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Abstract

Missing values are prevalent in temporal elec-
tronic health records (EHR) data and are
known to complicate data analysis and lead
to biased results. The current state-of-the-
art (SOTA) models for imputing missing val-
ues in EHR primarily leverage correlations
across time points and across features, which
perform well when data have strong correla-
tion across time points, such as in ICU data
where high-frequency time series data are col-
lected. However, this is often insufficient
for temporal EHR data from non-ICU set-
tings (e.g., outpatient visits for primary care
or specialty care), where data are collected
at substantially sparser time points, result-
ing in much weaker correlation across time
points. To address this methodological gap,
we propose the Similarity-Aware Diffusion
Model-Based Imputation (SADI), a novel im-
putation method that leverages the diffusion
model and utilizes information across depen-
dent variables. We apply SADI to impute
incomplete temporal EHR data and propose
a similarity-aware denoising function, which
includes a self-attention mechanism to model
the correlations between time points, fea-
tures, and similar patients. To the best of
our knowledge, this is the first time that
the information of similar patients is directly
used to construct imputation for incomplete
temporal EHR data. Our extensive experi-
ments on two datasets, the Critical Path For
Alzheimer’s Disease (CPAD) data and the
PhysioNet Challenge 2012 data, show that
SADI outperforms the current SOTA un-
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der various missing data mechanisms, includ-
ing missing completely at random (MCAR),
missing at random (MAR), and missing not
at random (MNAR).

1 INTRODUCTION

Electronic health records (EHR) are comprehensive
collections of patient health information that include
demographic data, medical history, laboratory re-
sults, diagnoses, treatment, and more (Häyrinen et al.,
2008). Rich data in EHR offer great promises in ad-
vancing research and improving patient care (Cowie
et al., 2017; Jensen et al., 2012; Rajkomar et al.,
2018b). For example, deep learning models trained on
temporal EHR data can detect sepsis at an early stage
(Khojandi et al., 2018; Lauritsen et al., 2020), poten-
tially reducing mortality rates. However, EHR data
are typically recorded with irregular time intervals and
contain a significant amount of missing values(Wells
et al., 2013; Steele et al., 2018), which present daunt-
ing challenges for many statistical and machine learn-
ing models that require structured, regularly sampled,
and complete input data. More importantly, biases
caused by missing data in EHR have been identified
as a significant factor contributing to the unfairness
of ML/AI models in medicine, which can perpetuate
and exacerbate health inequities (Gianfrancesco et al.,
2018; Rajkomar et al., 2018a). For example, patients
with less access to healthcare, often people of color or
with lower socioeconomic status, tend to have more in-
complete data in their EHR (Getzen et al., 2023). Get-
zen et al. further demonstrate that incomplete data in
EHR adversely impact the accuracy of prediction mod-
els which would unfairly harm under-served minority
groups and exacerbate health inequities (Getzen et al.,
2023). As such, it is of great value to develop robust
methods for adequately addressing incomplete tempo-
ral EHR data.

Imputation is a widely used and effective approach for
addressing the issue of missing data in EHR data. In
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recent years, there has been a growing body of liter-
ature on deep learning-based imputation models for
time series EHR data (Cao et al., 2018; Fortuin et al.,
2020; Tashiro et al., 2021). The current state-of-the-
art (SOTA) models can generally be classified into
two categories: RNN-based imputation models, such
as those presented in Che et al. (2018); Yoon et al.
(2018); Luo et al. (2018, 2019); Cao et al. (2018),
and transformer-based imputation models, such as
Suo et al. (2020); Shukla and Marlin (2021); Tashiro
et al. (2021). For example, Multi-Directional Recur-
rent Neural Network (MRNN) (Yoon et al., 2018)
leverages the power of a bi-directional recurrent neu-
ral network, and is composed of an interpolation block
and an imputation block. It imputes missing values
according to hidden states in both directions of RNN.
Similar to MRNN, Bidirectional Recurrent Imputation
for Time Series (BRITS) (Cao et al., 2018) also con-
ducts imputation based on a bidirectional recurrent
neural network. One difference is that BRITS treats
missing values as variables in the model graph, and
this change can lead to a more accurate estimation.
However, all RNN-based imputation methods have an
inherent weakness, which is RNN suffers from the short
memory issue. Hence RNN-based imputation meth-
ods might not effectively model long-term dependen-
cies. Transformer-based methods, which use a self-
attention mechanism and are non-autoregressive, can
generally overcome the short memory issue and lead
to better imputation performance. For example, the
Global and Local Time Series Imputation with Multi-
directional Attention Learning (GLIMA) (Suo et al.,
2020), which is a combination of RNN networks and
transformer layers, imputes missing values by extract-
ing local and global information from time series. The
multi-Time Attention Networks for Irregularly Sam-
pled Time Series (mTAND) (Shukla and Marlin, 2021)
imputes missing values through an encoder-decoder
framework, in which a newly designed attention mech-
anism is used to interpolate missing values. The Con-
ditional Score-based Diffusion Model for Imputation
(CSDI) (Tashiro et al., 2021) is a more recent SOTA
imputation method that uses a 2D transformer to cap-
ture temporal and feature dependencies among EHR
data.

