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Abstract

We propose a new class of linear Transformers
called FourierLearner-Transformers (FLTs),
which incorporate a wide range of relative po-
sitional encoding mechanisms (RPEs). These
include regular RPE techniques applied for
sequential data, as well as novel RPEs oper-
ating on geometric data embedded in higher-
dimensional Euclidean spaces. FLTs con-
struct the optimal RPE mechanism implicitly
by learning its spectral representation. As
opposed to other architectures combining ef-
ficient low-rank linear attention with RPEs,
FLTs remain practical in terms of their mem-
ory usage and do not require additional as-
sumptions about the structure of the RPE
mask. Besides, FLTs allow for applying cer-
tain structural inductive bias techniques to
specify masking strategies, e.g. they provide
a way to learn the so-called local RPEs intro-
duced in this paper and give accuracy gains as
compared with several other linear Transform-
ers for language modeling. We also thoroughly
test FLTs on other data modalities and tasks,
such as image classification, 3D molecular
modeling, and learnable optimizers. To the
best of our knowledge, for 3D molecular data,
FLTs are the first Transformer architectures
providing linear attention and incorporating
RPE masking.
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1 INTRODUCTION

Transformers have revolutionized the landscape of ma-
chine learning, introducing a paradigm shift in the
way that people approach complex tasks in natural
language processing (NLP) [Devlin et al., 2019], com-
puter vision (CV) [Dosovitskiy et al., 2021], molecular
modeling [Jumper et al., 2021], and beyond.

The largest computational bottleneck in Transformers
is also the source of their success, the attention module.
The attention module propagates signals between dif-
ferent tokens in the input sequence and has quadratic
time and space complexity with respect to the input
length L, which limits its scalability to long sequences.
Thus, designing efficient attention modules has been
an active area of research. Recently, the research on
“efficient” Transformers has taken on new importance
as the size of Transformer models grew from the GPT-1
architecture of “only” 117M parameters to GPT-3 with
175B parameters, a 1000× increase within just two
years [Brown et al., 2020].

One class of efficient Transformers is based on
sparse attention [Li et al., 2019, Vaswani et al., 2021a,
Zaheer et al., 2020, Roy et al., 2021, Vyas et al., 2020,
Kitaev et al., 2020, Sun et al., 2022]. These methods
do not aim at approximating the regular attention, but
rather propose simpler and more tractable attention
mechanisms, sometimes with additional constraints
(e.g. identical queries and keys [Kitaev et al., 2020]).
Another popular class of efficient Transformers is based
on the kernelized attention [Choromanski et al., 2021,
Tsai et al., 2019, Katharopoulos et al., 2020]. The key
idea is to find an approximate low-rank decomposi-
tion of the attention matrix and leverage it to improve
space and time complexity of the attention mecha-
nism via the associativity property of matrix multi-
plications. Performer [Choromanski et al., 2021] is a
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successful example of this model class. In contrast to
previously discussed methods, Performer’s approximate
attention matrix (which is never explicitly constructed
but rather implicitly used) is an unbiased estimate of
the original attention matrix encoding similarities be-
tween tokens via the softmax kernel. Performers have
been adopted into many Transformer stacks to provide
linear space and time complexity [Yuan et al., 2021,
Horn et al., 2021, Tay et al., 2021, Xiao et al., 2022].

Unfortunately, the simplicity of Performers comes at
a price. It is well known that incorporating structural
inductive priors – which is usually implemented via
various additive relative masking mechanisms in regu-
lar attention architectures – is difficult for Performers.
We refer to these methods as Relative Positional En-
codings (RPEs) [Shaw et al., 2018, Raffel et al., 2020,
Li et al., 2021, Luo et al., 2022]. RPEs play a critical
role in improving the performance of Transformers
in long-range modeling for language [Dai et al., 2019],
speech [Liutkus et al., 2021], vision [Wu et al., 2021],
and genomic data [Žiga Avsec et al., 2021]. However,
at first glance, Performers are not compatible with
general RPE techniques, since they seem to require
explicit materialization of the attention matrix to ap-
ply the RPE mask, which is exactly what Performers
avoid in order to achieve computational improvements.
Substantial efforts are made to reconcile Performers
with RPEs (more details in Sec. 2), but so far all
these attempts fall short of providing two properties at
the same time: (a) practical computational gains, and
(b) inclusion of general RPE methods, for inputs with
nontrivial topological structures.

In this paper, we propose a new class of linear Trans-
formers called FourierLearner-Transformers (FLTs),
which incorporate a wide range of relative positional
encoding mechanisms (RPEs). These include regu-
lar RPE techniques applied for sequential data, and
novel RPEs operating on geometric data embedded in
higher-dimensional Euclidean spaces (e.g. molecular
structures). FLTs construct the optimal RPE mecha-
nism implicitly by learning its spectral representation,
and enjoy provable uniform convergence guarantees. As
opposed to other architectures combining efficient low-
rank linear attention with RPEs, FLTs remain practical
in terms of their memory usage and do not require ad-
ditional assumptions about the structure of the RPE
mask. Besides, FLTs allow the application of certain
structural inductive bias techniques to specify masking
strategies, e.g. they provide a way to learn what we
call local RPEs, introduced in this paper and provid-
ing accuracy gains compared with several other linear
Transformers for language modeling. We also thor-
oughly test FLTs on other data modalities and tasks,
such as image classification and molecular modeling.

To the best of our knowledge, for 3D molecular data,
FLTs are the first Transformer architectures providing
linear attention and incorporating RPE masks, which
broadens the scope of RPE-enhanced linear attention.

To summarize, our main contributions are as follows:

• We introduce the proposed RPE-enhanced linear
attention, FourierLearner-Transformers (FLTs).
FLTs are applicable to not only sequential data
(e.g., texts) but also geometric data embedded
in higher-dimensional Euclidean spaces (e.g., 3D
molecular data), significantly broadening the scope
of RPE-enhanced linear attention.

• We provided detailed theoretical analysis on FLTs,
including the uniform convergence and sample
complexity bound on its approximation (Sec. 4.1).
We discuss several instantiations, in particular
FLTs with so-called Gaussian mixture RPEs, shift-
invariant kernel RPEs and local RPEs (Sec. 4.3).

• We extensively evaluate FLTs on language model-
ing (Sec. 5.1), image classification (Sec. 5.2), and
molecular property predictions (Sec. 5.3). Our ex-
periments show that FLTs can be easily applied to
a wide range of data modalities and demonstrate
strong performance and efficiency.

