Et[

∑
ai

(qπt(s, ai)− q̂πt(s, ai))2]]

≤
√

Amaxδ.

In (a) we can exchange Et and
∑

s ν
πi,π

t
−i(s) since πi only depends on πt, i.e. πi only depends on Ft−1.
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Sum over t:

E
T−1∑
t=0

Nash-gap(t)

≤( 2
β
+ κ
√

Amax)
√
DE[

T−1∑
t=0

∑
s

√
νπi,πt

−i(s)

√
νπ

t+1
i ,πt

−i(s)∥πt+1
i (·|s)− πt

i(·|s)∥22] + 2
√
AmaxδT + 2ακT

(a)

≤ (
2

β
+ κ
√

Amax)
√
DE

√√√√T−1∑
t=0

∑
s

νπi,πt
−i(s)

√√√√T−1∑
t=0

∑
i

∑
s

νπ
t+1
i ,πt

−i(s)∥πt+1
i (·|s)− πt

i(·|s)∥22

+ 2
√
AmaxδT + 2ακT

(b)

≤(
2

β
+ κ
√

Amax)
√
DTE

√√√√(2β T−1∑
t=0

(Φ(πt+1)− Φ(πt)) + β

T−1∑
t=0

N∑
i=1

∑
ai

E
s∼ν

π
t+1
i

,πt
−i
(q̂π

t

i (s, ai)− qπ
t

i (s, ai))2

)
+ 2
√
AmaxδT + 2ακT

≤( 2
β
+ κ
√

Amax)
√
DT (

√
2βCΦ + E

√√√√β

T−1∑
t=0

N∑
i=1

∑
ai

E
s∼ν

π
t+1
i

,πt
−i
(q̂π

t

i (s, ai)− qπ
t

i (s, ai))2)

+ 2
√
AmaxδT + 2ακT

(c)

≤(
2

β
+ κ
√

Amax)
√
DT (

√
2βCΦ +

√√√√βE
T−1∑
t=0

N∑
i=1

∑
ai

E
s∼ν

π
t+1
i

,πt
−i
(q̂π

t

i (s, ai)− qπ
t

i (s, ai))2)

+ 2
√
AmaxδT + 2ακT

≤( 2
β
+ κ
√

Amax)
√
DT (

√
2βCΦ +

√
βTNAmaxδ) + 2

√
AmaxδT + 2ακT,

where (a) is due to Cauchy-Schwarz inequality. (b) is derived by Lemma 23 and learning rate β ≤ (1 + 2LΦ

1−Γ )
−1.

Note that Φ(πT )− Φ(π0) ≤ CΦ. (c) is Jensen’s inequality.

E[Nash-regret(T )] ≤ (
2√
β
+ κ
√
Amaxβ)

√
2CΦD

T
+ (

2√
β
+ κ
√
Amaxβ)

√
NAmaxδ + 2

√
Amaxδ + 2κα.

If β = (1 + 2LΦ

1−Γ )
−1, E[Nash-regret(T )] = O(

√
CΦNDAmaxS3/2κ2

0

(1−Γ)T +
√

N2A2
maxS

3/2κ2
0δ

1−Γ + κα). To obtain an ϵ-Nash

equilibrium, let T = O(
CΦNDAmaxS

3/2κ2
0

(1−Γ)ϵ2 ), δ = O( (1−Γ)ϵ2

N2A2
maxS

3/2κ2
0
) and α = O( ϵ

κ ). By Lemma 22, B = Õ( 1
αδ ) =

Õ(
N2A2

maxS
2κ3

0

(1−Γ)3/2ϵ3
). Therefore, the sample complexity for Algorithm 6 is TB = Õ(

CΦN3DA3
maxS

7/2κ5
0

(1−Γ)5/2ϵ5
). Comparing

with sample complexity of Algorithm 2 in Theorem 2, the sample complexity of Algorithm 6 is O(
A2

maxS
7/2κ4

0

1−Γ )
smaller.

E PROOFS OF SECTION 5

Lemma 24.
∂ρ

πθ
i

∂θs,ai
= νπθ (s)πθi(ai|s)A

πθ

i (s, ai).

