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Abstract

In many real world networks, there already ex-
ists a (not necessarily optimal) k-partitioning of
the network. Oftentimes, one aims to find a k-
partitioning with a smaller cut value for such net-
works by moving only a few nodes across parti-
tions. The number of nodes that can be moved
across partitions is often a constraint forced by
budgetary limitations. Motivated by such real-
world applications, we introduce and study the
r-move k-partitioning problem, a natural variant
of the Multiway cut problem. Given a graph, a
set of k terminals and an initial partitioning of the
graph, the r-move k-partitioning problem aims to
find a k-partitioning with the minimum-weighted
cut among all the k-partitionings that can be ob-
tained by moving at most r non-terminal nodes
to partitions different from their initial ones. Our
main result is a polynomial time 3(r+1) approx-
imation algorithm for this problem. We further
show that this problem is W [1]-hard, and give an
FPTAS for when r is a small constant.

1 INTRODUCTION

Graph partitioning problems are among the most funda-
mental and widely used graph problems in the fields of arti-
ficial intelligence, theoretical computer science, operations
research and operations management. A k-partitioning of
a graph G refers to partitioning the graph’s nodes into k-
disjoint sets, clusters, or partitions. Oftentimes, the goal
in partitioing problems is to find a k-partitioning with the
least cut value (also referred to as cut size in the litera-
ture), which is the sum of the weights of the edges that are
between different partitions. Graph partitioning is widely
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used in machine learning, parallel computing, computer vi-
sion, VLSI design, political districting, epidemiology and
many more areas (Dickinson et al., 2001; Hendrickson and
Kolda, 2000; Joachims, 2003; Kahng et al., 2011; King
et al., 2012; Shah et al., 2019).

Given a graph* G, an integer k ≥ 2 and k terminals, the
well-known Multiway cut problem asks to find a partition-
ing of the nodes of G into k clusters with the smallest cut
value among all k-partitionings that have exactly one termi-
nal in each partition (Dahlhaus et al., 1992). In this paper,
we use the terms partitions and clusters, interchangeably.
It is known that for k > 2, the Multiway cut problem is
APX-hard (Dahlhaus et al., 1994).

We introduce and study a natural variant of the Multi-
way cut problem called the r-move k-partitioning prob-
lem. Suppose that we are given a graph G with an initial
k-partitioning, an integer k ≥ 2, k terminals and a move pa-
rameter r ∈ N. The problem only considers k-partitionings
for which at most r non-terminal nodes have been moved
from their initial partitions to new clusters. The r-move k-
partitioning problem asks to find a k-partitioning that min-
imizes the cut value over all the k-partitionings considered.

Numerous examples of the r-move k-partitioning problem
can be seen in real-world networks. In fact, in many net-
works, the underlying graph already has a k-partitioning
and this k-partitioning is not optimal, i.e., the cut value is
not minimized. For instance, the edge weights in a net-
work may change over time, resulting in the sub-optimality
of the initial partitioning. However, in most applications,
we cannot afford moving many nodes from their initial k-
partitioning, and so the goal is to improve the cut value by
moving only “a few” nodes.

There has been a long line of works providing approxima-
tion algorithms for the Multiway cut problem (Dahlhaus
et al., 1994; Călinescu et al., 1998; Angelidakis et al., 2017;
Saran and Vazirani, 1995; Manokaran et al., 2008), most of
which use a simple linear programming (LP) relaxation of
the problem called the CKR LP, in honor of the authors who
introduced it, Călinescu, Karloff and Rabani (Călinescu
et al., 1998). The best approximation factor for the Mul-
tiway cut problem is 1.2965 due to Sharma and Vondrák

*We use the terms “graphs” and “networks” interchangeably.
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(2014), who round the CKR LP. Interestingly, Manokaran
et al. (2008) showed that assuming the unique games con-
jecture (Khot, 2002), if the integrality gap of the CKR LP
is α, then the Multiway cut problem cannot be approxi-
mated better than α. Bérczi et al. (2020) showed that the
integrality gap of the CKR LP is at least 1.20016, hence
the best approximation factor for the Multiway cut prob-
lem lies between 1.20016 and 1.2965. Closing this gap is
an interesting open problem.

Perhaps the closest known variant of the Multiway cut
problem to the r-move k-partitioning problem is the min
s-t cut with at most r nodes, also known as the Min r-size
s-t cut problem (Zhang, 2016). This problem asks to find
a minimum value s-t cut, where there are at most r nodes
in the partition that contains terminal node s (i.e., the s-
side). This problem is a special case of the (r − 1)-move
2-partitioning problem, when in the initial partitioning all
non-terminal nodes are in the partition that contains node
t. By moving at most r − 1 nodes to the s-side, the s-side
will have size at most r.

