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Abstract

Local causal discovery is of great practical
significance, as there are often situations
where the discovery of the global causal
structure is unnecessary, and the interest lies
solely on a single target variable. Most ex-
isting local methods utilize conditional inde-
pendence relations, providing only a partially
directed graph, and assume acyclicity for the
ground-truth structure, even though real-
world scenarios often involve cycles like feed-
back mechanisms. In this work, we present a
general, unified local causal discovery method
with linear non-Gaussian models, whether
they are cyclic or acyclic. We extend the
application of independent component anal-
ysis from the global context to independent
subspace analysis, enabling the exact identi-
fication of the equivalent local directed struc-
tures and causal strengths from the Markov
blanket of the target variable. We also pro-
pose an alternative regression-based method
in the particular acyclic scenarios. Our iden-
tifiability results are empirically validated
using both synthetic and real-world datasets.

1 INTRODUCTION

Causal discovery aims to identify causal relations
among variables from data. In many real-world scenar-
ios, it is not essential to determine the causal structure
across all variables. Rather, the primary interest is of-
ten in unveiling the causes and effects related to spe-
cific target variables. Allocating resources to estimate
a global structure for such narrowed objectives can
be computationally excessive. This is exemplified in
scRNA-seq data, where attempting global causal dis-
covery to derive the gene regulatory network amongst
approximately 20k genes is not only computationally
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expensive but also often redundant (Levine and David-
son, 2005). Local causal discovery, emphasizing the
causal relations of a target variable and its neighbors,
stands out as a more grounded and efficient approach.
Additionally, techniques like divide-and-conquer and
parallelization, when applied through local causal dis-
covery, can often enhance the efficiency of identifying
the global causal structure (Ma et al., 2023).

Building on this motivation, several studies have
delved into the discovery of local structures within
a select subset of variables (Margaritis and Thrun,
1999; Yin et al., 2008; Zhou et al., 2010; Niinimaki and
Parviainen, 2012; Wang et al., 2014; Gao and Ji, 2015;
Gao et al., 2017; Ling et al., 2020; Ng et al., 2021; Yu
et al., 2021; Gupta et al., 2023). The distinction in this
line of research lies in the estimation approaches used
to estimate these local structures, such as parent-child
sets. These approaches range from testing conditional
independence relations to employing likelihood-based
score functions. With appropriate tests or scores,
they can offer nonparametric guarantees. Yet, with-
out parametric assumptions, both independence tests
and score functions cannot uniquely determine all di-
rections, leading to some edges being undirected.

Moreover, most existing work in local causal discovery
assume that there are no cycles in the ground-truth
structure. This constrains its applicability given
that cycles frequently appear in real-world contexts.
These cycles can arise from various origins, including
feedback mechanisms in biological systems (Benito
et al., 2007), electrical engineering (Mason, 1953), or
economic processes (Haavelmo, 1943). Such cyclic re-
lationships can have profound implications, reshaping
our understanding of the systems under consideration.
Furthermore, in local context, one often cannot make
the assumption of global acyclicity, since there is no
way for the acyclicity beyond the considered subset of
variables to be testable. While there has been a steady
progress on causal discovery with cycles (Spirtes, 1995;
Richardson, 1996; Lacerda et al., 2008; Hyttinen et al.,
2012; Mooij and Heskes, 2013; Ghassami et al., 2020),
none have offered methodologies with theoretical
guarantees in the context of local search.
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Contributions. To our knowledge, this work is the
first to tackle local causal discovery in cyclic models,
crucial for gene regulatory networks with prevalent
feedback loops and numerous genes. Moreover, we al-
low intersecting cycles, a known challenging case. By
leveraging non-Gaussianity, our approach determines
causal directions and strengths, standing in contrast
to most previous local methods that only identify par-
tially directed edges. Notably, this work offers a uni-
fied perspective on acyclic (Shimizu et al., 2006, 2011)
and cyclic (Lacerda et al., 2008) cases within the local
context. We establish identifiability guarantees for all
proposed methods, and our theoretical results have
been validated in both synthetic and real-world data.

2 Problem Setup

2.1 Notations, Definitions, and the Goal

Let G = (V, E) be a directed graph with the vertex set
V = [d] := {1, 2, . . . , d} and the edge set E . Denote a
directed edge from vertex i to vertex j as i→ j.

Random variables X = (Xi)
d
i=1 are generated by a lin-

ear non-Gaussian (LiNG) structural equation model
(SEM) (Lacerda et al., 2008) w.r.t. the graph G, de-
scribed in the matrix form as

X = BX+E, (1)

where E = (Ei)
d
i=1 are mutually independent non-

Gaussian exogenous noise components, and B is the
adjacency matrix, with the entry Bj,i representing the
direct causal effect of Xi on Xj . Bj,i ̸= 0 if and only
if i→ j ∈ E . Solving for X in Equation (1) gives

X = AE, with A := (I−B)−1, (2)

i.e., X can also be expressed directly as a linear com-
bination of the noises, through the mixing matrix A.
Following (Lacerda et al., 2008), we allow cycles in
G under some mild assumptions (see Section 3), and
interpret X as the equilibrium of the dynamic system.

For a vertex i ∈ V, denote its Markov blanket (MB)
in G as mbG(i) := paG(i) ∪ chG(i) ∪ spsG(i), the union
of its parents paG(i) := {j ∈ V : j → i ∈ E}, children
chG(i) := {j ∈ V : i → j ∈ E}, and spouses spsG(i) :=
{j ∈ V\(paG(i)∪chG(i)) : chG(i)∩chG(j) ̸= ∅}. Assum-
ing faithfulness, mbG(i) corresponds to the minimal set
of variables conditioned on which all other variables
are independent of Xi. Consequently, it is an appro-
priate starting point for the local search on vertex i.

For a target vertex T , we provide a method in Ap-
pendix A to efficiently estimate mbG(T ) from X even
in the presence of cycles. Specifically, we generalize
the method developed by Loh and Bühlmann (2014)

in the acyclic case based on inverse covariance matrix
of the distributions. Hence in the following main
results (Sections 3 and 4), we assume the oracle
mbG(T ) is available, and focus on the problem of
further discovering causal effects related to T from
T,mbG(T ), and their corresponding variables.

2.2 LiNG SEM and its Global Estimation

Our definition of a linear non-Gaussian (LiNG) cyclic
model precisely follows (Lacerda et al., 2008). We
allow cycles in G, interpret X as the equilibrium of the
dynamic system. We allow overlapped cycles, but only
assume that there are no “self-loops”, i.e., B has all
zeros in the diagonal, because by trivial scaling, any
equilibrium even with self-loops can be equivalently
entailed by another LiNG model without self-loops,
as long as the self-loop strengths Bi,i ̸= 1. Moreover,
we assume no cycles with strength exactly 1, i.e., B
has no eigenvalues of 1, rendering I − B invertible.
See Section 1.2 of (Lacerda et al., 2008) for details.

Recall that Equation (2),X = AE, is in the exact form
of independent component analysis (ICA) (Comon,
1994; Hyvärinen and Oja, 2000), where observed data
X (signals) is an unknown linear invertible mixture
of unknown non-Gaussian independent components
E (blind sources). When all the variables in X are
involved, namely, with causal sufficiency, ICA can
estimate a demixing matrix W to separate X into
independent components WX. It is shown that W
identifies A−1 = I − B up to rows permutation and
scaling. Interestingly, with the structural constraint
of zero diagonals in B (i.e., diagonal ones in A−1),
these indeterminacies can be further reduced. A row
permutation is called admissible if it makes W have
diagonal ones with corresponding scaling. When G is
acyclic, ICA-LiNGAM (Shimizu et al., 2006) shows
that the admissible permutation is unique, resulting
in the exact identification of B. This is because
for acyclic G, its B can be simultaneously row and
column permuted to be strictly lower triangular.

Lacerda et al. (2008) generalizes ICA-LiNGAM to
cyclic cases with almost a same algorithmic procedure:
it begins with an ICA on X to obtain a demixing
matrix W, and then identifies the admissible row
permutations. The key distinction is that, in the pres-
ence of cycles in G, there can be multiple admissible
permutations. Denote the set of adjacency matrices
recovered by all admissible permutations as B, i.e.,
Definition 1. For a LiNG modelX = BX+E, denote

B := {B′ : B′ = I−PπDA−1,diag(B′) = 0},
where A−1 = I − B, D is an d-dim scaling matrix,
and Pπ is a permutation matrix (see Section 3 for
details) with π enumerating permutations of V = [d].
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Two different LiNG models from B entail a same
equilibrium distribution and are termed distribution-
ally equivalent, though they share different graph
structures; see Figure 8 in Appendix B for an exam-
ple. Note that with linearity and non-Gaussianity,
no two different acyclic SEMs are distributionally
equivalent, guaranteeing the unique identification of B
in LiNGAM, but there are different cyclic SEMs that
are distributionally equivalent, and thus the true B
can be identified up to an equivalence class. Lacerda
et al. (2008) shows that B, defined above from all
admissible permutations, characterizes exactly the
LiNG equivalence class for X.

3 LOCAL LING DISCOVERY

We develop a local causal discovery method based on
independent subspace analysis (ISA), which enables
the exact identification of the equivalent local directed
structures and causal strengths from the MB of the
target variable. We first explain how the commonly
used ICA approach for discovering global causal
structure (Shimizu et al., 2006) fails in local context.
We then describe the key identifiability result of ISA
that we exploit, and provide a specific characterization
of the ISA solution. Finally, we describe our proposed
Local ISA-LiNG method, which involves (1) perform-
ing ISA on the local variables, (2) finding admissible
permutations on the ISA solutions, and (3) identifying
local structures and coefficients from the permuted
solutions. We prove that, interestingly, with only local
variables, our proposed algorithm can identify exactly
what can be identified globally with all variables.

3.1 Independent Subspace Analysis

Having introduced the cyclic LiNG and its ICA-based
global estimation method, we now turn to our local
case. When only a subset of variables (e.g., a target
T and its mbG(T )) is involved, the main challenge lies
in causal insufficiency: with hidden confounders, ICA
cannot demix mutually independent components.

