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Abstract

Scholars in the machine learning community
have recently focused on analyzing the fair-
ness of learning models, including clustering
algorithms. In this work we study fair clus-
tering in a probabilistic (soft) setting, where
observations may belong to several clusters de-
termined by probabilities. We introduce new
probabilistic fairness metrics, which generalize
and extend existing non-probabilistic fairness
frameworks and propose an algorithm for ob-
taining a fair probabilistic cluster solution
from a data representation known as a fairlet
decomposition. Finally, we demonstrate our
proposed fairness metrics and algorithm by
constructing a fair Gaussian mixture model
on three real-world datasets. We achieve this
by identifying balanced micro-clusters which
minimize the distances induced by the model,
and on which traditional clustering can be
performed while ensuring the fairness of the
solution.

1 INTRODUCTION

Decision making systems based on machine learning
(ML) applications have demonstrated unwanted conse-
quences as a result of biased data (Phillips et al., 2011;
Z. Obermeyer and Mullainan, 2019). This has fostered
efforts towards artificial intelligence (AI) alignment,
wherein ML systems are aligned with their intended
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objectives. This includes ensuring decisions are fair
and do not show bias against or for certain population
sub-groups. Many of these fairness interventions are
based on the Disparate Impact (DI) doctrine (Ruther-
glen, 1987), which prohibits discrimination between
different groups of protected attributes such as race or
sex. For clustering, this type of non-discrimination is
denoted group-level fairness (Chhabra et al., 2021).

Clustering algorithms are an unsupervised ML ap-
proach used to partition a dataspace into clusters.
These algorithms are widely used, particularly in set-
tings where data labels are scarce. Here, clustering
may be used as a feature engineering tool to supple-
ment points with cluster assignments in an effort to
increase expressive power of downstream models. If the
underlying training data is unfair, this may propagate
into the generated features and ultimately cause biased
predictions. Fair clustering aims to prevent this.

The topic of fairness for clustering was initiated in a
seminal work by Chierichetti et al. (2017), which con-
sidered group-level fairness obtained by modifying the
input data for traditional hard clustering algorithms
like k-center and k-median. The literature on fair
clustering is largely focused on such non-probabilistic
algorithms, where point assignments are deterministic
(Chhabra et al., 2021). However, for a number of appli-
cations soft clustering is more appropriate. In our work,
we consider group-level fair clustering in a probabilis-
tic setting, where equal representation is ensured for
protected groups in clusters found using soft clustering
algorithms. As an example, a bank might use a dataset
containing information about educational attainment
and wages of individuals to train a model with the goal
of identifying potential customers and offering them
loans or credit opportunities. The bank then trains a
soft clustering algorithm to group customers into low
or high risk candidates, where the soft assignments



Fair Soft Clustering

could imply the probability (risk) that a given cus-
tomer will default their loan. It should be pointed
out, that a wage gap has been identified for women
and people-of-color, who usually earn lower wages than
White males (Patten, 2016), and that people-of-color
often face additional adversities that lead to educa-
tional disparities as compared to White individuals
(Sablich, 2016). Thus, a clustering algorithm trained
on this data would be prone to group White males
as better prospective candidates and correspondingly
deny people-of-color and women the potential for im-
provement, thus propagating the systemic bias from
the training data to downstream decisions. Ensuring
group-level fairness from a probabilistic cluster solu-
tion could prevent such decision-making systems from
adversely affecting specific groups and thus ensure that
the models adhere to the DI doctrine.

Fair probabilistic clustering has previously been studied
by Esmaeili et al. (2020), where they considered prob-
abilistic fairness in a setting of imperfect group mem-
bership knowledge. This considers the protected group
membership in a probabilistic setting while consider-
ing the cluster assignments in a deterministic setting.
We on the other hand, consider the case of determin-
istic protected group membership and probabilistic
cluster assignments. In Anderson et al. (2020) they
consider individual-level fairness in a probabilistic set-
ting, where no protected groups exist, and fairness is
achieved by ensuring similar individuals are treated
similarly by the algorithm. Corresponding probabilis-
tic assignments have been studied by Brubach et al.
(2020) and Brubach et al. (2021). In our work, we
consider group-level fairness under the same conditions
as Chierichetti et al. (2017), where protected groups
exist and the goal is to construct a representation of the
data, on which a traditional algorithm can be trained to
obtain a balanced cluster solution. We generalize this
to the probabilistic setting. No metrics for group-level
fairness under probabilistic cluster assignments have
been established (Chhabra et al., 2021). To this end, we
propose probabilistic fairness metrics, which generalize
current definitions for deterministic cluster assignment.
Moreover, we demonstrate an algorithm for obtaining
a fair cluster solution from a fairlet decomposition in
the probabilistic setting. Finally, we demonstrate our
metrics and algorithm by applying them on a fairlet de-
composition constructed for a Gaussian mixture model
(McLachlan and Basford, 1988).

