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Abstract

Learning to match discrete objects has been
a central task in machine learning, often fa-
cilitated by a continuous relaxation of the
matching structure. However, practical prob-
lems entail partial matchings due to missing
correspondences, which pose difficulties to the
one-to-one matching learning techniques that
dominate the state-of-the-art. This paper
introduces Gumbel-IPF networks for learn-
ing latent partial matchings. At the core of
our method is the differentiable Iterative Pro-
portional Fitting (IPF) procedure that bipro-
portionally projects onto the transportation
polytope of target marginals. Our theoretical
framework also allows drawing samples from
the temperature-dependent partial matching
distribution. We investigate the properties of
common-practice relaxations through the lens
of biproportional fitting and introduce a new
metric, the empirical prediction shift. Our
method’s advantages are demonstrated in ex-
perimental results on the semantic keypoints
partial matching task on the Pascal VOC,
IMC-PT-SparseGM, and CUB2001 datasets.
The code is available at this url.

1 INTRODUCTION

Learning to match discrete objects has been a central
task in machine learning and its applications. For ex-
ample, matching molecular structures in biology (Kain-
müller et al., 2014), and matching keypoints in com-
puter vision (Zanfir and Sminchisescu, 2018). However,
practical problems often entail partial matchings, which
encode missing correspondences. Unfortunately, such
problems pose difficulties to the current one-to-one
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matching learning techniques that dominate the state-
of-the-art.

Deep matching techniques learn a parameterized scor-
ing function fitted to minimize the loss of the instance-
label pairs between the true label and the predicted
matching. Since the highest scoring matching is a
piece-wise constant function of the scoring function
parameters, end-to-end learning is often facilitated
by continuously relaxing the discrete structure. As
such, a classification is continuously relaxed by apply-
ing the softmax operator, and the Sinkhorn operator
may continuously relax a full matching. While the for-
mer proportionally projects onto the standard simplex,
the latter biproportionally projects onto the Birkhoff
polytope. Learning partial matchings requires a con-
tinuous operator that biproportionally projects onto
the transportation polytope, the set of all non-negative
rectangular matrices with prescribed row and column
marginals. Previous research facilitated such relaxation
by applying the Sinkhorn operator on a heuristically
augmented rectangular scoring matrix. We investigate
the properties of these common-practice relaxations
through the lens of biproportional fitting, as well as
suggest a new metric, the empirical prediction shift.

We introduce Gumbel-IPF networks for learning la-
tent partial matchings, which generalize the Sinkhorn-
networks (Mena et al., 2018; Cruz et al., 2019) for
learning full matchings, and the method of Adams
and Zemel (2011) for learning rankings. At the core
of our method is the differentiable Iterative Propor-
tional Fitting procedure (IPFP) that biproportionally
projects onto the transportation polytope. We ex-
tend the temperature-dependent entropy relaxation to
partial matchings and prove that the highest-scoring
partial matching can be approximated as the limit of
an entropy-regularized prediction, which can be ob-
tained with IPFP. The same theoretical framework
allows drawing samples from the partial matching dis-
tribution by re-reparameterizing the partial matching
distribution based on the Gumbel-Max trick. Inspired
by the Gumbel-Softmax (Jang et al., 2017; Maddison
et al., 2017) and Gumbel-Sinkhorn (Mena et al., 2018),
we coin this distribution Gumbel-IPF.

https://github.com/HeddaCohenIndelman/Learning-Latent-Partial-Matchings-with-Gumbel-IPF-Networks


Learning Latent Partial Matchings with Gumbel-IPF Networks

In summary, our contributions are the following:

1. We prove that the highest-scoring partial matching
can be approximated as the limit of an entropy-
regularized prediction, which can be obtained with
the IPF procedure.

2. We prove that samples from the partial match-
ing distribution at a certain temperature can be
approximated as the limit of entropy-regularized
randomly perturbed prediction, which can be com-
puted with the IPFP as well.

3. We investigate the properties of common-practice
partial matching relaxations through the lens of
biproportional fitting, and introduce a new metric,
the empirical prediction shift.

2 RELATED WORK

Learning scoring-based models of structured distribu-
tions is challenging, as it requires computing an of-
ten intractable partition function. Instead, sampling
from discrete distributions can be performed by the
re-parameterization of the Gumbel-Max trick (Luce,
1959; Yellott, 1977; Papandreou and Yuille, 2011; Hazan
et al., 2016) by solving a structured maximization of a
randomly perturbed scoring function. However, since
the argmax is a piece-wise constant function, sampling
is often performed under a continuous relaxation of the
corresponding structure.

The Gumbel-Softmax distribution (Jang et al., 2017;
Maddison et al., 2017) allows drawing samples from a
categorical distribution by computing a temperature-
dependent softmax function. The softmax is a propor-
tional continuous relaxation of the categorical argmax,
as it preserves the rank order of its input score values.
Sampling from (full-) matching distributions (Mena
et al., 2018) is facilitated with the Sinkhorn operator
(Sinkhorn, 1964), which biproportionally projects a pos-
itive square matrix to the Birkhoff polytope, the set of
doubly-stochastic matrices. As the Gumbel-Max trick
is unfeasible for the label set of permutations due to
its factorial size, samples are drawn from the matching
distribution arising from low-dimensional perturbations
(Balog et al., 2017; Hazan and Jaakkola, 2012).

Continuously relaxing a partial matching is often per-
formed on a dummy-padded rectangular matrix. Com-
mon when matching graphs with outliers, the Sinkhorn
normalization (Sinkhorn, 1964) is performed on a
square matrix produced by adding dummy rows or
columns initialized to a small positive value (Cho et al.,
2010; Wang et al., 2020a; Yew and Lee, 2020; Wang
et al., 2020b; Yu et al., 2020; Wang et al., 2021). Al-
ternatively, Sinkhorn normalization can be performed
on a matrix padded with a ’dustbin’ row and column,

intended to absorb the probability of unmatched el-
ements (Sarlin et al., 2020; Liu et al., 2021). Post-
normalization, added elements are discarded. Yet,
these heuristics do not guarantee a biproportional pro-
jection onto the transportation polytope. This difficulty
is alternatively addressed by generating a balanced
matching task with inliers only, which is a degenerate
and often impractical setting.