Example 1. In Figure 1(i), consider a target T = 4
with mbG(T ) = {2, 3}. With a confounder X1 outside
of T ’s MB, ICA is not applicable on {X2, X3, X4}, as
these three signals mix four sources ({E1, E2, E3, E4}),
and no invertible matrix W ∈ Gl(3) can separate out
any three mutually independent components. △

Such an issue is typically pronounced in overcomplete
ICA (OICA) (Hyvärinen and Oja, 2000), where the
number of observed signals is less than the number of
mixed sources. There are indeed work on LiNGAM
with hidden confounders using OICA (Hoyer et al.,
2008), but OICA is known to be both computationally

and statistically ineffective. In this work, our methods
do not involve OICA, away from the difficulties of
trying to separate out that many mutually indepen-
dent sources from only a few signals. Instead, we only
seek the separation “as independent as possible”, and
show that it is informative enough. To achieve this,
independence subspace analysis (ISA) (Hyvärinen
and Hoyer, 2000; Theis, 2006) comes into play.

Definition 2. An m-dim random vector Z is called
irreducible if it contains no lower-dim independent
components, i.e., no invertible matrix W ∈ Gl(m) can
decomposeWZ = (Z′

1,Z
′
2) into independent Z

′
1 ⊥⊥ Z′

2.

Definition 3. For an m-dim random vector Y, an
invertible matrix W is called an independent subspace
analysis (ISA) solution of Y if WY = (Z⊺

1 , . . . ,Z
⊺
k)

⊺

consists of mutually independent, irreducible random
vectors Zi. The corresponding partition ΓW of indices
[m] is called the ISA partition associated with W.

Given a random vector Y with existing covariance and
no Gaussian components, Theis (2006) shows that an
ISA solution of Y exists and, similar to ICA, is unique
except for general scaling and permutation.

Before stating the result of ISA, we first introduce
some notations. For a permutation π : {1, . . . ,m} 7→
{1, . . . ,m} of m elements, let πi be the i-th element
in π, and π[j] be the index of element j in π, i.e.,
ππ[j] = j. For an ordered subset S ⊂ [m], denote
πS := (πi : i ∈ S) and π[S] := (π[j] : j ∈ S), where (·)
means ordered sets. Define them×m permutation ma-
trix Pπ by Pπ

i,j = 1 if πi = j and 0 otherwise. Given a
partition Γ of [m], an m×m block diagonal matrix D
is said to be a general scaling matrix consistent with Γ,
if ∀S ∈ Γ, rank(DS,S) = |S|, and DS,[m]\S = 0. Here
the notation like DS1,S2 means the submatrix of D
with rows and columns indexed by ordered sets S1 and
S2 respectively. Subscripts on random vectors denotes
indexing similarly, e.g., XS = (Xi : i ∈ S). We have:

Theorem 1 (Indeterminacy of ISA; Theorem 1.8
of (Theis, 2006)). Given an m-dim random vector Y,
if both W1 and W2 are ISA solutions of Y with par-
titions ΓW1

,ΓW2
, then there exists a permutation π

of [m] and a general scaling matrix D consistent with
ΓW1 s.t. W2 = PπDW1, and ∀S1 ∈ ΓW1 , ∃S2 ∈
ΓW2 , with S2 and π[S1] having the same elements.

ISA can be identified up to such indetermincaies, and
can be estimated as efficiently as square ICA (Theis,
2006). ICA can then be viewed as a special case of
ISA, where all subspaces are of one-dimension.

3.2 One Specific ISA Characterization

Given a vertex subset S ⊂ V and the corresponding
variables XS, Section 3.1 shows that although ICA on
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(i)

(ii)

(iii)

Figure 1: For Examples 1 to 3. On each G, the target
T is colored red, and its mbG(T ) is circled by blue
and colored dark. Same marks apply henceforth.

XS may not be applicable, an ISA solution exists and
is unique up to some indeterminacies. However, what
is such an ISA solution? In the causally sufficient (i.e,
ICA) case, a demixing matrixA−1 = I−B follows nat-
urally from Equation (2), while this is less obvious in
the ISA case. Below we give a specific characterization.

Theorem 2 (One characterization of ISA in LiNG
model). Assume X follows a LiNG SEM X = AE.
For any vertex subset S ⊂ V, the inverse of the prin-
cipal submatrix of the mixing matrix A indexed by S,
denoted by A−1

S,S, is an ISA solution of XS.

Theorem 2 characterizes a specific ISA matrix A−1
S,S

that separates XS “as independent as possible”, i.e.,
A−1

S,SXS produces irreducible independent subspaces.
The proof is in Appendix D.1. However, before
delving into further identification of A−1

S,S, let us first
closely examine and understand what it represents.

Recall that in ICA, the adjacency matrix B that repre-
sents the causal structure and strengths can be directly
read off of the demixing characterization, A−1 = I−B.
However, in ISA, the local adjacencies may not be as
so straightforward. A−1

S,S is the Schur complement of

[d]\S block in I − B. Typically, A−1
S,S does not equal

I−BS,S, and I−BS,S is not an ISA solution either:

Example 2. In Figure 1(ii), consider S = (1, 3, 4),
i.e., a target T = 4 and its mbG(T ) = {1, 3}. The ISA
characterization A−1

S,S separates XS into three inde-
pendent irreducible subspaces (1-dim components):

A−1
S,SXS =




1 0 0
−ac 1 0
−b −d 1





X1

X3

X4


 =




E1

cE2 + E3

E4



}
}
},

but the local adjacencies I−BS,S ̸= A−1
S,S, and by

(I−BS,S)XS =




1 0 0
0 1 0
−b −d 1





X1

X3

X4


 =




X1

X3

E4



}

},

it is not an ISA solution, as it produces only two inde-
pendent subspaces, of which the first one (X⊺

1 , X
⊺
3 )

⊺ is

not irreducible with a decomposition

[
1 0
−ac 1

]
. △

Write the matrix inverse in block form we will have:

I−A−1
S,S = BS,S +BS,S̄(I−BS̄,S̄)

−1BS̄,S, (3)

where S̄ := V\S. By Equation (3), the (i, j)-th entry
of I −A−1

S,S corresponds not only to the direct causal
effect from j to i, but also the total causal effect from
j to i through all other variables outside of S.

With this in mind, we note an issue on diagonals: while
the global demixing matrix A−1 = I − B always has
diagonal ones as we assume no self-loops, it may not be
the case locally. Specifically, if G is acyclic, A−1

S,S still
has diagonal ones, but this does not hold for cyclic G:
Example 3. Consider the LiNG SEM in Figure 1(iii).

B =



0 b 0
a 0 0
0 c 0


 ; A =

1

1− ab



1 b 0
a 1 0
ac c 1− ab


 .

Let S = (2, 3), i.e., T = 3 and its mbG(T ) = {2},

A−1
S,S =

[
1− ab 0
−c 1

]
,

where the diagonal entry on X2 is not one. This is
because X2 is on a cycle outside of S, which, from the
local view of S, is equivalent to a self-loop on X2. The
strength of this “self-loop” is thus unidentifiable. △

3.3 Local LiNG Identification from ISA

Having defined a specific ISA characterization A−1
S,S,

we are now left with the task to post-process any
general ISA solution to this specific one (and its equiv-
alence class, if any). Recall that in the global ICA
case, the adjacency matrix equivalence class B directly
stems from row permutations on any demixing matrix
W. However, with ISA, we face more complex cross-
rows indeterminacies (Theorem 1). How to reduce
them? Moreover, even if A−1

S,S is exactly recovered,
a challenge lies still in translating it back into LiNG
model parameters, as it may not directly represent
adjacencies and may be unidentifiable due to external
paths (Examples 2 and 3). Then, what is identifiable
locally, and how? We address these questions below.

Consider a target vertex T and its mbG(T ). Let S be
{T} ∪mbG(T ) with m elements. W.l.o.g., we rename
vertices s.t. S reads 1 to m, i.e., S = [m] ⊂ [d] = V.
Assume a LiNG SEM X = BX + E = AE. Perform
ISA on XS, we obtain a solution W and the associated
subspace partition ΓW. By Theorems 1 and 2, W
can be row-permuted and subspace-scaled into A−1

S,S.

3.3.1 Admissible Permutations

So the first step is to “re-permute” W. Since columns
of W correspond exactly to X1 through Xm, rows
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(i)

(ii)

(ii)✅ ❌

Figure 2: For Example 4: row permutation on ISA ma-
trices with nonzero diagonals can be entirely incorrect.

permutation of W can be seen as assigning names
to each row, thereby forming their one-to-one corre-
spondence to X1 through Xm also. Intuitively, rows
within a same multi-dim subspace always correspond
to variables with common hidden confounders and
are thus mutually unidentifiable. However, different
subspaces collectively, especially singleton subspaces
(components), should be re-identified to their correct
locations. Nonetheless, we first note that the nonzero-
diagonal permutation as in ICA, is incorrect here:

Example 4. Consider an acyclic G as in Figure 2.
Let S be (1, 2, 3, 4, 5), i.e., a target T = 3 and its
mbG(T ). The true but unknown A−1

S,S is provided for
reference. We are only given an ISA output W, as in
(i), and its ΓW = {(1, 2), (3), (4), (5)}. Actually, W
is just scaled from A−1

S,S without permutation, though

this is unknown. Comparing W to A−1
S,S, we notice

that within the subspace of the 1st and 2nd rows,
the nonzero entries are mixed by the general scaling.
If we were to still follow the “admissible” criteria
of nonzero diagonals as in ICA, we see that W is
already satisfied (and is indeed correct). However,
another permutation W′ as in (ii), is also satisfied but
is entirely incorrect (even on singletons’ locations),
leading to incorrect edges like 2→ 4, 3→ 1.

Why does incorrect permutation (ii) occur? Note that
A−1

S,S possesses a unique row permutation (itself) with
nonzero diagonals, so the blame falls on the scaling
to 1st and 2nd rows with more nonzeros. Fortunately,
these spurious nonzeros reveal themselves via rank de-
ficiency. In (ii), even though nonzero diagonals exist,
the diagonal block of the first subspace, W′

(2,4),(2,4),

is proportional to [1, −c] and has rank 1. Inspired by
this, we can eliminate spurious nonzeros by forcing not
the nonzero diagonal entries as in ICA, but the invert-
ible diagonal blocks, formally described below. △
Definition 4. Given an ISA solution W and the
associated partition ΓW, a permutation π is called ad-
missible, if ∀Si ∈ ΓW, rank((PπW)π[Si],π[Si]) = |Si|.