Even though the Min r-size s-t cut problem is a variant
of the s-t cut problem, which is polynomially solvable,
the Min r-size s-t cut problem is NP-hard (Chen et al.,
2016). Thus, the r-move 2-partitioning and the r-move k-
partitioning problems are NP-hard. It is also known that
the Min r-size s-t cut problem admits a Fixed-Parameter
Tractable (FPT) solution with parameter r when the graph
is unweighted (Lokshtanov and Marx, 2013) (see Section 2
for a definition of FPT problems). Intuitively, one might
wonder if the r-move 2-partitioning problem and the Min
r-size s-t cut problem are equivalent. We show that the
r-move 2-partitioning problem is in fact W[1]-hard; thus,
not equivalent to the Min r-size s-t cut problem. We resort
to designing approximation algorithms for the r-move k-
partitioning problem for all k ≥ 2. Hence, the main theme
of this paper is around the following question: How well
can we approximate r-move k-partitioning?

1.1 Our Results

We provide a comprehensive study of the r-move
k-partitioning problem. Recall that the r-move k-
partitioning problem is NP-hard (for any constant k ≥ 2),
hence, there exists no exact polynomial time algorithm for
it, unless P = NP. Throughout the paper we think of k as a
constant.

First, note that when r is also a constant, there exist a sim-
ple O((nk)r) algorithm for the problem. This algorithm
tries every combination of r′ nodes, for all 1 ≤ r′ ≤ r,
to be moved to any of the k partitions. It is natural to ask
whether we can devise an FPT algorithm with parameter
r for the r-move k-partitioning problem. Our first result
shows that the answer to this question is negative.

Theorem 1.1 The r-move k-partitioning problem with pa-
rameter r is W[1]-hard.

In Theorem 1.1, we use a polynomial time reduction from
the Densest r-Subgraph problem, where the complete proof
can be found in the supplementary materials. It is well-
known that the Densest r-Subgraph problem with parame-
ter r is W[1]-hard (Cai, 2008).

Next, we give a (1 + ϵ)-approximation algorithm for
the r-move k-partitioning problem with running time
f(r, ϵ)O(n2) for any ϵ > 0, where f(·, ·) is a function of r
and ϵ. When r is a constant, this gives us an FPTAS (with
parameter ϵ) with running time O(n2/ϵr), faster than the
O(nr) brute-force algorithm, in the expense of an approxi-
mation factor.

Theorem 1.2 Given any r-move k-partitioning instance
graph G with n nodes and any constant ϵ > 0,
there exists a (1 + ϵ)-approximation algorithm for the
r-move k-partitioning problem on G with running time
( 2(k−1)(1+ϵ)

ϵ )rr!cn2, where c is a universal constant inde-
pendent of r and ϵ.

The FPTAS and the proof of Theorem 1.2 are provided in
the full version of the paper (Behbahani et al., 2024). The
running time of the algorithm in Theorem 1.2 grows fast
as r grows, which leads us to the following question: Can
we design an approximation algorithm with a running time
polynomial in both n and r? Our main result focuses on
answering this question. We give a polynomial time ap-
proximation algorithm with approximation factor at most
3(r + 1). This is done by extending the CKR linear pro-
gram to an LP for the r-move k-partitioning problem by
adding a single linear constraint reflecting the move con-
straint of the problem. Our approximation algorithm is a
simple rounding scheme for this LP, which makes our ap-
proach very practical. The main challenge is in proving the
approximation guarantees of our rounding, which is given
in Section 3.

Theorem 1.3 Given a positive integer r, there exists a ran-
domized algorithm for the r-move k-partitioning problem
on any n-node m-edge graph G that with approximation
factor 2k

k−1 (r+1) and running time TLP (n,m) +O(mk),
where TLP (n,m) is the running time of solving a linear
program with O(n) variables and O(m) constraints.

Firstly, note that we can de-randomize this algorithm in the
expense of an additional factor of n in the running time
(see Section 3.2). Secondly, note that unlike Theorem 1.2,
the running time of our algorithm in Theorem 1.3 is inde-
pendent of r. For k = 2, we give a rounding scheme for
our LP with approximation factor at most r + 1, resulting
in an (r + 1)-approximation algorithm for the r-move 2-
partitioning problem, as demonstrated in the full version of
the paper (Behbahani et al., 2024).We further show that the
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integrality gap of the LP used in Theorem 1.3 is at least
r + 1, demonstrating that our rounding algorithm is tight
within a constant factor.

Finally, as our approximation factor is dependent on r, we
resort to bicriteria algorithms to make it constant. This al-
gorithm is provided in the paper’s full version (Behbahani
et al., 2024).

Theorem 1.4 For any 1/2 < γ < 1, there exists a poly-
nomial time ( 1

1−γ ,
5

2γ−1 )-approximation randomized algo-
rithm for r-move k-partitioning problem, where the first
criterion is the number of nodes moved and the second cri-
terion is the cut value.

We provide two remarks to better understand the applica-
bility of our results. Firstly, we show in the supplementary
materials that r-move k-partitioning without terminals is
also W[1] hard and so even though for a lot of partitioning
problems the “without terminals” version is easier, this is
not the case for r-move k-partitioning. Our second remark
is stated below. We include simple complementary numer-
ical evaluations of our algorithm in Section 4.

