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Abstract

In fair machine learning, one source of per-
formance disparities between groups is over-
fitting to groups with relatively few training
samples. We derive group-specific bounds
on the generalization error of welfare-centric
fair machine learning that benefit from the
larger sample size of the majority group. We
do this by considering group-specific Rade-
macher averages over a restricted hypothe-
sis class, which contains the family of mod-
els likely to perform well with respect to a
fair learning objective (e.g., a power-mean).
Our simulations demonstrate these bounds
improve over a näıve method, as expected by
theory, with particularly significant improve-
ment for smaller group sizes.

1 INTRODUCTION

It is well-known that learned models can have perfor-
mance or outcome disparities on underrepresented or
disadvantaged groups in a distribution (Buolamwini
and Gebru, 2018; Obermeyer et al., 2019). Research
suggests that these disparities are the result of a com-
plex interaction between the training procedure, model
class, and training data (Chen et al., 2018).

Group-based welfare-centric machine learning attempts
to mitigate disparities by optimizing aggregations of
per-group risk values, rather than average overall
loss. In other words, the task is to approximate
argminh∈H

W(
R(h,D1), . . . ,R(h,Dg)

)
for some mal-

fare function

W

(·), where R(h,Di) is the risk (average
loss) of group i under model h. Such objectives pro-
duce models that fairly compromise among groups in
various ways. The malfare function determines the
fairness concept; for example, w-weighted risk mini-
mization is equivalent to optimizing utilitarian malfare
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W

1(S;w) = S · w, and taking

W

(·) to be the max-
imum produces the minimax-optimal h∗, a.k.a., the
egalitarian or Rawlsian fair model.

However, training with empirical risk is susceptible to
“overfitting to fairness,” wherein models overfit small
or high-risk minority groups. Cousins (2021, 2022,
2023b) shows that generalization error (overfitting) of
the overall objective decreases with each group’s sample
size, but the current SOTA generalization bounds for
group i depend only on group i’s sample size. We
address this discrepancy; in particular, we show that
in fair learning, each group i effectively learns over a
“restricted class” of models that are reasonably likely
given the training data for all groups j ̸= i, thus
we bound their generalization error via Rademacher
averages of the restricted class, improving over existing
bounds based on the original hypothesis class.

We begin by introducing notation and preliminary con-
cepts (section 2.1) and situating our approach with
respect to existing literature (section 2.2). We derive
group-specific bounds on the generalization error of
jointly trained models, which benefit from the larger
sample size of the majority group (section 3). These
techniques also translate to improved bounds on the
generalization error of the malfare objective itself. Ad-
ditionally, we experimentally verify our methods on
synthetic linear and logistic regression tasks, finding
that our bounds better describe the overfitting be-
havior of fair-learning methods than SOTA analysis
(section 4). Our analysis allows us to resolve key real-
world problems, such as when multiple groups benefit
from pooling data to train a single (shared) model. All
proofs are relegated to appendix A.

2 BACKGROUND

We now introduce notation and preliminary concepts,
followed by a brief review of related work.

2.1 Preliminaries

We assume a standard supervised learning setting.
Given domain label space Y , domain X , and codomain
Y ′, we assume a hypothesis class H ⊆ X → Y ′ and
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loss function ℓ : Y ′ × Y → R. Now, suppose a sample
(x,y) = z ∈ (X × Y)m or instance distribution D over
X ×Y . We define the empirical risk of hypothesis h as

R̂(h, z)
.
=

1

m

m∑
i=1

ℓ(h(xi),yi) ,

and the true risk over the distribution D as

R(h,D)
.
= E

(x,y)∼D
[ℓ(h(x), y)] .

A standard supervised learning task then identifies the
empirical risk minimizer

ĥ
.
= argmin

h∈H
R̂(h, z)

as a proxy for the true risk minimizer

h∗ .
= argmin

h∈H
R(h,D) .

This framework encapsulates simple supervised settings
where Y = Y ′, such as least-squares regression or hard
binary classification, but it also contains more sophis-
ticated supervised learning settings, like probabilistic
classification or conditional density estimation.

Group-Fair Learning This work considers group-
fair learning, in which we assume not one instance
distribution D, but rather g per-group instance distri-
butions D1:g, and per-group samples zi ∼ Dmi

i where
mi is the sample size for group i. The distribution Di

encapsulates the situations encountered by members
of each group i, which may vary in X (situations en-
countered by each group), as well as their conditional
labels Y|X (responses or labels to a given situation).

To treat groups fairly, we consider objectives that con-
sider the risk of all groups. In particular, we assume a
cardinal malfare function

W

(·) : Rg → R, and we then
seek the empirical malfare minimizer

ĥ
.
= argmin

h∈H

W(
i 7→ R̂(h, zi)

)
= argmin

h∈H

W(
R̂(h, z1), R̂(h, z2), . . . , R̂(h, zg)

)
as a proxy for the true malfare minimizer

h∗ .
= argmin

h∈H

W(
i 7→ R(h,Di)

)
.

On Malfare Functions The choice of malfare func-
tion

W

(·) directly encodes how one wishes to make
tradeoffs between various groups at various levels of risk.
The malfare function is thus a fundamental fair-learning
hyperparameter that must be selected to achieve a mod-
eler’s desired fairness properties, i.e., choosing a malfare
function is equivalent to choosing a fairness concept.

Two popular choices are the utilitarian malfare
(weighted average), which generally weights the risk
of each group proportional to their size, and the egal-
itarian malfare, which seeks to lift up the most dis-
advantaged groups by minimizing the maximum risk.

These are in some sense two extremes of a spectrum:
utilitarian malfare only weights groups, and does not
distinguish between high-risk and low-risk groups (no
equitable redistribution), whereas egalitarian malfare
considers only the risk of each group, offering preferen-
tial treatment to those most in need (no consideration
of non-minimal groups). It is known that both of the
above malfare functions belong to a general class of
such functions.

Definition 1 (Power-Mean Malfare). Suppose some
p ≥ 1, positive probability measure w ∈ △g, and non-
negative risk vector S ∈ Rg

0+. We define the weighted
power-mean as

W

p(S;w)
.
= p

√
g∑

i=1

wiSp
i ,

W

∞(S;w)
.
= max

i∈1,...,g
Si . (1)

Both utilitarian and egalitarian malfare arise as power-
mean special-cases p = 1 and p = ∞, respectively.

The power-mean class is axiomatically justified (De-
breu, 1959; Gorman, 1968; Cousins, 2021, 2023b), which
motivates its use in a variety of learning and alloca-
tion settings (Barman et al., 2020; Cousins et al., 2022;
Viswanathan and Zick, 2023; Cousins et al., 2023a,b).
Fairness and robustness are closely linked, and Cousins
(2023a) also motivates power-means, as well as Gini
malfare, and other malfare classes, from the perspec-
tive of robustness. This work is neutral to the choice
of malfare function; we only seek to show that our
methods may be applied to any malfare concept that
meets certain broad criteria.