2 RELATED WORKS

Kernelized attention with RPE. One of the
first attempts to address the problem of combin-
ing kernelized attention Transformers with RPEs
is [Liutkus et al., 2021], where two variants, namely
sineSPE and convSPE, are proposed. Both variants
model the RPE mask as a stationary position kernel
with a Toeplitz mask structure. While their complexity
is linear in the sequence length L, extra dependency on
the number of sinusoidal components T (for sineSPE) /
the convolution filter lengths P (for convSPE) is intro-
duced. In practice, T or P has to be sufficiently small
due to computational budgets. Besides, they constrain
the RPE mask to be a valid kernel matrix, while our
FLTs do not require such assumptions. Both sineSPE
and convSPE significantly underperform FLTs on lan-
guage modeling (Sec. 5.1). And they cannot be applied
for more general RPEs with tokens embedded in the
higher-dimensional Euclidean spaces, e.g., RPEs for
3D molecular data.

Recently, [Luo et al., 2021, Choromanski et al., 2022a]
show that the RPE mechanism can be combined
with Performers in O(L log(L)) time complexity. The
method relies on the elegant observation that log-linear
time complexity can be achieved as long as the ex-
ponentiated RPE mask supports fast matrix-vector
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multiplication. RPEs for sequential data satisfy this
condition since the corresponding masks have a Toeplitz
structure. However, this method has large space com-
plexity and high memory consumption in practice (Sec.
5.1). Moreover, it heavily relies on the structure of
sequential data and does not apply to 3D molecular
data where the RPE masks do not have a Toeplitz
structure.

Random Fourier features (RFFs). There
has been voluminous literature on the field of
RFFs [Rahimi and Recht, 2007, Avron et al., 2017,
Szabó and Sriperumbudur, 2019, Li and Li, 2021,
Choromanski et al., 2022b, Likhosherstov et al., 2022,
Chowdhury et al., 2022]. However, the research on
learnable RFF variants [Sinha and Duchi, 2016] is
relatively new. Furthermore, prior works are mostly
narrowed to applying RFFs in the context of positive
definite (PD) kernels, while our work breaks this
limitation since RPEs do not need to be defined
by PD kernels. Several papers also explore the
development of Transformer-based models whose
attention mechanism operates in the spectral domain
[Tamkin et al., 2020, Moreno-Pino et al., 2023], but
they do not study efficient RPE modeling.

Long sequence modeling. Applying deep learning
models to long sequences is an active research direc-
tion. We study efficient Transformer models for long se-
quence modeling. While our focus lies within the Trans-
former realm, it’s worth noting the existence of alterna-
tive, non-Transformer architectures [Geng et al., 2021,
Bello, 2021, Gu et al., 2022]. Beyond efficiency,
[O’Connor and Andreas, 2021, Liu et al., 2024] probe
context usage of long sequence language models;
[Press et al., 2022, Ruoss et al., 2023, Li et al., 2024]
design sequence models with length generalization abil-
ity (i.e., training on short sequences and generalize to
long sequences); [Yun et al., 2020, Yang et al., 2024]
study the theoretical capability of those models. Note
that existing works most focus on one data modality,
while FLT is evaluated across a wide range modalities.

3 PRELIMINARIES

General RPE mechanism in Transformers. Con-
sider an input sequence X ∈ RL×din where L and din
denote the number and embedding size of tokens. The
self-attention module in Transformers linearly projects
the input into three matrices Q,K,V ∈ RL×d called
queries, keys and values respectively. We also associate
all the tokens with positional features r1, ..., rL ∈ Rℓ

that are used to define the relative positional encoding
(RPE) mechanism below:

Definition 3.1 (General RPE for attention). General

Relative Positional Encoding enhanced attention is of
the following form, where N = [f(ri − rj)]i,j∈[L] ∈
RL×L is the so-called RPE mask1 and f : Rℓ → R is a
(potentially learnable) functon:

Att(Q,K,V,N) = D−1AV,

where A = exp

(
N+

QK⊤
√
d

)
,D = diag(A1L). (1)

Here exp(·) is applied element-wise, 1L is the all-one
vector of length L, and diag(·) is a diagonal matrix with
the input vector as the diagonal. The time complexity
of computing Eq. (1) is O(L2d).

Discussions. Definition 3.1 is highly general because
one can flexibly choose the representation the positions
ri and the function f . For example, for sequential data
like texts, positional indices in the sequence serves as
the positional features (ri = i), and the RPE mask
is a learnable Topelitz matrix (f(i − j) = ci−j with
parameters {ck}L−1

k=−(L−1)) [Raffel et al., 2020]. For ge-
ometric data like 3D molecular structures, one can
view rj as the 3D coordinates rj of tokens (e.g., atoms)
and use some domain-specific f [Shi et al., 2022]. We
emphasize that the general formulation is novel and
important. It motivates the highly general FLTs appli-
cable to a wide range of data and tasks, as opposed to
existing approaches that heavily rely on the structure
of sequential data and Toeplitz RPE masks (Sec. 2).

Kernelized linear attention. Kernelized attention
techniques, e.g., Performers, leverage a decomposition
of the attention matrix A to avoid explicit materializa-
tion of A, hence avoid the quadratic complexity in L.
For the softmax attention, this is achieved by lineariz-
ing the softmax kernel exp(x⊤y) via random features,
i.e., constructing for certain randomized mappings
ϕ : Rd → Rm such that exp(x⊤y) = E[ϕ(x)⊤ϕ(y)].

Define Q′,K′ ∈ RL×m as matrices of rows given as
ϕ(q⊤

i d
− 1

4 )⊤ and ϕ(k⊤
i d

− 1
4 )⊤ respectively. Then the

above linearization of softmax kernel directly leads
to the following approximate algorithm for attention
without RPE masks:

ÂttK(Q,K,V) = D̂−1(Q′(K′⊤V))

where D̂ = diag(Q′(K′⊤1L)). (2)

Here ÂttK stands for the approximate attention and
brackets indicate the order of computations. The time
and space complexity of this mechanism are O(Lmd)
and O(Lm+md+Ld) respectively, compared to O(L2d)
and O(L2+Ld) for regular attention. Thus, for m≪ L,
Performers provide substantial computational improve-
ments.

1We use [L] to denote {1, · · · , L} in this paper.
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4 METHOD

4.1 Efficient RPE-enhanced attention

The algorithm presented in Eq. (2) does not incor-
porate RPE mechanisms. In this subsection, we first
present in Theorem 4.1 a novel technique to derive
the (approximate) low rank decomposition of gen-
eral RPE mask N in Definition 3.1. Next, we intro-
duce FourierLearner-Transformer (FLT), a Performer-
friendly RPE attention mechanism based on the de-
composition.