Meaningful range for r: The range of r in which The-
orems 1.3 and 1.2 provide meaningful results can be un-
derstood as follows. For the case of k = 2, the Multiway
cut problem is tractable and so it is possible to compute
an optimal multiway cut C for the input graph in poly-
nomial time. Suppose that cut C is obtained by moving
r̂ nodes from their initial partitions. Then, Theorems 1.3
and 1.2 are meaningful only when r < r̂. This is because
if r ≥ r̂, then C is an optimal output for the r-move 2-
partitioning problem. On the other hand, when k > 2,
there is no polynomial time algorithm for the Multiway cut
problem. Therefore, in this case, one can obtain a cut C
whose cut value is within a constant approximation factor
of an optimal multiway cut, using an approximation algo-
rithm for the Multiway cut problem (for example the 3

2 -
approximation algorithm of Călinescu et al. (1998)). Let r̂
be the number of nodes that C moves from their initial par-
titions. Once again, Theorems 1.3 and 1.2 are useful only
when r < r̂.

1.2 Related Works

The Multiway cut problem without terminals is called the
k-partitioning problem. While the k-partitioning prob-
lem is polynomially solvable for fixed k (Goldschmidt and
Hochbaum, 1994), the Multiway cut problem is NP-hard
for k ≥ 3 (Dahlhaus et al., 1992). There exist many
“budgeted” variants of the Multiway cut and k-partitioning
problems in the literature, we name a few of these variants
here.

The Min r-size s-t cut problem: First, recall that the
Min r-size s-t cut problem is NP-hard, even though the

“without terminals” version of this problem, that is, the
Min r-size cut problem, is polynomially solvable (Armon
and Zwick, 2006; Watanabe and Nakamura, 1987). The
Min r-size cut problem asks to find a cut with the mini-
mum value among all the cuts with one side having at most
r nodes. The result of Armon and Zwick (2006) is based
on the result of Karger and Stein (1996) which states that
the number of cuts with value at most α times the value
of the min cut is at most n2α. Such result does not ex-
ist for s-t cuts and, in fact, the number of min s-t cuts
can be exponentially many*. The Min r-size s-t cut prob-
lem has been studied by other names such as the prob-
lem of “cutting at most r nodes by edge-cut with terminal”
(Fomin et al., 2013; Lokshtanov and Marx, 2013). More-
over, Zhang (2014) gives an O(log(n))-approximation al-
gorithm for the Min r-size s-t cut problem using Räcke’s
tree decomposition method (Räcke, 2008). See the full
version of the paper (Behbahani et al., 2024), for a ta-
ble of comparison of the related variants of the r-move 2-
partitioning problem and their associated algorithms.

Other variants: Most of the variants of the Multiway k-
cut problem that we are aware of are for k = 2. Basi-
cally having a budget on the number of nodes in one side
of the cut, and having terminals or no terminals in the graph
makes up of most of these variants.

The exact version of the Min r-size s-t cut problem is
called the Min Er-Size s-t cut problem (Feige et al., 2003),
which asks to find an s-t cut with minimum cut value
among all the cuts that have exactly r nodes in the s-side.
The (r, n − r)-cut problem (Bonnet et al., 2015) is the
above problem without any terminals. The (r, n − r)-cut
problem is known to be W[1]-hard (Bonnet et al., 2015),
and as a result the Min Er-Size s-t cut problem is also
W[1]-hard. For both these problems, there is a randomized
O(r/ log(n))-approximation algorithm due to Feige et al.
(2003). These problems have been studied when parame-
terized by cut value as well (Fomin et al., 2013).

For k > 2, the most relevant variant of the Multiway k-
cut problem is the k-balanced partitioning problem, which
is proved to be APX-hard (Feldmann and Foschini, 2015).
Other problems that seem to be indirectly relevant are the
k-route cut problem (Chuzhoy et al., 2015) and the MinS-
BCC problem (Hayrapetyan et al., 2005).

Dinitz et al. (2022) study a variant of the min s-t cut
problem with fairness considerations. They introduce the
Demographic Fair Cut problem, which is informally de-
fined as follows: Given a terminal node s and a labeling
of nodes into various demographics, the goal is to find a
minimum cut that disconnects at least a certain given frac-
tion of each demographic from s. If all nodes of the graph

*Consider a graph which consists of n/2 paths of length 2
from terminal s to terminal t. An s-t cut has at least one edge
from each path, and so the number of min s-t cuts is 2n/2.
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belong to a single demographic, then this problem is equiv-
alent to the Min r-size s-t cut problem. Thus, their log(n)-
approximation algorithm can also be applied to the Min
r-size s-t cut problem, resulting in a min(r + 1, log(n))-
approximation algorithm for the Min r-size s-t cut prob-
lem. Whether a log(n)-approximation algorithm exists for
the r-move k-partitioning problem (either for k = 2 or
k > 2) is an interesting open question that is outside the
scope of this paper.