We generally assume that

W

(·) is monotonic, i.e., that
increasing any group’s risk never decreases malfare.
Furthermore, convex malfare functions are convenient
for optimization, and in section 3.3 we utilize this prop-
erty to efficiently bound Rademacher averages. Finally,
several of our bounds have algebraically convenient
corollaries if we assume Lipschitz continuity, i.e., small
changes to risk yield small changes to malfare. The
power-mean malfare family, as well as other malfare
classes, such as the Gini class (Weymark, 1981; Gajdos
and Weymark, 2005) or the utilitarian-maximin class
(Deschamps and Gevers, 1978; Bossert and Kamaga,
2020; Schneider and Kim, 2020), each arise uniquely
from their own sets of axioms. Each assume some
type of monotonicity, transfer principles, such as the
Pigou-Dalton (Pigou, 1912; Dalton, 1920), which in-
centivize equitable redistribution of harm and give rise
to convexity, as well as some concept of continuity,
which coupled with functional analysis of the resultant
class, give rise to Lipschitz continuity. Our criteria for
malfare functions are thus quite reasonable.

Statistical Background The Rademacher average
is a key statistical tool used to bound the supremum
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deviation of empirical means from their expectations
(Bartlett and Mendelson, 2002). Denote the loss class
ℓ ◦ H .

= {(x, y) 7→ ℓ(h(x), y) |h ∈ H}, and define Rade-
macher averages as follows.

Definition 2 (Rademacher Averages). Let σ1:m be
a vector of m i.i.d. Unif(±1) random variables. The
empirical Rademacher average is then

R̂m(ℓ ◦ H, z)
.
= E

σ

[
sup
h∈H

1

m

m∑
i=1

σiℓ(h(xi),yi)

]
,

i.e., the maximum correlation of any h ∈ H with noise
on a sample z ∈ (X × Y)m, and the Rademacher aver-
age is its expectation over i.i.d. samples from D, i.e.,

Rm(ℓ ◦ H,D)
.
= E

z∼Dm

[
R̂m(ℓ ◦ H, z)

]
.

Assuming bounded loss range r, let εi
.
= r

√
ln 1

δ

2mi
and

η̂i
.
= 2R̂mi

(ℓ ◦ H, zi) + 2εi. For any failure probability
δ, h ∈ H, and group i, sampling error is bounded as

P
zi∼Dmi

i

(∣∣∣R̂(h,zi)− R(h,Di)
∣∣∣ > εi

)
< 2δ . (2)

Moreover, considering all h ∈ H simultaneously, we
have for each group i that

P
zi∼Dmi

i

2Rm(ℓ◦H,Di) > 2R̂m(ℓ◦H,zi)+εi∨
sup
h∈H

∣∣∣R̂(h,zi)− R(h,Di)
∣∣∣ > η̂i

 < 3δ . (3)

Equations (2) and (3) are used throughout for various
hypotheses and hypothesis classes, both in the above
forms, and as 1-tailed variants. These “textbook results”
are now standard in learning theory1 (Shalev-Shwartz
and Ben-David, 2014; Mitzenmacher and Upfal, 2017).

The quantity |R̂(h, zi)− R(h,Di)| of (2) is the absolute
deviation between the empirical risk and the expected
risk for each individual h ∈ H, and it bounds the
estimation error (i.e., error due to sampling) of any such
function. The quantity suph∈H|R̂(h, zi)− R(h,Di)| of
(3) is known as the supremum deviation over the loss
class ℓ ◦ H, and it bounds the generalization error,
both due to sampling error and due to selection bias
(training), of the learned ĥ.

From (3) and a union-bound over groups, following
Cousins (2021, 2022, 2023b), we probabilistically bound
each group’s generalization error (training-true risk
gap) as

P
z1:g

(
∀i :
∣∣∣R̂(ĥ, zi)− R(ĥ,Di)

∣∣∣ ≤ η̂i

)
≥ 1− 3gδ . (4)

Moreover, if

W

(S) is monotonically increasing in S,

1Constants vary between sources, depending on defini-
tions and derivations. Our probabilistic statements use
2-tailed Hoeffding (1963) bounds and 3 applications of
McDiarmid’s (1989) inequality, with optimal bounded dif-
ferences, for Rademacher averages with no absolute value
inside the supremum.

then the malfare generalization error obeys

P
z1:g



W(
i 7→ R̂(ĥ,zi)−η̂i

)
(Empcl. LB)

≤ W(
i 7→ R(ĥ,Di)

)
(True Malfare)

≤ W(
i 7→ R̂(ĥ,zi)+η̂i

)
(Empcl. UB)

≥1− 3gδ , (5)

i.e., the true malfare of ĥ is sandwiched by upper and
lower bounds in terms of empirical malfare. Finally,
using also a union bound over (2), the gap between the

true risk of the empirical malfare minimizer ĥ and the
true malfare minimizer h∗ is

P
z1:g

( W(
i 7→ R(ĥ,Di)− η̂i

)
≤ W(

i 7→ R(h∗,Di) + εi
)) ≥ 1− 5gδ . (6)

2.2 Related work

This work follows others in group-based welfare-centric
fair machine learning. This often takes the form of
Rawlsian or egalitarian learning, also known as mini-
max fair learning, wherein

W

(·) is the maximum func-
tion, and the goal is to minimize the maximum (over
groups) average loss (Diana et al., 2021; Shekhar et al.,
2021; Abernethy et al., 2022; Martinez et al., 2020;
Lahoti et al., 2020; Cortes et al., 2020; Shekhar et al.,
2021; Dong and Cousins, 2022), which is a form of
distributionally robust optimization (Hu et al., 2018;
Oren et al., 2019; Sagawa et al., 2019). Most such
works only consider performance over the training set,
but the Seldonian learner framework (Thomas et al.,
2019) explicitly requires trained models be probably ap-
proximately optimal w.r.t. some constrained nonlinear
objective. Similarly, the fair-PAC learning framework
(Cousins, 2021, 2023b) considers malfare minimization
with power-mean objectives.

Due to the nonlinearity of

W

(·), existing work bounds
generalization errror separately for each group j, and ap-
plies assumed Lipschitz or Hölder continuity properties
of

W

(·) to bound the overall objective (Cousins, 2021,
2022, 2023b). In this work, we show sharper bounds on
the generalization error of malfare objectives, but we
also seek to bound each group’s generalization error.