It is important to note that all of the existing SOTA
methods primarily leverage correlations across time
points and across features to impute missing values.
They use RNN or transformer layers to capture these
dependencies. These models perform well when data
have strong correlation across time points, such as in
ICU data where high-frequency time series data are
collected. However, this is often insufficient for tempo-
ral EHR data from non-ICU settings (e.g., outpatient
visits for primary care or specialty care), where data

are collected at substantially sparser time points, re-
sulting in much weaker correlation across time points.
In this case, it is crucial to also consider patient sim-
ilarity in the imputation model. Intuitively, patients
with similar characteristics and disease histories tend
to have similar lab values, and the correlation between
similar patients can also be leveraged for a more ro-
bust imputation model. In this paper, we propose
a similarity-aware imputation model known as SADI
(Similarity-Aware Diffusion model-based Imputation
for incomplete temporal EHR data) to impute missing
values by modeling the dependencies across three di-
mensions: time, feature and patient. Particularly, our
contributions are summarized as the following:

• We propose a similarity-aware diffusion model-
based imputation method named SADI. Then we
apply SADI to temporal EHR data and design
a similarity-aware denoising function that models
correlations from all three perspectives (time, fea-
ture, and patient). Thus, our imputation model
can directly borrow information from similar pa-
tients. To the best of our knowledge, this is the
first time people have modeled the patient depen-
dency.

• We conduct extensive experiments to quantita-
tively evaluate our proposed approach under dif-
ferent missing mechanisms. Our experiments
show that the SADI outperforms existing SOTA
imputation models under MCAR, MAR, and
MNAR, particularly for temporal EHRs data
from non-ICU settings.

2 NOTATIONS

To fix ideas, let Xd
i,t (i = 1, . . . , n; t = 1, . . . , T ;

d = 1, . . . , p) denote the observation for the i-th pa-
tient at time t for the d-th feature. Here n represents
the number of patients (samples), T represents the
length of the temporal EHR data, and p represents
the number of features. Without loss of generality,
we focus on the case that each patient’s data has the
same length T . For patients with fewer visits/time
points, their EHR data will be extended through zero-
padding, with these zeroes representing missing val-
ues. Denote the missing indicator of Xd

i,t as Md
i,t. If

Md
i,t = 1, then Xd

i,t is observed. Similarly, if Md
i,t = 0,

then Xd
i,t is missing. Additionally, Xi represents the

full p-dimensional temporal EHR data for the i-th pa-
tient, and Xd

i =
(
Xd

i,1, . . . ,X
d
i,T

)
represents the d-th

feature of Xi, which is one-dimensional EHR data.
Plus, all the following norms ∥ · ∥ represent l2 norm
and [K] represents list of positive integers from 1 to
K.
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3 PRELIMINARIES

3.1 Adapting diffusion models for imputation

Diffusion models are a class of powerful generative
models that have been used in many applications
(Song and Ermon, 2019; Niu et al., 2020; Ho et al.,
2020; Song et al., 2020; Kong et al., 2020; Chen et al.,
2020). They can also be leveraged to approximate
conditional distribution given observed data (Song
et al., 2020; Kadkhodaie and Simoncelli, 2020; Mittal
et al., 2021). More recently, diffusion models have also
been adapted for imputing missing time series data by
Tashiro et al. (2021), known as the Conditional Score-
based Diffusion Model for Imputation (CSDI).

In this section, we briefly review the application of dif-
fusion models for estimating the conditional distribu-
tion of missing data given the observed data. Given a
sample x0 with missing values, which is not limited to
time series, we are interested in two parts of x0: the
target part, represented by xta

0 , and the conditional
part, represented by xco

0 . Our goal is to estimate the
true conditional distribution q(xta

0 |xco
0 ) by the model

distribution pθ(xta
0 |xco

0 ) from a diffusion process. It is
important to note that, in section 3.1, the subscript
s of variable x does not represent a particular patient
or time step in the time series. Instead, it represents
a step in the Markov process. The first subscript 0
represents variables x0 coming from the true data dis-
tribution.

At a high level, the diffusion model estimates
the true conditional distribution through two pro-
cesses: a forward process and a reverse process.
The forward process adds noise to the target part until
it resembles a sample from a white noise Gaussian dis-
tribution. This is done through a Markov chain that
generates a sequence of latent variables xta

1 , . . . ,xta
S as

follows:

q(xta
1 , . . . ,xta

S |xta
0 ) =

S∏
s=1

q(xta
s |xta

s−1)

where q(xta
s |xta

s−1) = N
(√

1 − βsx
ta
s−1, βsI

)
(1)

Here, βs ∈ (0, 1) are hyperparameters that represent
the noise level. The marginal distribution for xta

s can
be calculated as

q(xta
s |xta

0 ) = N
(√

ᾱsx
ta
0 , (1 − ᾱs)I

)
where αs := 1 − βs and ᾱs :=

∏s
i=1 αi. The above

equation is equivalent to

xta
s =

√
ᾱsx

ta
0 +

√
1 − ᾱsϵ (2)

where ϵ ∼ N (0, I) is a Gaussian vector.