Proof. From the policy gradient theorem (Sutton et al., 1999),
∂ρ

πθ
i

∂θs,ai
=
∑

s′,a′ νπθ (s)πθ(a|s)∂ log πθ(a
′|s′)

∂θs,ai
Qπθ

i (s,a),

while πθ(a|s) = ΠN
i=1πθi(ai|s) and ∂ log πθ(a

′|s)
∂θs,ai

= 1{a′i = ai, s
′ = s} − 1{s′ = s}πθi(ai|s). Therefore,

∂ρ
πθ
i

∂θs,ai
=

νπθ (s)πθi(ai|s)A
πθ

i (s, ai).
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Lemma 25 (Lemma 9-12 Zhang et al. (2022)). The update rule θt+1
i = θti + βFi(θ

t)†∇θiρ
πt
i is equivalent to

πt+1
i (ai|s) ∝ πt

i(ai|s) exp
(
βA

πt

i (s, ai)
)
, where Fi(θ) = Es∼νπθEai∼πθi

(·|s)[∇θi log πθi(ai|s)∇θi log πθi(ai|s)T ] and
πt
i = πθt

i

Lemma 26 (Policy improvement, Lemma 7). If β ≤ max{ 1−Γ
(N−1)(κQ+Sκ2) ,

1−Γ
2LΦ
}, the policies updated by Algo-

rithm 5 have:

Φ(πt+1)− Φ(πt) ≥ 1

β

∑
i

E
s∼νπ

t+1
i

,πt
i
logZt,s

i .

Proof.

Φt+1 − Φt =

N∑
i=1

(Φ(πt+1
i , πt

−i)− Φ(πt
i , π

t
−i))︸ ︷︷ ︸

Diff1

+

N∑
i=1

N∑
j=i+1

(Φ(πt,t+1
−(i,j), π

t+1
i , πt+1

j )− Φ(πt,t+1
−(i,j), π

t
i , π

t+1
j )− Φ(πt,t+1

−(i,j), π
t+1
i , πt

j) + Φ(πt,t+1
−(i,j), π

t
i , π

t
j))︸ ︷︷ ︸

Diff2

,

(where πt,t+1
−(i,j) := (πt

1:(i−1), π
t
(i+1):(j−1), π

t+1
(j+1):N ) ).

Similar to Lemma 20,

Φ(πt,t+1
−(i,j), π

t+1
i , πt+1

j )− Φ(πt,t+1
−(i,j), π

t
i , π

t+1
j )− Φ(πt,t+1

−(i,j), π
t+1
i , πt

j) + Φ(πt,t+1
−(i,j), π

t
i , π

t
j)

≥− κQ + Sκ2

2
(∥πt+1

j − πt
j∥21,∞ + ∥πt+1

i − πt
i∥21,∞).

(19)

Let si ∈ argmaxs∈S∥πt+1
i (·|s)− πt

i(·|s)∥1. By Pinsker’s inequality, we get:

Diff2 ≥ −
(N − 1)(κQ + Sκ2)

2

N∑
i=1

∥πt+1
i − πt

i∥21,∞ ≥ −(N − 1)(κQ + Sκ2)

N∑
i=1

D
πt+1
i

πt
i

(si). (20)

Define Zi,s
t =

∑
ai
πt
i(ai|s) exp

(
βA

t

i(s, ai)
)
. By the update rule πt+1

i (ai|s) =
πt
i(ai|s) exp(βA

t
i(s,ai))

Zi,s
t

, A
t

i(s, ai) =

1
β (log(

πt+1
i (ai|s)
πt
i(ai|s) ) + logZt,s

i ). Hence

Φ(πt+1
i , πt

−i)− Φ(πt
i , π

t
−i) =ρ

πt+1
i ,πt

i

i − ρ
πt
i ,π

t
−i

i

=E
s∼ν

π
t+1
i

,πt
−i

∑
ai

πt+1
i (ai|s)A

πt

i (s, ai)

=E
s∼ν

π
t+1
i

,πt
−i

∑
ai

πt+1
i (ai|s)

1

β
(log

πt+1
i (ai|s)
πt
i(ai|s)

+ logZt,s
i )

=
1

β
E
s∼ν

π
t+1
i

,πt
−i
(D

πt+1
i

πt
i

(s) +
∑
ai

πt+1
i (ai|s) logZt,s

i )

(a)

≥ 1− Γ

β
D

πt+1
i

πt
i

(si) +
1

β
E
s∼ν

π
t+1
i

,πt
−i

logZt,s
i .

Therefore,

Diff1 ≥
1− Γ

β

∑
i

D
πt+1
i

πt
i

(si) +
1

β

∑
i

E
s∼ν

π
t+1
i

,πt
−i

logZt,s
i ,
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where (a) comes from 1− Γ ≤ νπ
t+1
i ,πt

−i(si) ≤ Γ for any i.

If the learning rate is chosen as β ≤ 1−Γ
(N−1)(κQ+Sκ2) , then combining the above results:

Φ(πt+1)− Φ(πt) ≥(1− Γ

β
− (N − 1)(κQ + Sκ2))

N∑
i=1

D
πt
i

πt+1
i

(si) +
1

β

∑
i

E
s∼νπ

t+1
i

,πt
i
logZt,s

i

≥ 1

β

∑
i

E
s∼νπ

t+1
i

,πt
i
logZt,s

i .