Our contributions are:

• Probabilistic generalizations of metrics for group-
level fairness.

• An algorithm for obtaining a fair probabilistic
cluster solution from a fairlet decomposition.

• An approach for generating a fairlet decomposition
for a GMM.

2 CLUSTER FAIRNESS

In most work, group-level fair clustering is defined in
terms of balance or relaxations thereof but may also
be defined in terms of entropy (Chhabra et al., 2021).
These metrics measure the representation equality of
protected groups described by an attribute vector A.
In this work, we denote protected groups by colors
p ∈ P .

2.1 Deterministic Assignment Fairness

Balance measures algorithmic fairness of a cluster so-
lution by considering the degree of balance between
protected groups within each cluster. This fairness def-
inition complies with the the DI doctrine, and the goal
is to obtain a balanced representation (similar fraction)
of all groups within all clusters.

Consider a set of points D partitioned into a set of
clusters C. Balance may be measured by comparing
two fractions rD,p and rc,p, where rD,p is the fraction of

a color p in D and rc,p =
|Nc,p|
nc

is the fraction of a color
p in cluster c, where nc is the number of observations
in cluster c, and Nc,p is the set of observations in the
dataset belonging to both color p and cluster c. Now
construct a fraction Rc,p =

rD,p

rc,p
and define the balance

by:

B = min
c∈C,p∈P

min

(
Rc,p,

1

Rc,p

)
, (1)

where B is the balance and Rc,p =
rD,p

rc,p
is a fraction

for a given cluster c and color p (Chhabra et al., 2021).
Balance is bounded in B ∈ [0, 1] with higher balance
being more fair. This metric measures the overall
fairness of the cluster solution through the minimum
balance across all clusters c ∈ C and colors p ∈ P .
Optimal balance (B = 1) is found when all clusters
share the same color fraction rc,p = rD,p ∀c, p, while
worst case balance (B = 0) is found when a cluster
contains no members of a protected group rc,p = 0.

Contrary to the balance metric, entropy does not mea-
sure the worst case fairness of all clusters, but rather
quantifies the overall fairness through an information-
theoretic perspective across all clusters simultaneously:

H = min
p∈P

(
−

C∑
c=1

rc,p log rc,p

)
, (2)

where H is the entropy (Chhabra et al., 2021). The
entropy fairness is the level of information entropy
across all clusters. Higher entropy equates to a more
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fair cluster solution. Optimal entropy fairness is found
when all clusters share the same color fraction rc,p while
worst case entropy fairness is found when all clusters
are monochromatic.

2.2 Probabilistic Assignment Fairness

In soft clustering algorithms the point assignments
are probabilistic and determined by a responsibility
vector γc for each cluster c. The entries γi,c in this
vector describe the probability that the ith data point is
generated by component c. We use the responsibilities
to construct a measure for weighted color contribution:

wc,p =

N∑
i=1

γi,cαi,p

N∑
i=1

γi,c

, (3)

where wc,p is the weighted contribution of color p to
cluster c, γi,c is the ith entry in the responsibility vec-
tor γc and αi,p is the ith entry in a color vector αp

constructed by setting αi,p = 1 if observation xi ∈ p
and 0 otherwise. The numerator represents the to-
tal color mass (weighted color contribution) for the
given cluster, while the denominator represents the
total mass of the cluster. Note that the weighted color
contribution wc,p reduces to rc,p if γc dictates hard
assignments (probabilities either 1 or 0). Thus wc,p

generalizes the unweighted color contribution rc,p from
the deterministic assignment setting.

We propose to substitute the weighted color contribu-
tion wc,p into the established fairness frameworks for
deterministic assignment fairness in Eqs. 1 and 2:

Bsoft = min
c∈C,p∈P

min

(
Wc,p,

1

Wc,p

)
, (4)

where Bsoft is the soft assignment balance and Wc,p =
rD,p

wc,p
.