Theorem 4.1. Given f : Rℓ → R and N = [f(ri −
rj)] ∈ RL×L as defined in Definition 3.1, denote by g
the Fourier Transform of f . Assume p is some prob-
ability density function supported over Rℓ. Sample
ξ1, · · · , ξr

iid∼ p and define the following random feature
maps (where i =

√
−1):

φ(z) = 1√
r

[
e2πiz

⊤ξ1

√
g(ξ1)
p(ξ1)

, · · · , e2πiz
⊤ξr

√
g(ξr)
p(ξr)

]⊤
;

ψ(z) = 1√
r

[
e−2πiz⊤ξ1

√
g(ξ1)
p(ξ1)

, · · · , e−2πiz⊤ξr

√
g(ξr)
p(ξr)

]⊤
,

Define N1 = [φ(r1), · · · , φ(rL)]⊤ ∈ RL×r and N2 =

[ψ(r1), · · · , ψ(rL)]⊤ ∈ RL×r. Then E[N1N2] = N.

Performer-friendly RPE attention. Theorem 4.1
implies that N̂ = N1N2 is a low-rank unbiased esti-
mator of N. Consequently, a Performer-friendly RPE
attention mechanism with linear complexity can be ob-
tained. Specifically, let Q̂ = [N1,Qd

− 1
4 ] ∈ RL×(m+r),

K̂ = [N2,Kd
− 1

4 ] ∈ RL×(m+r) where the concatenation
is conducted along the second axis. Then

Â
def
= exp

(
N̂+

QK⊤
√
d

)
= exp

(
Q̂K̂⊤

)
. (3)

In Eq. (3), RPE-masked attention is now translated to
regular softmax attention that admits “Performeriza-
tion” as described in Eq. (2). This observation natu-
rally leads to an efficient RPE-enhanced attention algo-
rithm, with a pseudo-code implementation provided in
Algorithm 1. The time and space complexity of the algo-
rithm are O(L(m+r)d) and O(L(m+r)+(m+r)d+Ld),
respectively.

In Algorithm 1, instead of learning f and trying to com-
pute its Fourier Transform g for the low-rank decom-
position of N, we propose to directly learns g and refer
to our approach as FourierLearner-Transformer
(FLT). Note that FLT effectively learns a spectral rep-
resentation of f .

We point out that our formulations are general enough
to cover a wide range of RPE variants used in practice:

Regular RPE for sequential data. In this setting the
input sequence does not have richer geometric structure
and thus vectors rj can be identified as the indices of
tokens in the sequence, i.e., rj = j. Thus, FLT learns
a function g : R→ C (Sec. 5.1, 5.2).

RPE for 3D-data. For this input type (e.g. 3D molec-
ular data), it is natural to identify rj as the 3D coordi-
nates of atoms. Thus, FLT learns a function g : R3 →
C. Note that existing methods [Liutkus et al., 2021,
Luo et al., 2021, Choromanski et al., 2022a] are inap-
plicable while FLT works well in this setting (Sec. 5.3).

Finally, we note that FLT necessitates specifying some
distribution p supported over Rℓ to satisfy the assump-
tion in Theorem 4.1. Practical considerations dictate
that p needs to be chosen in such a way that we can
efficiently sample from it and compute its density func-
tion. In our experiments, we use Gaussian distributions
zero mean and unit variance/learnable variance for p.

4.2 Theoretical analysis of FLT

We have theoretically investigated FLT’s RPE approx-
imation. In particular, we prove the following theorem,
which states that under mild assumptions, the esti-
mated RPE mask N̂ can approximate the true RPE
mask N up to arbitrary precision with high probabil-
ity. Besides, the theorem provides sample complexity
bound for such accurate approximation.
Theorem 4.2 (Uniform convergence and sample com-
plexity for approximation). Given L vectors r1, ..., rL ∈
Rℓ, define the RPE attention mask N = [f(ri −
rj)]i,j∈[L]. Assume that c = ∥|g(x)|/p(x)∥∞, where
g is the Fourier Transform of f and p is some proba-
bility density function over Rℓ.

For any ε, δ > 0, if the number of random features
r = Θ

(
c2

ε2 log
L
δ

)
, then FLT’s RPE approximator N̂

satisfies

P
(
∥N− N̂∥max ≤ ε

)
> 1− δ,

where ∥ · ∥max denotes the max norm of a matrix.

We also prove variance bound of the estimated RPE
and present the result in the supplementary material.
The proofs and detailed discussions on the theoretical
results can be found in the supplementary material as
well.

4.3 The topology of the Fourier Transform

Nowhere in the analysis in Sec. 4.1 have we relied
on any structural properties of f . In particular, the
matrix N does not need to be a valid positive definite
kernel-matrix or even symmetric. However, if needed,
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Algorithm 1 FourierLearner Transformer: linear-complexity RPE-enhanced attention

Require: Input queries, keys, values Q,K,V ∈ RL×d and positions R ∈ RL×ℓ; random feature map for attention
ϕ (see Sec. 3); Fourier Transform of the RPE function gθ (potentially parametrized by θ).

Output: Approximate RPE-enhanced attention (Definition 3.1)
1: # Apply random feature maps for RPE approximation.
2: # φ and ψ are defined in Theorem 4.1 and applied column-wise; gθ is called in φ and ψ.
3: N1 ← φ(R), N2 ← ψ(R)
4: # Concatenate along the second axis.
5: Q̂← [N1,Qd

− 1
4 ], K̂← [N2,Kd

− 1
4 ]

6: # Apply random feature map ϕ.
7: Q′ ← ϕ(Q̂), K′ ← ϕ(K̂)
8: # Kernelized linear attention (Sec. 3). Brackets indicate the order of computations.
9: B1 ← Q′(K′⊤V), B2 ← Q′(K′⊤1L), O← diag(B2)

−1B1.
10: return O

desired inductive bias can be incorporated into FLT via
certain parameterization schemes used to train g, as
we discuss in this subsection.

Gaussian mixture RPEs. One of the most general
parameterizations of g that we have considered is the
so-called Gaussian mixture variant:

g(ξ) =

T∑
t=1

wt exp

(
−∥ξ − µt∥2

2σ2
t

)
.

Therefore, the FT g is parameterized by (2 + ℓ)T num-
bers: w1, ..., wT , σ1, ..., σT ∈ R, µ1, ...,µT ∈ Rℓ. In the
special case where T = 1, the FT becomes a renormal-
ized Gaussian kernel and as such, defines f as another
Gaussian kernel.