Multitask learning There is overlap between group
fair learning (GFL) and multitask learning (MTL).
This work shows that GFL reduces generalization error
for all groups (particularly smaller groups), which is
essentially the motivation for MTL. In both cases, we
have g distributions (per-group in GFL, per-task in
MTL) and some objective that considers each distri-
bution through R(h,Di). To our knowledge, there is
no published work in multitask learning on objectives
that treat tasks nonlinearly, i.e., the objective is always
(Caruana, 1997; Zhang and Yang, 2018, 2021)

ĥ
.
= argmin

h∈H

g∑
i=1

1

mi

mi∑
j=1

ℓi(h(xi,j),yi,j) .

Existing MTL analysis bounds generalization error by



To Pool or Not To Pool: Analyzing the Regularizing Effects of Group-Fair Training on Shared Models

considering all data at once (Zhang et al., 2020; Zhang
and Yang, 2021); assumingm samples each for g groups,
VC dimension, Rademacher averages, etc. bound total
estimation error as O

√
ln 1

δ/mg. Such methods do not
apply in our setting, as we seek per-group generalization
bounds and treat nonlinear objectives, thus ultimately
we do not expect bounds of this order.

To pool or not to pool Some work directly ad-
dresses the tradeoff between training pooled versus
separate models for groups. Dwork et al. (2018) define
the cost-of-coupling as

max
D

(
min
h∈H

g∑
i=1

R(h,Di)−
g∑

i=1

min
h∈H

R(h,Di)

)
,

i.e., worst-case difference between the sum risk of the op-
timal shared model ĥ, vs. sum risk of optimal per-group
models ĥ1:g. When this quantity is positive, training
with pooled data may require tradeoffs in accuracy
across groups. They then introduce transfer learning
methods to train per-group classifiers ĥ1:g while leverag-
ing available data where appropriate. Similarly to our
work, this results in improved VC-theoretic groupwise
bounds on generalization error than fully separated
training. However, the goal of our learning framework
is still to learn a joint model, avoiding thorny ques-
tions of disparate treatment. Wang et al. (2021) also
examine the tradeoff, where the metric of interest or
benefit of splitting is based on an egalitarian notion
of fairness. They largely focus on the infinite-samples
or known-distributions settings; however, they provide
VC-theoretic generalization bounds on the benefit of
splitting. These are necessarily worst-case (over possi-
ble distributions), and specific to binary classification,
whereas we provide data-dependent Rademacher aver-
age bounds applicable to a broad range of supervised
and unsupervised settings.

3 BOUNDING GENERALIZATION
ERROR IN FAIR TRAINING

The generalization error analysis of section 2.1 does
not take into account the fact that learning is not
equally likely to produce any h ∈ H. In this section,
we present a sharper analysis that reflects this, both
in per-group generalization error bounds, and in the
overall generalization error of a malfare objective.

Our approach is to take the core idea of localization
(Bartlett et al., 2005) — restricting the function class of
interest to a subset that with high probability contains
the function that will be learned — and generalize
it to apply in multi-group fair learning settings. In
Section 3.1 we argue that, for each group i, with high
probability, the learned function ĥ belongs to some
H∗

i ⊆ H. We bound generalization error over H∗
i , with

R̂mi
(H∗

i , zi), where often R̂mi
(H∗

i , zi) ≪ R̂mi
(H, zi).

The analysis depends on the group index i, since while
analyzing group i, we can treat the training samples
zj as constant for each j ≠ i, but the class H∗

i must
not depend on zi for vital technical reasons (see proof
of theorem 4; we require H∗

i to be established indepen-

dently from zi in R̂mi(H∗
i , zi)). We thus establish a

theoretical hypothesis class that directly depends on
the training sample for each j ̸= i, but depends on the
distribution for group i instead of its training sample.

Unfortunately, H∗
i is a theoretical object (not actually

known, as it depends on Di). Thus, we have little
recourse but to relax to dependence on purely empirical
quantities. We thus establish in Section 3.2 an empirical
class Ĥi, which depends on zi instead of Di. At first
glance this seems to violate core statistical precepts,
but through careful construction, we show that Ĥi acts
merely as a probabilistic proxy for H∗

i .

Finally, we must actually estimate the relevant Ra-
demacher bounds. In Section 3.3 we illustrate how
this can be done for linear hypothesis classes using
Monte-Carlo Rademacher averaging.

3.1 Theoretical Restricted Classes

When bounding the generalization error of group i, we
want to construct a restricted hypothesis class leverag-
ing information given by the remaining group samples,
in particular their empirical risks. However, we can’t
directly use the group i sample zi, so instead we bound
empirical risk R̂(h, zi) in terms of R(h,Di). Intuitively,
we want this restricted class to be the set of all h ∈ H
that could reasonably be the function we learn from
all data (the empirical malfare minimizer ĥ), where the
restricted class is constructed after observing only the
data zj for all groups j ̸= i.

Similar techniques are common in learning theory and
the study of localization, where a theoretical class is
constructed based on the (unknown) distribution(s),
and subsequently an empirical class that is with high
probability a superset which can be built from the
data. Our approach, however, is unique in that it is
in some sense half-empirical, as the theoretical class
depends on the distribution Di of one group, and the
samples zj from all groups j ̸= i. We do this instead
of constructing a “fully theoretical” class using only
the distributions D1:g, as well as an empirical variant
based on all training samples z1:g, which would be
substantially larger.

First, let εi
.
= r

√
ln 1

δ

2mi
and ηi

.
= 2Rmi(ℓ ◦ H,Di) + εi,

where mi is the sample size for group i and r is the
range of loss values in ℓ ◦ H. Recall that the empirical
malfare minimization task is to select

ĥ
.
= argmin

h′∈H

W

(j 7→ R̂(h′, zj)) ,
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but since we can’t observe sample i yet, we (pessimisti-
cally) upper-bound the objective value (w.h.p.) as

inf
h′∈H

W

(j 7→ R̂(h′, zj);w) ≤

inf
h′∈H

W

(
j 7→

{
j ̸= i R̂(h′, zj)

j= i R(h′,Di) + εi

)
,

and (optimistically) lower-bound the empirical malfare
of all h ∈ H, w.h.p. simultaneously, as

W

(j 7→ R̂(h,zj);w) ≥

W

(
j 7→

{
j ̸= i R̂(h, zj)

j= i R(h,Di)− ηi

)
.

Via this analysis, we then construct our theoretical
class, which with high probability shall contain the
empirical malfare minimizer ĥ, as the subset H∗

i ⊆ H
constrained to h such that

W

(
j 7→

{
j ̸= i R̂(h, zj)

j= i R(h,Di)− ηi

)
≤

inf
h′∈H

W

(
j 7→

{
j ̸= i R̂(h′, zj)

j= i R(h′,Di) + εi

)
. (7)

This construction is valid (formalized in theorem 3), as
we took any h that optimistically could outperform a
pessimistic estimate of the empirical objective.