Equivalently we define the soft assignment entropy
fairness by:

Hsoft = min
p∈P

(
−

C∑
c=1

wc,p log wc,p

)
, (5)

2.3 Entropy Ratio

Unlike balance, entropy is not bounded in H ∈ [0, 1],
but we can normalize it by comparing the information
entropy of the cluster solution to the optimal entropy
of the cluster configuration:

Hratio = Hsoft/HOPT, (6)

where HOPT is a cluster solution with optimal (largest)
entropy under the given number of clusters. HOPT

is found when all clusters share the same color frac-
tion. Thus Hratio ∈ [0, 1], where Hratio = 1 when
wc,p = rD,p ∀c, p and Hratio = 0 when all clusters are
monochromatic with respect to color p.

3 OBTAINING FAIR CLUSTERS

The first part of our contribution relates to defining
what fairness entails in the soft setting, and similarly
how we may measure this. This is a key issue and
prerequisite for the future study of fair soft clustering
in general, as noted in Chhabra et al. (2021). The
second part of our contribution relates to constructing
fair solutions in terms of these definitions.

Standard cluster algorithms optimize an objective func-
tion and ignore the distribution of protected attributes.
This may end up propagating inherent bias from the
training data to the final model solution. To avoid this,
the data can be modified by constructing a balanced
representation. Fair cluster solutions can be found by
generating a fair representation through a fairlet decom-
position and subsequently performing clustering with
a traditional color blind algorithm on the decomposi-
tion. The decomposition is constructed by identifying
micro-clusters, called fairlets, which preserve balance.

For a binary protected attribute consisting of two colors,
a decomposition can be specified as a (p1, p2)-fairlet
decomposition (assuming p1 < p2) with balance param-
eters p1 and p2 indicating that all fairlets have a color
fraction rc,p ≥ p1

p1+p2
. For a perfectly balanced dataset

(Np1
= Np2

) it is possible to obtain a (1, 1)-fairlet de-
composition, where each fairlet consists of exactly one
point of each color. For this setting rc,p = rD,p ∀c, p
in the decomposition, which results in a balance of
B = 1. To construct a fair clustering from the de-
composition, centers are assigned for each fairlet and
a traditional clustering is performed on the centers.
Since the union of balanced micro-clusters is neces-
sarily also balanced, this will ensure a fair clustering.
This procedure has been constructed for deterministic
assignments in the literature. We demonstrate an al-
gorithm for constructing a fair probabilistic clustering
from any fairlet decomposition by modifying existing
framework for deterministic clustering (Backurs et al.,
2019). This is shown in Algorithm 1. The fair cluster
solution is found by generating a fairlet decomposition,
applying a traditional soft clustering algorithm on the
fairlet centers and subsequently assigning appropriate
responsibilities to the fairlet members. Algorithm 1
provides the same theoretical fairness bounds as previ-
ous works in the hard assignment setting (see Appendix
A for details).
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Algorithm 1 SOFTCLUSTERFAIRLET(Q)

Input: Q = {q1, q2, · · · , qℓ} where every qi is a fairlet
with center ci
Output: The algorithm returns a fair probabilistic
clustering of D given a fairlet decomposition Q of D

multiset D̄ ← ∅ (initilization)
for all fairlets qi ∈ Q do

D̄ ← D̄+{|qi| copies of ci} (sum of two multisets)
end for
C ← Traditional probabilistic clustering of D̄
C∗ ← γi (assign each fairlet member the responsibil-
ity vector of its center in C)
return C∗

However, the algorithm does not ensure optimality of
the decomposition and may result in a sub-optimal cost
of the studied clustering objective depending on the
spatial location of the points selected for each fairlet.
To obtain a solution which maintains a fair representa-
tion of protected groups and simultaneously minimizes
a clustering objective function, it is necessary to take
the cost of the decomposition into account. Fairlet de-
compositions are tailored to specific objective functions
like the k-median and k-means objective (Bercea et al.,
2018):

Lk(D,Q) =
∑
x∈D

d(x, βQ(x)), (7)

where d(·) is a metric (distance function) and βQ(x)
denotes the center location of the fairlet to which
the data point x is mapped. For k-median cluster-
ing βQ(x) ∈ D and for k-means clustering βQ(x) ∈ Rm

for D ⊆ Rm, m ∈ N. The distance metric in k-means
is d(x,y) = ||x− y||2.

Chierichetti et al. (2017) define the total cost of the
overall fair clustering assignment fromD to C∗ (Lemma
6) as:

Lk−tot(D,C∗) = Lk(D,Q) + Lk(D̄, C∗), (8)

where Lk(D,Q) is the fairlet decomposition cost, and
Lk(D̄, C∗) is the cost on a transformed dataset D̄,
where for each fairlet qi the fairlet center ci appears
|qi| times.