2 PRELIMINARIES

Let G = (V,E) with weight function c : E → R, that is,
an edge (u, v) ∈ E has weight c(u, v) or cuv . We refer
to an edge with endpoints u and v by (u, v) or uv. We
only consider undirected graphs throughout this paper. Let
E(G) and V (G) denote the edge set and node set of a graph
G. A problem of size n with parameter r is said to be FPT
if there is an algorithm that solves it in f(r)O(nc) time,
where f(·) is an arbitrary function depending only on r and
c is a constant. If any W [1]-complete problem is FTP, then
FPT = W [1] and every problem in W [1] is FPT.

We formally define the r-move k-partitioning problem us-
ing the definition of a k-cut (also known as k-partitioning).
Given a weighted graph G = (V,E) with weight function
c : E → R, a k-cut is a subset of edges E′ ⊆ E such that
removing the set of edges E′ from the graph results in an-
other graph G′ = (V,E\E′) that has k connected compo-
nents. We refer to these connected components that appear
after removing edge set E′ as clusters or partitions. The
weight of a k-cut E′ is the sum of the weight of the edges
in E′ and it is called the cut value. Any set of edges that
introduce a cut in a graph, such as E′, can be referred to as
a cut-set.

Definition 2.1 (The r-move k-partitioning problem)
Let G = (V,E) be a weighted graph with a weight func-
tion c : E → R, a set of terminals S = {s1, . . . , sk} ⊆ V
and |V | = n. Suppose that G has a given initial partition-
ing, where ℓv ∈ {1, . . . , k} denotes the initial partition
that node v belongs to and for a terminal node si, we
have ℓsi = i, for each i ∈ {1, . . . , k}. The r-move
k-partitioning problem asks to find a minimum-weighted
k-cut ℓ∗ : V → {1, . . . , k} such that ℓ∗v ̸= ℓv for at most r
non-terminal nodes v.

The parameter r is referred to as the move parameter. The
linear program we use throughout this paper is represented
in Table 1 and will be referred to as LP 1. Suppose that
k is the number of partitions of interest. For each v ∈ V ,
let Xv = (X1

v , . . . , X
k
v ) be a vector of size k of positive

real decision variables in [0, 1]. To understand the role of
decision variable Xi

v better, observe that if we were only
considering integer solutions, then Xi

v = 1 would repre-
sent node v being in partition i, and constraint (C4) would

ensure that each node v is assigned to exactly one parti-
tion. We define the distance between pairs of vertices u, v
as d(u, v) = 1

2

∑k
i=1 |Xi

u − Xi
v|. In case of integer solu-

tions, if u and v are in the same partition, then d(u, v) = 0
and if they are in different partitions, d(u, v) = 1. This
further motivates the objective function in LP 1. To rep-
resent |Xi

u − Xi
v| in the LP, we define variables Y i

uv’s for
each (u, v) ∈ E, and add constraints (C2) and (C3) to make
sure Y i

uv = |Xi
u−Xi

v|. Finally, we call constraint (C7) the
move constraints, which ensures that at most r nodes are
moved from their initial partitions, in case of integer solu-
tions. Note that LP 1 without constraint (C7) is the CKR
LP.

Suppose X is a feasible, but not necessarily optimal, so-
lution to LP 1. Notation dX(u, v) = 1

2

∑k
i=1 |Xi

u − Xi
v|

is used to better clarify that the distance function is calcu-
lated specifically for solution X . We use the notation X̄
to denote the optimal solution of LP 1. We conclude this
section with the following lemmas that will be later used in
our proofs.

Lemma 2.1 Consider a feasible solution X to LP 1. Given
a number 0 ≤ λ < 1, if L is the set of nodes v for which
Xℓv

v < λ, then |L| < r
1−λ .

Proof. For each v ∈ L, we have 1−Xℓv
v > 1− λ. Since

X is a feasible solution of LP 1, r ≥
∑

v∈L(1−Xℓv
v ). So

r > (1− λ)|L|, and |L| < r
1−λ . □

Lemma 2.2 Let X be any feasible solution to LP 1. For
any i ∈ {1, . . . , k} and u, v ∈ V we have dX(u, v) ≥
|Xi

u −Xi
v|.

Proof. By the triangle inequality we have
∑

j ̸=i |Xj
u −

Xj
v | ≥ |

∑
j ̸=i X

j
u −

∑
j ̸=i X

j
v | = |(1−Xi

u)− (1−Xi
v)|,

where the last equality used
∑

j X
j
u =

∑
j X

j
v = 1. There-

fore, dX(u, v) = 1
2 (|X

i
u − Xi

v| +
∑

j ̸=i |Xj
u − Xj

v |) ≥
|Xi

u −Xi
v|. □

3 ALGORITHMS

This section discusses Theorem 1.3. The rest of the results
are presented in the supplementary materials and the pa-
per’s full version (Behbahani et al., 2024).