Shift-invariant kernels for RPE masks. It is
straightforward to apply the FLT mechanism for RPEs
to make N a kernel-matrix of any shift-invariant kernel
[Rahimi and Recht, 2007]. By Bochner’s Theorem, for
a shift-invariant kernel: K : Rℓ × Rℓ → R, there exists
a corresponding probabilistic distribution pK and some
positive constant C > 0, such that

K(x,y) = C

∫
Rd

ei(x−y)⊤ξpK(ξ)dξ

Thus, to obtain an unbiased approximation of the RPE
mask N given by the kernel matrix [K(si, sk)]i,k=1,...,L

for the shift-invariant kernel K, it suffices to take
rj = 1

2π sj , g(ξ) = CpK(ξ) for j = 1, ....r. Even if
a particular class of shift-invariant kernels has been
chosen, FLT still provides a way to learn its specific
instantiation through learning an appropriately param-
eterized g.

Local RPEs. Through the corresponding structured
parameterized Fourier Transforms g, FLT is also ca-
pable of modeling various schemes where the RPE

mechanism needs to be applied only locally and regu-
lar attention is to be used for tokens far enough from
each other. We call such strategies local RPEs. Lo-
cal RPEs can be derived for both sequential data and
high-dimensional geometric data.

The most basic local RPE takes rj = j and, for an
attention radius v > 0 and C ∈ R, defines f as2

fv,C(∆r) = C · I[|∆r| ≤ v]. (4)

Such an RPE mechanism would (de)amplify the regular
attention score between tokens close to each other by a
certain multiplicative amount and might play a similar
role as local attention [Vaswani et al., 2021b]. It turns
out that the FT for such a f has a particularly simple
form:

gfv,C
(ξ) = C · sin(2πvξ)

πξ
.

Interestingly, RPEs from Eq. (4) can be easily general-
ized to a higher-dimensional local RPE. In this case, we
consider the positional encoding function f : Rℓ → R
of the following form:

fv,C(∆r) =

ℓ∏
j=1

C · I[|∆r(j)| ≤ vj ] (∆r ∈ Rℓ),

where ∆r(j) denotes the j-th entry of ∆r. The corre-
sponding Fourier Transform g can be factorized as

gfv,C
(ξ) = C ·

ℓ∏
j=1

sin(2πvjξj)

πξj
.

This result can be further generalized. Consider the
function g of the following form:

gv1,...,vℓk1,...,kℓ
(ξ) = C ·

ℓ∏
j=1

sinkj (2πvjξj)

πξj

2Note that instead of using one indicator function in Eq.
(4), one can also apply a linear combination of many with
learnable radii and a list of coefficients.
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The inverse Fourier Transform of g can be written as

f(∆r) =M ·
d∏

j=1

f
vj
j (∆rj),

where M is a constant and each fvjj is (a) continuous,
(b) symmetric, (c) with compact support of length
depending on vj , and (d) piece-wise a polynomial of
order kj − 1. Such functions f are natural candidates
for continuous local RPE mechanisms for tokens with
positions embedded in Rℓ and any ℓ ≥ 1. Examples of
local RPE variants for ℓ = 2, supported via FLT, are
presented in Fig. 4 in Appendix C.1.

The above theoretical results can be directly obtained
via straightforward integration and a realization that
the N -dim FT of a function: h(x1, · · · , xN )

def
= h1(x1) ·

· · · · hN (xN ) can be represented as the product of 1D
FTs of the individual components hj .

Remark. We point out that all the three parametriza-
tion schemes above are parameter-efficient. In all our
experiments, FLT introduced < 0.03M additional pa-
rameters for relative positional encoding. Note that
the number of additional parameters does not increase
with the input sequence length.

5 EXPERIMENTS

In this section, we provide experimental results on
diverse tasks to demonstrate the effectiveness of the
FLT architecture. We first study language modeling
with sequential text data, which is a standard setting
for efficient RPE-enhanced attention and enables thor-
ough comparisons with existing baselines. Next, we
consider the computer vision domain and test FLTs on
several image classification datasets. Finally, to show
that FLTs broaden the scope of RPE-enhanced efficient
Transformers, we experiment on molecular property
prediction with complicated RPE masks that exist-
ing efficient RPE-enhanced attention baselines cannot
handle. The complete experimental setup, the hyper-
parameters for each of the tasks, and hardware details
are provided in the supplementary material.

5.1 Language modeling

We conduct experiments on the WikiText-103 language
modeling task to show the effectiveness of our proposed
method in NLP applications. Most existing baselines
are applicale to sequential text data. Thus, we provide
comprehensive empirical comparisons on model quality
and efficiency with baselines in this subsection.

Compared methods. In this experiment, we study
FLT with two RPE vaiants, Gaussian mixture RPE and

Table 1: Language model perplexity scores on the
WikiText-103 validation set. The lowest perplexity is
highlighted in bold.

Model Perplexity

Linear Trans. [Katharopoulos et al., 2020] 38.4
RFA-Gaussian [Peng et al., 2021] 33.6
RFA-arccos [Peng et al., 2021] 36.0
RFA-GATE-Gaussian [Peng et al., 2021] 31.3
RFA-GATE-arccos [Peng et al., 2021] 32.8
Performer [Choromanski et al., 2021] 31.1
CosFormer [Qin et al., 2022] 30.7

Performer-sineSPE [Liutkus et al., 2021] 38.0
Performer-convSPE [Liutkus et al., 2021] 37.8
Log-linear Performer [Luo et al., 2021] 30.6

FLT (Gaussian mixture RPE) (ours) 30.3
FLT (local RPE) (ours) 30.1

local RPE. We compare our model with the following
strong baselines:

• Linear Transformer [Katharopoulos et al., 2020],
which uses kernelized low-rank attention with
elu(·) + 1 as the feature map.

• Random feature attention (RFA) [Peng et al., 2021],
which has two variants (Gaussian and arc-cosine)
and an optional gating mechanism.

• The regular Performer [Choromanski et al., 2021],
which applies the FAVOR+ mechanism for atten-
tion matrix approximation.

• CosFormer [Qin et al., 2022], which designs a
linear operator and a cosine-based distance re-
weighting mechanism for attention matrix approx-
imation.

• Performer-SPE [Liutkus et al., 2021], which in-
corporates a special class of RPE into low-rank
attention and has two variants (sineSPE and con-
vSPE).

• The log-linear Performer [Luo et al., 2021] which
extends Performers to work with an arbitrary
Toeplitz RPE attention mask.

Implementation details. All the tested models are
efficient Transformers based on kernelized low-rank at-
tention, with 6 decoder layers. More details regarding
model configurations and training are in the supple-
mentary material. We use the validation perplexity as
the evaluation metric; lower perplexity indicates better
performance.
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Figure 1: Model forward speed (left) and peak memory (right) comparisons between FLT and baselines
under different input sequence lengths.