The cost on the transformed dataset Lk(D̄, C∗) is the
sum of distances of each point in D̄ to their assigned
cluster center:

Lk(D̄, C∗) =
∑
x∈D̄

d(x, αC∗(x)), (9)

where αC∗(x) is location of the center for which the
data point x is mapped by the clustering C∗.

The goal of the fair clustering is to construct a fair-
let decomposition which minimizes the cost in Eq. 8.

Chierichetti et al. (2017) propose solving the problem
by transforming it into a minimum cost flow (MCF)
problem, where a directed graph is constructed. This
graph may be modified to suit different cluster objective
functions. To generate a decomposition, the weights on
the edges between nodes are represented by a distance
function between points. The objective is to minimize
the sum of distances from fairlet members to fairlet
centers. The MCF approach has super-quadratic time
in dataset size and becomes computationally expensive
for large datasets. Alternative scalable approaches have
been introduced, where the optimal fairlet decomposi-
tion is approximated and found in nearly linear time
in dataset size (Backurs et al., 2019). In our results we
illustrate that the scalable k-median fairlet decompo-
sition introduced by Backurs et al. (2019) can be fed
as input to Algorithm 1 to produce a fair probabilis-
tic clustering, which can be assessed by our proposed
metrics in Eqs. 4 and 5. This clustering may however
have sub-optimal cost.

3.1 Probabilistic Model Fairlet
Decomposition

To demonstrate our proposed metrics and algorithm, we
directly translate the fair cost defined by Chierichetti
et al. (2017) and construct a fairlet decomposition to
minimize this cost for a probabilistic model known
as a Gaussian mixture model (GMM). A GMM de-
scribes the data distribution through a mixture of mul-
tivariate normal distributions N (x|µ,Σ) with mean
µ, covariance structure Σ and component weights π.
The distribution parameters can be inferred through
the expectation maximization (EM) algorithm (Moon,
1996), which iterates between updating the parameters
(maximization step) and computing the responsibility
γi,c for all i, c (expectation step) until the likelihood
converges. The responsibility can be computed by:

γi,c =
N (xi|µc,Σc)πc∑K
j=1N (xi|µj ,Σj)πj

(10)

where γi,c is the probability that the data point xi is
generated by component c. Note that the total mass

of a mixture component is Nc =
N∑
i=1

γi,c and that the

sum of total component masses is the number of data

points N =
C∑

c=1
Nc.

To construct a fairlet decomposition which is simul-
taneously fair and minimizes the distances between
fairlet members in the space modelled by the GMM,
we need a distance metric which takes into account the
mixture model. The natural distance function for data
modeled by a single multivariate Gaussian probability
distribution N with covariance matrix Σ and mean µ
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is the Mahalanobis distance:

d2M(x,N ) = (x− µ)TΣ−1(x− µ), (11)

where d2M(x,N ) is the squared Mahalanobis distance
of a point x from the distribution N .

The likelihood of a GMM is directly related to the
Mahalanobis distance between observed points and
presumed distributions. The log-likelihood of a data
point belonging to a multivariate normal distribution
is given by the logarithm of the probability density
function of distribution N :

log L(x) =

− 1

2

[
log(|Σ|) + log(d2M(x,N )) +m · log(2π)

]
,

(12)
where m is the multivariate dimension of N .

When the data are modelled by a mixture of multiple
Gaussians the covariance matrix Σ is not unique. To
extend the notion of distance between points to this
setting, the data space can be interpreted as a Rie-
mannian manifold with metric G(x). This metric can
be approximated leading to a model-weighted distance
(MWD) (Tipping, 1999):

d2MWD(xi,xj) = (xi − xj)
TG(xi − xj), (13)

where d2MWD(xi,xj) is the model-weighted distance
between points xi and xj , and G is given by:

G =

∑K
k=1 Σ

−1
k πk

∫ xj

xi
p(x|k)dx∑K

k=1 πk

∫ xj

xi
p(x|k)dx

, (14)

where πk is the mixing proportion of the kth mixture
component and

∫ xj

xi
p(x|k) dx is the unidimensional

integral of the probability density of the kth component
along the straight path between point xi and xj .