Optimal Transport. Sinkhorn normalization
(Sinkhorn, 1964; Sinkhorn and Knopp, 1967) often
arises in optimal transport problems. The seminal
work of Cuturi (2013) shows that one can efficiently
solve an entropy-regularized problem of optimal trans-
portation with the Sinkhorn normalization. In match-
ing problems, an entropy-regularized optimal transport
minimizes a distance map between elements of matched
sets. Differently from our method, these methods often
assume doubly-stochastic transport plans (Pai et al.,
2021; Solomon et al., 2016, 2015), or add dummy el-
ements to absorb unused probability mass in partial
transport (Swanson et al., 2020).

3 BACKGOUND

3.1 Partial Matching

Let V s and V t be two sets of elements and denote by
n the number of elements in V s, i.e., n = |V s|, and
similarly m = |V t|. The pair V s and V t form a data
instance xst. In a realistic setting, some elements from
V s and V t may not be matched. This setting often
arises in pairwise natural keypoint matching due to oc-
clusions, deformations, and different points of view. In
this case, the corresponding label is a partial permuta-
tion matrix y(xst) ∈ {0, 1}n×m representing the partial
matching between elements of V s and elements in V t.
As such, y(xst)ij = 1 if element i ∈ V s is matched to
element j ∈ V t, and y(xst)ij = 0 otherwise. The set of
partial matchings is defined as:

Mst = {y(xst) ∈ {0, 1}n×m : y(xst)1m ≤ 1n, (1)

y(xst)
T
1n ≤ 1m},

when 1m is a size m vector of 1s. Whenever the sets
V s, V t consist of the same elements, y(xst) is a full
matching, and the constraints in Equation (1) hold
with equality.

In order to learn to predict such structured labels, a
parameterized correspondence scoring function µw(x, y)
is typically fitted to minimize the loss ℓ(·, ·) of the
training instance-label pairs (x, y) ∈ S between the
label y and the highest scoring structure

y∗(µw(x, y)) = arg max
ŷ∈M

⟨µw(x, y), ŷ⟩. (2)
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The binary cross-entropy loss is often used in a super-
vised learning setting to measure the goodness of fit
of a training-pair (x, y) and the predicted matching
y∗(µw(x, y)).

3.2 Reparameterizing Discrete Distributions

A Gibbs distribution on any discrete set of admissible
structures, Y , may be formulated based on a parameter-
ized scoring function of the instance-label pair µw(x, y):
P(y|(µw(x, y)) ∝ exp(µw(x, y)). Unfortunately, com-
puting the probability of a given structure y requires
computing an intractable partition function. Instead,
sampling from the discrete distribution can be per-
formed by the re-parameterization of the Gumbel-Max
trick (Luce, 1959; Yellott, 1977; Papandreou and Yuille,
2011; Hazan et al., 2016). When random perturbations
γ(y) follow the zero mean Gumbel distribution law,
denoted by G, one obtains the following identity:

Pγ∼G

(
argmax

y∈Y
{µw(x, y) + γ(y)} = y

)
∝ exp(µw(x, y))

(3)
The Gumbel-Max trick (Eq. 3) allows drawing samples
from a discrete distribution by solving a structured
maximization problem of a randomly perturbed scoring
function. To allow end-to-end learning, sampling in
latent discrete probabilistic models is often performed
by continuously relaxing the discrete structure.

3.3 Iterative Proportional Fitting

The IPF is an iterative weighting method used to bipro-
portionally fit an input matrix so that its row and
column marginals agree with target marginals (Deming
and Stephan, 1940; Bacharach, 1970; Rote and Zachari-
asen, 2007; Fagan and Greenberg, 1987). For input ma-
trix Z ∈ Rn×m with positive entries, matrix T ∈ Rn×m

for which only the marginals are known (rows and
columns sums), we seek to find matrix S ∈ Rn×m

which is closest to Z w.r.t. the Kullback-Leibler dis-
tance and has the same marginals as T’s. Thus, the
objective function is

minS
∑n

i=1

∑m
j=1 sij log(

sij
zij

) (4)

s.t.
∑m

j=1 sij = ui ∀i,
∑n

i=1 sij = vj ∀j,

where u ∈ Rn×1
>0 denotes marginal rows, and v ∈ Rm×1

>0

the marginal columns. Biproportion fitting can be un-
derstood as preserving cross-product ratios (Mosteller,
1968). Solving the associated Lagrangian shows that
the fitted matrix S is the unique solution of the form
S = PZQ, where P ∈ Rn×n and Q ∈ Rm×m are
diagonal matrices, and their main diagonal elements
correspond to the Lagrange multipliers of the marginal

constraints. Sinkhorn and Knopp (1967) prove sim-
ilar results whenever u ∈ Rm×1

>0 , v ∈ Rn×1
>0 and∑

i ui =
∑

j vj .

The IPF procedure entails initializing s
(0)
ij = zij

and normalizing on rows and columns for t > 0

iterations s
(2t−1)
ij = s

(2t−2)
ij ui/

∑m
j=1 s

(2t−2)
ij , s

(2t)
ij =

s
(2t−1)
ij vj/

∑n
i=1 s

(2t−1)
ij . When entries in the input ma-

trix Z are positive, the procedure converges, under
certain conditions, to a limit matrix Ŝ = limt→∞S(2t)

that simultaneously adheres to target marginals v, u.
Further, Ŝ is the unique solution that is closest to the
input matrix Z with respect to relative-entropy error
(Ruschendorf, 1995). Whenever target marginals equal
one, the procedure reduces to the Sinkhorn normaliza-
tion (Sinkhorn, 1964).