Admissible permutations defined in Definition 4 are

“sound and complete”. See Appendix D.4 for formal
definition and proof. Roughly speaking, all such ad-
missible rows permutations correspond exactly to all
rows permutations on A−1

S,S with nonzero diagonals
(viewing each subspace collectively), which then cor-
respond exactly to the LiNG equivalence class on S.

3.3.2 Identifiable Local Causal Effects

Having admissible permutations, now we proceed to
identify local causal structures and coefficients. As
demonstrated in Examples 2 and 3, ISA matrices is
not overall reliable. However, note that the misidenti-
fication of an Xi on both examples can be attributed
to an incoming path (either in a cycle or not) outside of
S. This immediately sparks us that if all of i’s parents
are included in S, such issues should not arise:

Lemma 1. Given an ISA solution W and ΓW on XS,
∀i ∈ S, if paG(i) ⊂ S, then its exogenous noise compo-
nent Ei is separated out, i.e., ∃j ∈ [m] s.t. (j) ∈ ΓW

and (WXS)j = cEi with a scaling factor c. Moreover,
the incoming causal strengths to Xi are identified up
to c, i.e., the row vector Wj = c(I−BS,S)i.

Lemma 1 becomes especially helpful in our case: by
definition of MB, for any of T and its children, all its
parents are included in {T} ∪ mbG(T ), thus blocking
all confounding paths, enabling recovery of exogenous
noise, and moreover, the exact causal strengths. Once
all edges into T and T ’s children are identified, we’ve
attained the goal of local causal discovery, as these
edges include all edges to and from T . As for other
variables in MB, e.g., parents and spouses, they may
be entangled within subspaces and remain unidentifi-
able, but this does not pose a concern anymore.

By Lemma 1, T and its children produce independent
components (1-dim subspaces) by ISA. But conversely,
an unconfounded parent or spouse can also produce a
1-dim subspace. Then, which of these components cor-
respond exactly to our main focus, T and its children?
The answer can be read off of T ’s column in W:

Lemma 2. Given an ISA solution W and ΓW on XS

for S = {T}∪mbG(T ). Denote by C := supp(W:,T ) =
(i ∈ [m] : Wi,T ̸= 0). Then ∀i ∈ C, Wi must produce
a single component, i.e., (i) ∈ ΓW. Moreover, {π[C] :
π admissible to W} = {supp(B′

:,T ) : B
′ ∈ B}.

In essence, Lemma 2 interprets the nonzero row indices
on T ’s column vector inW as T and T ’s children. Note
that there can be multiple directed graphs in the LiNG
equivalence class, leaving different choices of S subsets
as T ’s children. Any such choice can be interpreted by
an admissible row permutation, and vice versa.
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Algorithm 1 Local ISA-LiNG

Input: A target T ∈ V, its oracle MB mbG(T ), and
data X. Assume w.l.o.g. S := {T} ∪mbG(T ) = [m]
Output: A set of directed weighted edge sets

1: Initialize the output set K := ∅;
2: Obtain an ISA solution W with ΓW on XS;
3: Set C := supp(W:,T ) = (i ∈ [m] : Wi,T ̸= 0);
4: for any permutation π admissible to W,ΓW do
5: Initialize K := ∅;
6: Set W′ := PπW;
7: Set scaling matrix D: ∀Si ∈ ΓW, Dπ[Si],π[Si] :=

(W′
π[Si],π[Si]

)−1 and Dπ[Si],[m]\π[Si] := 0;

8: Set B′ := I−DW′;
9: for i ∈ C do

10: Assert (i) ∈ ΓW;
11: Add to K a weighted edge denoted as (j →

π[i],B′
π[i],j), for each j ∈ [m] with B′

π[i],j ̸= 0;
12: end for
13: Set K := K ∪ {K};
14: end for
15: Return K;

3.3.3 The Local ISA-LiNG Algorithm

Finally, we have the local ISA-LiNG Algorithm 1. Be-
low we give an illustrative example on how it works:

Example 5. Consider the example in Figure 3. There
are two graphs in the global equivalence class B, as
shown in the upper row. Let S be (1, 2, 3, 4, 5), i.e.,
a target T = 3 and its mbG(T ). An ISA on XS gives
W with nonzero patterns as in the lower left matrix,
where specifically, the striped entries are nonzero but
rank deficient (see Definition 4). The 3rd (T -th) col-
umn has three nonzero entries, corresponding to T and
its two children, which are yet unknown and can be dif-
ferent in different equivalent graphs. Two admissible
rows permutations (the lower row) reveal their variable
correspondences, with all edges into T and its children
(dark edges in the graphs) recovered correctly for all
equivalent graphs with different global directed cycles,
while note these local edges themselves are acyclic. △
Theorem 3 (Correctness of local ISA-LiNG). For any
T ∈ V, let K be set of weighted edge sets returned
by Algorithm 1 on T , mbG(T ), and X. We have:

K = {{(i→ j,B′
j,i) : ∀j ∈ {T} ∪ chG′(T ),∀i ∈ paG′(j)} :

∀B′ ∈ B, and the graph G′ defined by B′}.

The local ISA-LiNG algorithm (Algorithm 1) correctly
identifies all the causal effects into the target T and
all its children, for all LiNG models that equivalently
entails the distribution of X. That is, with only local
variables, we identify exactly what can be identified
globally. Note that this identification is unique (i.e.,

… ……

…

…

…

…

Figure 3: For Example 5, to illustrate Algorithm 1.

the returned K consists of a single item) if and only
if none of T and chG(T ) is part of any cycles in G
(including the case where G is acyclic).

3.4 With the Notion of Stability

The B defined in Definition 1 characterizes the en-
tire global LiNG equivalence class, yet not all models
within it are “stable”. In dynamical systems, stabil-
ity refers to “the dissipation of the effects of one-time
noise in models” (Lacerda et al., 2008). Applied to
causal models, a model is “stable” when any infinitely
long path (after traversing loops) result in zero causal
effect. For example, in a simple cycle with two vari-
ables and two edges both carrying weights 2, the model
is unstable, with the cycle product of 4 > 1 leading to
explosion. When both weights are 0.5, the model re-
mains LiNG equivalent to the former one but achieves
stability, with the cycle product of 0.25 < 1. Formally,
a global LiNG model is said to be stable when its ad-
jacency matrix B is convergent, i.e., limt→∞ Bt = 0.
Note that here the entry (Bt)i,j represents the summed
causal effect from j to i along all paths of length t.

In practical global causal discovery scenarios, an often-
made assumption is the stability of the underlying
LiNG model, and people usually focus on identify-
ing the stable LiNG model(s), instead of the entire
equivalence class B. This is straightforward in ICA-
LiNG (Lacerda et al., 2008): as the entire B can be
recovered first, we then only need to check the conver-
gence of each item within B. However, when we only
have local variables, can we still recover the local part
corresponding to the global stable model(s)?

The answer is affirmative but with constraints: our
method can still correctly find stable solutions locally,
as long as this local stable solution is identifiable. De-
note the stable sub-equivalence class as B∗ := {B ∈ B :
limt→∞ Bt = 0}. When cycles in the ground-truth G
are disjoint, there exists a unique global stable model,
i.e., |B∗| = 1. Let B∗ be this unique stable adjacency
matrix, and G∗ be the corresponding graph. In this
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case, simply by adhering to an additional local stability
condition, the stable solution can be identified locally:

Corollary 1 (Identifying stable solutions locally, with
disjoint cycles). Suppose the cycles are disjoint in G.
Consider a modified version of Algorithm 1 in which
the line “if B′ is not convergent: skip” is added be-
tween lines 8 and 9. Then, this modified version of Al-
gorithm 1 will yield a single local model, corresponding
exactly to the unique global stable model. That is, the
returned K consists of a single item K, with

K = {(i→ j,B∗
j,i) : ∀j ∈ {T}∪chG∗(T ),∀i ∈ paG∗(j)}.

Corollary 1 is valid as here stability is determined
sufficiently and necessarily by the cycle products,
which is preserved locally. However, when some cycles
in G intersect, the situation becomes more complex.
Globally, there may be none or multiple global stable
models in B∗. Locally, while in this case, our Algo-
rithm 1 can still identify local correspondences of all
equivalent solutions (Theorem 3), the exact identifica-
tion of the global stable solutions from local variables
alone becomes inherently impossible. Intuitively, this
is because that external cycles appear as self-loops on
the local variables. More details are in Appendix D.

4 REGRESSION-BASED VARIANT

In Section 3 we propose a local ISA-based method suit-
able for both acyclic and cyclic graphs. In this sec-
tion, we focus on the specific scenario where there are
no cycles in G, i.e., X follows a linear non-Gaussian
acyclic model (LiNGAM (Shimizu et al., 2006)), and
propose an alternative local regression-based method.
The relationship between this section and Section 3
can be likened to that of Direct-LiNGAM (Shimizu
et al., 2011) and ICA-LiNG (Lacerda et al., 2008)
in the global context, with the former utilizing non-
Gaussianity by ICA, and the latter by Darmois-
Skitovitch theorem (Darmois, 1953; Skitovitch, 1953).

Acyclicity renders the existence of a causal ordering,
i.e., vertices V can be ordered so that no later vertex
has a direct edge onto any earlier variable. When all
the variables in X are involved, namely, with causal
sufficiency, Shimizu et al. (2011) gives the method
named Direct-LiNGAM to uniquely identify the DAG
G by estimating its causal ordering: Regress Xj on
Xi, if the residual is statistically independent with
the regressor Xi, then i is causally earlier than j. If
such an independence holds for Xi on all its pairwise
regressions with the remaining Xjs, i must be a root
vertex. Subroots are then recursively identified in a
same way, forming the causal ordering.

However, when only a subset of variables (as of here,
{T} ∪mbG(T )) is involved, Direct-LiNGAM does not

work, as causal sufficiency is violated, and there can
be no independent residual due to hidden confounders,
just like the absent independent components in ICA.