The LHS is a “best case” estimate of the empirical
malfare of a candidate hypothesis, whereas the RHS
is a “worst case” estimate of the minimal empirical
malfare, because we want our restricted hypothesis
class to be large enough to contain any h ∈ H that
might be the empirical malfare minimizer. In particular,
the LHS uses a Rademacher average bound (3), as the
bound must apply to all h ∈ H, but a simple tail-bound
term (2) suffices on the RHS, as we are comparing to
a bound involving some specific h′ (not dependent on
the data zi).

Intuitively, for utilitarian malfare, Ĥi describes mod-
els that definitely perform well for groups j ̸= i, and
will probably perform well for group i. Some mal-
fare functions, such as power-means, are undefined for
negative risk values, and the LHS risk lower bounds
R(h,Di)− ηi may be negative. However, if we assume
risk (or loss) is nonnegative, we may use the risk lower
bound max(0,R(h,Di)−ηi), which preserves convexity,
continuity, and even differentiability if p < ∞ except
around the point 0.

Observe now that, conditioning on zj for each j ̸=
i, with high probability over choice of zi, empirical
malfare minimization yields some ĥ ∈ H∗

i . Therefore,
for all intents and purposes, learning occurs over H∗

i ,
and we may thus use Rademacher averages over this
restricted class to bound generalization error for group
i. Formally put, we have the following result.

H

Samples of Ĥi

H∗
i

· ĥ

h∗·

Figure 1: Visualization of unrestricted class H, theo-
retical restricted class H∗

i , and samples of empirical

restricted class Ĥi (varying zi). One possible empirical

malfare minimizer ĥ (contained by Ĥi and H∗
i with

high probability), as well as the true malfare minimzer
h∗ (which may fall outside of H∗

i or Ĥi due to overfit-
ting to groups other than i) are also shown.

Theorem 3 (Theoretical Group-Regularized Malfare
Bounds). Suppose a monotonic malfare function

W
(·) :

Rg → R, hypothesis class H ⊆ X → Y ′, loss function
ℓ : Y ′ × Y → R, per-group distributions D1:g over
X × Y, and per-group samples z1:g, with zj ∼ Dmj

j

for each group j. Fix any group index i, and take H∗
i

defined as in (7). The following then hold.

1. With probability at least 1− 2δ over choice of zi, it
holds that ĥ ∈ H∗

i .
2. With probability at least 1− 4δ over choice of zi,∣∣∣R(ĥ,Di)− R̂(ĥ, zi)

∣∣∣ ≤ 2Rmi
(ℓ ◦ H∗

i ,Di) + εi .

3.2 Empirical Restricted Classes

H∗
i is an object only of theoretical interest (it is not

actually known, since it depends on Di). Consequently,
without more information, Rmi(ℓ ◦ H∗

i ,Di), and thus
the bounds of theorem 3, can not be computed. We
remedy this issue here, relaxing dependence on the
distribution Di by replacing it with dependence on
the training sample zi and thus establishing a new
empirically restricted hypothesis class.

Note that we can’t simply substitute R̂(h, zi) for
R(h,Di), as theorem 3 clearly requires the restricted
hypothesis class H∗

i to be fixed before observing the
training data zi. We account for this by indirectly
using R̂(h, zi) to bound R(h,Di). In particular, take

η̂i
.
= 2R̂mi

(ℓ◦H, zi)+2εi, and take εi
.
= r

√
ln 1

δ

2mi
, as in

(3). Now, we construct our empirical class Ĥi, which
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with high probability shall contain the theoretical class
H∗

i , as the subset Ĥi ⊆ H constrained to h such that

W

(
j 7→

{
j ̸= i R̂(h, zj)

j= i R̂(h, zi)− 2η̂i

)
≤

inf
h′∈H

W

(
j 7→

{
j ̸= i R̂(h′, zj)

j= i R̂(h′, zi) + 2εi

)
. (8)

Note that (8) matches (7), except risks and Rademacher
averages are bounded in terms of their empirical coun-
terparts. In particular, on the LHS, w.h.p., for all
h ∈ H it holds R̂(h, zi) − 2η̂i ≤ R(h,Di) − ηi, and
on the RHS, w.h.p., R̂(h′, zi) + 2εi ≥ R(h′,Di) + εi.
Figure 1 visualizes the difference between Ĥi and H∗

i ,
as well as other key players.

Observe now that, with high probability, H∗
i ⊆ Ĥi,

therefore we can employ the theoretical properties of
H∗

i while being able to compute everything from a

sample using Ĥi. The following theorem makes precise
this statement, and should be viewed as an empirical
counterpart to theorem 3.

Theorem 4 (Empirical Group-Regularized Malfare
Bounds). Suppose as in theorem 3. The following then
hold for Ĥi defined as in (8).

1. With probability at least 1− 4δ over choice of zi, it
holds that ĥ ∈ H∗

i ⊆ Ĥi.
2. With probability at least 1− 6δ, it holds that∣∣∣R(ĥ,Di)− R̂(ĥ,zi)

∣∣∣ ≤ 2R̂mi
(ℓ ◦ Ĥi, zi) + 2εi .

Theorem 4 satisfies our primary goal of showing per-
group generalization bounds for fair learning that lever-
age information from other groups. In particular, when
Ĥi ⊂ H, we obtain sharper generalization bounds,
which quantifies the intuition that training a shared
model is less susceptible to overfitting than training
per-group models. Theorem 4 part 2 should be con-
trasted with (4), which gives a similar guarantee us-
ing Rademacher averages of the unrestricted class H.
Corollary 5 now applies these bounds to improve the
state-of-the-art generalization guarantees for (nonlin-
ear) malfare objectives, which would otherwise depend
on Rademacher averages of Ĥi rather than H, cf. (5).

Corollary 5 (Empirical Malfare Generalization
Bounds). Suppose as in theorem 4. Suppose also
that there exists some λ > 0 and norm ∥·∥ Wsuch
that

W

(·) is λ-∥·∥ WLipschitz continuous, i.e., ∀S,S ′:

W

(S + S ′) ≤ W

(S) + λ∥S ′∥ W. We then have:

1. With probability at least 1 − 5gδ, the true malfare
of ĥ is bounded by

W

(j 7→ R(ĥ,Dj))

≤ W(
j 7→ R̂(ĥ,zj) + 2R̂mj (Ĥj ,zj) + 2εj

)
≤ W(

j 7→ R̂(ĥ,zj)
)
+ λ

∥∥∥j 7→ 2R̂mj(Ĥj ,zj) + 2εj

∥∥∥ W.

2. With probability at least 1− 6gδ, we bound the sub-
optimality of ĥ as

W

(j 7→ R(ĥ,Dj))

≤ W(
j 7→ R(h∗,Dj) + 2R̂mj (Ĥj ,zj) + 3εj

)
=⇒

∣∣∣ W

(j 7→ R(h∗,Dj))−

W

(j 7→ R(ĥ,Dj))
∣∣∣

≤ λ
∥∥∥j 7→ 2R̂mj (Ĥj ,zj) + 3εj

∥∥∥ W.