The IPFP is often evaluated by ’internal’ valida-
tion methods, which measure the differences between
aggregate-level outputs and target marginals. Such
metrics (e.g. mean absolute error, root mean squared
error, and entropy-based measures) are also used
to measure the procedure’s iteration-wise progress
(Pukelsheim et al., 2009; Legates and McCabe Jr.,
1999).

4 GUMBEL-IPF NETWORKS

We introduce Gumbel-IPF networks for learning latent
partial matchings, which are based on a continuous
relaxation of partial matching performed by the IPF
procedure. Further, we introduce a task-oriented eval-
uation metric, the empirical prediction shift.

Partial Matching Predictions. Consider an un-
normalized parametrized scoring function µw(x, y) ∈
Rn×m fitted to minimize the loss ℓ(y, y∗) between the
label y and the highest scoring structure y∗. The partial
matching label space is the transportation polytope in
Rn×m, denoted Tūv̄, with prescribed rows and columns
marginals, ū ∈ {0, 1}n and v̄ ∈ {0, 1}m. Points in
Tūv̄ are described by real n×m matrices. Its vertices
T1, . . . , Tr are {0, 1}n×m matrices with marginals ū and
v̄. Then,

Tūv̄ = {
R∑

r=1

λrTr;

R∑
r=1

λr = 1, λr ≥ 0 ∀r}. (5)

As such, the highest-scoring partial matching prediction
may be defined as

y∗(µw(x, y)) = arg max
S∈Tūv̄

⟨µw(x, y), S⟩, (6)

which is the hard choice of a vertex of the Tūv̄ polytope,
with ⟨·, ·⟩ the (Frobenius) inner product of matrices.
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(a) The highest-scoring partial matching, y∗(µw(x, y)) (Eq.
6) is a vertex of the transportation polytope Tūv̄ (Eq. 5). At
a small enough temperature τ , the relaxed partial matching
y∗(µw(x, y)/τ) (Eq. 8) is a vertex of the transportation
polytope Tuv, with rows and columns marginals, u ∈ {ϵ, 1}n
and v ∈ {ϵ, 1}m, which can be obtained with the IPFP. For
ϵ → 0+, the polytopes nearly coincide and y∗(µw(x, y)/τ)
approximates y∗(µw(x, y)).
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(b) Samples y∗((µw(x, y)+γ(y))/τ) from the partial match-
ing distribution corresponding to low-dimensional pertur-
bations at temperature τ are solutions of the randomly
perturbed entropy-regularized prediction problem (Eq. 10),
which can be drawn with the IPFP. IPFP’s outputs are
biproportionally fit w.r.t. the input and adhere to the pre-
diction’s marginal constraints (Eq. 7).

Figure 1: Illustration of our Gumbel-IPF method for sampling from the partial matching distribution.

The problem of Equation (6) can be solved with lin-
ear assignment solvers (Jonker and Volgenant, 1987;
Munkres, 1957).

The matching nature of the task dictates at most one
1 in each row and each column, thus the polytope Tūv̄
can be interpreted as a k-assignment polytope, with
k =

∑
ū =

∑
v̄.

Relaxing Partial Matchings. An analog of the
Sinkhorn normalization for square permutations is the
IPF procedure for partial permutations with marginal
constraints (Sinkhorn and Knopp, 1967; Ruschendorf,
1995). In the following, we extend the temperature-
dependent entropy relaxation to partial matching re-
laxation and prove that the highest scoring partial
matching (Eq. 6) can be approximated as the limit
of an entropy regularized prediction, which can be
obtained with the IPF procedure.

Our key insight is that target marginals can be inferred
from the highest-scoring partial matchings (Eq. 6), i.e.,
marginals corresponding to predicted correspondences
are one, and zero otherwise. As the IPF procedure and
its convergence properties are proved for positive target
marginals, we approximate zero target marginals by a
small positive ϵ → 0+. For each row index i, i = 1, ..n,
we set

ui =

{
1 if

∑m
j=1 y

∗(µw(x, y))ij = 1

ϵ → 0+ otherwise,
(7)

and similarly for column marginals vj , j = 1, ..m.
Theorem 4.1. Denote the entropy of a matrix S as
H(S) = −

∑
i

∑
j sij log sij. Denote by Tuv the trans-

portation polytope in Rn×m, with positive rows and

columns marginals, u ∈ {ϵ, 1}n and v ∈ {ϵ, 1}m (Eq.
7). For a matrix S ∈ Rn×m in the transportation poly-
tope Tuv, define the entropy-regularized partial matching
prediction of a positive matrix µw as:

y∗(µw(x, y)/τ) = arg max
S∈Tuv

⟨µw(x, y), S⟩+ τH(S), (8)

for a regularization parameter τ ≥ 0. Then,
y∗(µw(x, y)/τ) exists, and is unique. Further, for
small enough τ and ϵ, it holds that y∗(µw(x, y)) ≈
y∗(µw(x, y)/τ).

Proof. The Lagrangian of the entropy-regularized par-
tial matching prediction problem (Eq. 8) is

L(µ, s, τ) = arg max
S∈Tuv

n∑
i=1

m∑
j=1

sij(µij − τ log sij) (9)

−
n∑

i=1

αi(ui −
m∑
j=1

sij)−
m∑
j=1

βj(vj −
n∑

i=1

sij).

Its solution for each sij is given by sij = exp( 1τ (αi −
τ)) exp( 1τ µij) exp(

1
τ βj) (proof in Appendix 1). As

such, the partial matching solution S is of the form
Α exp( 1τ µ)Β for certain diagonal matrices Α,Β with
positive diagonals. Since the matrix exp( 1τ µ) is strictly
positive, the solution S ∈ Tuv exists, is unique, and
can be found with the IPF procedure (Ruschendorf,
1995). When τ → 0, the partial matching solution S is
a vertex of the transportation polytope, Tuv. Addition-
ally, for ϵ → 0+, S ∈ Tuv approximates the solution of
y∗(µw(x, y)).