Computing the distance in this manner assumes a con-
stant metric G along the path between the points.
This metric can be interpreted as a probabilistically-
weighted average of the inverse covariances of the dif-
ferent components in the mixture model. The integral
is analytically tractable and is given by:

∫ xj

xi

p(x|k) dx =

√
πb2

2
e−Z/2 ×[

erf

(
1− a√
2b2

)
− erf

(
−a√
2b2

)]
,

(15)

where erf(x) = 2√
π

∫ x

0
e−t2dt is the error function and

b2 = (v⊺Σ−1
k v)−1, (16)

a = b2v⊺Σ−1
k u, (17)

Z = u⊺Σ−1
k u− b2(v⊺Σ−1

k u)2, (18)

with u = µk − xj and v = xi − xj .

Equipped with a metric for computing distances be-
tween points we define the GMM fairlet decomposition
cost by:

LGMM(D,Q) =
∑
x∈D

dMWD(x, βQ(x)), (19)

where the metric G describing data manifold is com-
puted from a GMM on the original dataspace D. Sim-
ilarly we define the GMM cost on the transformed
dataset D̄ as:

LGMM(D̄, C∗) =
∑
x∈D̄

dMWD(x,ΓC∗(x)), (20)

where ΓC∗(x) denotes the mean locations µ of the
components to which x is mapped. We restrict the
distance of the kth mixture component to be based on a
G metric for the kth component and it thus reduces to
a weighted sum of Mahalanobis distances in the trans-
formed dataspace D̄, where the weights are dictated
by the component responsibilities. This choice gives a
more robust cost measure of the GMM fit. The direct
translation of the total cost of the fair solution defined
by Chierichetti et al. (2017) is then:

LGMM−tot(D,C∗) = LGMM(D,Q) + LGMM(D̄, C∗)
(21)

We generate a GMM fairlet decomposition by minimiz-
ing the GMM cost through a MCF algorithm1. We
utilize the approach described in Chierichetti et al.
(2017) for the k-median cost and change the weights
on the edges of the graph to the MWD between points.
Prior to running the algorithm the metric space is
instantiated by fitting a traditional GMM with the
desired number of components on the original data.
The distribution parameters of these components are
then used to generate the metric G and compute the
model-weighted distances. The fairlet centers are then
generated as the mean of the members in each fairlet.

Fig. 1 presents a visualisation of the approach on
simulated data of 500 points in R2 with 250 red and 250
blue points. Fig 1(a) illustrates the original data with
points colored according to their protected attribute.
We apply a traditional GMM on the data to obtain a
color blind solution shown in Fig. 1(c).

1Our code is publicly available at https://github.com/
RuneDK93/fair-soft-clustering
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(a) Original data with colors.
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(b) Fairlet decomposition.
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(c) Traditional GMM.
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(d) Fair GMM.

Figure 1: Illustration of our approach on simulated data of 500 points in R2. The original data points are shown
colored according to their protected attribute in (a). A GMM fit on the original data is shown in (c). (b) shows a
(1,1)-fairlet MWD decomposition of the data, while (d) shows the resulting fair solution from fitting a GMM on
the fairlet centers in (b) and mapping the responsibilities γi,c according to Algorithm 1. The points in (c) and (d)
are colored according to the cluster index in γi,c with highest probability. The weighted cluster color fractions
wc,p in (c) and (d) are shown for the red class. Notice that the resulting balance is B = 0.81 for the traditional
GMM fit in (c) and B = 1.00 for the fair GMM fit in (d).

The balance of red and blue points allows us to con-
struct a (1, 1)-fairlet decomposition of the data through
a perfect matching on the bichromatic graph. We con-
struct the decomposition using the MCF approach by
utilizing the distribution parameters of the colorblind
solution to instantiate the G metric and use these dis-
tances on the edges of the graph. This results in a
MWD fairlet decomposition Q of the data illustrated
in Fig. 1(b). The fairlet decomposition is then fed as
input to Algorithm 1 to obtain the final fair clustering
C∗ shown in Fig. 1(d). The fairness of both solutions is
assessed with our proposed soft balance fairness metric
(Eq. 4).

4 RESULTS

We demonstrate our approach on real-world data by
performing experiments on three widely used datasets

in the fair clustering community. The datasets are
Census2, Bank3 and Diabetes4. We select numerical
features for the dimensions in the data point space and
use ’sex’ and ’marital status’ as protected attributes.
See Tab. 1 for an overview of the datasets.

Census: The dataset collects records of the 1994 US
Census and presents an income prediction task based
on various attributes of individuals. We select ’age’,
fnlwgt’, ’education-num’, ’capital-gain’ and ’hours-per-
week’ as features representing the spacial dimensions
of the data. We select ’sex’ as the protected attribute.