The reverse process removes noise from xta
S to recover

the original data xta
0 . This is done through a learnable

Markov chain defined by the following distribution:

pθ(xta
0 , . . . ,xta

S |xco
0 )

= p(xta
S )

S∏
s=1

pθ(xta
s−1|xta

s ,xco
0 ), where xta

S ∼ N (0, I)

pθ(xta
s−1|xta

s ,xco
0 )

= N (xta
s−1;µθ(xta

s , s|xco
0 ), σθ(xta

s , s|xco
0 )I)

(3)
where θ represents model parameters. Note that all
the terms are conditioned on xco

0 to exploit conditional
observations. The conditional version of the Denois-
ing Diffusion Probabilistic Model (DDPM) (Ho et al.,
2020) is used in this method, which uses the following
specific parameterization of pθ(xta

s−1|xta
s ,xco

0 ):

µθ(xta
s , s|xco

0 ) =
1

αs

(
xta
s − βs√

1 − αs
ϵθ(xta

s , s|xco
0 )

)
σθ(xta

s , s|xco
0 ) =

{√
1−αs−1

1−αs
βs s > 1

√
β1 s = 1

(4)
Here, ϵθ is a deep neural network with parameters θ.
Under this parameterization, the training of the re-
verse process is equivalent to solving the following op-
timization problem:

min
θ

L(θ)

:= min
θ

Ex0∼q(x0),ϵ∼N (0,I),s∼U{1,S}∥ϵ− ϵθ(xta
s , s|xco

0 )∥22
(5)

where xta
s =

√
ᾱsx

ta
0 +

√
1 − ᾱsϵ. This can be inter-

preted as using the function ϵθ as a denoising func-
tion to estimate the noise added to its noisy input xta

s .
Once the model is trained, we can sample xta

0 from
the reverse process eq. (3). The model distribution
pθ(xta

0 |xco
0 ) is then used to estimate the true condi-

tional distribution q(xta
0 |xco

0 ).

Since we have no access to the ground truth of missing
values, both xta

0 and xco
0 are selected from observed

values in the model training phase (Tashiro et al.,
2021). During the imputation phase, xta

0 consists of
all missing values and xco

0 consists of all observed val-
ues, in order to make full use of observed information.

3.2 Time series clustering

To gain insights on patient similarities, it is com-
mon to group patients’ data into clusters. Numerous
techniques have been proposed for clustering time se-
ries data, including the K-Means with Dynamic Time
Warping (DTW) (Berndt and Clifford, 1994; Salvador
and Chan, 2007), K-Shape algorithm (Paparrizos and
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Algorithm 1 Training of SADI

Input: distribution qk(x0) and the corresponding
weight ck for k ∈ [K], target selection strategy,
training epochs N , maximum number of diffusion
steps S, noise level {βs}Ss=1

Output: Trained denoising function ϵθ

1: for i ∈ {1, . . . , N} do
2: Sample k ∼ C{c1, c2, . . . , cK}
3: Sample s ∼ Unif{1, . . . , S}, and x0 ∼ qk(x0)
4: Separate observed values x0 into target part

xta
0 and conditional part xco

0 by the target selection
strategy

5: Sample ϵ ∼ N (0, I) where the dimension of ϵ
corresponds to xta

0

6: Calculate noisy targets xta
s =

√
ᾱsx

ta
0 +√

1 − ᾱsϵ
7: Take gradient step on ∇∥ϵ− ϵθ(xta

s , s|xco
0 )∥22

8: end for

Gravano, 2015), and K-Spectral Centroid algorithm
(K-SC) (Yang and Leskovec, 2011; Ozer et al., 2020).
The common idea behind these methods is to utilize
an appropriate distance metric for time series data to
define similarity between patients. All of them op-
erate in an iterative manner, similar to the K-Means
algorithm, and involve two steps: the assignment step
and the refinement step. During the assignment step,
each EHR time series is assigned to a centroid, with
each centroid representing a cluster. The refinement
step involves updating the centroids using the EHR
data in their corresponding clusters. This process is
repeated until the clusters are stable.

4 SIMILARITY-AWARE
DIFFUSION MODEL-BASED
IMPUTATION (SADI)

Consider a random variable x0, where the subscript s
represents a step in a Markov process. Here, s = 0
specifically refers to the variables x0 originating from
the true data distribution q(x0), which is our primary
interest. We consider a setting where the data distri-
bution is a mixture distribution with K components
that can be represented as

q(x0) = c1q1(x0) + · · · + cKqK(x0). (6)

Each component corresponds to a group or class of
the data, and the sum of the weights of each group ck
equals 1.

In the traditional CSDI algorithm, a batch of ran-
dom samples is drawn from the overall data distribu-
tion q(x0) at each optimization step. Consequently,
each sample in the batch may come from different

Algorithm 2 Sampling/Imputation with SADI

Input: a data sample x0 from qk(x0), maximum
number of diffusion steps S, trained denoising
function ϵθ
Output: Imputed values

1: Denote the observed values of x0 as xco
0 , the miss-

ing part as xta
0

2: Sample xta
S ∼ N (0, I) where xta

S has the same
shape as xta

0 .
3: for s ∈ {S, . . . , 1} do
4: Sample xta

s−1 from the reverse process, see
eq. (3).

5: end for

groups, limiting the amount of shared information
across samples due to their dissimilarity. In contrast,
the similarity-aware diffusion model utilizes the de-
composition from eq. (6) and draws a batch of random
samples from the same group qk(x0) at each optimiza-
tion step, ensuring that samples within the same batch
are similar. This sample similarity introduces an addi-
tional source of information that the model can learn
from, thereby enhancing imputation performance. We
name the optimized imputation method as similarity-
aware diffusion model-based imputation (SADI). For
complex EHR time series data, defining groups and
patient similarity can be challenging. To address this
issue, we have developed a novel data-driven approach
to evaluate group information and patient similarity,
which is detailed in Section 5.1.