Example 6. In Figure 1(i), with a confounder X1

outside of T ’s MB, neither regressingX2 onX3 nor the
converse results in independent residuals, making it
impossible to identify any “local root” in mbG(T ). △
While identifying “local roots” is impossible, can we
reverse our perspective from top-down to bottom-up
and identify “local leaves” instead? Interestingly, the
answer seems affirmative: In Example 6, regressing
X4 on {X2, X3}, the residual is exactly the exogenous
noise E4 and is independent to {X2, X3}. Formally, for
any vertex subset S ⊂ V, we denote the corresponding
random vector as XS := [Xi : i ∈ S]⊺. Perform ordi-
nary least square error linear regression of a random
variableXi on a random vectorXS, the asymptotic co-
efficients of fit is βS→i := cov(XS,XS)

−1 cov(XS, Xi),
where for j ∈ S, βj

S→i is the coefficient on Xj . Denote
the regression residual as RS→i := Xi − β⊺

S→iXS.
Denote i’s descendants in G as desG(i). We have:

Lemma 3. For any i ∈ V,S ⊂ V\{i}, if RS→i ⊥⊥ XS,
i.e., independent residual, then S ∩ desG(i) = ∅.
Lemma 3 generalizes regressions in (Shimizu et al.,
2011) from single variables to multi-dim vectors, but
with a same idea: independent residuals imply causal
ordering. While as in Example 6, independent residu-
als may be absent for “local roots” due to confounders
(echoed as multi-dim subspaces in ISA), they must ex-
ist for “local leaves” (echoed as the 1-dim components
in ISA). This is because, again, as in Lemma 1, that
parents of T and its children are included in the MB,
thus blocking all confounding paths, enabling recovery
of exogenous noise and the exact causal strengths:

Lemma 4. ∀i,S in V, if paG(i) ⊂ S ⊂ V\ desG(i),
then ∀j ∈ S, βj

S→i = Bi,j, and RS→i = Ei (so ⊥⊥ XS).

Lemma 4 holds generally for linear acyclic SEMs, echo-
ing the local Markov property: given all its parents,
a variable is independent of other non-descendants,
enabling accurate estimation of direct effects to it.
Lemmas 3 and 4 then readily leads to Algorithm 2.

The basic idea of Algorithm 2 is to recursively identify
“local leaves”, i.e., all T ’s children until T , via an “in-
verse causal ordering”. Independent residuals must ex-
ist for these variables, as all their parents are included
locally (lines 7-9). Lines 3-6 serve to avoid errors due
to spouses, which could be hidden confounded:

Example 7. In Figure 4(i), T = 1, mbG(T ) =
{2, 3, 4, 5}. After X5 is first identified and removed,
the remaining two “last leaves” X3, X4 are confounded
by X6 hidden outside of mbG(T ), and thus neither can
produce independent residual. The iteration cannot
proceed, unless these two spouses are removed. △
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Algorithm 2 Inverse Direct-LiNGAM

Input: A target vertex T ∈ V, its oracle MB mbG(T ),
and their corresponding variables in X
Output: A set of directed edges with weights

1: Initialize the remaining vertex set U := {T} ∪
mbG(T ), and the output edge set K := ∅;

2: while U ̸= ∅ do
3: if ∃k ∈ U\{T} s.t. βT

U\{k}→k = 0 then

4: Set U := U\{k};
5: continue to line 2;
6: end if
7: Assert ∃j ∈ U s.t. RU\{j}→j ⊥⊥ XU\{j};
8: Set j as any one found in line 7;
9: Add to K an edge i → j with weight βi

U\{j}→j

for each i ∈ U\{j} with βi
U\{j}→j ̸= 0;

10: break if j = T ; Otherwise set U := U\{j};
11: end while
12: Return K;

(ii)(i)

Figure 4: Examples to illustrate Algorithm 2.

Even without confounders, edges produced by inde-
pendent residuals may still be incorrect due to spouses:

Example 8. In Figure 4(ii), T = 1, mbG(T ) =
{2, 4, 5}. After X5 is first identified and removed,
though the “last leaf” X4 produces independent resid-
ual regressing on X1, X2, due to hidden X3, the coeffi-
cient on X1 is nonzero, yielding an incorrect edge 1→
4. Correction requires removing this spouse X4. △

With spouses corrected, Algorithm 2 accurately esti-
mate all edges into T and its children, including edges
adjacent to T (the purpose of local search). Formally,

Theorem 4 (Correctness of Algorithm 2). For any
T ∈ V, let K be the weighted edge set returned by Al-
gorithm 2 on T , mbG(T ), and X. We have:

K = {(i→ j,Bj,i) : ∀j ∈ {T} ∪ chG(T ),∀i ∈ paG(j)}.

Theorem 4 is similar to Theorem 3, except that the
DAG can be uniquely identified. See Appendix D.8 for
the proof, and Appendix C for also an alternative post-
processing of ISA, with the same “ordering” idea here.

5 EXPERIMENTS

We assess the effectiveness of our method for cyclic and
acyclic cases in Sections 5.1 and 5.2, respectively. We
provide an analysis of how our method performs under

different sample sizes in Section 5.3, and an experiment
on real data in Section 5.4. The implementation de-
tails and running times are discussed in Appendices E
and F.1, respectively.

5.1 Cyclic Case

We conduct experiments to illustrate the output of
our method, by adopting the left cyclic graph in Fig-
ure 3 as ground truth. We simulate 2000 samples
from the LiNG SEM in Equation (1), of which the
nonzero weights of B are sampled uniformly from
[−0.9,−0.5] ∪ [0.5, 0.9], and each exogenous noise Ei

is sampled uniformly from [−ci, ci] to the power of 5,
with ci sampled randomly from [0.75, 1.25].

We first run the ICA-LiNG method by Lacerda et al.
(2008) on all variables. To perform local causal discov-
ery, we also run our Local ISA-LiNG method on target
T = 3 and its MB {1, 2, 4, 5}. An example of the out-
puts by both methods, including the estimated edge
weights, are provided in Figure 10 in Appendix F.2.
One observes that our method correct identifies the
edges according to Theorem 3, and that the estimated
edge weights are close to the true ones.

With stability. To conduct a systematic validation,
we restrict the cycles in the true graphs to be disjoint
and the true B matrices to be stable using an accept-
reject approach; that is, the spectral radius of B has to
be strictly smaller than one. In this case, Corollary 1
indicates that the stable solution can be uniquely iden-
tified locally. We simulate 50-node directed cyclic
graphs (DCGs) with maximum degree of 4, and 2000
samples from the LiNG SEM in Equation (1). We use
the same setup described above for the edge weights
and noise distributions. To perform local causal dis-
covery, we randomly select a target T that is part of
a cycle in the 50-node DCGs. Due to the lack of local
causal discovery baselines that handle cyclic graphs,
we compare our method with those for acyclic cases,
including GSBN (Margaritis and Thrun, 1999), Local
A* (Ng et al., 2021), CMB (Gao and Ji, 2015), and
LDECC (Gupta et al., 2023). Note that GSBN and
Local A* require information of two-step MBs (i.e.,
mbG(T ) and MB of each variable in mbG(T )), which
are not directly comparable to our method that re-
quires only mbG(T ); thus, we consider modifications
of these methods, described in Appendix E. We report
the structural Hamming distance (SHD) of local DCG,
which is explained in details in Appendix E.3.

We provide the results for the methods using estimated
MB in Figure 5, and using oracle MB in Figure 11 in
Appendix F.2. It is observed that our method achieves
much lower SHD in both settings, thereby demonstrat-
ing its effectiveness for identifying the local structure.
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5.2 Acyclic Case

We consider the acyclic setting where the ground
truths are DAGs. In the acyclic case , we use a
more efficient post-processing procedure for demixing
matrix W, described in Appendix C. We simulate
50-node Erdös–Rényi (Erdös and Rényi, 1959) DAGs,
and 2000 samples from the LiNG SEM in Equation (1)
using the same setting (including edge weights and
noise distributions) as that of Section 5.1. To perform
local causal discovery, we consider target T from 50-
node DAGs with expected degrees of 3 and 5, leading
to roughly 14 and 20 variables in the MB mbG(T ),
respectively. We report the SHD of local DAG and
partially DAG (PDAG), explained in Appendix E.3.

For degree of 3, the SHDs of local DAG for the meth-
ods using estimated MB are shown in Figure 12, while
the complete results using estimated MB and oracle
MB are given in Figures 12 and 13 in Appendix F.2,
respectively, due to space limit. We provide the results
for degree of 5 in Figure 14 in Appendix F.2. Similar
to the cyclic case, our method achieves much lower
SHD for both local DAG and PDAG as compared to
the baselines. One also observes that GSBN and Local
A* performs better than CMB and LDECC.

5.3 Analysis of Different Sample Sizes

We provide an analysis of the proposed method across
sample sizes n ∈ {100, 300, 1000, 3000, 10000}, follow-
ing the data generating procedure in Section 5.2. We
report the SHD of local DAG and the Euclidean dis-
tance between the estimated edge weights and the true
ones. The results using oracle MB is shown in Figure 7,
while those using estimated MB are given in Figure 15
in Appendix F.2. As the sample size increases, both
metrics decrease to small values close to zero, which
help validate the asymptotic correctness of our method
in terms of both structure and parameter estima-
tion. This also demonstrates the possibility of reliable
estimation even when the sample size is rather limited.

Moreover, we provide the scatter plots of the estimated
and true edge weights in Figures 16 and 17 in Ap-

pendix F.2. For larger sample sizes, the data points are
increasingly grouped onto the main diagonal, showing
that the estimated weights become more accurate.

5.4 Real Data

We compare our method with GSBN and Local A∗ on
a standard real-world dataset that collects continuous
expression levels of proteins and phospholipids within
human immunological cells (Sachs et al., 2005), char-
acterized by 853 observational samples and a ground
truth DAG with 11 variables and 17 edges. Here,
we select PIP2, PIP3, and Akt as target variables,
and compute the SHD of local DAG obtained by all
three methods. As shown in the Table 1, our method
achieves lower SHD in most cases. A detailed compar-
ison of ground-truth and estimated local causal struc-
tures can be found in Figure 18 in Appendix F.2.

Table 1: SHD of different local causal discovery meth-
ods on real data by Sachs et al. (2005).

Target Ours GSBN Local A∗

PIP2 1 1.5 3.6
PIP3 1 1 4
Akt 1 1.3 1.3

6 CONCLUSION

We have expanded local causal discovery to include
cyclic scenarios by generalizing the classic LiNGAM-
based methods. Notably, while previous local search
methods based on conditional independence tests or
likelihood-based scores often fail to determine the di-
rection of certain edges, our method leverages non-
Gaussianity to enable more precise edge orientations.
This leads to a more comprehensive representation of
the causal graph, even in cyclic contexts. Addition-
ally, we have established identifiability guarantees for
all our proposed methods. These theoretical findings
have been validated using various datasets in both syn-
thetic and real-world settings. Future work includes
characterizing the number of possible structures in the
cyclic equivalence class estimated by our method.
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Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes] See Section 2 for mathematical setting,
and Sections 3 and 4 for assumptions and al-
gorithms.