3.1 3(r + 1)-Approximation Algorithm for
Parametric r

In this section, we show a 2k
k−1 (r+1)-approximation algo-

rithm for the r-move k-partitioning problem when k > 2.
For k > 2, we have that 2k

k−1 ≤ 3; therefore, our algorithm
provides a 3(r + 1)-approximation guarantee for such k.
Note that, this algorithm works for k = 2 as well; however,
we already have an (r + 1)-approximation algorithm for
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Minimize:
∑

(u,v)∈E cuvd(u, v)

Subject to:
d(u, v) = 1

2

∑k
i=1 Y

i
uv ∀(u, v) ∈ E (C1)

Y i
uv ≥ Xi

u −Xi
v ∀(u, v) ∈ E, ∀i ∈ {1 · · · k} (C2)

Y i
uv ≥ Xi

v −Xi
u ∀(u, v) ∈ E, ∀i ∈ {1 · · · k} (C3)∑k

i=1 X
i
u = 1 ∀u ∈ V (C4)

Xsi = ei ∀si ∈ S (C5)
Xi

v ≥ 0 ∀v ∈ V , ∀i ∈ {1, . . . , k} (C6)∑
v∈V (1−Xℓv

v ) ≤ r (C7)

Table 1: r-move k-partitioning LP (LP 1)

this case, as presented in the full version (Behbahani et al.,
2024).

Algorithm 1 2k
k−1 (r + 1)-approximation algorithm for the

r-move k-partitioning problem
1: X̄ ← solution to LP 1.
2: g = k−1

k(r+1) .
3: ρ chosen uniformly at random from (0, g).
4: A ← {z = (z1, . . . , zk)| 1gz

i ∈ Z≥0 for all 1 ≤ i ≤
k and

∑k
i=1 z

i < 1 + kg}.
5: for i from 1 to k do
6: for v ∈ V (G) do
7: X̃i

v = g⌊ X̄
i
v+ρ
g ⌋.

8: end for
9: end for

10: for z ∈ A do
11: Hz ← {v ∈ V (G)|X̃v = z}.
12: if Hz contains a terminal si then ▷ Hz can contain

at most one terminal
13: i∗z ← i.
14: else
15: i∗z ← argmaxkj=1 |{v ∈ Hz|ℓv = j}|.
16: end if
17: Assign all the nodes in Hz to i∗z.
18: end for

The algorithm operates as follows: The optimal solution to
LP 1 gets rounded in two phases. Let g = k−1

k(r+1) and ρ be a
real number chosen uniformly at random from the interval
(0, g). In the first phase, for each node v, we round the
entries of X̄v to obtain X̃v such that for each 1 ≤ i ≤ k,
X̃i

v is an integer multiple of g. More precisely, let X̃i
v =

⌊ X̄
i
v+ρ
g ⌋g, i.e., X̃i

v is the largest multiple of g no larger than
X̄i

v + ρ.

In the second phase of rounding, the algorithm puts all
nodes that are rounded to the same vector in the same par-
tition, see Algorithm 1 for a description of how this par-
tition is chosen. To clarify the role of ρ, for two nodes
u, v ∈ V (G) if dX̄(u, v) is small, then we want X̄u and
X̄v be rounded to the same vector with high probability,

i.e., X̃u = X̃v with high probability. If we let ρ = 0
at all times, then u and v never get rounded to the same
vector in the following case: For some small ϵ > 0, let
X̄1

v = g + ϵ = X̄2
u, X̄2

v = g − ϵ = X̄1
u and X̄i

v = X̄i
u

for i > 2. Thus, dX̄(u, v) = 2ϵ is small. For this exam-
ple and ρ = 0 we have X̃1

v = ⌊ X̄
1
v

g ⌋g = ⌊ g+ϵ
g ⌋g = g and

X̃1
u = ⌊ X̄

1
u

g ⌋g = ⌊ g−ϵ
g ⌋g = 0. In other words, even though

dX̄(u, v) is small X̄u and X̄v are rounded to different vec-
tors with certainty. This is in fact true for any constant
value of ρ and a random ρ is key to be able to round two
nodes u and v that are very close to each other to the same
vector, with high probability.

Lemma 3.1 For each v ∈ V (G) and each i ∈ {1, . . . , k}
we have |X̃i

v − X̄i
v| < g. Moreover, if for two nodes u, v ∈

V (G) and an i ∈ {1, . . . , k} we have X̃i
v = X̃i

u, then
|X̄i

v − X̄i
u| < g.

Proof. If X̃i
v ≥ X̄i

v , then since X̃i
v ≤ X̄i

v + ρ and ρ < g,
we have that |X̃i

v − X̄i
v| < g. If X̃i

v < X̄i
v , then since

X̃i
v = ⌊ X̄

i
v+ρ
g ⌋g, we have (

X̄i
v+ρ
g − 1)g < X̃i

v , thus X̄i
v +

ρ < X̃i
v + g. Therefore, |X̃i

v − X̄i
v| < g − ρ < g.