We choose to use a diffusion model to approximate the
conditional distribution q(xta

0 |xco
0 ). Specifically, the

diffusion model contains one forward process eq. (1),
and one reverse process eq. (3). Intuitively, the for-
ward process defines a sequence of latent variables
xta
1 , . . . ,xta

S through a Markov chain (see eq. (1)). As
the step s increases, the determined part

√
ᾱsx

ta
0 in

the latent variable xta
s decreases, while the noise part√

1 − ᾱsϵ increases, as illustrated in eq. (2). Eventu-
ally, the last latent variable xta

S is approximately to
be random noise. On the contrary, the reverse process
aims to denoise xta

S and recover the original data xta
0 .

The reverse process eq. (3) is defined by a learnable
Markov chain, where the transition probability follows
a normal distribution and the corresponding mean and
variance are learned by models.

The diffusion model is usually trained by optimizing
the variational bound on the negative log-likelihood
(Sohl-Dickstein et al., 2015). By considering DDPM
parameterization eq. (4), training the diffusion model
is essentially training the denoising function ϵθ (Ho
et al., 2020; Tashiro et al., 2021), which is represented
by a deep neural network with parameter θ. The loss



Zongyu Dai, Emily Getzen, Qi Long

function of similarity-aware diffusion model is

min
θ

L(θ)

:= min
θ

Ek∼C{c1,c2,...,cK},x0∼qk(x0),ϵ∼N (0,I),s∼U{1,S}

∥ϵ− ϵθ(xta
s , s|xco

0 )∥22
(7)

Here C{c1, c2, . . . , cK} represents a categorical dis-
tribution, and the group number k is sampled
from {1, 2, . . . ,K} with corresponding probability
{c1, c2, . . . , cK}. As we can observe, the distinction be-
tween the SADI loss function eq. (7) and CSDI Equa-
tion (5) lies in the sampling approach. SADI first de-
termines the group number and then samples data
from the corresponding group distribution, whereas
CSDI directly samples data from the entire distribu-
tion. Thus, when optimizing the model using a batch
of samples, SADI draws a batch of similar samples at
each optimization step, while in CSDI, samples may
be dissimilar since they could be drawn from different
groups.

As we mentioned in section 3.1, the target part should
be known during the training phase to calculate the
loss function. So the target part should be selected
from observed values during training. Once the denois-
ing function ϵθ is trained, we can sample imputations
for xmis

0 from the reverse process eq. (3) by letting the
target part be all the missing values and the condi-
tional part be all the observed values. The training
and sampling algorithms are presented in algorithm 1
and algorithm 2 respectively.

5 SADI for INCOMPLETE
TEMPORAL EHR DATA

In this section, we describe the procedure of how to
use SADI to impute incomplete temporal EHR data
{Xi}ni=1. The motivation for applying SADI is to effec-
tively incorporate information across similar patients
and model the correlations among them to further im-
prove imputation performance.

5.1 The overall imputation pipeline of SADI

Due to the incompleteness of EHR data, it is challeng-
ing to access patient similarity directly. So we pro-
pose a procedure as shown in Figure 1, which entails
four steps. The first step is to utilize an imputation
method, such as MICE or CSDI, to perform an initial
imputation and obtain the complete dataset {X̄i}ni=1.
The second step is to apply a time series clustering al-
gorithm, such as the K-SC clustering method, to divide
{X̄i}ni=1 into K groups {X̄i}i∈Gk

for k = 1, . . . ,K.

Here, the number of groups K is a predefined hy-
perparameter, and the goal of the second step is to
obtain the group information Gk. We then parti-
tion the original dataset {X}ni=1 into the correspond-
ing groups XGk

= {Xi}i∈Gk
for k = 1, . . . ,K. Then

we regard each group XGk
containing samples from

the distribution qk(x0) defined in section 4 and the
samples in the same group are similar. The third step
is to leverage the SADI framework in section 5 for
approximating the distribution of missing values con-
ditioned on observed values. In this step, we pro-
pose a novel patient-similarity-aware denoising func-
tion ϵθ and train the denoising function ϵθ on groups
{XGk

}Kk=1. The fourth and last step is to utilize the
trained denoising function ϵθ to sample imputation
from the reverse process for missing data. Note that
subscript s in Xi,s represents the s-th step in the
Markov process in the remainder of section 5, and
Xi,0 = Xi denotes data from the true data distribu-
tion.

5.2 Similarity-aware denoising function

We first specify the input and the structure of the
patient-similarity-aware denoising function ϵθ. Recall
that the original denoising function ϵθ(xta

s , s|xco
0 ) in

section 3.1 takes noisy target part xta
s , step s and con-

ditional part xco
0 as input and predicts the noise con-

tained in the noisy target xta
s . During the training

phase, a random batch of training data from q(x0)
is used to optimize the original denoising function.
SADI refines this process to use information across
similar patients. Specifically, the denoising function
ϵθ(xta

s , s|xco
0 ) takes a batch of samples from qk(x0) as

input. Since we have regarded each group data XGk
as

samples from qk(x0) after the clustering step. So the
denoising function ϵθ(xta

s , s|xco
0 ) of SADI takes a batch

of similar patients’ data XB as input, where B ⊂ Gk

with batch size |B| = b. To handle the varying shapes
of the target part Xta

i,s and conditional part Xco
i,0 of

patients’ EHR data, zero padding is applied to both
parts to ensure that they have the same shape p× T .
As such, a conditional mask Mco

i ∈ {0, 1}p×T is also
passed as input to indicate the position of conditional
observations. We also apply zero padding to the out-
puts to keep the output also lying in the sample space
Rp×T . Denote the stacked target parts, the stacked
conditional parts, and the stacked masks of batched
data from the k-th group by