Results. The results are shown in Table 1. Both
variants of our FLT outperform all the baselines.
Compared with efficient Transformers without RPE,
FLT achieves much stronger performance. For example,
the validation perplexity of our FLT with local RPE
is 1.0 point lower than that of the regular Performer,
indicating that our method brings substantial perfor-
mance gains by incorporating RPE into the attention
module.

Compared with other efficient Transformer variants
with RPE, our FLT is still very competitive. For ex-
ample, our FLT achieves lower perplexity than the
strong log-linear Performer baseline. Note that log-
linear Performer relies on more expensive FFT and
is less efficient in practice. Specifically, the time and
space complexity of the FLT are O(L(m + r)d) and
O(L(m+ r) + (m+ r)d+ Ld), respectively, while the
time and space complexity of log-linear Performer are
O(Lmd logL) and O(Lmd). Thus, our FLT obtains
both better quality and efficiency than existing efficient
RPE-enhanced Transformer variants on this task.

In addition, we further investigate the attention ma-
trices of FLT3. We visualize the attention matrices of
different attention heads in an FLT model trained on
WikiText-103 language modeling in Fig. 5 in Appendix
C.2. The visualizations show that some attention heads
pay more attention to nearby tokens, while others shows
global attention patterns. Quantitatively, the average
attention probability over the most distant/nearby 10%
tokens is 0.068/0.279 respectively. Thus, FLT learns lo-
cality bias in language while maintaining the advantage
to capture global contexts and leverage information in
distant tokens.

Computational cost comparisons. As discussed
above, FLT enjoys much better time/space complex-
ity compared with the strongest baseline method, the
log-linear Performer. To showcase FLT’s efficiency in
practice, we construct one Transformer layer with 12

3FLT does not explicitly construct attention matrices
during training so that it avoids the quadratic computa-
tional complexity. However, we can still materialize the
attention matrices approximated by FLT

Table 2: Image classification accuracy comparisons.
Log-linear Performer is omitted due to its infeasible
memory complexity and out-of-memory issues. The
best performances are highlighted in bold.

ImageNet Places365 FashionMnist

Performer 75.1% 55.0% 91.1%
CosFormer 76.2% 55.6% 91.6%
FLT (ours) 77.4% 56.0% 92.1%

attention heads whose hidden dimension is set to 768,
and FFN dimension is set to 3072. We feed inputs with
varying lengths and a batch size of 8 into the model and
measure the efficiency. We report the average forward
time and the maximum peak memory consumption
across 5 runs under different input sequence lengths in
Fig. 1. We compare FLT with the strongest baseline,
log-linear Performer, and we also include the regular
Performer as a reference. It’s clear that FLT only in-
troduces negligible memory overhead compared with
the regular Performer, and scales much better than
the log-linear Performer in practice, in terms of both
model forward time and peak memory. Therefore, our
experiment show that FLT is both more accurate and
more scalable than the baselines on sequential text
data.

5.2 Image classification

We thoroughly benchmarked FLT variants of Vision
Transformers (ViTs) [Dosovitskiy et al., 2021] on sev-
eral image classification datasets, including ImageNet,
Places365, and FashionMnist. Details of these datasets
can be found in the supplementary material.

Compared methods and implementation details.
We compare FLT with the regular Performer as well
as the most competitive competitor from Sec. 5.1,
CosFormer and log-linear Performer. All tested ViTs
consist of 12 layers with 12 attention heads in each
layer. More details regarding model configurations
and training are in the supplementary material. For
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Table 3: Comparisons of FLT with the regular Per-
former on OC20 IS2RE task. The suffix “-kL” means
the model consists of k layers, e.g., FLT-10L refers to a
10-layer FLT. The evaluation metrics are Mean Absolute
Error (MAE, lower is better) of the energies and the per-
centage of Energies within a Threshold (EwT, higher is
better). We highlighted in bold the best performance.

Energy MAE (eV) EwT (%)

Performer-12L 0.5454 4.90
FLT-10L (ours) 0.5157 5.44
FLT-12L (ours) 0.5046 5.33

Figure 2: Validation loss of FLTs and the regular
Performer on the IS2RE task of OC20 dataset.

our FLT variants, we apply Gaussian mixture RPEs
(Sec. 4.3) with the number of Gaussian mixture modes
T set to 25 and the number of random features for
RPE-encoding r set to 64.

Results. The results are presented in Table 2. The
log-linear Performer architecture run out of memory
for m = 128 and does not train when m was reduced
(with a fixed batch size of 4096) to fit the assigned
memory. Thus, it is omitted in the comparison. Com-
pared with the other two baselines, our FLT obtains
strongest performances on all the three datasets. For
instance, on ImageNet, FLT provides a 2.3% accuracy
improvement over the regular Performer; and is even
1.2% better than the strong CosFormer baseline. The
results demonstrate that FLT also works well on image
data.

5.3 Molecular property prediction

As highlighted in previous discussions, FLT broadens
the scope of RPE-enhanced efficient Transformers and
can be applied to geometric data embedded in high-
dimensional Euclidean spaces. To validate this claim,
in this subsection, we further evaluate our FLT model
on the molecular property prediction task to show its
capability to handle 3D input data and complicated
(non-Toeplitz) RPE masks. To the best of our knowl-
edge, in this scenario, FLT is the first Transformer
providing RPE-enhanced scalable attention that enjoys
linear complexity with respect to the number of input
tokens.

We use a publicly-available large-scale electrocatalysts
dataset - the Open Catalyst 2020 (OC20) dataset and
focus on the IS2RE task which requires to predict
the energy of the relaxed structure given the initial
structure of solid catalysts with adsorbate molecules
[Chanussot* et al., 2021].

Compared methods. Existing technicques consid-
ered in the previous experiments do not apply to this
setting. Thus, we only compare our FLT with the reg-

ular Performer without RPE. For the FLT model, we
consider to approximate RPE masks based on Gaussian
basis functions, which are popularly used in neural net-
works for molecular modeling [Gasteiger et al., 2021,
Shi et al., 2022, Luo et al., 2023]. Specifically, the
RPE mask is defined as N = [f(ri− rj)]i,j∈[L] ∈ RL×L,
where ri ∈ R3 is the position of the i-th input atom, L
is the total number of input atom, and

f(r) =

T∑
t=1

wt

(
√
2πσt)3

exp

(
−∥r∥

2

2σ2
t

)
.