For the second part of the lemma, since both X̄i
v + ρ and

X̄i
u + ρ are rounded down to the same value α = X̃i

v , they
are both in the [α, α + g) interval. Therefore, X̄i

v and X̄i
u

are both in the interval [α− ρ, α+ g − ρ), concluding that
|X̄i

v − X̄i
u| < g. □

By Lemma 3.1, we have |X̃i
v − X̄i

v| < g and by constraint
(C4) in LP 1 we have

∑k
i=1 X̄

i
v = 1, thus,

∑k
i=1 X̃

i
v <

1 + kg. Let A be the set of all k-sized vectors with entries
being non-negative integer multiples of g such that the sum
of the entries of each vector is at most 1 + kg. By defini-
tion, each entry of X̃v is non-negative integer multiple of g
and, as shown, the sum of entries of X̃v is at most 1 + kg.
Therefore, Algorithm 1 rounds any X̄v to a vector in A.

Now we show that if dX̄(u, v) is very small, then with high
probability X̃u = X̃v . Note that for two nodes u and v with
X̃u = X̃v , Algorithm 1 puts u and v in the same partition.

Lemma 3.2 For any two distinct nodes u, v ∈ V (G) such
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that (u, v) ∈ E(G), the probability that Algorithm 1 puts
(u, v) in the cut-set is at most 2

gdX̄(u, v).

Proof. If dX̄(u, v) > g
2 , then 1 < 2

gdX̄(u, v) and the
lemma holds trivially. Assume that dX̄(u, v) ≤ g

2 . Observe
that u and v are assigned to different partitions only if they
are rounded to different vectors, that is, X̃u ̸= X̃v . This
happens if there exists an i ∈ {1, . . . , k} and an integer
1 ≤ t ≤ 1

g such that tg is between X̄i
v + ρ and X̄i

u + ρ.
To measure this probability, let i ∈ {1, . . . , k} be fixed.
Without loss of generality, suppose that X̄i

v < X̄i
u. Then,

we need to compute the probability that

X̄i
v + ρ < tg ≤ X̄i

u + ρ. (1)

To see feasible values of ρ and t, we consider the following
two cases: (i) ⌊ X̄

i
v

g ⌋ = ⌊
X̄i

u

g ⌋, and (ii) ⌊ X̄
i
v

g ⌋ < ⌊
X̄i

u

g ⌋. For

the first case, suppose that ⌊ X̄
i
v

g ⌋ = ⌊
X̄i

u

g ⌋ = t̂. This means
that t̂g ≤ X̄i

v < X̄i
u < (t̂ + 1)g. Since ρ < g, the only

feasible value for t is t̂+ 1 and inequality (1) is equivalent
to

0 < (t̂+ 1)g − X̄i
u ≤ ρ < (t̂+ 1)g − X̄i

v < g. (2)

The length of the [(t̂+1)g−X̄i
u, (t̂+1)g−X̄i

v)] interval is
|X̄i

u − X̄i
v|. Therefore, in case (i), with probability at most

1
g |X̄

i
u − X̄i

v| there exists a t satisfying inequality (1).

For the second case, suppose that t̂ = ⌊ X̄
i
v

g ⌋ < ⌊
X̄i

u

g ⌋. Since

g > g
2 > dX̄(u, v) ≥ X̄i

u − X̄i
v , we must have ⌊ X̄

i
u

g ⌋ =
t̂+1. The only accepted values for t is t̂+1 and t̂+2, and
inequality (1) is satisfied when ρ is in one of the following
two intervals:

0 ≤ ρ < (t̂+ 1)g − X̄i
v or (t̂+ 2)g − X̄i

u ≤ ρ ≤ g.

The sum of the lengths of these two intervals is |X̄i
u− X̄i

v|,
so in case (ii) edge (u, v) is in the cut-set with probability
at most 1

g |X̄
i
u − X̄i

v|. Putting cases (i) and (ii) together,
any edge (u, v) ∈ E(G) is in the cut-set with probability at
most 1

g |X̄
i
u − X̄i

v|. Finally, since d(u, v) = 1
2

∑k
i=1 |X̄i

u −
X̄i

v|, the probability that edge (u, v) is in the cut-set is at
most 2

gdX̄(u, v). □

Let z be a vector in A and zi denote its i−th entry. Let Hz

be the set of all nodes v ∈ V (G) for which X̃v = z. The
following lemma discusses the number of terminal nodes
that Hz may contain.

Lemma 3.3 For any vector z ∈ A, there can be at most
one terminal node in Hz.

Proof. Suppose there exists two distinct terminal nodes si
and sj in Hz. By constraint (C5) of LP 1, we have X̄i

si = 1
and X̄i

sj = 0, providing |X̄i
si − X̄i

sj | = 1. On the other

hand, by Lemma 3.1 we have |X̄i
si − X̄i

sj | < g < 1. This
is a contradiction and there can be at most one terminal in
Hz. □

If there exists a terminal node si ∈ Hz, then Algorithm 1
puts all the nodes in Hz in partition i. Otherwise, the algo-
rithm puts all the nodes in Hz in the partition where most
nodes of Hz come from. Let rz =

∑
v∈Hz

(1− X̄ℓv
v ).

Lemma 3.4 If r ≥ 1, then for each vector z ∈ A, there
exists a partition iz for which the number of nodes v ∈ Hz

with ℓv ̸= iz is less than rz+
rz
r . If there is a terminal node

si in Hz, then iz = i.