Xta
B,s = Stack({Xta

i,s}i∈B) ∈ Rb×p×T

Xco
B,0 = Stack({Xco

i,0}i∈B) ∈ Rb×p×T

Mco
B = Stack({Mco

i }i∈B) ∈ Rb×p×T
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Figure 1: The procedure of temporal missing value imputation with SADI. Each table represents a patient’s
EHR data, with gray cells indicating missing values, orange cells indicating observed values, and blue cells
indicating imputed values. The process involves (1) conducting an initial imputation (e.g., using CSDI) on
the entire dataset {Xi}ni=1 to generate imputed data {X̄i}ni=1, (2) applying a clustering algorithm (e.g., K-SC)
to categorize imputed data {X̄i}ni=1 into K clusters {X̄Gk

}Kk=1 and acquiring the corresponding original data
clusters {XGk

}Kk=1, (3) training SADI on the K clustered datasets {XGk
}Kk=1, and (4) sampling imputations for

the data clusters using the reverse process of SADI.

Figure 2: Architecture of 3D attention mechanism. Given a tensor from the k-th group with b patients, p
features, T time points, and c channels, the temporal transformer layer processes inputs of shape (1, 1, T, c) to
learn temporal dependency. The feature transformer layer processes inputs of shape (1, p, 1, c) to learn feature
dependency. The patient transformer layer processes inputs of shape (b, 1, 1, c) to learn patient dependency.

Then the dimensions of the input and output of the
denoising function ϵθ(Xta

B,s, s|Xco
B,0,MB) can be writ-

ten as: (Rb×p×T × R|Rb×p×T × Rb×p×T ) → Rb×p×T .
Note that the same diffusion step s is applied to all
the patients’ data in the same batch B ⊂ Gk. This
is different from the training procedure of the original
denoising function in section 3.1, where each training
sample has its own diffusion step s.

The structure of our patient-similarity-aware denois-
ing function ϵθ is designed using techniques from Dif-
fWave (Kong et al., 2020) and CSDI (Tashiro et al.,
2021) which consist of multiple residual layers with c
residual channels. The details of the denoising func-
tion can be found in appendix A.3. Here we discuss
the main difference from previous works, which is the
use of a three-dimensional attention mechanism within
each residual layer to learn the temporal, feature, and
patient dependencies, as shown in Figure 2. This
is achieved by incorporating three transformer layers,
each with a single-layer transformer encoder. The first
transformer layer captures temporal dependencies by
processing input tensors for each feature and patient,
where the length of each input sequence is T . The
second transformer layer learns feature dependencies

by operating on input tensors for each time point and
patient. Lastly, the third transformer layer captures
patient dependencies by processing input tensors for
each time point and feature.

6 EXPERIMENTS

6.1 Datasets

To evaluate the performance of SADI in comparison
with the current SOTA, we conduct numerical experi-
ments on two real-world EHR datasets: a dataset from
The Critical Path For Alzheimer’s Disease (CPAD)
consortium1 (Sivakumaran et al., 2020) and the Phys-
ioNet Challenge 20122 dataset (Silva et al., 2012). For
both datasets, we run each experiment five times. Our
main focus is on the CPAD dataset, a temporal EHR
dataset collected from a non-ICU setting. The Phys-
ioNet dataset, on the other hand, is a high-frequency
time series dataset collected from ICUs. Both datasets
have been anonymized and do not contain sensitive in-

1See https://c-path.org/programs/cpad/
2See https://PhysioNet.org/content/

challenge-2012/1.0.0/
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CPAD PhysioNet Challenge 2012
Number of patients 11369 4000
Number of features 37 35

Number of time points 12 48
Percentage of missing values 79% 80%

Table 1: Description of two EHR datasets

Figure 3: An illustration of dividing a patient’s EHR
data with 5 features and 10 time points into training,
validation, and testing sets. Each row represents a fea-
ture and each column represents a time point. Miss-
ing values are shown in gray, while observed values are
divided into orange (training), blue (validation), and
purple (testing) segments.

formation.

The CPAD dataset consists of 36 sub-tables, includ-
ing clinical events, lab results, imaging results, and
other data domains collected over a period of up to
four years. In our experiments, we focus on the lab re-
sult table and choose the most frequent 37 features.
This table includes 11369 patients. We preprocess
the dataset to monthly-based EHR data with 12 time
points. Only the visit data within the first year af-
ter the initial visit are used to generate the EHR data.
This evenly spaced EHR dataset has around 79% miss-
ing values in total.

The PhysioNet dataset contains 4000 patients’ clinical
multivariate time series data from ICUs. Except for
the general descriptors like age and gender, each multi-
variate time series has 35 features, including Glucose,
DiasABP, and so on. Those features are irregularly
sampled in the first 48 hours after admission to the
ICU. We preprocess the original dataset to hourly-
based time series with 48 time points. This evenly
spaced time series dataset has around 80% missing val-
ues in total. The description of these two datasets are
summarized in Table 1, and more details can be found
in appendix A.1.