Note that RPE only calculates the relative distances
between atoms, which naturally preserves many invari-
ant and equivariant properties. It easy to see that the
Fourier Transform of f is

g(ξ) =

T∑
t=1

wt exp
(
−2π2σ2

t ∥ξ∥2
)
,

which enables us to approximate the RPE mask N in
FLTs using the technique described in Sec. 4.

Implementation details. We adopt most of the
training strategies of 3D-Graphormer [Shi et al., 2022].
Specifically, we trained a regular Performer with 12
layers and two FLT with 10 and 12 layers respectively.
More details regarding model configurations and train-
ing are in the supplementary material. We evaluate
the model performance on the in-domain validation set.
We use Mean Absolute Error (MAE) of the energies and
the percentage of Energies within a Threshold (EwT)
of the ground truth energy to evaluate the accuracy of
the predicted energies.

Results. The results are presented in Table 3. We
also present the validation loss curves of the models in
Fig. 2 for a more comprehensive comparison. Clearly,
our FLT models obtain better performance in both
evaluation metrics and produce more accurate energy
predictions. For example, the energy MAE of the 12-
layer FLT is more than 0.04eV lower than that of the
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Adam
Performer/FLT
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LSTM
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Figure 3: Results of learnable optimizer experiments. Left: Adam & learnable optimizers using FLT and
S4 on the task of training ViT-Base classifier on ImageNet. Right: Adam & various learnable optimizers on the
task of optimizing Rastrigin-type functions (from private conversation with the authors of [Jain et al., 2023]).

12-layer regular Performer, which indicates that the
use of RPE effectively increases the predictive power
of the model. One may argue that the use of RPE
in FLT may add some computational overhead and
increase the number of model parameters. However, it
should be noted that a shallower 10-layer FLT can also
significantly outperform the 12-layer regular Performer,
while being faster and using less parameters.

5.4 Learnable optimizers

FLT has also been compared independently by au-
thors and other researchers on longer contexts with
other classes of efficient architecture, including LSTM
[Hochreiter and Schmidhuber, 1997] and state-space
models [Gu et al., 2022]. The corresponding task is
practical and challenging: applying Transformers as
memory models in learnable optimizers (with con-
text length up to 2000). In this setting, long-range
temporal (to understand the history of the optimiza-
tion) and spatial (to understand the landscape of
the loss function more globally) reasoning is critical
[Jain et al., 2023, Gärtner et al., 2023].

Compared methods and implementation de-
tails. In the first experiment, FLT-based learnable
optimizer is compared against S4-based learnable op-
timizer [Gu et al., 2022] and standard non-learnable
Adam optimizer on ImageNet classification.

In the second experiment, FLT is further applied
on population(swarm)-based learnable optimizers, in
which the masking mechanism implemented by FLT
was applied to modulate how the members of the pop-
ulation attend to each other. The baselines include
standard non-learnable Adam optimizer as well as learn-
able optimizers based on LSTM and Performer. The
evaluation is conducted on Rastrigin-like functions.

Results. The results of the first/second experiment
are shown in the left/right panel of Fig. 3. We note
that in both experiments, FLT-based approach pro-
vides drastic improvements over all other variants. The
results shows the consistent effectiveness of our model
in capturing long range dependencies in learnable opti-
mizers.

6 CONCLUSIONS

We introduce FourierLearner-Transformers (FLTs)
that efficiently adapt the relative positional encod-
ing (RPE) mechanism into Performers - kernelized
implicit-attention Transformers with linear space and
time complexity. In contrast to other architectures com-
bining Performers with RPEs, FLTs maintain linear
complexity of the attention modules with no additional
structural assumptions regarding the RPE mask. We
provide theoretical analysis and show that FLTs can
accurately approximate RPE. We further conduct ex-
tensive experiments to show the efficiency and quality
of FLTs across a wide range of tasks and data modali-
ties, including texts, images, molecules, and optimizer
memory.
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A OMITTED THEORETICAL RESULTS AND PROOFS

We provide here omitted theoretical results, proofs, and discussions on FLT’s RPE approximation. We first prove
the RPE approximation proposed in the main paper is unbiased. Then we provide a variance bound and an
approximation guarantee for it.

For convenience of reading, we always state the theorem before providing the proof, even if the theorem has
appeared in the main body of the paper.

A.1 Unbiased RPE approximation

Theorem A.1. 4 Given f : Rℓ → R and N = [f(ri − rj)] ∈ RL×L as defined in Definition 3.1, denote by g the
Fourier Transform of f . Assume p is some probability density function supported over Rℓ. Sample ξ1, · · · , ξr

iid∼ p
and define the following random feature maps (where i =

√
−1):

φ(z) =
1√
r

[
e2πiz

⊤ξ1

√
g(ξ1)

p(ξ1)
, · · · , e2πiz

⊤ξr

√
g(ξr)

p(ξr)

]⊤
;

ψ(z) =
1√
r

[
e−2πiz⊤ξ1

√
g(ξ1)

p(ξ1)
, · · · , e−2πiz⊤ξr

√
g(ξr)

p(ξr)

]⊤
,

Define N1 = [φ(r1), · · · , φ(rL)]⊤ ∈ RL×r and N2 = [ψ(r1), · · · , ψ(rL)]⊤ ∈ RL×r. Then

E[N1N2] = N.

Proof. Be definition of N, it suffices to show that

f(ri − rj) = E
[
φ(ri)

⊤ψ(rj)
]
.

Note that g is the Fourier Transform of f . Therefore,

f(x) =

∫
Rd

e2πix
⊤ξg(ξ)dξ =

∫
Rd

e2πix
⊤ξ g(ξ)

p(ξ)
· p(ξ)dξ = Eξ∼p

[
e2πix

⊤ξ g(ξ)

p(ξ)

]
. (5)

⇒ f(ri − rj) = Eξ∼p

[
e2πir

⊤
i ξ

√
g(ξ)

p(ξ)
· e−2πir⊤j ξ

√
g(ξ)

p(ξ)

]
.

In the mean time, by definition of φ and ψ, we have

φ(ri)
⊤ψ(rj) =

1

r

r∑
k=1

e2πir
⊤
i ξk

√
g(ξk)

p(ξk)
· e−2πir⊤j ξk

√
g(ξk)

p(ξk)

Finally, note that ξ1, · · · , ξm ∼ i.i.d. p. By linearity of expectation, we have f(ri − rj) = E
[
φ(ri)

⊤ψ(rj)
]

and
conclude the proof.