(21)

If we use Lemma 21 to bound each term in Diff2, then by ∥x∥22 ≤ ∥x∥21 and Pinsker’s inequality:

Diff2 ≥ −LΦ

∑
i

∑
s

∥πt+1
i (·|s)− πt

i(·|s)∥22 ≥ −
2LΦ

1− Γ

∑
i

E
s∼ν

π
t+1
i

,πt
−i
D

πt+1
i

πt
i

(s).

A similar result for Eq. (21) can be derived:

Φ(πt+1)− Φ(πt) =Diff1 +Diff2

≥ 1

β

∑
i

E
s∼ν

π
t+1
i

,πt
−i
(D

πt+1
i

πt
i

(s) + logZt,s
i )− 2LΦ

1− Γ

∑
i

E
s∼ν

π
t+1
i

,πt
−i
D

πt+1
i

πt
i

(s)

≥
(
1

β
− 2LΦ

1− Γ

)∑
i

E
s∼ν

π
t+1
i

,πt
−i
D

πt+1
i

πt
i

(s) +
1

β

∑
i

E
s∼ν

π
t+1
i

,πt
−i

logZt,s
i

≥ 1

β

∑
i

E
s∼νπ

t+1
i

,πt
i
logZt,s

i .

Therefore, if β ≤ max{ 1−Γ
(N−1)(κQ+Sκ2) ,

1−Γ
2LΦ
}, Φ(πt+1)− Φ(πt) ≥ 1

β

∑
i Es∼νπ

t+1
i

,πt
i
logZt,s

i .

With the above monotone improvement, the sufficient condition for asymptotic convergence established by Zhang
et al. (2022) is satisfied.

Lemma 27 (Section 12.0.2 Zhang et al. (2022)). If all stationary points of the potential function Φ(θ) = Φ(π(θ))
are isolated, β∥Aπ∥∞ ≤ 1 for any π, and non-negative improvement Φ(πt+1)−Φ(πt) ≥ 1

β

∑
i Es∼νπ

t+1
i

,πt
i
logZt,s

i

exists, algorithm 5 asymptotically converges to a Nash equilibrium. Also c > 0.

Note that ∥Aπ∥∞ ≤ ∥Qπ∥∞ + ∥V π∥∞ ≤ 2κ for any π ∈ Π. With Lemma 26 and Lemma 27 the following lemma
holds.

Lemma 28 (Restatement of Lemma 8). If all stationary points of the potential function Φ(θ) = Φ(π(θ)) are
isolated, β ≤ max{ 1−Γ

(N−1)(κQ+Sκ2) ,
1−Γ
2LΦ
} and β ≤ 1

2κ , Algorithm 5 asymptotically converges to a Nash equilibrium.

Also c > 0.

Lemma 29 (Lemma 21 Zhang et al. (2022)). When β∥Aπ∥∞ ≤ 1 for any π, logZi,s
t ≥ c

3 (βmaxai
A

πt

i (s, ai))
2.

Theorem 9 (Restatement of Theorem 4). If all stationary points of the potential function Φ(θ) = Φ(π(θ)) are
isolated, when β ≤ max{ 1−Γ

(N−1)(κQ+Sκ2) ,
1−Γ
2LΦ
} and β ≤ 1

2κ , the regret of Algorithm 5 is bounded

Nash-regret∗(T ) ≤ 3CΦ

cβ(1− Γ)T
.

Proof.

Nash-gap(t) = max
i

(max
π′
i

ρ
π′
i,π

t
−i

i − ρ
πt
i ,π

t
−i

i )

(a)
= E

s∼ν
πi,π

t
−i

∑
ai

πi(ai|s)A
πt

i (s, ai)

≤ max
s,ai

A
πt

i (s, ai).
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In (a), assume i attains the maximum in maxi and πi belongs argmaxπ′
i
. Apply the result in Lemma 26:

Φ(πt+1)− Φ(πt) ≥ 1

β

∑
i

E
s∼νπ

t+1
i

,πt
i
logZt,s

i

≥1− Γ

β
max

s

c

3
(βmax

ai

A
πt

i (s, ai))
2 ≥ cβ(1− Γ)

3
Nash-gap(t)2.

Therefore, we have

Φ(πT )− Φ(π0)

T
≥cβ(1− Γ)

3
Nash-regret∗(T ).

Note that Φ(πT )− Φ(π0) ≤ CΦ, the desired result can be shown.
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