Bank: The dataset (Moro et al., 2014) is from a Por-

2https://archive.ics.uci.edu/ml/datasets/adult
3https://archive.ics.uci.edu/ml/datasets/Bank+

Marketing
4https://archive.ics.uci.edu/dataset/296/

diabetes+130-us+hospitals+for+years+1999-2008
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(b) Bank
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(c) Diabetes

Figure 2: Fairness in terms of soft balance on the three datasets. Data points are the mean values from five
iterations of different random seeds. Error bars indicate standard errors. The traditional GMM cluster approach
obtains monochromatic cluster solutions (B = 0) for all datasets while the balance of the fair solutions are
bounded. For instance the fair solutions of the Diabetes dataset are bounded at balance B ≥ 0.62 (see Appendix
A for details).

tuguese phone call based bank marketing campaign.
We select ’age’, balance’ and ’duration-of-account’ as
features representing the spacial dimensions of the data.
We select ’marital-status’ as the protected attribute.

Diabetes: The dataset (Strack et al., 2014) spans 10
years of information and outcomes of diabetes across
130 US hospitals. We select ’age’ and ’time-in-hospital’
as features representing the spacial dimensions of the
data and select ’sex’ as the protected attribute.

Table 1: Overview of the datasets used for our ex-
periments. The table shows the number of spacial
dimensions, the type of protected attribute and the
color fraction for the three datasets.

Dataset Dimension Protected Att. rD,p

Census 5 sex 0.67
Bank 3 marital-status 0.62
Diabetes 2 sex 0.54

Similarly to Chierichetti et al. (2017) we sub-sample
each dataset to 500 observations and preserve the pro-
tected attribute fraction from the original data. These
fractions are rD,p = 0.67 (Census), rD,p = 0.62 (Bank)
and rD,p = 0.54 (Diabetes).

For each dataset we apply a standard GMM on the
original data and compare this to our proposed fair
probabilistic clustering constructed by first finding a
MWD (1,2)-fairlet decomposition in a MCF setting
and then applying Algorithm 1 on the decomposition.
The final clustering outcome is dependent on the ini-
tialization of the GMM. We initialize the GMM using
k-means clustering and repeat the overall clustering
and fairlet decomposition five times with different ran-
dom seeds for the initialization parameters to generate

mean values and associated standard errors.

We compare our proposed solution to two fair GMM
baselines. We implement the first baseline using
the k-median fairlet decomposition algorithm from
Chierichetti et al. (2017) to construct a k-median fairlet
decomposition. The fairlet centers from this decompo-
sition are then assigned probabilities using the tradi-
tional GMM fit on the original data. We implement
the second baseline by finding a scaleable k-median
(1,2)-fairlet decomposition using the method described
in Backurs et al. (2019). This fairlet decomposition is
then fed as input to Algorithm 1 to construct a fair
probabilistic clustering. These baselines provide the
same theoretical fairness bounds as our proposed MWD
solution but may incur a high cost by enjoining points
that are far apart in the GMM space.

Fig. 2 shows the resulting soft balance according to Eq.
4 and Fig. 3 shows the soft entropy ratio according to
Eq. 6. For all datasets the fairness disparity between
the traditional and fair solutions increases sharply with
the number of clusters. Observe that for a large num-
ber of mixture components, the colorblind model has a
balance of zero for all datasets. The optimal GMM so-
lution to the data thus requires monochromatic clusters.
Additionally, the fair GMM shows less fairness variance
and is thus more robust to the initialization. This is
especially the case for entropy fairness, where the fair
GMM is highly robust while the color blind GMM is
much more sensitive to the initialization parameters.
The fair baseline solutions generated from k-median
decompositions and our MWD decomposition achieve
equivalent fairness scores.

The price of fairness is quantified by the negative im-
pact on the cost of the solutions. This is illustrated in
Fig. 4, where the costs of the different cluster solutions
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Figure 3: Fairness in terms of soft entropy ratio on the three datasets.
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Figure 4: Total cost on the three datasets. The costs for the fair solutions are computed as LGMM−tot(D,C∗)
according to Eq. 21 while the cost of the standard GMM is computed according to Eq. 20 on the original data as
LGMM(D,C), where C is a traditional GMM clustering on D.

are shown for the three datasets. The costs for the fair
solutions are computed by Eq. 21 while the cost of
the traditional solution is computed by Eq. 20 on the
original data as LGMM(D,C), where C is a traditional
GMM clustering on D. The traditional GMM solu-
tion has the lowest cost, while the fair MWD GMM
has a larger cost, which increases with the number of
cluster components. The fair baseline solutions from
Euclidean k-median fairlet decompositions have the
highest costs, which are significantly higher than both
the traditional GMM and fair MWD GMM for large
k. We note that for the diabetes dataset, the cost of
the fair and traditional cluster solutions are similar for
low k. Likewise, the difference in cost for this data
between the solutions from the Euclidean and MWD
decompositions is small here.