The first inequality of parts 1 & 2 of corollary 5 is
sharper, but the second is generally more analytically
convenient. In particular, any power-mean malfare
function

W

p(·;w) obeys

W

p(S+S ′;w)− W

p(S;w) ≤ W

p(S ′;w) ≤ ∥S ′∥∞ , (9)

thus we bound malfare generalization error in terms of
the generalization error of each group.

Naturally, one may ask how sharp this localization
strategy is. We now show an example where theorem 4
improves slow O( 1√

m
) convergence rates to fast O( 1

m )

convergence rates. Consider unit-range 0-dimensional
linear regression, i.e., mean estimation under square
loss ℓ, with g = 1. Thus we have

ℓ ◦ Hr =
{
ℓ(hc(x), y) = (c− y)2

∣∣ c ∈ [−r, r]
}

with r = 1. Take constant probability distribution
D = 0, thus y = 0. From random walk theory, we have

R̂m(ℓ ◦ Hr,y) = E
σ

[
sup

c∈[−r,r]

1

m

m∑
i=1

σi(yi − c)2

]

= E
σ

[
sup

c∈[−r,r]

1

m

m∑
i=1

σic
2

]

=
r2

2
E
σ

[∣∣∣∣∣ 1m
m∑
i=1

σi

∣∣∣∣∣
]
≈ r2

√
1

2πm
.

To construct Ĥ, observe that we have R̂(c,y) = c2,
thus via (8) we restrict s.t. c2 ≤ 4R̂m(ℓ ◦Hr,y) + 6ε ≈√

8
πm + 6

√
ln 1

δ

2m =⇒ |c| ≤ r ∈ Θ 4

√
1
m . We thus have

R̂m(ℓ ◦ Ĥ,y) ≈ r2
√

1
2πm ∈ Θ

(
1
m

)
,

which asymptotically improves R̂m(ℓ◦H,y) ≈
√

1
2πm .

3.3 Monte-Carlo Rademacher Averages of
Linear Hypothesis Classes

We now present a method to estimate Rademacher
averages for linear hypothesis classes using Monte-
Carlo sampling. We start by noting that, in general
if ℓ(ŷ, y) = f(g(ŷ, y)) and f is λ-Lipschitz-continuous,
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then we have, for any z ∈ (X × Y)m, that

R̂m(ℓ ◦ H, z) ≤ λR̂m(g ◦ H, z) . (10)

For this reason, we formulate the Rademacher averages
of both linear least-squares regression and logistic re-
gression as follows. Take H = {hβ(x)

.
= β · x |β ∈ B}

and loss function ℓ(ŷ, y) = f(g(ŷ, y)), where for least-
squares regression, g(ŷ, y) = ŷ−y and f(u) = u2. This
is λ-Lipschitz continuous, assuming bounded B, X ,
and Y, with λ = 2 supB,Y,X |x · β − y|.2 For logistic
regression, in which Y = ±1, we have g(ŷ, y) = ŷ · y
and f(u) = ln(1 + exp(u)), which is 1-Lipschitz.

Estimation Standard methods for bounding Rade-
macher averages of linear regression classes start by
bounding the Rademacher average of H itself (Shalev-
Shwartz and Ben-David, 2014). However, this method
is loose (Cousins and Riondato, 2020), and seems es-
pecially so for irregular weight spaces (i.e., those not
defined by simple p-norms), which known analytic meth-
ods can not handle.

Instead, we directly estimate the Rademacher av-
erage of the function family g ◦ H directly using
Monte-Carlo estimation. That is to say, given
sampled Rademacher random variables σ ∈ (±1)n×m

and data sample z ∈ (X × Y)m, we compute

R̂
n
m(g◦H,z;σ)

.
=

1

n

n∑
k=1

sup
β∈W

1

m

m∑
j=1

σk,jg(xj ·β,yj) . (11)

This fully data-dependent method gracefully tolerates
arbitrary data distributions and parameter spaces,
and is loose only in a small amount of Monte-Carlo
error and the contraction inequality (Cousins and
Riondato, 2020). In practice, we use λR̂n

mi
(g ◦H, zi;σ)

as a plug-in estimate of λR̂mi
(g ◦ H, zi), which then

bounds R̂mi
(ℓ ◦ H, zi) via (10). We similarly estimate

and bound Rademacher averages over our restricted
hypothesis classes as λR̂n

mi
(g ◦ Ĥi, zi;σ).

Lemma 6 (Convex Optimization for Monte-Carlo Ra-
demacher Averages). Suppose the parameter space B
of H is a convex set, loss ℓ(hβ(x), y) is convex in β ∈ B
for all x ∈ X , y ∈ Y, and malfare

W

(·) : Rg → R is
quasiconvex and monotonically increasing in each ar-
gument. Then the parameter spaces of Ĥi and H∗

i are
convex sets.

Moreover, if g ◦ H is an affine function family, then
R̂n

m(g ◦ Ĥi, zi;σ) reduces to maximizing a linear func-
tion over a convex set. Similarly, if we strengthen the
quasiconvexity assumption on

W

(·) to convexity, then
EMM reduces to minimizing a convex objective over
the convex set B.

2In practice, we compute the Lipschitz constant over H,

rather than over Ĥi ⊆ H, which would require computing

the diameter of Ĥi or bounding the range of g ◦ Ĥi.

Figure 2: Rademacher average samples in the parame-
ter space of Ĥi for each group i ∈ {1, 2, 3}.

Table 1: Sample sizesm1:3, parameter vectors β1:3, and
Monte-Carlo empirical Rademacher averages (MCERA)
for both H and Ĥ1:3.

Group mi True β MCERA

ID H Ĥi

1 6500 (0.3,0.3) 0.047 0.046
2 3000 (-0.1,0.1) 0.075 0.046
3 500 (0.3,0) 0.183 0.135

Visualizing Ĥi in least-squares regression For
least-squares regression, under utilitarian malfare, the
restricted hypothesis constraint of Ĥi is an ellipsoid
(under egalitarian welfare, it is an intersection of ellip-
soids). We visualize a simple example in figure 2, with
parameters and results described in table 1.

Taking B
.
=
{
β ∈ R2

∣∣∥β∥1 ≤ 1
}
to be the unit ℓ1 ball,

we sample (x, y) as x ∼ Unif([−1, 1]2), y = x · βi +
Unif([−1, 1]), where each group has slightly different
data generating parameters βi. In figure 2, taking
δ = 0.1, we plot the n = 100 values of β which realize
each supremum of (11) for some Rademacher sample
σk. These points necessarily lie on either (the corner
of) the ℓ1 constraint boundary of B or the restricted
hypothesis constraint boundary of Ĥi, illustrated by
the concentric ellipses, which represent constant upper-
bounds of weighted utilitarian malfare over the whole
dataset and are centered around ĥ.
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Note that for the smallest group, 3, the fact that ĥ must
perform well on the other two groups under weighted
utilitarian malfare shrinks Ĥ3 significantly. However,
the generalization bound over the largest group, 1, is
not significantly improved when taken over Ĥ1.