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes] See Section 5.3 and Appendix F.1 for
the analysis.

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes] The code is available
on GitHub.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes] See Sections 3
and 4 for the assumptions.

(b) Complete proofs of all theoretical results.
[Yes] See Appendix D for the proofs.

(c) Clear explanations of any assumptions. [Yes]
See Section 2 and 3 for the explanations.

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes] The code is available on GitHub.

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]
See Appendix E.

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes] See the figures of the
experiments.

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes] See Appendix E.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Not Applicable]

(b) The license information of the assets, if ap-
plicable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
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A MARKOV BLANKET DISCOVERY FOR CYCLIC GRAPHS

The local causal discovery procedures presented in Sections 3 and 4 rely on knowledge about the MB of the target
variable T i.e., its parents, children, and spouses. To the best of our knowledge, many existing MB estimation
methods, such as those based on nonparametric conditional independence test, e.g., GSMB (Margaritis and
Thrun, 1999), IAMB (Tsamardinos et al., 2003), and MMMB (Tsamardinos et al., 2006), focus on the Bayesian
network (i.e., acyclic) setting. That is, it may not be immediately clear how their estimated MB relates to the
true one mbG(T ) in the presence of cycles, partly owing to the extra complications involved when handling cycles
with conditional independence tests (Spirtes, 1994). In this section, we provide a method to estimate the MB
of a variable from a linear cyclic SEM. Specifically, we build upon the method proposed by Loh and Bühlmann
(2014) that, similar to methods based on conditional independence tests, makes the acyclicity assumption, and
further generalize it to handle cycles.

We first define the moral graph of a directed cyclic graph the same way as that of a DAG. Specifically, the
moral graph of directed graph G is an undirected graph that contains an edge between two nodes if (1) they are
adjacent in G, or (2) they share the same children. Clearly, the MB of a variable is simply its neighbors in the
moral graph of G. Here, we provide a method to estimate such moral graph, which informs us about mbG(T ).
Considering the linear SEM in Equation (1), the inverse covariance matrix of the distribution of variables X is
given by Θ = (I−B)Ω−1(I−B)⊺, where Ω := diag(σ2

1 , . . . , σ
2
d) := cov(E) is the covariance matrix of exogenous

noise components E. Inspired by Loh and Bühlmann (2014, Assumption 1) in the acyclic case, we make the
following assumption in the cyclic case.

Assumption 1. Let B and Ω be the weighted adjacency matrix and noise covariance matrix, respectively, of
the linear SEM in Equation (1). For every j < i, we have

−σ−2
j Bi,j − σ−2

i Bj,i +
∑

ℓ ̸=j,i

σ−2
ℓ Bj,ℓBi,ℓ = 0, (4)

only if Bi,j = Bj,i = 0 and Bj,ℓBi,ℓ = 0 for all ℓ ̸= j, i.

As we will show in the proof, the LHS of Equation (4) is equal to Θj,i. It is worth noting that if the nonzero
coefficients of B are randomly drawn from a distribution that is absolutely continuous with respect to Lebesgue
measure, then the above assumption is only violated for a set of matrices B with zero Lebesgue measure. We
then have the following proposition, with a proof given in Appendix D.9. Note that the proposition and its proof
are built upon Loh and Bühlmann (2014, Theorem 2) in the acyclic case, which we generalize to the cyclic case.

Proposition 1. Suppose X follows the linear SEM in Equation (1) with directed cyclic graph G and inverse
covariance matrix Θ. Under Assumption 1, the structure defined by the support of Θ is the same as the moral
graph of G.

Asymptotically speaking, the true inverse covariance Θ can be estimated by computing the inverse of empirical
covariance matrix. For finite samples, Ravikumar et al. (2011) established high dimensional guarantee for
estimating the support ofΘ using graphical Lasso (Friedman et al., 2008). An alternative approach (Meinshausen
and Bühlmann, 2006) is to perform nodewise regression with Lasso (Tibshirani, 1996), which we adopt in this
work. That is, we regress the target T on the other variables [d] \ {T} with Lasso, from which the nonzero
coefficients determine the MB of T .



Local Causal Discovery with Linear non-Gaussian Cyclic Models

B Illustrative Examples

Manuscript under review by AISTATS 2024

Local Cyclic Causal Discovery with Independent Subspace Analysis:
Supplementary Materials

A PROOFS OF MAIN RESULTS

A.1 Proof of Theorem 2

Theorem 2 (One characterization of ISA in LiNG). Assume X follows a LiNG X = BE. For any vertex subset
S ⇢ V, the inverse of the principal submatrix of B indexed by S, denoted by B�1

S,S, is an ISA of XS.

8
>><
>>:

X1 = E1

X2 = aX1 + dX4 + E2

X3 = bX2 + E3

X4 = cX3 + E4

8
>><
>>:

X1 = E1

X2 = 1
b X3 +

��1
b E3

�

X3 = 1
cX4 +

��1
c E4

�

X4 = �a
d X1 + 1

dX2 +
��1

d E2

�
(5)

A.2 Proof of Theorem 3

A.3 Proof of Lemma 3

A.4 Proof of Lemma 4

A.5 Proof of Theorem 4

A.6 Proof of Proposition 1

We first state the following lemmas (and proofs) from Ng et al. (2021, Lemmas 1 & 2) (that were based on Loh
and Bühlmann (2014)). The original lemmas in Ng et al. (2021) focus on linear acyclic SEM, but their proofs
do not make use of the acyclicity constraint. Therefore, we state the lemmas here for cyclic graphs.

Lemma 5. Consider a directed cyclic graph G and distribution P that follow a linear SEM with inverse covariance
matrix ⇥. Let (B,⌦) be the weighted adjacency matrix and noise covariance matrix of the linear SEM, where
⌦ = diag(�2

1 , . . . ,�2
d). The entries of ⇥ are given by

⇥jk = ���2
j Bkj � ��2

k Bjk +
X
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��2
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��2
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variable T i.e., its parents, children, and spouses. To the best of our knowledge, many existing MB estimation
methods, such as those based on nonparametric conditional independence test, e.g., GSMB (Margaritis and
Thrun, 1999a), IAMB (Tsamardinos et al., 2003), and MMMB (Tsamardinos et al., 2006), focus on the Bayesian
network (i.e., acyclic) setting. That is, it may not be immediately clear how their estimated MB relates to the
true one mbG(T ) in the presence of cycles, partly owing to the extra complications involved when handling cycles
with conditional independence tests (Spirtes, 1994). In this section, we provide a method to estimate the MB
of a variable from a linear cyclic SEM. Specifically, we build upon the method proposed by Loh and Bühlmann
(2014) that, similar to methods based on conditional independence tests, makes the acyclicity assumption, and
further generalize it to handle cycles.
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For convenience denote W := B�1
S,S. Write the ISA demixed subspaces as exogenous noise combinations:

WXS =

2
4 W

3
5 ·

2
4S BS,:

3
5

V := [d]
z }| {8

<
: · E (6)

=

2
4 B�1

S,S

3
5 ·

2
4S BS,S BS,S̄

3
5

Sz }| { S̄ := V\Sz }| {8
<
: · E (7)

=

2
4S I · · ·

3
5

Sz }| { S̄ := V\Sz }| {8
<
: · E (8)

where E = (E|
1 , · · · , E|

d )| are the mutually independent exogenous non-Gaussian noise components.

To show that W is an ISA of XS, we want to show that for any subspace Zi 2 (Z|
1 , . . . ,Z|

k)| = WXS with
m := |Zi| � 2 (otherwise it’s already a single component; | · | denotes dimension or cardinality), Zi is irreducible
(Definition 1), i.e., there exists no invertible matrix H 2 Gl(m) s.t. HZi produces two or more independent
subspaces (random vectors). For convenience, we denote the row indices corresponding to the row-submatrix of
W that produces the subspace Zi as M (M ⇢ S), i.e., Zi = WM,:XS. Similarly, rewrite it to noise combinations:

Figure 8: Example of two equivalent cyclic LiNG models.

This is an illustrative example of the global LiNG equivalence class B defined in Definition 1 of Section 2.2.

C POST-PROCESSING FOR LOCAL ISA-LING

In this section, we provide an alternative post-processing procedure to obtain the estimated structures and edge
weights from the ISA solution W, described in Algorithm 3. This procedure assumes that none of T and chG(T )
is part of any cycles in G (including the case where G is acyclic). The overall idea is similar to that of the
regression-based approach described in Algorithm 2. That is, Algorithm 3 iteratively finds the “sink” node from
the ISA solution that is not an ancestor of the other nodes in the remaining vertex set.

Algorithm 3 Alternative post-processing procedure of ISA solution

Input: A target vertex T ∈ V, its oracle MB mbG(T ), and ISA solution W
Output: A set of directed edges with weights

1: Initialize the remaining vertex set U1,U2 := {T} ∪mbG(T ), and the output edge set K := ∅;
2: while U1 ̸= ∅ do
3: Assert ∃j ∈ U1 s.t. ∥WU2,j∥0 = 1;
4: Set j as any one found in line 7;
5: Let k ∈ U2 be s.t. Wk,j = 1;
6: if Wk,T ̸= 0 then
7: Add to K an edge i→ j with weight Wk,i for each i ∈ U1\{j} with Wk,i ̸= 0;
8: end if
9: break if j = T ; Otherwise set U1 := U1\{j} and U2 := U2\{k};

10: end while
11: Return K;

D PROOFS OF MAIN RESULTS

D.1 Proof of Theorem 2

Theorem 2 (One characterization of ISA in LiNG model). Assume X follows a LiNG SEM X = AE. For any
vertex subset S ⊂ V, the inverse of the principal submatrix of the mixing matrix A indexed by S, denoted by
A−1

S,S, is an ISA solution of XS.
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Proof. For convenience denote W := A−1
S,S. Write the ISA demixed subspaces as exogenous noise combinations:

WXS =


 W


 ·


S AS,:




V := [d]
︷ ︸︸ ︷


 ·E

=


 A−1

S,S


 ·


S AS,S AS,S̄




S︷ ︸︸ ︷ S̄ := V\S︷ ︸︸ ︷

 ·E

=


S I · · ·




S︷ ︸︸ ︷ S̄ := V\S︷ ︸︸ ︷

 ·E

where E = (E⊺
1 , · · · , E⊺

d )
⊺ are the mutually independent exogenous non-Gaussian noise components.