For our results we have used a direct translation of the
fairlet decomposition cost from previous work based
on minimization of distances induced by the clustering
objective. A GMM cluster fit can also be evaluated
in terms of likelihood. In Appendix B we present an
approach for evaluating the likelihood of a GMM fairlet
decomposition, which supports the results shown in
Fig. 4.

5 DISCUSSION

Our results demonstrate that the generalized fairness
metrics can be used to assess fairness of probabilistic
cluster solutions and that such fair solutions can be
obtained through a fairlet decomposition of the data
fed as input to Algorithm 1. We observe that the
fair GMM ensures high fairness even for a large num-
ber of mixture components, whereas the fairness of
the traditional GMM becomes progressively worse and
ultimately dictates monochromatic clusters (B = 0).
Additionally, we note that fair GMMs generated with
the Euclidean k-median objective produces similarly
fair solutions as a fair GMM found from a MWD de-
composition. Generally, the fair solutions demonstrate
much less variance on the entropy metric than on the
balance metric across the different number of cluster
components. This is because the balance measure is
determined by the least balanced cluster, while the
entropy measure takes the fairness of all clusters into
account. However, the balance measure has an intu-
itive appeal, as it measures the worst case fairness
among all clusters, and consequently it may be bet-
ter suited for ensuring adherence to the DI doctrine.
From our experiments we also observe that the fair
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GMM solutions increase the cost over a traditional
GMM. The cost increase is significantly lower for the
MWD decomposition than for the Euclidean k-median
decomposition baselines, especially for a large number
of mixture components in higher-dimensional spaces.
This is due to the fact that k-median decompositions
are designed to locate data points close in Euclidean
space, which may be located far apart in the non-
Euclidean space induced by the GMM. On the other
hand, the MWD decomposition specifically connects
points which lie close on the data manifold dictated by
the GMM. For a low number of mixture components
and for data in a low-dimensional space (like the dia-
betes dataset), the Euclidean k-median decomposition
baselines do not increase the cost significantly over the
MWD decomposition. This indicates than in such set-
tings, the Euclidean k-median decomposition approach
introduced by Backurs et al. (2019) can be used as a
highly scaleable alternative to the MWD decomposition
for obtaining fair GMM solutions without significantly
increasing the cost.

Our proposed soft fairness metrics are both designed
to generalize to the multiple non-overlapping color fair-
ness setting. Similarly, Algorithm 1, which constructs
the fair soft solution from any fairlet decomposition of
the data, also generalizes to this setting. This means
that inputting a fairlet decomposition of multiple non-
overlapping groups (colors) would provide the same
theoretical fairness bounds as the binary color set-
ting. However, our minimum cost flow approach for
constructing the input GMM fairlet decomposition is
designed to only accommodate data points of two col-
ors. The construction of fair clustering for multiple and
overlapping protected groups has been studied in the
deterministic setting by Bera et al. (2019) but remains
an open question of potential future research in the
probabilistic fairness setting.

6 CONCLUSION

Previous work on fair clustering has focused on deter-
ministic hard clustering algorithms like k-means and
k-median, where data points belong to specific clus-
ters in a binary sense. In this work we study fair soft
clustering by proposing generalizations of group-level
fairness metrics. These generalizations allow the fair-
ness metrics to be used in the presence of soft clustering
algorithms by reflecting the underlying probabilistic na-
ture. Furthermore, we have demonstrated an approach
for obtaining a fair probabilistic cluster solution from a
fairlet decomposition of the data. This approach may
be applied on decompositions tailored specifically to
mixture models, but can also be used to modify fairlet
decompositions from previous work on hard cluster-
ing algorithms. Ultimately, the resulting solutions are

costlier than their traditional counterparts, but in turn
provide guaranteed bounds on their fairness.
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Fair Soft Clustering:
Appendix

A FAIRNESS BOUND

This section explains the theoretical bound on the fairness of the solution C∗ provided by Algorithm 1 in the
main paper.

Consider a dataset D with a binary protected attribute. A fairlet decomposition Q of this data can be specified
as a (p1, p2)-fairlet decomposition with parameters p1 and p2 (where p1 < p2) indicating that all fairlets have a
color fraction r ≥ p1

p1+p2
. The color fraction obtained from the union of these fairlets is bounded according to

Lemma 1 (analogous to Lemma 2 from Chierichetti et al. (2017)).