A.2 Variance of RPE approximation

Lemma A.2. Assume that c = ∥|g(x)|/p(x)∥∞, where g is the Fourier Transform of the RPE function f and p
is the probability density function of some probabilistic distribution. Then the following is true for any z ∈ Rℓ:

Varξ∼p

[
e2πiz

⊤ξ g(ξ)

p(ξ)

]
≤ c2 − f(z)2. (6)

4This is Theorem 4.1 in the main paper.
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Proof. Recall that for a complex random variable Z, its variance is defined as

Var[Z] = E [(Z − E [Z])(Z − E [Z])∗] = E [ZZ∗]− E [Z]E [Z]
∗
, (7)

where ∗ denotes the conjugate.

Straightforward calculation gives

E
[(

e2πiz
⊤ξ g(ξ)

p(ξ)

)(
e2πiz

⊤ξ g(ξ)

p(ξ)

)∗]
=E

[
e2πiz

⊤ξ g(ξ)

p(ξ)
· e−2πiz⊤ξ g(ξ)

∗

p(ξ)

]
(8)

=E
[
|g(ξ)|2

p(ξ)2

]
≤ c2. (9)

Besides, Eq. (5) implies that

E
[
e2πiz

⊤ξ g(ξ)

p(ξ)

]
= f(z). (10)

Plugging the above two results into Eq. (7) yields Eq. (6) and hence concludes the proof.

Theorem A.3 (Variance of RPE approximation). Under the assumption of Lemma A.2, for any x,y ∈ Rℓ, the
variance of the approximation given by φ(x)⊤ψ(y) in Theorem A.1 satisfies

Var[φ(x)⊤ψ(y)] ≤ c2 − f(x− y)2

r
. (11)

Proof. Note that

φ(x)⊤ψ(y) =
1

r

r∑
t=1

e2πi(x−y)⊤ξt
g(ξt)

p(ξt)
, (12)

where the random features ξ1, · · · , ξr are r i.i.d. samples from the distribution p.

Setting z = x− y in Eq. (6) and considering r i.i.d. samples immediately yield Eq. (11).

A.3 Uniform convergence and sample complexity of RPE approximation

Theorem A.4 (Uniform convergence and sample complexity for approximation). 5 Given L vectors r1, ..., rL ∈ Rℓ,
define the RPE attention mask N = [f(ri − rj)]i,j∈[L]. Assume that c = ∥|g(x)|/p(x)∥∞, where g is the Fourier
Transform of f and p is some probability density function over Rℓ.

For any ε, δ > 0, if the number of random features r = Θ
(

c2

ε2 log
L
δ

)
, then FLT’s RPE approximator N̂ satisfies

P
(
∥N− N̂∥max ≤ ε

)
> 1− δ,

where ∥ · ∥max denotes the max norm of a matrix.

Proof. For any i, j ∈ {1, · · · , L}, the assumption c = ∥|g(x)|/p(x)∥∞ implies that almost surely∣∣∣∣e2πi(ri−rj)
⊤ξt

g(ξt)

p(ξt)

∣∣∣∣ ≤ c (∀ t ∈ {1, · · · , r}), (13)

where ξ1, · · · , ξr denote the r random features from the distribution p.

Note that Eq. (13) implies that both the real part and imaginary part of the estimated RPE is bounded. Applying
Hoeffding Inequality (to the real part and imaginary part) yields

P

(∣∣∣∣∣1t
r∑

t=1

e2πi(ri−rj)
⊤ξt

g(ξt)

p(ξt)
− f(ri − rj)

∣∣∣∣∣ > ε

)
< 4e−

rε2

4c2 . (14)

5This is Theorem 4.2 in the main paper.
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By union bound over i, j ∈ {1, · · · , L}, we have

P

(
∃ i, j ∈ {1, · · · , L}, s.t.

∣∣∣∣∣1t
r∑

t=1

e2πi(ri−rj)
⊤ξt

g(ξt)

p(ξt)
− f(ri − rj)

∣∣∣∣∣ > ε

)
< 4L2e−

rε2

4c2 . (15)

Equivalently, with probability at least 4L2e−
rε2

4c2 , we have∣∣∣∣∣1r
r∑

t=1

e2πi(ri−rj)
⊤ξt

g(ξt)

p(ξt)
− f(ri − rj)

∣∣∣∣∣ > ε (∀ i, j ∈ {1, · · · , L}) (16)

⇒ ∥N− N̂∥max ≤ ε. (17)

Set

r =
4c2

ε2
log

4L2

δ
= Θ

(
c2

ε2
log

L

δ

)
. (18)

Then we have
P
(
∥N− N̂∥max ≤ ε

)
> 1− 4L2e−

rε2

4c2 = 1− δ, (19)

which concludes the proof.

A.4 Discussions on the theoretical results

Theorem A.4 implies that FLT’s estimated RPE mask N̂ can approximate the true RPE mask N up to arbitrary
precision with high probability. Besides, note that the constant c can be viewed as fixed for a pretrained model
which does not depend on L. Thus, in order to obtain an arbitrarily accurate RPE approximator, the required
number of random features only scales logarithmically with L. This property is particularly appealing because
it indicates FLTcan remain accurate in the long sequence regimes while accelerating powerful RPE-enhanced
attention.

Theorems A.3 & A.4 also provide insights on finding the optimal p. Note that the variance and the sample
complexity both scale with c = ∥|g(x)|/p(x)∥∞, and lower c can potentially leads to better approximation.
Specifically, choosing p(x) ∝ |g(x)| minimizes c under the constraint of p being a probability density function.
The shift-invariant kernels RPE indeed satisfies this property, and is optimal in terms of the approximation
sample complexity.

Another simple yet effective approach is to parameterize p as a Gaussian distribution with learnable means and
variances. The optimization procedure can search for the optimal p in the class of Gaussian distributions to
obtain good RPE approximation. This technique turns out to be helpful for the experiment on molecular property
prediction (Sec. 5.3 in the main paper).

Finally, we point out that the logL factor in the sample complexity bound in Theorems A.4 is introduced for
technical reasons: the convergence analysis is conducted for the random features applying exponential mapping
which is not bounded.6 That being said, this logarithmic factor is still negligible (as opposed to polynoimal
dependency).

B DETAILED EXPERIMENT SETTINGS

All tested Transformer variants were trained and tested on a TPU pods containing 4 TPU v3 chips with JAX
and on GPUs (V100).

B.1 Language modeling

In this experiment, we study FLT with two RPE variants, Gaussian mixture RPE and local RPE. The detailed
descriptions of baselines have been provided in the main paper.