Since there are no ground truths for missing values
on the CPAD data and the PhysioNet data, we artifi-
cially mask out 10% of observed values as test data to
evaluate model performance under three missing data
mechanisms, MCAR, MAR, and MNAR (Little and
Rubin, 2019). The remaining observed data are used
as the training data, and we randomly select 10% of
the training data as the validation data, as shown in
Figure 3.

6.2 Missing mechanism

Briefly, MCAR occurs when the missingness is in-
dependent of both the observed and missing values.
MAR occurs when the missingness depends solely on
the observed values. Lastly, MNAR occurs when the
missingness is dependent on both observed and miss-
ing values. MCAR typically is not valid in EHR data,
whereas MAR is more plausible. Imputing missing
values in MNAR settings is more challenging than in
MCAR and MAR settings. It is well known that one
cannot test MAR vs MNAR using observed data. As
such, to gain a comprehensive assessment of SADI in
comparison with the current SOTA, we evaluate their
performance under all three missing data mechanisms.
The detailed description can be found in appendix A.2.

6.3 Methods to be compared

We evaluate our proposed SADI with both RNN-
based and attention-based imputation models which
are listed below. All models are trained with GPU
RTX 2080. Experiment details can be found in ap-
pendix A.3. To conduct accurate imputation, SADI
takes the median of 100 generated samples as the fi-
nal imputation. RNN-based methods: (1) MRNN
(Yoon et al., 2018) uses bidirectional LSTM to impute
missing values and models both temporal and feature
dependencies. (2) RITS (Cao et al., 2018) is a sim-
plified version of BRITS and only models the tem-
poral dependency. (3) BRITS (Cao et al., 2018) is
similar to MRNN, and also uses bidirectional RNN
to model both temporal and feature dependencies.
Transformer-based methods: (4) CSDI (Tashiro
et al., 2021) is based on diffusion models and utilizes
two transformer layers to capture time and feature de-
pendencies.

6.4 Performance metrics

We use three metrics to evaluate the imputation per-
formance: mean absolute error (MAE), mean relative
error (MRE) and root mean square error (RMSE).
Suppose targeti is the ground truth for the i-th item
and estimationi is the predictive value for the i-th
item, and there are N items in total. Then three met-
rics are defined as follows

MAE =

∑
i |estimationi − targeti|

N

MRE =

∑
i |estimationi − targeti|∑

i |targeti|

RMSE =

√∑
i |estimationi − targeti|2

N
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Methods
MCAR MAR MNAR

MAE RMSE MRE MAE RMSE MRE MAE RMSE MRE
MRNN 0.233(0.001) 0.478(0.013) 33.5%(0.001) 0.233(0.001) 0.672(0.030) 38.5%(0.001) 0.246(0.001) 0.723(0.123) 44.4%(0.003)
RITS 0.259(0.001) 0.547(0.009) 40.3%(0.002) 0.252(0.001) 0.654(0.024) 41.8%(0.001) 0.265(0.002) 0.730(0.122) 47.7%(0.002)

BRITS 0.239(0.001) 0.532(0.008) 37.1%(0.001) 0.233(0.001) 0.629(0.019) 38.7%(0.001) 0.244(0.001) 0.710(0.117) 44.1%(0.003)
CSDI 0.206(0.006) 0.440(0.004) 30.2%(0.009) 0.207(0.002) 0.640(0.025) 34.3%(0.003) 0.219(0.001) 0.679(0.134) 39.5%(0.003)
SADI 0.190(0.001) 0.416(0.005) 28.0%(0.002) 0.194(0.002) 0.624(0.031) 32.1%(0.003) 0.206(0.002) 0.664(0.137) 37.1%(0.005)

Table 2: Performance comparison of methods on the CPAD dataset under MCAR, MAR, and MNAR mecha-
nisms. We report the mean and standard error for five trials.

Methods
MCAR MAR MNAR

MAE RMSE MRE MAE RMSE MRE MAE RMSE MRE
MRNN 0.381(0.001) 0.721(0.096) 54.6%(0.001) 0.377(0.001) 0.677(0.013) 48.3%(0.001) 0.389(0.001) 0.782(0.029) 47.8%(0.001)
RITS 0.322(0.001) 0.653(0.074) 44.9%(0.001) 0.323(0.001) 0.654(0.012) 39.9%(0.001) 0.329(0.001) 0.795(0.027) 40.3%(0.001)

BRITS 0.294(0.001) 0.632(0.056) 41.7%(0.001) 0.296(0.001) 0.621(0.008) 37.9%(0.001) 0.313(0.001) 0.764(0.019) 38.2%(0.001)
CSDI 0.242(0.001) 0.586(0.043) 34.3%(0.002) 0.243(0.001) 0.546(0.007) 31.0%(0.001) 0.252(0.001) 0.689(0.019) 30.7%(0.001)
SADI 0.241(0.001) 0.624(0.069) 34.3%(0.002) 0.241(0.001) 0.543(0.007) 30.8%(0.001) 0.248(0.001) 0.681(0.023) 30.1%(0.001)

Table 3: Performance comparison of methods on the PhysioNet dataset under MCAR, MAR, and MNAR
mechanisms. We report the mean and standard error for five trials.