To show that W is an ISA of XS, we want to show that for any subspace Zi ∈ (Z⊺
1 , . . . ,Z

⊺
k)

⊺ = WXS with
m := |Zi| ≥ 2 (otherwise it’s already a single component; | · | denotes dimension or cardinality), Zi is irreducible
(Definition 2), i.e., there exists no invertible matrix H ∈ Gl(m) s.t. HZi produces two or more independent
subspaces (random vectors). For convenience, we denote the row indices corresponding to the row-submatrix of
W that produces the subspace Zi as M (M ⊂ S), i.e., Zi = WM,:XS. Similarly, rewrite it to noise combinations:

WXS =

[
M WM,:

]
S︷ ︸︸ ︷{

·


S AS,:




V := [d]
︷ ︸︸ ︷


 ·E

=

[
M I · · ·

]
M︷ ︸︸ ︷ M̄ := V\M︷ ︸︸ ︷{

·E (5)

=: CM ·E,

where we denote the m × d rectangle mixing submatrix in Equation (5) as CM. We do not use letter A for
distinguishment, as it is multiplied by W, and is different from submatrix from the original A mixing matrix.

Suppose for contradiction that Zi is irreducible, i.e., there exists an invertible matrix H ∈ Gl(m) s.t. HZi

produces at least two independent subspaces, then, there must exist a partition P1,P2 of [d] s.t.,

HZi = H ·CM ·E

=

[
H1

H2

]
·

[
M CM,P1 CM,P2

]
P1︷ ︸︸ ︷

P2 = M\P1︷ ︸︸ ︷{
·E (6)

=

[
0 · · ·
· · · 0

]
P1︷ ︸︸ ︷

P2 = M\P1︷ ︸︸ ︷

, (7)
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i.e., H1Zi and H2Zi are linear combinations of disjoint sets of exogenous noise components, and thus by the
Darmois-Skitovitch theorem (Darmois, 1953; Skitovitch, 1953), they are mutually independent.

By Equations (6) and (7) we have that row vectors of H1 lie in nullspace(C⊺
M,P1

), and row vectors of H2 lie in

nullspace(C⊺
M,P2

). Also, since CM,M = I, rank(CM) = m (i.e., full row rank), so,

rank(CM,P1) + rank(CM,P2) ≥ rank(CM,P1 |CM,P2) = m,

and thus

m− nullity(C⊺
M,P1

) +m− nullity(C⊺
M,P2

) ≥= m,

i.e., nullity(C⊺
M,P1

) + nullity(C⊺
M,P2

) ≤ m

Consider the following two cases:

1◦ When nullity(C⊺
M,P1

) + nullity(C⊺
M,P2

) < m, even when these two nullspaces are linearly independent,
the number of their supports is less than m and there are not enough number of linearly independent row
vectors to fill into H1 and H2 to form an invertible H. Contradicted with our hypothesis.

2◦ When nullity(C⊺
M,P1

) + nullity(C⊺
M,P2

) = m, the above independence condition H1Zi ⊥⊥ H2Zi is nontrivial
(i.e., both are still random vectors with covariance, instead of a collapsing constant zero) only when:

{
nullity(C⊺

M,P1
) > 0

nullity(C⊺
M,P2

) > 0

However, this is impossible:

Suppose for contradiction that 0 < rank(CM,P1
), rank(CM,P2

) < m, then at least the CM,M = I part must

be separated, i.e.,

{
M ̸⊂ P1

M ̸⊂ P2
. Then, there must be a partition of M into into smaller respective subsets

(Mu,Mv) (we do not use M1,M2 to distinguish from the row indices for H1,H2) s.t.

{
Mu ⊂ P1

Mv ⊂ P2
, then,

since rank(CM,P1) = |Mu| and CMu,Mu = I, CMv,Mu must be all zeros. Further, since the Mv rows are
linear combinations of the Mu rows, CMv,P1\Mu

must also be all zeros. Same applies to CM,P2
. We have:

CM,P1 =

[
Mu I · · ·
Mv 0 0

]
Mu︷︸︸︷

P1\Mu︷ ︸︸ ︷{
{ and CM,P2

=

[
Mu 0 0
Mv I · · ·

]
Mv︷︸︸︷

P2\Mv︷ ︸︸ ︷{
{ ,

However, in this case, CMu,:E ⊥⊥ CMv,:E, as they share disjoint non-Gaussian E components. This
contradicts with the initial hypothesis on a nontrivial subspace Zi, as Mu and Mv in S will not be mixed
in M, but rather produce two independence subspaces at the very beginning.

From the above contradiction, every Zi must be irreducible. So A−1
S,S is an ISA.

Note that while we are not the first to use ISA in linear non-Gaussian models with latent variables, this work
is, to the best of our knowledge, the first with an identifiability guarantee. As shown in Examples 1 to 4, the
characterization and post-processing of ISA are highly nontrivial. Some prior works (Sanchez-Romero et al., 2019)
simply treated ISA solutions like ICA solutions and applied the same post-processing, resulting in inaccuracies.
Other works used ISA mainly for downstream steps e.g., OICA (Hoyer et al., 2008) or independence tests (Dai
et al., 2022), but not directly for the LiNG model identification. We believe that the generalized characterization
of ISA solutions provided in Theorem 2 can be helpful for future works on causal discovery with latent variables.

D.2 Proof of Lemma 1

Lemma 1. Given an ISA solution W and ΓW on XS, ∀i ∈ S, if paG(i) ⊂ S, then its exogenous noise component
Ei is separated out, i.e., ∃j ∈ [m] s.t. (j) ∈ ΓW and (WXS)j = cEi with a scaling factor c. Moreover, the
incoming causal strengths to Xi are identified up to c, i.e., the row vector Wj = c(I−BS,S)i.
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Proof. For any vertex i and vertex set S of V with i ∈ S and paG(i) ⊂ S, we can write the variable Xi as

Xi = AiE (8)

= Bi,paG(i)XpaG(i) + Ei (9)

= Bi,SXS + Ei (10)

= Bi,SASE+ Ei (11)

where subscripts of index of indices denote the corresponding row/column submatrices. Equation (9) to Equa-
tion (10) is trivial because i has no parents from outside of S, i.e., Bi,S\ paG(i) = 0.

By Equation (8)=Equation (11), we have

Ai = Bi,SAS + 1
|S|
i , (12)

where 1
|S|
i denotes the row vector of dimension |S| with only the i-th indexed entry being one, and elsewhere

zeros. Equation (12) tells that all noise components (“ancestors”) coming into Xi, except for the Ei itself, must
go through paG(i).

Keep only the columns of S on Equation (12), we have

Ai,S = Bi,SAS,S + 1
|S|
i , (13)

By Equation (13) we have

(Ai,S − 1|S|
i )A−1

S,S = Bi,S, (14)

where note that A−1
S,S is exactly the ISA characterization (Section 3.2) for XS. Expand Equation (14) we have

Ai,SA
−1
S,S − 1

|S|
i A−1

S,S = Bi,S, i.e.,

1
|S|
i − (A−1

S,S)i = Bi,S, (15)

Equation (15) tells that the i-th row of the ISA characterization A−1
S,S is exactly 1

|S|
i −Bi,S, i.e., the i-th row of

I−BS,S. In other words, (A−1
S,S)iAS = 1

|S|
i . Then, substitute Equation (15) into the demixed subspaces,

(A−1
S,S)iXS = Xi −Bi,SXS = Ei,

i.e., the indpendent component (1-dim subspace) of Ei is exactly recovered.

Finally, with the subspace-wise permutation and scaling indeterminacies of ISA (Theorem 1), there must be a
row in any ISA solution W being proportional to (I−AS,S)i, and the decomposed component also.

D.3 Proof of Lemma 2

Lemma 2. Given an ISA solution W and ΓW on XS for S = {T} ∪mbG(T ). Denote by C := supp(W:,T ) =
(i ∈ [m] : Wi,T ̸= 0). Then ∀i ∈ C, Wi must produce a single component, i.e., (i) ∈ ΓW. Moreover,
{π[C] : π admissible to W} = {supp(B′

:,T ) : B
′ ∈ B}.

The proof is apparent and is almost the same as the above for Lemma 1: since all of T ’s children is included
(as the “all parents” in that of Lemma 1), all the weights outgoing from T can also be correctly estimated.
This can also be seen from the expression of (A−1

S,S)i,T entries in Equation (3), that ISA has indeterminacies of

subspace-wise permutations and scalings, and that rows permutations of (A−1
S,S)i,T with nonzero diagonal entries

directly correspond to each of that on A−1
S,S (the equivalence class B in Definition 1).
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D.4 Proof of Theorem 3

Theorem 3 (Correctness of local ISA-LiNG). For any T ∈ V, let K be set of weighted edge sets returned
by Algorithm 1 on T , mbG(T ), and X. We have:

K = {{(i→ j,B′
j,i) : ∀j ∈ {T} ∪ chG′(T ),∀i ∈ paG′(j)} :

∀B′ ∈ B, and the graph G′ defined by B′}.

To show the correctness of Algorithm 1, we first show the correctness of the “admissible” block permutations
defined in Definition 4. To put it formally, we have the following lemma:

Lemma 5. Let C be an arbitrary m×m invertible matrix, Γ be an arbitrary partition of [m].

Denote by ΠC as the set of all the rows permutations of C that result in nonzero diagonal entries, i.e.,

ΠC := {π : PπC has all the nonzero diagonal entries.},

Denote by ΠC;Γ as all the rows permutations that result in invertible diagonal blocks on general scaled C, i.e.,

ΠC;Γ := {π : ∃DΓ,∀S ∈ Γ, rank((PπDΓC)π[S],π[S]) = |S|},

where DΓ is any general scaling matrix (defined in Section 3.1) consistent with Γ.