4 EXPERIMENTS

We illustrate the utility of our results with some ex-
periments. Our approach is to construct an example
dataset where we can demonstrate a clear benefit (to
minority groups) to pooled training, and then show how
our refined generalization bounds are in fact sharper
than standard Rademacher bounds. We do this by as-
suming that the individual distributions of the groups
are similar enough that, for underrepresented minority
groups, pooled training reduces generalization error.

Our experiments are based on a binary logistic regres-
sion task with 3 groups. Suppose the unit ℓ∞ ball
domain, i.e., X = [−1, 1]15, binary label space Y = ±1,
and parameter space B

.
=
{
β ∈ R15

∣∣∥β∥1 ≤ 15
}
. For

each group i, we generate samples (x, y) with x ∼
Unif(X ), P(y = 1) = logistic(x · βi + ξ), with noise
ξ ∼ N (0, 0.1), for logistic(u) = 1

1+exp(−u) .

We assume groupwise data generating parameters and
a constant proportional composition of the full training
sample as in table 2. Notably, the data generating
model for groups 1 and 3 are very similar, but there is
always much more data available for group 1.

In figure 3, we plot the average test risk of each group i
over 7 independent runs for malfare-minimizing models
ĥ or for risk-minimizing models ĥi as a function of total
training sample size, where test risk is computed from
a held-out test set with 20,000 samples for each group.
We observe that pooled models almost always have
lower per-group test risks than the separately-trained
models ĥi on the minority groups (2 and 3), which
we attribute to the regularizing effect of pooled train-
ing overcoming the small discrepancies between the
data generating parameters of each group (see table 2).
While the above describes small-sample behavior, for
sufficient sample sizes, per-group models should domi-
nate shared models, and we do observe this for group 3
with the maximum sample size of 32768 · 0.05 ≈ 1638.

We then compute the bounds derived from Monte-
Carlo Rademacher averages (with δ = 0.1) over samples

Table 2: Data generating parameters for logistic regres-
sion experiments.

Data proportion True parameters
Group 1 75% βi = 0.3
Group 2 20% βi = 0.1
Group 3 5% βi = 0.2

Figure 3: Average test risk of pooled and separately
trained models on three groups (see table 2).

zi over both H and Ĥi for each i (figure 4). Since
the bounds derived from Rademacher averages over H
essentially function as bounds on the generalization
error of the separately trained models, the fact that
the bound over Ĥi is tighter correctly suggests that
pooled training is better for the minority groups in this
scenario, especially when using egalitarian training.

In the utilitarian case, we see that initially Ĥi bounds
match H bounds, but for sufficiently large sample sizes,
they diverge. In the egalitarian case, Ĥi bounds are
always better than H bounds, and they appear to decay
at an asymptotically greater rate (slope on the log-log
plot), reaching an order of magnitude improvement
in the case of the largest group (group 1). This sug-
gests that our bounds characterize generalization error
substantially more sharply than the näıve method.

5 CONCLUSION

We show that fair learning, like multitask learning, has
a regularizing effect, reducing overfitting to each group
as compared to per-group models trained solely on their
data. Concretely, we show that, from the perspective of
each group, fair-learning (empirical malfare minimiza-
tion) effectively occurs over some restricted hypothesis
class, and we the bound generalization error of each
group’s risk in terms of their Rademacher averages over
these restricted classes. This technique yields refined
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Figure 4: Generalization error bounds derived from original hypothesis class H and restricted hypothesis classes
Ĥi, compared with shared model ĥ train-test gap over 7 independent runs, with quartiles and median trend lines.

generalization bounds, not just for the overall learning,
task, but also for the risk of each individual group.

Such bounds are of particular importance in learning
settings where minority groups often suffer poor model
performance (Mehrabi et al., 2021), such as medical
ML (Obermeyer et al., 2019) and facial recognition
(Buolamwini and Gebru, 2018; Cavazos et al., 2020).
Moreover, in critical systems, having provable guar-
antees on the generalization error of each task, rather
than just the overall generalization error, can greatly
improve reliability and user trust. This is also valu-
able in multi-task learning settings, where task fair-
ness and task-specific bounds are of interest, e.g., in
distributionally-robust LLMs (Oren et al., 2019).

While the contributions of this paper are theoretical,
our setting is practically motivated. Understanding the
generalization error of each group allows modelers to
make better-informed decisions, particularly regarding
minority groups. Generalization bounds for a group-
specific model ĥi and a shared model ĥ can be used to
bound risk for group i, which can be used for model
selection (i.e., group i can select between ĥ and ĥi with
confidence). It is known that, given infinite data, indi-
vidual models are always preferable, and the degree of
suboptimality of a shared model can be bounded using
transfer learning techniques; however, for data-hungry
models, in particular with sparse data for minority
groups, a better understanding of the interplay be-
tween generalization error and the negative impacts of
majority group data on minority group performance

are vital.

We also envision more sophisticated applications of
our bounds. For example, if some smaller groups are
more similar to minority group i than a majority group,
a shared model ĥ optimizing, say, utilitarian malfare,
may perform poorly for group i, but perhaps a better-
performing ĥ′ would arise from optimizing a more egal-
itarian malfare function (i.e., higher p power-mean),
or one that emphasizes similar groups (through the
weights vector w). Group-fair learning methods can
be combined with other aspects of model selection,
such as feature and hyperparameter selection, where
the bias-variance tradeoff plays a significant role. Our
bounds indicate that we can provably learn a more
complex shared model without overfitting, and our
analysis enables rigorous model selection guarantees ,
both for individual group risks and for malfare objec-
tives. We are hopeful that future work explores these
model-search questions and other applications of our
methods.
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1. For all models and algorithms presented, check if
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(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Not Applicable]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
[Yes]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Not Applicable]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. [Not Applicable]

(b) The license information of the assets, if appli-
cable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. [Not Applicable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Not Applicable]
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A Proofs

We now show theorem 3.

Theorem 3 (Theoretical Group-Regularized Malfare Bounds). Suppose a monotonic malfare function

W

(·) :
Rg → R, hypothesis class H ⊆ X → Y ′, loss function ℓ : Y ′ × Y → R, per-group distributions D1:g over X × Y,
and per-group samples z1:g, with zj ∼ Dmj

j for each group j. Fix any group index i, and take H∗
i defined as in

(7). The following then hold.

1. With probability at least 1− 2δ over choice of zi, it holds that ĥ ∈ H∗
i .

2. With probability at least 1− 4δ over choice of zi,∣∣∣R(ĥ,Di)− R̂(ĥ, zi)
∣∣∣ ≤ 2Rmi

(ℓ ◦ H∗
i ,Di) + εi .