6.5 Experiment results

We first evaluate the performance of SADI and four
other SOTA methods on the CPAD dataset (the non-
ICU dataset) and compare their imputation perfor-
mance. The results under MCAR, MAR, and MNAR
settings are presented in Table 2. The best perfor-
mance in each table is highlighted in bold. First, the
three settings show similar results in terms of compar-
isons across the methods. Particularly, three RNN-
based methods (MRNN, RITS, and BRITS) tend to
perform worse than the two transformer-based meth-
ods (CSDI and SADI), suggesting that transformer
layers are better suited for modeling sequence de-
pendencies. Among the transformer-based methods,
SADI significantly outperforms CSDI in all scenarios.
Specifically, SADI reduces MAE, RMSE, and MRE
by around 8%, 6%, and 7%, respectively, compared to
CSDI in the MCAR setting. Similar improvements are
also observed in the MAR setting and the MNAR set-
ting, where SADI reduces the MAE, RMSE, and MRE
by 6.5%, 2.5%, 8% and 6%, 2%, 6% respectively, com-
pared to CSDI. This suggests that it is insufficient to
only model temporal dependency and feature depen-
dency on sparse temporal EHR data. Additionally,
the consistent better performance of SADI over CSDI
under all missing data mechanisms also highlights the
importance of modeling dependency among similar pa-
tients, which makes the model more robust and able
to handle different types of missing data mechanisms
in EHR data. Ablation study on the CPAD dataset
can be found in appendix A.4.

Then we evaluate SADI in comparison with the other
methods on the PhysioNet dataset (the ICU dataset)
under MCAR, MAR, and MNAR mechanisms, as
shown in Table 3. The results still show that the two
transformer-based methods (CSDI and SADI) outper-

form the three RNN-based methods (MRNN, RITS,
and BRITS). But the improvement of SADI over CSDI
is more modest, at less than 2% in most cases. As
discussed earlier, in the ICU setting, the strong tem-
poral correlation between time points could provide
sufficient information to achieve accurate imputation.
In this case, borrowing information across similar pa-
tients only offers marginal improvement. Nevertheless,
our proposed SADI still achieves the best or close to
the best performance in all settings.

7 CONCLUSION/DISCUSSION

In this work, we present a new imputation method,
SADI, for imputing missing values in temporal EHR
data. SADI enables borrowing information across sim-
ilar patients, in addition to leverage information across
time and across features, to fill in missing values.
Our experiments show that SADI outperforms cur-
rent SOTA EHR data imputation methods in temporal
EHR data from non-ICU settings and still achieves the
best or close to the best performance in EHR data from
ICUs. One limitation of SADI is that the clustering
step can be computationally expensive when applied
to large datasets with a large number of patients. To
mitigate this issue, a potential future research direc-
tion would be to generate embedding for EHR data
and cluster the dataset based on embeddings (Nalm-
pantis and Vrakas, 2019; Shukla and Marlin, 2021).
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S. (2020). Gp-vae: Deep probabilistic time series
imputation. In International conference on artificial
intelligence and statistics, pages 1651–1661. PMLR.

Getzen, E., Ungar, L., Mowery, D., Jiang, X., and
Long, Q. (2023). Mining for equitable health: As-
sessing the impact of missing data in electronic
health records. Journal of Biomedical Informatics,
page 104269.

Gianfrancesco, M. A., Tamang, S., Yazdany, J., and
Schmajuk, G. (2018). Potential biases in machine
learning algorithms using electronic health record
data. JAMA internal medicine, 178(11):1544–1547.
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Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Not Applicable]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]
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(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Yes]

(b) The license information of the assets, if ap-
plicable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Yes]

(d) Information about consent from data
providers/curators. [Yes]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Yes]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]

A Experiment details

A.1 Dataset details

Physinet 2012 dataset 35 features are selected:
Albumin, ALP, ALT, AST, Bilirubin, BUN, Choles-
terol, Creatinine, DiasABP, FiO2, GCS, Glucose,
HCO3, HCT, HR, K, Lactate, Mg, MAP, Na, NI-
DiasABP, NIMAP, NISysABP, PaCO2, PaO2, pH,
Platelets, RespRate, SaO2, SysABP, Temp, Tro-
poninI, TroponinT, Urine, WBC

Critical Path For Alzheimer’s Disease (CPAD)
dataset 37 features are selected: Hemoglobin,
Alkaline Phosphatase, Creatinine, Alanine Amino-
transferase, Aspartate Aminotransferase, Potassium,
Sodium, Gamma Glutamyl Transferase, Albumin,
Cholesterol, Calcium, Leukocytes, Triglycerides,
Blood Urea Nitrogen, Glucose, Bilirubin, Platelets,
Eosinophils/Leukocytes, Lymphocytes/Leukocytes,
Monocytes/Leukocytes, Basophils/Leukocytes, Neu-
trophils/Leukocytes, Hematocrit, Creatine Kinase,
Bicarbonate, Prothrombin Intl. Normalized Ratio,
Activated Partial Thromboplastin Time, C Reactive
Protein, Chloride, Protein, Erythrocytes, Monocytes,
Basophils, Lymphocytes, Neutrophils, Eosinophils,
Indirect Bilirubin

A.2 Missing mechanism

For the MCAR setting, we set each observed entry to
have the same probability of 0.1 to be masked out as
a part of the test set. For the MAR and the MNAR
settings, the specific details of how missingness is in-
troduced are presented below.