For any two permutations π and τ of [m], we say they are groupwise equivalent regarding a partition Γ of [m],
denoted by π ∼Γ τ , if and only if ∀S ∈ Γ, π[S] and τ [S] have exactly the same elements. Then, ΠC and ΠC;Γ

are equivalent up to groupwise permutations, i.e.,

1. ∀τ ∈ ΠC;Γ, ∃π ∈ ΠC, s.t. π ∼Γ τ ;

2. ∀π ∈ ΠC, if ∀S ∈ Γ, (PπC)π[S],π[S] is invertible, then ∃τ ∈ ΠC;Γ, s.t. π ∼Γ τ .

Lemma 5 tells that all permutations that can result in nonzero diagonal entries on an invertible matrix are
groupwise equivalent to all permutations that in result in invertible diagonal blocks on the same matrix corre-
sponding to a given partition of the row indices. Note that 1. is universally true, while 2. needs an additional
mild assumption that the partition and nonzero-diagonal permutation itself result in invertible diagonal blocks.

Consider a counterexample: C =



1 1 2
1 1 3
1 0 1


 is invertible, and a partition of row indices Γ = {(1, 2), (3, )}.

Clearly the identity π (i.e., Pπ = I) is in ΠC, with C already having nonzero diagonal entries. However, we
cannot find any τ ∈ ΠC;Γ with π ∼Γ τ :

DΓC =



a b 0
c d 0
0 0 e





1 1 2
1 1 3
1 0 1


 =



a+ b a+ b 2a+ 3b
c+ d c+ d 2c+ 3d
e 0 e


,

either τ = (1, 2, 3) or (2, 1, 3) is not in ΠC;Γ, because

[
a+ b a+ b
c+ d c+ d

]
is already not invertible itself. Therefore, we

make an additional assumption for 2., which is, as we can see later, trivially satisfied for our choice of invertibleC.

Now we prove the correctness of Lemma 5:

Proof. First, ΠC is nonempty, because C is invertible, det(C) =
∑

π sgn(π)Π
m
i=1Ci,πi

̸= 0, then at least there
is one π s.t. ∀i = 1, · · · ,m, Ci,πi ̸= 0, and so the inverse of this π will do a rows permutation with nonzero
diagonals. The nonemptiness of ΠC;Γ can be proved using a similar idea (i.e., ∀Γ,∀C,∃τ s.t. PτDΓC has
invertible diagonal blocks), but using group decomposition of the determinant expression, called “Generalized
Laplacian expansion” (Janjic, 2008).

To prove 1., for any τ ∈ ΠC;Γ, initialize a new empty π. For any group S ∈ Γ, by definition, the block
(PτDΓC)τ [S],τ [S] is invertible. Note that (PτDΓC)τ [S],τ [S] = (Pτ )τ [S],S ·(DΓ)S,S ·CS,τ [S], so CS,τ [S] must also be
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invertible. By above nonemptiness, we know that CS,τ [S] can be row permutated to one with nonzero diagonal
entries. Then, we set the corresponding indices as this permutation, i.e., set (Pπ)τ [S],S as this permutation
submatrix. Then PπC has nonzero diagonals, and for any S, π[S] and τ [S] have the same elements (row indices).

To prove 2., it sufficies to show that for any π ∈ ΠC, there is also π ∈ ΠC;Γ. For any S ∈ Γ, consider the principal
submatrix (PπC)π[S],π[S], which is assumed to be invertible. Note that (PπC)π[S],π[S] = (Pπ)π[S],S · CS,π[S],
and so CS,π[S] is invertible. For any DΓ, we have (PπDΓC)π[S],π[S] = (Pπ)π[S],S · (DΓ)S,S ·CS,π[S], where each
factor is invertible, so (PπDΓC)π[S],π[S] is also invertible. Then, π ∼Γ π trivially.

By setting the invertible matrix C as the ISA characterization A−1
S,S (Section 3.2), we know that the admissible

post-processing of rows permutation on any general ISA solution matrices W will make all subspaces at the
correct location. The additional assumption for 2. that diagonal blocks of C are invertible echoes the ‘weak
stability’ assumption mentioned in (Hyttinen et al., 2012). For correctness, specifically, the 1-dim subspaces
(independent components), including the T and T ’s children that we are interested in, can be identified at the
correct location (for each LiNG model in the equivalence class B). The last step left is to associate the A−1

S,S to

the local adjacencies BS,S. By Equation (3), though in general A−1
S,S ̸= BS,S, they must be equal on the rows of

T and T ’s children, as their parents are all included in S. Finally, the correctness of Algorithm 1 is proved.

D.5 Proof of Corollary 1

Corollary 1 (Identifying stable solutions locally, with disjoint cycles). Suppose the cycles are disjoint in G.
Consider a modified version of Algorithm 1 in which the line “if B′ is not convergent: skip” is added between
lines 8 and 9. Then, this modified version of Algorithm 1 will yield a single local model, corresponding exactly
to the unique global stable model. That is, the returned K consists of a single item K, with

K = {(i→ j,B∗
j,i) : ∀j ∈ {T} ∪ chG∗(T ),∀i ∈ paG∗(j)}.

Proof. By the indeterminacy of ISA (Theorem 1), the LiNG’s ISA characterization (Theorem 2), and the char-
acterization of the LiNG global equivalence class (Definition 1), we know that for each admissible B′ at the
line 8 of Algorithm 1, there exists a ground-truth model B ∈ B with the corresponding permutation, s.t.
B′ = I−D(((I−B)−1)S,S)

−1, where S = {T} ∪mbG(T ), and D is the general scaling matrix for diagonal ones.

When the cycles in G are disjoint, all graphs in the LiNG equivalence class have disjoint cycles, and the unique
global stable model B∗ is the one where all cycles’ products have absolute values less than one. As here stability
is determined merely by the cycle products, to prove Corollary 1, we only need to show the following statement:

Consider a LiNG equivalence class B where cycles are disjoint. For any adjacency matrix B ∈ B and its
corresponding graph G and mixing matrix A := (I−B)−1, for any S ⊂ V (not necessarily a vertex and its Markov
blanket), we initialize a local graph termed G(S) over S from the local adjacency matrix termed B(S) := I−A−1

S,S.

From Example 3 we know that A−1
S,S does not necessarily have all diagonals as ones, so we further remove all

self-loops on G(S). Then, all cycles in this local G(S), if any, must be disjoint. Further, for each local cycle in
G(S) consisting of vertices C(S) ⊂ S, we have the followings:

1. All vertices on the local cycle need no row scalings, i.e., ∀i ∈ C(S), (A−1
S,S)i,j = 1, and

2. There exists a global cycle in G consisting of vertices C with C(S) ⊂ C (in a consistent ordering), and,

3. The cycle product of this local cycle C(S) on G(S) equals the cycle product of the global cycle C on G.

The above statement follows from Equation (3): the (i, j)-th entry of I−A−1
S,S corresponds not only to the direct

causal effect from j to i, but also the total causal effect from j to i through all other variables outside of S. For
the above point 1., a vertex i has non-unit diagonal A−1

S,S ̸= 1 only when i is involved in a cycle where all the
remaining vertices in this cycle is not in S (see Example 3), so that this cycle appear as a self-loop on i relative
to S. As cycles are disjoint, i cannot belong to any cycle in G(S). Point 1 shows that whenever a cycle can appear
locally, the edge weights on this cycle must follow exactly from A−1

S,S, without any scalings. Then, using the
characterization in Equation (3), points 2 and 3 show that the cycle products can be preserved locally. A local
stable model (with disjoint cycles and abs(cycle products)< 1) must correspond to a global model with those
stable cycles, which, in Algorithm 1’s case, implies the correct local stable model among {T} ∪ chG∗(T ).
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X1 X2 X3

a

b

c

d (i)

X1 X2 X3

1/c

1/d

b

−a/d
(ii)

X1 X2 X3

1/a

1/b

c

−d/a
(iii)

Remark. However, note that the above proof relies on the assumption that the
cycles in G are disjoint. However, when some cycles in G intersect, things become
more complex. The figure to the right shows an example of three cyclic graphs in a
LiNG equivalence class with intersected cycles. Globally, there may be none (e.g., when
a = b = c = d = 0.8) or multiple (e.g., both (i) and (ii) when a = b = c = 0.8,
d = −2) global stable models. In this case, while our method can still identify local
correspondings of all equivalent models (Theorem 3), and some unstable solutions may
be partially eliminated (using the local stability constraint), we show that the exact
identification of the global stable solutions from local variables alone becomes inherently
impossible, because intuitively, external cycles appear as self-loops on the local variables.
Note that when cycles intersect, the simple cycles’ products cannot be related to the stability directly anymore:
a LiNG model can be stable with some cycle products larger than one, and a LiNG model with all abs(cycle
products) less than one can also be unstable. Even if we force to use cycle products to define stability (as some
papers (Rothenhäusler et al., 2015) do), the abovementioned unidentifiability issue of global stable solutions from
local variables still remains.

D.6 Proof of Lemma 3

Lemma 3. For any i ∈ V,S ⊂ V\{i}, if RS→i ⊥⊥ XS, i.e., independent residual, then S ∩ desG(i) = ∅.

The proof can be referred to (Shimizu et al., 2011), by using Darmois-Skitovitch theorem (Darmois, 1953;
Skitovitch, 1953).

D.7 Proof of Lemma 4

Lemma 4. ∀i,S in V, if paG(i) ⊂ S ⊂ V\desG(i), then ∀j ∈ S, βj
S→i = Bi,j, and RS→i = Ei (so ⊥⊥ XS).

The proof follows naturally from Lemma 1 (in the acyclic graph case).

D.8 Proof of Theorem 4

Theorem 4 (Correctness of Algorithm 2). For any T ∈ V, let K be the weighted edge set returned by Algorithm 2
on T , mbG(T ), and X. We have:

K = {(i→ j,Bj,i) : ∀j ∈ {T} ∪ chG(T ),∀i ∈ paG(j)}.

Proof. At every iteration of Algorithm 2, consider a ‘last’ remaining vertex j ∈ U s.t. there exists no other
j′ ∈ U as j’s descendant on G. 1◦ if j is T or T ’s child, since paG(j) ⊂ mbG(T ), and since none of paG(j) can be
removed earlier, we have paG(j) ⊂ U. With all the parents in U and no descendants in U, regress j on U\{j}
will produce independent residual, and the nonzero coefficients correspond to the true direct parents with true
weights, i.e., βi

U\{j}→j = Bj,i; 2
◦ if j is T ’s spouse, since j is ‘last’, none of j and T ’s common children and

descendants are in U. Also since paG(T ) ⊂ U, every confounding path between j and T is blocked, and thus
βT
U\{j}→j = 0; 3◦ it is impossible for j to be T ’s parents, since when T pops out, the program breaks.