As the regularization parameter τ increases, the solu-
tion S is a point in the interior of Tuv. Importantly,
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Algorithm 1 Gumbel-IPF

Input: unnormalized scoring function µw(x, y) ∈
Rn×m, γ(y) ∈ Rn×m, temperature τ ≥ 0, row and
column target marginals v, u respectively (Eq. 7).
Initialize:
S = exp(µ(x,y)+γ(y))/τ

s
(0)
ij = sij

for t = 1 to T do

s
(2t−1)
ij =

s
(2t−2)
ij ui∑m
j=1 s

(2t−2)
ij

, s(2t)ij =
s
(2t−1)
ij vj∑n
i=1 s

(2t−1)
ij

end for
Return: S(2T )

µ!(x, y)

�̃�"(𝑥, 𝑦)

argmax!⟨ 𝜇" 𝑥, 𝑦 , y⟩

argmax
!
⟨ �̃�"(𝑥, 𝑦), y⟩

Figure 2: Illustration of the prediction shift phenomenon.
The highest scoring structure of an unnormalized scoring
function µw(x, y) differs from the highest scoring struc-
ture of the corresponding normalized scoring function
s̃w(x, y).

for any τ , the IPFP guarantees that the relaxed par-
tial matching S adheres to marginal constraints. The
solution S may not be precisely attained as the IPFP
is run for a fixed number of iterations, or until an
iteration-wise evaluation metric is sufficiently small.

Reparameterizing Partial Matching Distribu-
tions. Unfortunately, it is infeasible to draw sam-
ples from the partial matching distribution with the
Gumbel-Max trick (Eq. 3) as the label set of n ×m
partial permutations with k ones is

(
n
k

)(
m
k

)
k! (Gill and

Linusson, 2009). Since the label set of n×m permu-
tations factorizes, we resort to low-dimensional per-
turbations γ(y) =

∑n
i=1

∑m
j=1 γij(yij), where γij(yij)

is independent random perturbation for each index
ij, and each yij that follows the zero mean Gumbel
distribution law. With that, the number of random
perturbations needed is linear in the matching dimen-
sion instead of factorial. A random partial matching
follows the partial matching distribution induced by
low-dimensional perturbations of the scoring function
(Hazan and Jaakkola, 2012; Balog et al., 2017). The
corresponding entropy-regularized randomly perturbed
prediction problem is

y∗(µ′(x, y)/τ) = arg max
S∈Tuv

⟨µ′
w(x, y), S⟩+ τH(S), (10)

with µ′(x, y) =
∑n

i=1

∑m
j=1(µw(x, y)ij + γij(yij)). Its

solution S is of the form Α exp( 1τ (µ+ γ(y)))Β for cer-
tain diagonal matrices Α,Β with positive diagonals
(proof in Appendix 7.2). Thus, samples from the be-
spoke distribution at temperature τ are solutions of
the randomly perturbed entropy-regularized problem
(Eq. 10), which can be drawn with the IPFP.

With that, we present our method Gumbel-IPF (illus-
trated in Figure 1) for sampling from a partial matching
distribution in Algorithm 1. In practice, we find that
it sufficiently converges after a few dozen of iterations.
While learning the perturbation variance is possible

(Cohen Indelman and Hazan, 2021), fine-tuning it as a
hyper-parameter leads to satisfactory results.

Complexity Analysis. Our relaxation method’s
complexity is O(n ∗ m) for a n × m matrix at each
step, which is no greater than the complexity of other
methods based on the Sinkhorn normalization having
O(n2) complexity for a square n × n matrix. This
analysis is validated in experimental results (Table 5).

Evaluation Metrics. We introduce a task-oriented
evaluation metric: the empirical prediction shift, in
addition to revisiting the well-known mean absolute
error (MAE).

The empirical prediction shift metric is motivated by
observing that ideally, any continuous partial matching
relaxation should preserve the ordering of structure
scores, i.e., maintain the monotonicity of scores. In
such case, it will hold that

arg max
S∈Tūv̄

⟨µw(x, y), S⟩ = arg max
S∈Tūv̄

⟨s̃w(x, y), S⟩, (11)

where µw(x, y) denotes the unnormalized scoring func-
tion and s̃w(x, y) the normalized scoring function ob-
tained by a normalization technique. While this prop-
erty is not guaranteed in biproportional fitting tech-
niques, it is central for obtaining low-bias gradients
of relaxed discrete structures. Thus, we propose the
empirical prediction shift metric, which measures the
degree by which the highest unnormalized and normal-
ized scoring structures differ (illustrated in Fig. 2):

1

2min(m,n)

n∑
i=1

m∑
j=1

|y∗(µ(x, y))i,j − y∗(s̃w(x, y))i,j | .

(12)

The lower the empirical prediction shift of a normal-
ization technique, the more structure scores order-
preserving it is.
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The MAE measures the mean absolute difference be-
tween marginals of a normalized matrix s̃ and target
marginals in the units of the variable itself,

1

2n

n∑
i=1

|
m∑
j=1

s̃ij − ui|+
1

2m

m∑
j=1

|
n∑

i=1

s̃ij − vj |. (13)

It’s an effective metric for comparing the goodness of fit
of normalization techniques and analyzing the interplay
between matching imbalance and the error measure. In
our context, a high MAE of a normalization technique
suggests that it did not project onto the transporta-
tion polytope of the target marginals. We define the
matching imbalance by

Mimb(n,m) = max(n,m)/min(n,m). (14)

5 EXPERIMENTS

Missing correspondence approximation (ϵ) set-
ting. Following the conditions of the IPF procedure
convergence analysis (Pukelsheim et al., 2009), we ap-
proximate zero target marginals by a small positive
ϵ → 0+. Experiments with various ϵ value settings
showed little variation, therefore we heuristically set
ϵ = 1e− 6 in all experiments.