Recall that the observations are denoted by Xd
i,t (i =

1, . . . , n; t = 1, . . . , T ; d = 1, . . . , p). We also denote
the original missing indicator Md

i,t as 1M
d
i,t. Denote

the missing indicator after masking out the test set as

2M
d
i,t. Here we describe how to generate 2M

d
i,t based

on 1M
d
i,t. Specifically, if MAR mechanism is applied,

2M
d
i,t is generated through the following rules:

P (2M
d
i,t = 0)

=


1, if 1M

d
i,t = 0

pt·(
∑D

d′=1 1M
d′
i,t)·e

−
∑

t′<t
ω
t′ ·X

d
i,t′ ·2Md

i,t′∑D
d′=1 1Md′

i,t·e
−

∑
t′<t

ω
t′ ·X

d′
i,t′

·2Md′
i,t′

, otherwise

Alternatively, if MNAR mechanism is applied, 2M
d
i,t
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is generated from 1M
d
i,t through the following rules:

P (2M
d
i,t = 0)

=


1, if 1M

d
i,t = 0

pt·(
∑D

d′=1 1M
d′
i,t)·e

−
∑

t′≤t
ω
t′ ·X

d
i,t′ ·1Md

i,t′∑D
d′=1 1Md′

i,t·e
−

∑
t′≤t

ω
t′ ·X

d′
i,t′

·1Md′
i,t′

, otherwise

Here pt denotes the proportion of observed data that
are masked out as the test dataset at time step t, and
ωt′ are sampled from U(0, 1) (but only sampled once
for the entire dataset). In our experiments, pt is set to
10% for all t.

A.3 Implementation details

All experiments are repeated five times under the ran-
dom seeds from 42 to 46. For RITS3, BRITS4, and
CSDI5, we use the open-access implementations pro-
vided by their authors. For MRNN6, we use open-
access implementations provided by the author of
BRITS. We use the default or the recommended hy-
perparameters of RITS, BRITS, and MRNN in their
papers on both the PhysioNet challenge 2012 data and
CPAD data. For CSDI, we use the default parameter
on the PhysioNet challenge 2012 data and fine-tune
the batch size of CSDI based on validation MAE on
the CPAD dataset for a fair comparison.

For SADI, we use CSDI with the default parameters to
generate the initial imputation in the first step. Then
we use the K-SC method with shift=5 to conduct the
clustering step. We show the structure of the denoising
function in Figure 4. The number of residual layers is
4, the batch size is 32 and the residual channel is 64.
Each transformer layer used in Figure 4 is a 1-layer
TransformerEncoder implemented in PyTorch (Paszke
et al., 2019), and it consists of a multi-head attention
layer, fully-connected layers, and layer normalization.
The number of heads in each attention layer is 8. By
following previous works (Vaswani et al., 2017; Kong
et al., 2020; Tashiro et al., 2021), we use the following
128-dimensions embedding for the diffusion step s:

sembedding(s) = ( sin(100·4/63s), . . . , sin(1063·63/63s),

cos(100·4/63s), . . . , cos(1063·63/63s))

Similarly, we adopt the following 128-dimensions em-
bedding for the time point t as side information:

tembedding(t) = ( sin(t/τ0/64), . . . , sin(t/τ63/64),

cos(t/τ0/64), . . . , cos(t/τ63/64))

3See https://github.com/caow13/BRITS
4See https://github.com/caow13/BRITS
5See https://github.com/ermongroup/CSDI
6See https://github.com/caow13/BRITS

Temporal Feature Patient MAE RMSE MRE
✓ ✓ ✓ 0.206(0.002) 0.664(0.137) 37.1%(0.005)
✗ ✓ ✓ 0.294(0.001) 0.787(0.114) 53.0%(0.003)
✓ ✗ ✓ 0.228(0.001) 0.700(0.126) 41.1%(0.002)
✓ ✓ ✗ 0.220(0.004) 0.681(0.133) 39.7%(0.008)
✓ ✗ ✗ 0.244(0.003) 0.731(0.125) 44.0%(0.006)
✗ ✓ ✗ 0.352(0.020) 0.885(0.094) 63.4%(0.035)
✗ ✗ ✓ 0.339(0.001) 0.843(0.104) 61.1%(0.002)

Table 4: Ablation study on the CPAD dataset under
MNAR: In this table, a check mark indicates the in-
clusion of the corresponding transformer layer, while a
cross mark denotes its exclusion. We report the mean
and standard error for five trials.

where τ = 10000.

We set the number of training epochs as 200 and
chose the Adam optimizer to update the parameters.
The learning rate is 0.001 and decayed to 0.0001 and
0.00001 at 75% and 90% of the total epochs, respec-
tively. We set the number of diffusion steps as S = 50
and the noise level is increased from β1 = 0.0001 to
βS = 0.5. We adopt the quadratic schedule (Tashiro
et al., 2021) for other noise levels:

βs = (
S − s

S − 1

√
β1 +

s− 1

S − 1

√
βS)

A.4 Ablation study on CPAD dataset

In our implementation of the denoising function ϵθ, we
design a 3D attention mechanism to learn the tempo-
ral, feature, and patient dependencies. In this section,
we explore the contribution of each transformer layer
using ablation. We show the result in Table 4. It
shows that all three transformer layers contribute to
the best final performance. Even in non-ICU settings,
the temporal correlation is still the most important
source of information that the model can learn from.
Compared the first and fourth lines of the table, adding
a patient layer improves the MAE, RMSE, and MRE
performance by 6%, 2.5%, and 7%, respectively.
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Figure 4: structure of ϵθ