D.9 Proof of Proposition 1

We first state the following lemmas from Ng et al. (2021, Lemmas 1 & 2) (which were based on Loh and Bühlmann
(2014)). The original lemmas in Ng et al. (2021) focus on linear acyclic SEM, but their proofs do not make use
of the acyclicity constraint. Therefore, we restate the lemmas here for cyclic graphs, whose proofs are similar to
the acyclic case and omitted.

Lemma 6. Suppose X follows the linear SEM in Equation (1) with directed cyclic graph G and inverse covariance
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matrix Θ. The entries of Θ are given by

Θj,i = −σ−2
j Bi,j − σ−2

i Bj,i +
∑

ℓ̸=j,i

σ−2
ℓ Bj,ℓBi,ℓ, ∀j ̸= k,

Θj,j = σ−2
j +

∑

ℓ ̸=j

σ−2
ℓ B2

j,ℓ, ∀j.

Lemma 7. Suppose X follows the linear SEM in Equation (1) with directed cyclic graph G and inverse covariance
matrix Θ. Then, the structure defined by the support of Θ is a subgraph of the moral graph of G.

We then provide the proof for the following proposition.

Proposition 1. Suppose X follows the linear SEM in Equation (1) with directed cyclic graph G and inverse
covariance matrix Θ. Under Assumption 1, the structure defined by the support of Θ is the same as the moral
graph of G.

Proof. By Lemma 7, the structure defined by the support of Θ is a subgraph of the moral graph of G. By
Assumption 1 and Lemma 6, if Θj,i = 0, then we have Bi,j = Bj,i = 0 and Bj,ℓBi,ℓ = 0 for all ℓ ̸= j, i, which, by
definition, indicates that i and j are not adjacent in the moral graph of G. This indicates that the moral graph
of G is a subgraph of the structure defined by the support of Θ.

E SUPPLEMENTARY EXPERIMENTS DETAILS

We provide additional details for the experiments conducted in Section 5. Specifically, we provide the imple-
mentation details of our method and the baselines in Appendices E.1 and E.2, respectively. We then describe in
Appendix E.3 the performance metrics used in our experiments.

E.1 Implementation Details of Local ISA-LiNG

The proposed Local ISA-LiNG method involves estimating the demixing matrix with ISA (see Algorithm 1).
One could use the ISA procedure developed by Theis (2006). In this work, we use ICA to first estimate the
components, and then use independence test, i.e. the Hilbert-Schmidt independence criterion (HSIC) (Gretton
et al., 2007), to identify the subspaces from the components estimated by ICA. Such a procedure is found to
work well in practice. For the HSIC test in our experiments, we use a significance level of 0.05. Furthermore,
as suggested by Lacerda et al. (2008), we adopt ICA with sparse connection (Zhang and Chan, 2006) for the
specific ICA procedure. In the acyclic case , we use a more efficient post-processing procedure to identify the
edges from the demixing matrix W, described in Appendix C.

We perform nodewise regression with Lasso (Meinshausen and Bühlmann, 2006) to estimate the MB of each
target variable (see Appendix A for more details). Moreover, when applying Algorithms 1 and 3 to identify
the edges from the estimated demixing matrix, we use a threshold of 0.05 to set the entries with small absolute
values to zero. All experiments are conducted on 2 CPUs with 4GB of memory. The code is available at
https://github.com/MarkDana/local-ling-discovery.

E.2 Implementation Details of Existing Methods

We provide the implementation details of several existing methods considered in our experiments. All experiments
are conducted on 2 CPUs with 4GB of memory. For Local A* and GSBN, we perform nodewise regression with
Lasso (Meinshausen and Bühlmann, 2006) to estimate the MB of each target variable, similar to our Local
ISA-LiNG method. For CMB and LDECC, we use their default method for MB estimation. In the following,
we describe the implementation details of each method.

ICA-LiNG. As suggested by Lacerda et al. (2008), we use ICA with sparse connection (Zhang and Chan,
2006) for the specific ICA procedure, and a threshold of 0.05 for the demixing matrix, similar to our method.

Local A*. The original Local A* method (Ng et al., 2021) applies exact search strategy like A* (Yuan and
Malone, 2013) on the target T , its MB mbG(T ), and MB of each variable in mbG(T ). In the estimated structure,

https://github.com/MarkDana/local-ling-discovery
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the method then identifies all (1) undirected edges involving T and (2) v-structures involving T to be the final
local structure around T . In our modification, we apply A* on only T and its MB mbG(T ). In this case, the
modified method identifies all (1) undirected edges involving T and (2) v-structures of which T is not the collider
to be the final estimated local structure around T . The resulting algorithm performs local discovery on only T
and its MB mbG(T ). Here, we use BIC score (Schwarz, 1978) for the A* search.

GSBN. The original GSBN method (Margaritis and Thrun, 1999) applies certain rules based on conditional
independence tests to identify all (1) undirected edges involving T and (2) v-structures of which T is the collider.
The latter requires information of two-step MBs, i.e., mbG(T ) and MB of each variable in mbG(T ). In our
modification, we adopt different but similar rules to identify (1) undirected edges involving T and (2) v-structures
of which T is not the collider:

1. For each X ∈ mbG(T ), determine X to be a (direct) neighbor of T if T ̸⊥⊥ X|S for all S ⊆ mbG(T ) \ {Y }.

2. Given the neighbors of target T identified in the first step, we use the following rule to identify the v-
structures: for each Z ∈ mbG(T ) and Y being a neighbor of T , determine T → Y ← Z to be a v-structure
if T ̸⊥⊥ Z|S ∪ {Y } for all S ⊆ mbG(T ) \ {Y, Z}.

The resulting algorithm performs local discovery on only T and its MB mbG(T ). Here, we use Fisher Z test with
significance level of 0.05 for identifying conditional independence relations.

CMB. For the CMB method (Gao and Ji, 2015), we use an implementation through the pyCausalFS package.

LDECC. We use the default implementation provided by Gupta et al. (2023).

E.3 Performance Metrics

In the acyclic case, we report two performance matrics, namely SHD of local DAG and PDAG. In the cyclic case,
we report the SHD of local DCG. These metrics are explained in details below. For each setting, the metrics are
calculated over 8 random simulations.

SHD of local DAG. For this metric, the ground-truth and estimated structures contain all incoming directed
edges of T and its children. We then compute the SHD between the ground-truth and estimated local structures.
Such a metric is used to validate our method (see Theorem 3) that can estimate more edges and directions than
the baselines. Note that the estimated output by Local A* and GSBN may contain undirected edges; therefore,
we enumerate all possible combinations of directed edges from these undirected ones, and compute the final
averaged SHD for these two methods.

SHD of local PDAG. Since Local A* and GSBN return PDAG around the target T , we design this metric
specifically for these baselines. In particular, the ground-truth and estimated local structures contain (1) undi-
rected edges involving T and (2) v-structures of which T is not the collider. We then compute the SHD between
the ground-truth and estimated local structures. Note that since our method returns DAG around the target T
that contains additional edges, we convert it into the same format of PDAG as well.

SHD of local DCG. This metric is similar to the SHD of local DAG explained above, except that the ground
truth may contain cycles.

F SUPPLEMENTARY EXPERIMENTS RESULTS

F.1 Running Time

We report the running times for different sizes of MBs. Specifically, we follow the data generating procedure in
Section 5.2. We generate random DAGs with expected degrees of 3, 5, and 7, and select target with a relatively
large MB. The running times of different methods, including those with and without oracle MBs, are shown in
Figure 9. Note that, for Local A*, instances with MBs exceeding 19 variables are omitted due to the long running
time. It is observed that our method has a longer running time than that of LDECC and CMB. Furthermore,
when size of MB increases, the running time of our method is shorter and increases much slowly compared to
GSBN and Local A*.
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Figure 9: Running time of different methods. Y-axis is in log scale.

F.2 Additional Figures

This section provides additional figures for Section 5, namely Figures 10, 11, 12, 13, 14, 15, 16, 17, and 18.
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(a) Ground-truth cyclic graph.
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(b) Estimated graphs and edge weights by ICA-LiNG.
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(c) Estimated graphs and edge weights by Local ISA-LiNG using
T = 3 as target.

Figure 10: Ground truth and estimated cyclic graphs and edge weights with 2000 samples.
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Figure 11: SHD of local DCG under oracle MB.

Local ISA-LiNG GSBN Local A* CMB LDECC

Method

0

5

10

15

20

S
H

D
of

lo
ca

l
D

A
G

(a) SHD of local DAG.
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(b) SHD of local PDAG.

Figure 12: Results of local causal discovery with 2000 samples and degree of 3 under estimated MB.
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Figure 13: Results of local causal discovery with 2000 samples and degree of 3 under oracle MB.
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Figure 14: Results of local causal discovery with 2000 samples and degree of 5 under estimated MB.
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Figure 15: Results of Local ISA-LiNG with MB estimated by Lasso. X-axis is visualized in log scale.
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(a) 100 samples.
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(b) 300 samples.
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(c) 1000 samples.

Figure 16: Edge weights estimated by Local ISA-LiNG under oracle MB.

−1.0 −0.5 0.0 0.5 1.0
True local edge weights

−1.0

−0.5

0.0

0.5

1.0

E
st

im
at

ed
lo

ca
l

ed
ge

w
ei

gh
ts

(a) 100 samples.

−1.0 −0.5 0.0 0.5 1.0
True local edge weights

−1.0

−0.5

0.0

0.5

1.0

E
st

im
at

ed
lo

ca
l

ed
ge

w
ei

gh
ts

(b) 300 samples.
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(c) 1000 samples.

Figure 17: Edge weights estimated by Local ISA-LiNG under estimated MB.
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Figure 18: Result of local causal discovery on real-world dataset by Sachs et al. (2005). The first column showcases
the ground-truth local causal graphs. From the second to the last column, each column corresponds to the local
causal graphs recovered by (1) Local ISA-LiNG, (2) Local A∗, and (3) GSBN, respectively. We use underlined
vertices to denote target variables. For the second column, green and blue arrows denote correct directed edges
and wrong directed edges discovered by our method, respectively. For the third and fourth columns, blue lines
denote correct undirected edges discovered by the baselines.
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