Proof. We begin by proving part 1 and then we prove part 2 as a consequence.

We now show part 1. Recall that ηi
.
= 2Rmi

(ℓ ◦ H,Di) + εi. With probability at least 1− 2δ, for all h ∈ H, it
holds that

∣∣∣R(h,Di)− R̂(h, zi)
∣∣∣ ≤ ηi .

This is a textbook application of McDiarmid’s bounded difference inequality, using twice the Rademacher average
to bound the expected supremum deviation, i.e., the upper and lower tails of (3).

We could use this directly to show a weaker version of the result, however to show the stated form, we need only
one tail of the above, which is used to bound generalization error of the (unknown) ĥ, and also one tail of the
simple Hoeffding’s inequality tail bound (2).

Now, suppose some arbitrary but fixed h′ that realizes the infimum of (7), i.e.,

h′ ∈ argmin
h′∈H

W

(
j 7→

{
j ̸= i R̂(h′, zj)

j= i R(h′,Di) + εi

)
(technically, h′ may be in H or a limit of a sequence of functions in H). Recalling εi

.
= r

√
ln 1

δ

2mi
, we obtain by

Hoeffding’s inequality that, with probability at least 1− 2δ, it holds∣∣∣R(h′,Di)− R̂(h′, zi)
∣∣∣ ≤ εi .

Therefore, when these bounds hold, we have

W

(
j 7→

{
j ̸= i R̂(ĥ, zj)

j= i R(ĥ,Di)−ηi

)
≤ W(

j 7→ R̂(ĥ, zj)
)

W.h.p.: R(ĥ,Di)− ηi ≤ R̂(ĥ, zi)
Monotonicity of

W

(·)

= inf
h′∈H

W(
j 7→ R̂(h′, zj)

)
By Definition

≤ inf
h′∈H

W

(
j 7→

{
j ̸= i R̂(h′, zj)

j= i R(h′,Di)+εi

)
.

W.h.p.: R̂(h′, zi) ≤ R(h′,Di) + εi
Monotonicity of

W

(·)

We may thus conclude with probability at least 1− 4δ that ĥ ∈ H∗
i (by definition). However, observe that both

the McDiarmid (Rademacher) and Hoeffding bounds required only one tail each, and thus a more careful analysis
yields the guarantee with probability at least 1− 2δ.

We now show part 2. By part 1, we have that ĥ ∈ H∗
i with probability at least 1 − 2δ. Then we apply the

standard 2-tailed Rademacher bound with McDiarmid’s inequality over the restricted class H∗
i , i.e., we have

P
zi∼Dmi

i

(
sup
h∈H∗

i

∣∣∣R(h,Di)− R̂(h, zi)
∣∣∣ ≤ ηi

)
≤ 1− 2δ .

The union bound then yields the desideratum.

We now show theorem 4.

Theorem 4 (Empirical Group-Regularized Malfare Bounds). Suppose as in theorem 3. The following then hold
for Ĥi defined as in (8).
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1. With probability at least 1− 4δ over choice of zi, it holds that ĥ ∈ H∗
i ⊆ Ĥi.

2. With probability at least 1− 6δ, it holds that∣∣∣R(ĥ,Di)− R̂(ĥ, zi)
∣∣∣ ≤ 2R̂mi

(ℓ ◦ Ĥi, zi) + 2εi .

Proof. We begin by proving part 1, and we then show part 2 as a consequence.

We now show part 1. First, we apply part 1 of theorem 3 (2 tails). We will then argue that

P
zi∼Dmi

i

(
H∗

i ⊆ Ĥi

)
≥ 1− 2δ ,

which holds for similar reasons (a 1-tail Rademacher bound for H, and a 1-tail Hoeffding bound for ĥ, both the
opposite tails bounded in part 1 of theorem 3). The result then follows via union bound.

In particular, recall (7)

H∗
i
.
=

{
h ∈ H

∣∣∣∣∣ W

(
j 7→

{
j ̸= i R̂(h, zj)

j= i R(h,Di)− ηi

)
≤ inf

h′∈H

W

(
j 7→

{
j ̸= i R̂(h′, zj)

j= i R(h′,Di) + εi

)}
,

and also (8)

Ĥi
.
=

{
h ∈ Ĥ

∣∣∣∣∣ W

(
j 7→

{
j ̸= i R̂(h, zj)

j= i R̂(h, zi)− 2η̂i

)
≤ inf

h′∈H

W

(
j 7→

{
j ̸= i R̂(h′, zj)

j= i R̂(h′, zi) + 2εi

)}
.

Now, observe that by McDiarmid’s inequality, by essentially the same argument as in (3), it holds that

P
zi∼D

mi
i

(
sup
h∈H

R̂(h,zi)−R(h,Di) + ηi > 2η̂i

)
= P
zi∼D

mi
i

(
sup
h∈H

R̂(h,zi)−R(h,Di) + 2Rmi(ℓ ◦ H,Di) > 4R̂mi(ℓ ◦ H,zi)+3εi

)
< δ .

We thus have that, with probability at least 1− δ, for all h ∈ H∗
i ,

W
(
j 7→

{
j ̸= i R̂(h, zj)

j= i R̂(h, zi)− 2η̂i

)
≤ W

(
j 7→

{
j ̸= i R̂(h, zj)

j= i R(h,Di)− ηi

)
,

and similarly, with probability at least 1− δ by the Hoeffding bound (2) on h′, we have

inf
h′∈H

W

(
j 7→

{
j ̸= i R̂(h′, zj)

j= i R(h′,Di) + εi

)
≤ inf

h′∈H

W

(
j 7→

{
j ̸= i R̂(h′, zj)

j= i R̂(h′, zi) + 2εi

)
,

where both steps apply monotonicity of

W

(·).

From this, we may conclude that, with probability at least 1 − 2δ, for each h ∈ H, if the constraint in (7) is
satisfied, then the constraint (8) is satisfied, thus H∗

i ⊆ Ĥi. The union bound over all tail bounds above then
yields part 1.

We now show part 2. This result essentially follows the structure of part 2 of theorem 3. However, we now start
with part 1 above, which allows us to conclude that ĥ ∈ Ĥi with probability at least 1− 4δ, and then apply the
standard empirical Rademacher bounds, i.e., 2 tails of (3) (we require only the upper and lower bounds to the
supremum deviation, not the bound on the Rademacher average itself), to Ĥi (rather than to H∗

i ). Taking the
union bound over all events then yields the desideratum.

We now show corollary 5.