Entropy regularization parameter (τ) effect and
setting. As the entropy regularization increases, the
relaxed partial matching produced by our method is a
point in the interior of the transportation polytope with
inferred marginals. Put differently, for τ → ∞, our
method produces a sample from a uniform distribution
over partial matchings. To support this analysis, we
follow the semantic keypoint partial matching experi-
ment on the Pascal VOC dataset (detailed in Section
5.1.1) and sample 250 unnormalized keypoint partial
matching scoring matrices. Our method is applied to
each matrix with varying τ ∈ [0.01, 1, 10, 100]. As ex-
pected, the average relaxed partial matching matrices
entropy increases as τ increases (Figure 3).

In experiments, τ = 1 was set to compare relaxation
methods. Related work suggests that an entropy regu-
larization annealing scheme during training is beneficial,
though we haven’t employed it in this work.

5.1 Semantic Keypoint Partial Matching

To demonstrate our method’s advantage across architec-
ture backbones and datasets we carry two semantic key-
point partial matching experiments: NGM-v2 (Wang
et al., 2021) backbone on the Pascal VOC dataset (Ev-
eringham et al., 2010), and IPCA-GM (Wang et al.,
2020b) backbone on the IMC-PT-SparseGM dataset
(Wang et al., 2023) and the CUB2011 dataset (Wah
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Figure 3: The effect of the entropy regularization pa-
rameter on the average Gumbel-IPF normalized matri-
ces entropy, measured on 250 unnormalized keypoint
partial matching scoring matrices following the seman-
tic keypoint partial matching experiment detailed in
Section 5.1.1.

et al., 2011). These natural image datasets translate
to a partial matching problem as images have a vary-
ing number of keypoints, due to occlusions, different
points of view, etc. Table 1 summarizes the average
and std keypoint imbalance measured on sampled pairs
of images (per-class analysis in Appendix 7.3).

Table 1: Statistics of imbalance between the number of
keypoints measured on samples of in-class image pairs.

Dataset Mean std
Pascal VOC 1.37 0.46
MC-PT-SparseGM 1.66 0.97
CUB2011 1.14 0.19

Keypoint Filtering. To bring to light the partial
matching task we follow the ’unfiltered’ setup in all
experiments - keypoints are neither filtered to reach
intersection nor to reach inclusion in image pairs.

Peer Methods. The blackbox differentiation method
(Pogančić et al., 2020) was recently applied to neu-
ral graph matching (Rol’inek et al., 2020), denoted
BB-GM, based on graph matching solvers (Swoboda
et al., 2019). The blackbox differentiation method’s
gradients are of a surrogate linearized loss. BB-GM’s
feature extraction was adopted in the NGM-V2 archi-
tecture (Wang et al., 2021), which based on Lawler’s
Quadratic Assignment Problem casts a constrained
neural graph matching into learning a vertex classifica-
tion (matching) based on association graph embedding.
The qc-DGM model (Gao et al., 2021a) also presents a
differentiable approach to the quadratic constraints of
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pairwise structural discrepancy between graphs. The
IPCA-GM (Wang et al., 2020a) network is based on
the PCA-GM (Wang et al., 2019) network for embed-
ding graph structure features with iterative cross-graph
convolution and relaxing the matching structure by
Sinkhorn normalization. The CIE-H model (Yu et al.,
2020) builds upon the PCA-GM model and adds a
channel-independent edge embedding module and a
Hungarian attention layer over the loss function, such
that the most contributing matching pairs are attended
to. These methods, except for BB-GM, either apply
Sinkhorn normalization with dummy elements for par-
tial matching or employ keypoint intersection filtering
to reduce the task to balanced matching. We build
upon peer implementations in the ThinkMatch project.

In the following experiments, the backbone’s Sinkhorn
normalization with dummy elements on the partial
matching prediction head is replaced with our Gumbel-
IPF method (Algorithm 1). Further details are in the
appendix.

5.1.1 Pascal VOC

We perform a semantic keypoint partial matching exper-
iment on the Pascal VOC dataset (Everingham et al.,
2010) with Berkeley annotations (Bourdev and Malik,
2009). Our architecture is based on the NGM-v2 (Wang
et al., 2021) backbone. Following prior research (Wang
et al., 2021; Rol’inek et al., 2020; Wang et al., 2019),
poorly annotated images and keypoints annotated as
’truncated’, ’occluded’, and ’difficult’ are filtered. As
mentioned in Wang et al. (2021), Rol’inek et al. (2020)
has a slightly favorable setting by filtering keypoints
outside of the bounding box.

Our Gumbel-IPF method is compared to the following
two-graph unbalanced matching peer methods: CIE-H
(Yu et al., 2020), qc-DGM (Gao et al., 2021b), BB-GM
(Rol’inek et al., 2020), NGM-v2 (Wang et al., 2021).

Results. The test set’s average and per-class aver-
age matching prediction accuracy (recall) accuracies
are reported, as well as F1 score. Our method outper-
forms peer methods considerably on the average test set
results (Table 4). A per-class average accuracy compari-
son reveals that our method outperformed the NGM-v2
baseline in 18 classes (Table 8 in the Appendix). More-
over, as the class average imbalance increases (refer to
Table 6 in the Appendix) our method’s improvement
over the baseline increases (Figure 8 in the Appendix),
further demonstrating our method’s advantage in re-
laxing partial matchings.

Our method is also the most stable and reaches the
highest average training set accuracy (Figure 4).

Figure 4: A comparison of average training set accu-
racy over learning iterations of the partial matching
experiment on Pascal VOC.

5.1.2 IMC-PT-SparseGM

We explore the recently introduced IMC-PT-SparseGM
dataset (Wang et al., 2023) originated from the stereo
benchmark Image Matching Challenge PhotoTourism
(Jin et al., 2020) in combination with the IPCA-GM
(Wang et al., 2020b) backbone. This dataset is charac-
terized by a high degree of keypoints imbalance (Table
1) and a large number of keypoints.