Proof. Consider a vector z ∈ A and its associated set
of nodes Hz. Let Bi be the set of nodes v ∈ Hz with
ℓv = i, i.e., the set of nodes in Hz whose initial partition is
i. Similarly, we define B−i to be the set of nodes v ∈ Hz

with ℓv ̸= i, that is, the set of nodes in Hz whose initial
partition is not i. To prove this lemma, we consider the
following two cases: (i) there exists a terminal node si ∈
Hz, and (ii) Hz contains no terminal node.

In case (i), for a node v ∈ Hz, it holds that X̃i
v = X̃i

si . So,
by Lemma 3.1, we have X̄i

v > X̄i
si − g = 1− g. Using the

fact that for any v ∈ V (G) it holds that
∑

i∈{1,...,k} X̄
i
v =

1, we have rz =
∑

v∈Hz
(1−X̄ℓv

v ) ≥
∑

v∈B−i
(1−X̄ℓv

v ) ≥∑
v∈B−i

X̄i
v > |B−i|(1 − g), providing that |B−i| <

1
1−g rz. Combining this with g = k−1

k(r+1) < 1
1+r , we have

|B−i| < rz +
rz
r .

In case (ii), Hz contains no terminal node. Without loss
of generality, suppose that for all 2 < i ≤ k we have
|B1| ≤ |B2| ≤ |Bi|. Defining B′ = Hz \ (B1 ∪ B2),
we have |B1| ≤ |B′|

k−2 . For the sake of contradiction, sup-
pose for all i ∈ {1, . . . , k} we have |B−i| = |Hz \
Bi| ≥ rz + rz

r . In particular, rz + rz
r ≤ |Hz \ B2| =

|B′| + |B1| ≤ |B′| + |B′|
k−2 . So |B′| ≥ k−2

k−1 (rz + rz
r ).

By Lemma 3.1, for any two nodes v, u ∈ Hz, we have
|X̄ℓv

v − X̄ℓv
u | < g; thus, 1 − X̄ℓv

v > 1 − X̄ℓv
u − g. If

ℓv /∈ {1, 2}, that is, v ∈ B′, then
∑

i∈{1,...,k},i̸=ℓv
X̄i

v >

g +
∑

i∈{1,2},i̸=ℓv
(X̄i

u − g) +
∑

i∈{3,...,k},i̸=ℓv
X̄i

u. If
ℓv ∈ {1, 2}, then we have

∑
i∈{1,...,k},i̸=ℓv

X̄i
v >∑

i∈{1,2},i̸=ℓv
(X̄i

u− g)+
∑

i∈{3,...,k},i̸=ℓv
X̄i

u. Therefore,
rz =

∑
v∈Hz

(1 − X̄ℓv
v ) =

∑
v∈Hz

∑
i∈{1,...,k},i̸=ℓv

X̄i
v

and so rz > |B′|g +
∑

v∈Hz

[∑
i∈{1,2},i̸=ℓv

(X̄i
u − g) +
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∑
i∈{3,...,k},i̸=ℓv

X̄i
u

]

rz > |B′|g +
∑

i∈{1,2}

∑
v∈Hz,ℓv ̸=i

(X̄i
u − g)

+
∑

i∈{3,...,k}

∑
v∈Hz,ℓv ̸=i

X̄i
u

≥ k − 2

k − 1
(rz +

rz
r
)g +

∑
i∈{1,2}

(rz +
rz
r
)(X̄i

u − g)

+
∑

i∈{3,...,k}

(rz +
rz
r
)X̄i

u (3)

= (rz +
rz
r
)(1− k

k − 1
g) = rz,

where inequality (3) uses the assumption that |B−i| ≥ rz+
rz
r for all i ∈ {1, . . . , k}. The above calculations reaches

a contradiction, rz > rz. Therefore, there exists an iz ∈
{1, . . . , k} such that the number of nodes v ∈ Hz with
ℓv ̸= iz is at most rz + rz

r , concluding the proof of the
lemma. □

Proof of Theorem 1.3. Algorithm 1 sets g = k−1
k(r+1) .

Firstly, note that by Lemma 3.2 the probability that an edge
(u, v) is in the cut-set is at most 2k

k−1 (r+1)dX̄(u, v), where
X̄ is an optimal solution to LP 1. Therefore, Algorithm 1
returns a cut-set with cut value at most 2k

k−1 (r + 1)OPTr,
where OPTr denotes the optimal value of LP 1 with a move
parameter of r.

Secondly, we prove that Algorithm 1 moves at most r
nodes. To do this, we show that for each vector z ∈ A,
the number of nodes in Hz that are moved from their initial
partitions is less than rz + rz

r . There are two possibili-
ties to consider here. Case (i): There exists a terminal in
si ∈ Hz (recall that by Lemma 3.3, there can be at most
one terminal in Hz). In this case, Algorithm 1 assigns all
the nodes in Hz to partition i. Therefore, the number of
nodes that are moved to partitions different from their orig-
inal partitions is equal to the number of nodes v ∈ Hz

with ℓv ̸= i. By Lemma 3.4, the number of such nodes
is less than rz +

rz
r . Case (ii): Hz has no terminal nodes.