Lemma 1 (Combination):
Let Y1, Y2 ⊆ D be disjoint. If C1 is a clustering of Y1 and C2 is a clustering of Y2, then r(C1 ∪ C2) ≥
min(r(C1), r(C2)).

Algorithm 1 in the main paper combines the micro-clusters q1, q2, · · · , qℓ (fairlets) into the probabilistic
clustering C∗ through a weighted combination dictated by the responsibilities γ of the fairlet centers. The
weighted color fraction w of this combination is given by Eq. 3 in the main paper and is bounded according to
Lemma 2.

Lemma 2 (Weighted combination):
Let Y1, Y2 ⊆ D be disjoint. If C1 is a weighted clustering of Y1 and C2 is a weighted clustering of Y2, then
w(C1 ∪ C2) ≥ min(w(C1), w(C2)).

This means that the weighted color fractions wc of the final mixture components in C∗ are bounded
by wc ≥ p1

p1+p2
∀ c. To take a concrete example consider the Diabetes dataset from our experiments. We

perform a (1, 2)-fairlet decomposition on the dataset and the weighted color fraction for any of the final mixture
components is thus bounded by wc ≥ 1

3 ∀ c. This dataset has an overall color fraction of rD = 0.54. The soft

balance of the final cluster solution is then bounded by B ≥ wc

rD
, i.e. B ≥ 1/3

0.54 . This can be verified by inspecting
Fig. A.1 (Fig. 2 in the main paper), where the balance for the fair solution on the Diabetes dataset never drops

below 1/3
0.54 = 0.62.
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Figure A.1: Fairness in terms of soft balance on the three datasets. Data points are the mean values from 5
iterations of different random seeds. Error bars indicate standard errors. The traditional GMM cluster approach
obtains monochromatic cluster solutions (B = 0) for all datasets while the balance of the fair solutions are
bounded. For instance the fair solutions of the Diabetes dataset are bounded at balance B ≥ 0.62.
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B GMM DECOMPOSITION LIKELIHOOD

Our GMM fairlet decomposition is constructed by adapting the cost introduced by Chierichetti et al. (2017),
which involves generating a fairlet decomposition through minimization of distances induced by the clustering
objective. In our GMM fairlet decomposition we operate with the Mahalanobis and model-weighted distance.
The cost of a GMM is typically not evaluated based on distances, but rather in terms of the log-likelihood. The
log-likelihood of a data point belonging to a multivariate normal distribution is directly related to the Mahalanobis
distance and is given by:

log L(x) = −1

2

[
log(|Σ|) + log(d2M(x,N )) +m · log(2π)

]
, (1)

where |Σ| is the determinant of the covariance matrix, d2M(x,N ) is the squared Mahalanobis distance between
data point x and distribution N and m is the multivariate dimension of N . The model weighted distance is
a generalization of the Mahalanobis distance to the Gaussian mixture setting. The model-weighted distance
reduces to the Mahalanobis distance in settings with a single Gaussian, or in regions of space where only a single
component density p(x|k) is non-zero along the path between the points Tipping (1999). While the Mahalanbis
distance is directly related to the likelihood of a GMM solution, the connection between the model-weighted
distance and the likelihood is less clear, and consequently the likelihood of the fairlet decomposition is harder
to evaluate. However, we propose to estimate the likelihood by substituting the covariance matrix Σ in Eq. 1
with the model-weighted distance metric G, and consequently the Mahalanobis distance with the model-weighted
distance. The log-likelihood of a data point (fairlet member) belonging to a fairlet is then estimated as:

log LFairlet(x) = −1

2
[log(|G−1|) + log(d2MWD(x, βQ(x))) +m · log(2π)], (2)

where d2MWD(x, βQ(x)) is the model-weighted distance from fairlet member x to fairlet center βQ(x) and |G−1|
is the determinant of the associated inverse model-weighted distance metric. Under this view Eq. 2 evaluates the
likelihood that a fairlet member was generated by the fairlet it is assigned to. Fig. B.1 shows the log-likelihood of
the fairlet decompositions for the different datasets in our experiments.
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Figure B.1: Per observation average log-likelihood of the fairlet decompositions of the three datasets. The
log-likelihood is evaluated with Eq. 2. Data points are mean values from 5 iterations of different random seeds.
Error bars indicate standard errors.
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