Results. Our method improves the baseline method’s
average test set accuracy and F1 score (Table 2). A per-
class comparison is detailed in Table 9 in the Appendix.

Table 2: Partial matching average accuracy and aver-
age F1 score on the IMC-PT-SparseGM dataset. The
keypoint filtering preserves outlier keypoints in both
images. Best results are in bold.

Method Accuracy F1 score
IPCA-GM 44.9% 42.7%
Ours: Gumbel-IPF 46.6% 44.6%

5.1.3 CUB2011

We repeat the experiment with the IPCA-GM (Wang
et al., 2020b) architecture backbone and the CUB2011
dataset (Wah et al., 2011).

Results. Our method moderately improves the base-
line method’s average test set accuracy and F1 score
(Table 3). Indeed, among the datasets tested, CUB2011
has the lowest average matching imbalance.

https://github.com/Thinklab-SJTU/ThinkMatch
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Figure 5: Partial matching relaxation methods illustration. Sinkhorn with dummy elements pads a scoring matrix
with dummy rows or columns, initialized to a small ϵ, to form a square matrix. Sinkhorn with dustbins pads a
scoring matrix with a row and column. The point-to-bin and bin-to-bin scores are filled with a single learnable
parameter z. Post normalization, added elements are removed in both methods. Our IPF method is performed
on the rectangular scoring matrix and biproportionally normalizes it while adhering to the prediction’s marginals.

Table 3: Partial matching average accuracy and F1

score on the CUB2011 dataset. The keypoint filtering
preserves outlier keypoints in both images. Best results
are in bold.

Method Accuracy F1 score
GANN-MGM - 82.6%
PCA-GM 84.8% 79.7%
IPCA-GM 88.5% 83.2%
Ours: Gumbel-IPF 89.3% 84.1%

5.2 Properties Of Continuous Partial
Matching Relaxation Techniques

This experiment aims to analyze the properties of con-
tinuous partial matching relaxation techniques. Thus,
we focus on experiments on the two most imbalanced
datasets: Pascal VOC and IMC-PT-SparseGM. Results
for the CUB2011 dataset are detailed in Appendix 7.3.3.
The scoring function isn’t randomly perturbed, to elim-
inate the effect of stochasticity.

Based on experiments in Sections 5.1.1 and 5.1.2, the
keypoints partial matching head of the baseline back-
bone is adjusted per: i our method (Algorithm 1),
denoted ’IPF’, ii Sinkhorn relaxation with dummy el-
ements denoted ’d_Sinkhorn’, iii Sinkhorn relaxation
with ’dustbins’ accounting for missing correspondences,
denoted ’dustbin’ (Sarlin et al., 2020). These methods
are illustrated in Figure 5 in a pairwise keypoint cor-
respondence prediction task. Metrics for the ’dustbin’

method are collected when the network training has
plateaued, to allow learning of the point/bin-to-bin
parameter.

Mean Absolute Error. All methods reach nearly
zero MAE in the case of full matchings. However, while
peer methods suffer high MAE for all matching imbal-
ances, our method reaches nearly constant zero MAE
(Eq. 13) (i.e., ϵ error by construction). Furthermore,
the lower the matching imbalance, the higher the MAE
of peer methods (Figure 6). These results validate
that other relaxation methods tend to assign a non-
negligible probability mass to missing correspondences,
while our method doesn’t.

Empirical Prediction Shift. All methods exhibit a
negligible empirical prediction shift (Eq. 2) in nor-
malizing full matchings. However, in both partial
matching experiments, the method of Sinkhorn nor-
malization with dummy elements suffers a high pre-
diction shift. Compared to our method, the ’dustbin’
method exhibits more dispersed statistics, with a sig-
nificantly higher upper 3rd quantile (Figure 7) and
maximum. Thus, our method is empirically the most
order-preserving partial relaxation technique.

Our method is also beneficial as a hidden correspon-
dence layer normalization technique (Appendix 7.3.4).

Time Complexity. Measurements of the training
average samples per second support our complexity
analysis, as the differences between the relaxation meth-
ods’ computation times are negligible (Table 5). The
number of iterations is consistent across all methods.
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Table 4: Partial matching average accuracy and F1

score on the Pascal VOC dataset. The keypoint filtering
preserves outlier keypoints in both images. Best results
are in bold.

Method Accuracy F1 score
CIE-H 48.8% 45.9%
qc-DGM - 52.6%
BB-GM 59.5% 57.3%
NGM-v2 57.5% 53.7%
Ours: Gumbel-IPF 62.9% 58.8%

Table 5: Time complexity analysis of the partial match-
ing relaxation methods.

Method Training average samples/s ↑
d_Sinkhorn 3.77
dustbin 3.27
Ours: IPF 3.42

(a) The NGM-v2 backbone on
the Pascal VOC dataset.

(b) The IPCA-GM backbone
on the IMC-PT-SparseGM
dataset.

Figure 6: Mean absolute error from target marginals
versus matching imbalance of partial matching relax-
ation techniques on 1k random samples of image pairs.
Cases of full matchings are not displayed.

6 CONCLUSIONS

Our focus has been addressing the challenges of learning
partial matching structures. By combining methods
of biproportional fitting and structured distribution
parameterization, our method allows sampling from a
partial matching distribution in an end-to-end manner.
In summary, we draw the following conclusions from
experimental results:

(a) The NGM-v2 backbone on
the Pascal VOC dataset.

(b) The IPCA-GM backbone
on the IMC-PT-SparseGM
dataset.

Figure 7: Empirical prediction shift (Eq. 12) of partial
matching relaxation methods on partial matching tasks.
Cases of full matchings are not displayed.

(i) Other methods tend to assign non-negligible proba-
bility mass to missing correspondences, which eluci-
dates that they do not project onto the transporta-
tion polytope of the prediction’s target marginals
(Figures 6 and 9a),

(ii) Our method is empirically the most order-
preserving, as it exhibits significantly lower values
of empirical prediction shift (Figures 7 and 9b).