6For random features applying trigonometric functions and thus could leverage ε-net trick combined with strong
Lipschitz function argument. An analogous result can be found in [Choromanski et al., 2021]

https://cloud.google.com/tpu/docs/system-architecture-tpu-vm#:~:text=TPU%20v3%20configurations%20provide%20significant,bound%20on%20TPU%20v3%20configurations.
https://jax.readthedocs.io/en/latest/notebooks/quickstart.html
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All the tested models are efficient Transformers based on kernelized low-rank attention, with 6 decoder layers. In
each layer, there are 8 attention heads. The hidden dimension is set to 512. The dimension of the feed-forward
sub-layer is set to 2048. The feature map dimension m is set to 64 in the low-rank approximation of the attention
matrix. For our FLT models, the number of random features for RPE r is set to 32. We use the validation
perplexity as the evaluation metric: lower perplexity indicates better performances.

Following existing works [Peng et al., 2021, Luo et al., 2021], the sequence length is set to 512 during both
training and evaluation. All models are trained without access to the context from previous mini-batches for a
fair comparison. The dropout ratio and weight decay are set to 0.1 and 0.01, respectively. The batch size is set to
64. We use Adam as the optimizer, and set its hyperparameter ε to 1e− 6 and (β1, β2) to (0.9, 0.98). The model
is trained for 150k steps with a 6k-step warm-up stage followed by an inverse square-root learning rate scheduler,
with the peak learning rate set to 2e− 3.

For the FLT variant with Gaussian mixture RPE, the FT of the RPE function, i.e., the function g, is parameterized
as Eq. (4.3):

g(ξ) =

T∑
t=1

wt exp

(
−∥ξ − µt∥2

2σ2
t

)
.

For the FLT variant with local RPE, the function g is parameterized as

g(ξ) =

T∑
t=1

wt ·
sin(2πvtξ)

πξ
, (20)

where w1, · · · , wT and v1, · · · , vT are learnable parameters and T is a pre-defined hyper-parameter. In this case,
the underlying implict RPE function f is

f(∆r) =

T∑
t=1

wt · I[|∆r| ≤ vt]. (21)

For both FLT variants, the RPE masks are different in different attention heads, but are shared across different
layers. The random features ξ1, · · · , ξr are sampled from the standard Gaussian distribution.

B.2 Image classification

Table 4 presents the basic statistics of the datasets used in the image classification experiements.

Table 4: Details of the datasets used in image classification tasks with the FourierLearner-Transformer.

Dataset name # of classes Training set size Test set size

ImageNet2012 [Deng et al., 2009] 1K 1.2M 100K
Places365 [Zhou et al., 2018] 365 1.8M 328K
Fashion-MNIST [Xiao et al., 2017] 10 60K 10K

All tested models consist of 12 layers with 12 attention heads in each layer. The dimension of the feed-forward
sub-layer is set to 3072. In our FLT, we use learnable ReLU as the feature map for kernelized linear attention. In
particular, the feature map is ϕ : x 7→Wx where W is a learnable matrix. For all the models, we used a dropout
rate of 0.1 and no attention dropout. We applied the Adam optimizer with weight decay equal to 0.05 and a
standard batch size of 4096. All Transformers were trained on TPU architectures until convergence.

B.3 Molecular property prediction

We adopt most of the training strategies of 3D-Graphormer [Shi et al., 2022]. Specifically, we trained a reg-
ular Performer with 12 layers and two FLT with 10 and 12 layers respectively. Following existing works
[Jumper et al., 2021, Shi et al., 2022], model outputs are repeatedly fed to the model for four times. In each layer,
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Table 5: Hyperparameters for Image Classification.

Parameter Value

Batch size 4096
Optimizer AdamW

Base Learning rate 1.5e− 4
Weight decay 0.05

Optimizer momentum (β1, β2) = (0.9, 0.95)
Learning rate schedule cosine decay

Warm up epochs 40
Augmentation RandomResizedCrop

Compute resources 8× 8 TPUv3

there are 48 attention heads. The hidden dimension is set to 768. The dimension of the feed-forward sub-layer is
set to 2048. The feature map dimension m is set to 64 in the low-rank approximation of the attention matrix.
For our FLT models, the number of random features for RPE r is set to 16 and the number of Gaussian basis
functions in RPE T is set to 32. The random feature ξi are sampled from Gaussian distribution N (0, σ2

i I), where
σi is learnable.

We evaluate the performance of the tested models on the in-domain validation set, where the validation samples
come from the same distribution as the training distribution. We use Mean Absolute Error (MAE) of the energies
and the percentage of Energies within a Threshold (EwT) of the ground truth energy to evaluate the accuracy of
the predicted energies.

For all the models, the attention dropout ratio and the weight decay are set to 0.1 and 0.001, respectively. The
batch size is set to 64. We use Adam as the optimizer, and set its hyperparameter ε to 1e− 6 and (β1, β2) to
(0.9, 0.98). The peak learning rate is set to 3e− 4 with a 10K-step warm-up stage. After the warm-up stage, the
learning rate decays linearly to zero. All the models are trained for 500k steps in total.

B.4 Learnable optimizers

In all the experiments, meta-training pipelines and the training recipes from [Jain et al., 2023] are applied.
Following [Jain et al., 2023], all learnable models are used as memory units in the corresponding learnable
optimizers and meta-trained in the exact same way on a small set of unrelated optimization tasks. Furthermore,
all attention-based memory mechanisms are derived from [Jain et al., 2023].

C VISUALIZATIONS

C.1 Local RPEs

In Fig. 4, we visualize the shape of local RPEs that can be modeled with FLTs via Fourier Transform.

C.2 Attention matrices

In Fig. 5, we visualize the attention matrices of an FLT model trained on WikiText-103 language modeling.
In particular, we feed one sequence in the training set as the input to the model and visualize the attention
matrices of the 8 attention heads in the first layer. It can be seen that some attention heads pay more attention
to nearby tokens, while others shows global attention patterns. The average attention probability over the most
distant/nearby 10% tokens is 0.068/0.279 respectively. This result shows that FLT learns locality bias in language
while maintaining the advantage to capture global contexts and leverage information in distant tokens.
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Figure 4: Examples of the local RPE mechanisms discussed in Sec. 4.3 and supported via FLTs. Both
examples are for tokens with positions described by two coordinates (ℓ = 2). The x and y coordinates encode
the difference vector ∆r = (∆r1,∆r2)

⊤. The z-coordinate provides the value of a function f . Left: (non-
continuous) fv,C(∆r) = C · I{|∆r1|≤v1}I{|∆r2|≤v2} for some v = (v1, v2)

⊤. Right: (continuous) fv(∆r) =
I{|∆r1|≤v1}I{|∆r2|≤v2}(−|∆r1|+ v1)(−|∆r2|+ v2). Both local RPE functions vanish outside the bounded region.

Figure 5: Attention matrix visualizations of 8 attention heads in the first layer of FLT with local RPEs.
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