Corollary 5 (Empirical Malfare Generalization Bounds). Suppose as in theorem 4. Suppose also that there
exists some λ > 0 and norm ∥·∥ Wsuch that

W

(·) is λ-∥·∥ WLipschitz continuous, i.e., ∀S,S ′:

W

(S + S ′) ≤

W

(S) + λ∥S ′∥ W. We then have:

1. With probability at least 1− 5gδ, the true malfare of ĥ is bounded by

W

(j 7→ R(ĥ,Dj))

≤ W(
j 7→ R̂(ĥ,zj) + 2R̂mj (Ĥj ,zj) + 2εj

)
≤ W(

j 7→ R̂(ĥ,zj)
)
+ λ

∥∥∥j 7→ 2R̂mj(Ĥj ,zj) + 2εj

∥∥∥ W.
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2. With probability at least 1− 6gδ, we bound the suboptimality of ĥ as

W

(j 7→ R(ĥ,Dj))

≤ W(
j 7→ R(h∗,Dj) + 2R̂mj (Ĥj ,zj) + 3εj

)
=⇒

∣∣∣ W

(j 7→ R(h∗,Dj))−

W

(j 7→ R(ĥ,Dj))
∣∣∣

≤ λ
∥∥∥j 7→ 2R̂mj (Ĥj ,zj) + 3εj

∥∥∥ W.

Proof. For both results, we apply part 2 of theorem 4 to each group i, which by union bound gives a result
with probability at least 1− 6gδ. However, careful accounting reveals that we only require one tail of the final
Rademacher bound of theorem 4 part 2, i.e., we require R(ĥ,Dj) ≤ R̂(ĥ, zj) + 2R̂mj

(Ĥj , zj) + 2εj , but not

R̂(ĥ, zj) ≤ R(ĥ,Dj) + 2R̂mj
(Ĥj , zj) + 2εj , thus we begin with tail bounds that hold with probability at least

1− 5gδ.

We now show part 1. Subject to all tail bounds holding, we have for all j ∈ 1, . . . , g that R(ĥ,Dj) ≤ R̂(ĥ, zj) +

2R̂mj
(Ĥj , zj) + 2εj , thus by monotonicity of

W

(·), we have

W(
j 7→ R(ĥ,Dj)

)
≤ W(

j 7→ R̂(ĥ, zj) + 2R̂mj
(Ĥj , zj) + 2εj

)
.

Applying the Lipschitz property then yields the final portion of part 1.

We now show part 2. First, observe that

W

(j 7→ R(h∗,Dj)) ≤

W(
j 7→ R(ĥ,Dj)

)
by definition. For the remaining

inequality, we introduce one new tail bound for each group j, in particular, a 1-tail Hoeffding bound of

P
zj∼D

mj
j

(
R(h∗,Dj) ≤ R̂(h∗, zj) + εj

)
≥ 1− δ .

This seems familiar, but it is not quite the same as the 2-tail Hoeffding bound on each R(h′,Dj) used by theorems 3
and 4, thus this tail bound must be counted separately. Now, we substitute into the result of part 1, again
applying monotonicity, to get

W(
j 7→ R(ĥ,Dj)

)
≤ W(

j 7→ R(h∗,Dj) + 2R̂mj
(Ĥj , zj) + 3εj

)
.

Applying the Lipschitz property then yields the final portion of part 2. By union bound, we may conclude the
result with probability at least 1− 6gδ.

We now show lemma 6.

Lemma 6 (Convex Optimization for Monte-Carlo Rademacher Averages). Suppose the parameter space B of
H is a convex set, loss ℓ(hβ(x), y) is convex in β ∈ B for all x ∈ X , y ∈ Y, and malfare

W

(·) : Rg → R is

quasiconvex and monotonically increasing in each argument. Then the parameter spaces of Ĥi and H∗
i are convex

sets.

Moreover, if g ◦ H is an affine function family, then R̂n
m(g ◦ Ĥi, zi;σ) reduces to maximizing a linear function

over a convex set. Similarly, if we strengthen the quasiconvexity assumption on

W

(·) to convexity, then EMM
reduces to minimizing a convex objective over the convex set B.

Proof. We first show that the restricted parameter spaces of H∗
i and Ĥi are convex sets.

The crux of this result is to show that

W(
j 7→ fj(β)

)
is quasiconvex, where fj(x) represents R̂(hβ, zj)− cj or

R(hβ,Dj) − cj for some constant c ∈ Rg. This indeed holds, so long as fj(β) is quasiconvex. First note that
convexity of loss immediately implies convexity of (empirical) risk. Now, by standard compositional rules, since
we assume

W

(·) to be quasiconvex and monotonic, we conclude that

W

(j 7→ fj(β)) is quasiconvex in β ∈ B.

Now, converting H to B, observe that the parameter spaces associated with both H∗
i in (7){

β ∈ B

∣∣∣∣∣ W

(
j 7→

{
j ̸= i R̂(hβ, zj)

j= i R(hβ,Di)− ηi

)
≤ inf

h′∈H

W

(
j 7→

{
j ̸= i R̂(h′, zj)

j= i R(h′,Di) + εi

)}
,
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and also Ĥi in (8){
β ∈ B

∣∣∣∣∣ W

(
j 7→

{
j ̸= i R̂(hβ, zj)

j= i R̂(hβ, zi)− 2η̂i

)
≤ inf

h′∈H

W

(
j 7→

{
j ̸= i R̂(h′, zj)

j= i R̂(h′, zi) + 2εi

)}
,

are subsets of the convex set B. In particular, the RHS of the condition is constant in β, and as above, the LHS
is quasiconvex in β, thus both restricted parameter spaces are convex sets.

Now, note that once we determine the parameter space to be convex, Monte-Carlo Rademacher averages can be
efficiently computed via standard convex optimization techniques, e.g., first-order methods to maximize a linear
objective on a convex set. Key to this observation is that we assumed g ◦ H to be an affine function family, thus
even after multiplying terms by ±1 in the Monte-Carlo Rademacher average (11), the objective of the supremum
remains convex.

Finally, observe that if

W

(·) is convex and monotonically increasing, then the EMM objective is also convex. This
follows from standard compositional rules, see discussion following Boyd and Vandenberghe (2004) equation (3.15).
EMM then reduces to minimizing a convex function on a convex set.

B Implementation details

All code used to generate the results in this paper are available upon request. The computation of each supremum
in (11), i.e., R̂n

m(g ◦ H, zi;σ) and R̂
n
m(g ◦ Ĥi, zi;σ) optimize linear functions of β. However, since the restricted

hypothesis constraints are convex functions (see lemma 6) over the parameter space, we need to use solvers that
can handle nonlinear convex constraints. For this reason, we use either the ECOS (Domahidi et al., 2013) or
SCS (O’Donoghue et al., 2016) algorithms available in CVXPY (Diamond and Boyd, 2016; Agrawal et al., 2018).
These algorithms are also able to compute the upper bound of the restricted hypothesis class constraint itself,
which minimizes an objective which is dependent on the loss ℓ.
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