(iii) Our method improves the baseline method’s test
set metrics in various backbone architectures and
datasets (Section 5.1)
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Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes, in Section 4]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes, applicable for time complexity (Table
5).]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes, in Section 4]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
[Yes in supplementary material and code]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes
in supplementary material]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. [Yes]

(b) The license information of the assets, if appli-
cable. [Not Applicable]

(c) New assets either in the supplemental material
or as a URL, if applicable. [Not Applicable]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. [Not Applicable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Not Applicable]
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7 APPENDIX

7.1 Solution Of The Entropy-Regularized Problem

The Lagrangian of the entropy-regularized problem is

L(µ, s, τ) = arg max
s∈Tuv

∑
i

∑
j

sij(µij − τ log sij)−
n∑

i=1

αi(ui −
m∑
j=1

sij)−
m∑
j=1

βj(vj −
n∑

i=1

sij). (15)

Its solution for each sij is given by

∂L(µ, s, τ)
∂sij

= µij − τ log sij − τ + αi + βj = 0 (16)

sij = exp(
1

τ
(αi − τ)) exp(

1

τ
µij) exp(

1

τ
βj) (17)

As such, the solution S is of the form Α exp( 1τ µ)Β for certain diagonal matrices Α,Β with positive diagonals.
Then, since the matrix exp( 1τ µ) is strictly positive, the solution S ∈ Tuv exists, is unique, and can be found with
the IPF procedure (Ruschendorf, 1995).

7.2 Solution of the Randomly Perturbed Entropy-Regularized Problem

The Lagrangian of the randomly perturbed entropy-regularized problem is

L(µ, γ, s, τ) = arg max
s∈Tuv

∑
i

∑
j

sij(µij + γij − τ log sij)−
n∑

i=1

αi(ui −
m∑
j=1

sij)−
m∑
j=1

βj(vj −
n∑

i=1

sij). (18)

Its solution for each sij is given by

∂L(µ, γ, s, τ)
∂sij

= µij + γij − τ log sij − τ + αi + βj = 0 (19)

sij = exp(
1

τ
(αi − τ)) exp(

1

τ
(µij + γij)) exp(

1

τ
βj) (20)

As such, the solution S is of the form Α exp( 1τ (µ + γ(y)))Β for certain diagonal matrices Α,Β with positive
diagonals. Then, since the matrix exp( 1τ (µ+ γ(y))) is strictly positive, the solution S ∈ Tuv exists, is unique, and
can be found with the IPF procedure (Ruschendorf, 1995).

7.3 Experiments

We use unchanged peer methods implementations in the unified ThinkMatch project as much as possible. Our
code was written in adherence with the setting of the ThinkMatch project to allow comparison.

Datasets. Datasets should be downloaded and organized as instructed in the ThinkMatch project.

Average imbalance in sampled pairs of images from the Pascal VOC and the CUB2011 dataset.
We measure the datasets’ average keypoints imbalance (max/min) in randomly sampled pairs of images of the
same category.

The CUB2011 dataset has an average keypoint imbalance of 1.137 with a standard deviation 0.16 based on 1, 548
sampled pairs of images.

The Pascal VOC dataset has an average keypoint imbalance of 1.4 based on 6, 385 sampled pairs of images.
Results in Table 6 show that the average imbalance over all sampled pairs per class. The class with the lowest
imbalance is ’bottle’ (1.14) and the class with the highest imbalance is ’sheep’ (1.96).

Settings. Partial matching is formed by setting both problem configurations TGT_OUTLIER and
SRC_OUTLIER to TRUE and set in the configuration file: MATCHING_TY PE =′ Unbalanced′ and
filter_type =′ NoFilter′. We run experiments on an Nvidia Tesla K80 12GB GPU.

https://github.com/Thinklab-SJTU/ThinkMatch
https://github.com/Thinklab-SJTU/ThinkMatch
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Table 6: The average overall and per-class imbalance (max/min) of the number of keypoints in 6, 385 pairs of
images sampled from the Pascal VOC dataset.

Class average
imbalance 1.32 1.19 1.464 1.32 1.14 1.22 1.38 1.458 1.4 1.364 1.708 1.4 1.42 1.42 1.45 1.267 1.96 1.52 1.42 1.26 1.40

Table 7: The average overall and per-class imbalance (max/min) of the number of keypoints in 2, 785 pairs of
images sampled from the IMC-PT-SparseGM dataset.

Class Average Imbalance
brandenburg_gate 2.00
buckingham_palace 1.88
colosseum_exterior 1.76
grand_place_brussels 1.72
hagia_sophia_interior 1.85
notre_dame_front_facade 1.92
palace_of_westminster 1.80
pantheon_exterior 1.69
prague_old_town_square 1.99
reichstag 1.41
taj_mahal 1.54
temple_nara_japan 1.45
trevi_fountain 1.62
westminster_abbey 1.78

7.3.1 Pascal VOC

Following prior research, each image is cropped to its bounding box and scaled to 256× 256 px.

General hyper-parameters and settings. Batches consist of 26 pairs of sampled images from the same
category class. Training is set for 20 epochs. All relaxation techniques were run for 25 iterations. Optimization
is carried with Adam optimizer, with a learning rate of 0.002 and momentum of 0.9 and a scheduled decay of
0.5 at epochs 2, 4, 6, 8, 10. An element-wise Sigmoid function is applied to the scoring function prior to the IPF
procedure to ensure its positive values. We set a temperature τ=1 in all our experiments.

Results.

The test set’s per-class average matching prediction accuracy (recall) accuracies are reported in Table 8.

Table 8: Partial matching average accuracy (in %) per class on the Pascal VOC test set. The same keypoint
filtering was applied on all methods (preserving outlier keypoints in both images). Method names are abbreviated.
Best results are in bold.

Class
CIE-H 34.0 59.1 47.0 33.7 81.5 54.1 31.9 47.1 28.3 46.2 52.7 45.0 45.4 50.0 29.3 82.9 39.2 35.4 56.1 76.5
qc-DGN 30.9 59.8 48.8 40.5 79.6 51.7 32.5 55.8 27.5 52.1 48.0 50.7 57.3 60.3 28.1 90.8 51.0 35.5 71.5 79.9
BB-GM 42.9 64.3 54.9 48.0 84.7 65.9 45.9 59.9 40.1 63.6 49.1 60.2 58.7 62.3 39.0 92.7 56.0 40.6 75.9 86.4
NGM-v2 41.9 65.9 54.7 47.4 83.5 68.9 59.2 53.8 37.6 56.3 34.6 55.1 52.7 55.3 41.8 87.7 47.0 39.0 71.0 78.4
Ours:
Gumbel-IPF 47.4 65.5 62.3 47.9 88.9 64.3 65.4 62.3 40.0 64.8 50.9 66.5 63.0 61.8 46.8 94.9 57.7 42.4 81.7 83.6

Further, as the class average imbalance increases, our method’s improvement over the baseline increases (Table 8)

7.3.2 IMC-PT-SparseGM

General hyper-parameters and settings. Batches consist of 8 pairs of sampled images from the same
category class. Training is set for 20 epochs. All relaxation techniques were run for 25 iterations. Optimization
is carried with Adam optimizer, with a learning rate of 0.001 and momentum of 0.9 and a scheduled decay of
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Figure 8: Average accuracy improvement of our method over the baseline of 20 Pascal VOC classes versus average
class imbalance. A linear regression model fit is depicted.

0.1 at epochs 2, 6, 10. An element-wise exponential function is applied to the scoring function prior to the IPF
procedure to ensure its positive values. We set a temperature τ=1 in all our experiments.

We follow prior research, such that training is carried out on samples from the 13 classes, and evaluation is
performed on the remaining three classes: the Reichstag, the Sacré-Coeur, and St. Peter’s square.

Results. The test set’s per-class average matching prediction accuracy (recall) accuracies are reported in Table 9.

Table 9: Partial matching per-class average accuracy and average F1 score on the IMC-PT-SparseGM
dataset. The keypoint filtering preserves outlier keypoints in both images. Best results are in bold.

Method Reichstag Sacré-Coeur St. Peter’s square
IPCA-GM 64.5% 28.2% 42.0%
Ours: Gumbel-IPF 62.2% 31.2% 46.3%

7.3.3 CUB2011

General hyper-parameters and settings. Batches consist of 8 pairs of sampled images from the same
category class. Training is set for 20 epochs. All relaxation techniques were run for 25 iterations. Optimization is
carried with Adam optimizer, with a learning rate of 0.001 and momentum of 0.9 and a scheduled decay of 0.1 at
epochs 2, 4, 6, 10. An element-wise sigmoid function is applied to the scoring function prior to the IPF procedure
to ensure its positive values. We set a temperature τ=1 in all our experiments.

We carry out the analysis of the properties of continuous relaxation methods on the IPCA-GM architecture
backbone and the CUB2011 dataset.

Mean Absolute Error. Figure 9a demonstrates that peer methods suffer high MAE for all matching imbalances,
while our method reaches nearly constant zero MAE.

Prediction Shift. Figure 9b shows that the method of Sinkhorn normalization with dummy elements suffers a
high prediction shift. Compared to our method, the ’dustbin’ method exhibits more dispersed statistics, with a
significantly higher upper 3rd quantile (Figure 9b) and maximum.

7.3.4 Properties Of Continuous Partial Matching Relaxation Techniques

Peer Methods The ’dustbin’ method of performing Sinkhorn normalization is based on (Sarlin et al., 2020)
and authors’ published code https://github.com/magicleap/SuperGluePretrainedNetwork. The common ’dummy-
elements’ method of performing Sinkhorn normalization is based on the implementation of Wang et al. (2021)
and authors’ project code ThinkMatch.

https://github.com/magicleap/SuperGluePretrainedNetwork
https://github.com/Thinklab-SJTU/ThinkMatch
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(a) Mean absolute error from target marginals versus matching
imbalance of partial matching relaxation techniques on 1k
random samples of image pairs on the IPCA-GM backbone
on the CUB2011 dataset. Cases of full matchings are not
displayed.

(b) Empirical prediction shift of partial matching re-
laxation methods on the IPCA-GM backbone on the
CUB2011 dataset. Cases of full matchings are not dis-
played.

Empirical Prediction Shift Of An Intermediate Layer To measure the empirical prediction shift of an
intermediate layer in the NGM-v2 backbone, we construct an affinity matrix, denoted µK , from pairs of node
embeddings fs

i ∈ R1024, f t
j ∈ R1024, i = 1, .., n,j = a, ..m, where fs

i denotes the ith node embedding of image Is

and similarly for f t
j . These node embeddings are an intermediate representation, used to construct the association

graph. We experiment with two affinity measures: Gaussian kernel and cosine similarity. The matching that
maximizes the affinity matrix prior to relaxation is predicted, denoted y∗(µK). Then, the affinity matrix is
normalized by each technique, and the empirical prediction shift is measured. Our method in this experiment
derives the target marginals solely from y∗(µK). All methods exhibit a negligible empirical prediction shift in full
matchings. However, in partial matching, the method of Sinkhorn normalization with dummy elements suffers a
high prediction shift in both affinities (medians 31% and 28%). In comparison, the prediction shift is lower with
the ’dustbin’ method (medians 8% and 6%), while our method exhibits a negligible empirical prediction shift in
both affinities (Figure 10).

Figure 10: Empirical prediction shift of partial matching normalization methods measured on pairwise node
cosine similarity and Gaussian kernel affinities between intermediate node embeddings. Cases of full matchings
are not displayed.

In all methods, the scoring function is not perturbed with random noise, to allow comparison that isn’t influenced
by the stochastic nature of random perturbation.
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