In this case, Algorithm 1 assigns all the nodes to partition
i∗z ← argmaxkj=1 |{v ∈ Hz|ℓv = j}|. Defining Bi as the
set of nodes v ∈ Hz with ℓv = i, the number of nodes that
are moved to partitions different from their original ones is
equal to |Hz| − |Bi∗z

|. By Lemma 3.4, there exists a parti-
tion i for which |Hz|− |Bi| < rz+

rz
r . By definition of i∗z,

we have |Bi| ≤ |Bi∗z
|; therefore, |Hz| − |Bi∗z

| < rz +
rz
r .

The total number of nodes that are moved by Algo-
rithm 1 in cases (i) and (ii) is strictly less than

∑
z∈A rz +

rz
r . Using the definition of rz and constraint (C7) of

LP 1, we have
∑

z∈A rz + rz
r = ( r+1

r )
∑

z∈A rz =

( r+1
r )

∑
z∈A

∑
v∈Hz

(1 − X̄ℓv
v ) = ( r+1

r )
∑

v∈V (G)(1 −
X̄ℓv

v ) ≤ r + 1. This shows that the total number of nodes

that Algorithm 1 moves is strictly less than r + 1, in other
words, at most r nodes are moved to partitions different
from their original ones by the algorithm. □

3.2 Run Time and De-randomization

For computing the run time, note that finding the solution
to LP1 takes TLP (n,m) time. The rest of the algorithm
consists of simple loops and takes O(mk) time.

One can de-randomize the algorithm using the technique
of Calinescu, Karloff and Rabani Călinescu et al. (1998).
They de-randomize their rounding for their 1.5 − 1/k ap-
proximation algorithm for the multiway-cut problem (at
the expense of polynomial increase in running time), and
they argue that there are O(n) “interesting” values of ρ
and hence one only needs to run the rounding algorithm for
those values. To see this in our algorithm at a high level,
note that for each i, there is a value ρi where for all ρ < ρi,
X̃i

v is g⌊ X̄
i
v

g ⌋ and for ρ ≥ ρi, we have X̃i
v = g⌊ X̄

i
v

g + 1⌋.
The value of ρi can be computed from X̄i

v . So one can
only run the algorithm for these values of ρi. For the run-
ning time, it increases by a factor of at most n, however one
could decrease this factor by sorting the values of ρ.

4 EXPERIMENTS

We conduct a simple empirical assessment of our round-
ing algorithm (Algorithm 1) of Theorem 1.3. We remark
that this experiment is not an extensive empirical evalua-
tion of the algorithms, and the focus of it is on the results
that are not well explained by theory, namely that the ap-
proximation factor of Algorithm 1 in practice is better than
what Theorem 1.3 demonstrates. This suggests that there
could be alternative analysis of our algorithm which re-
sults in better approximation guarantees for certain classes
of graphs.

Set-up: We generate our sample graphs using the
stochastic block model on 90 nodes as follows: First the 90
nodes are divided into three equally sized clusters. Then,
between any two nodes in the same cluster we add an edge
with probability pH . Similarly, between any two nodes in
different clusters we put an edge with probability pL. We
let pH = 0.3 and pL = 0.1. Note that this partitioning
is very close to the optimal k-partitioning of the graph for
k = 3; hence, we re-partition the constructed graph into
three partitions uniformly at random. These new random
partitions are then set as the initial partitioning of the graph.
Following these steps, we make 100 random such graphs
in total. As our benchmark, we consider the following sim-
ple greedy algorithm: The greedy algorithm has at most r
rounds. At each round, the algorithm moves the node that
decreases the value of the 3-cut by the largest amount. If at
any point there is no such node, then the greedy algorithm
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Figure 1: Performance of rounding (Algorithm 1) and
greedy algorithms with respect to the solution of LP 1 for
the explained stochastic block graphs.

halts. For each graph, we run Algorithm 1 for 30 different
values of parameter ρ and take the 3-cut with the smallest
value as the output.

Results: For each of the 100 random graph and each of
the two algorithms (greedy and Algorithm 1), we compute
the following ratios: The output of the algorithm divided by
the objective value of LP 1. For each value of r in [45, 60],
we compute the average value of this ratio over all graphs,
see Figure 1. For smaller values of r, we observe that both
algorithms output similar cut values and they demonstrate
similar performances. This could be due to the small size
of our sample graphs and we believe the difference between
the performances of these two algorithms is more evident
with a larger sample size of graphs. While the greedy al-
gorithm proves to perform reasonably well when the move
parameter is bounded, we show in the full version of the pa-
per (Behbahani et al., 2024) that our FPTAS algorithm can
beat greedy in this case. As r approaches 60 and above, the
LP solution is integer in most instances; hence, the Algo-
rithm 1 does not play a significant role*.

5 CONCLUSION

This paper studies the r-move k-partitioning problem. We
show that this problem is W [1]-hard and give simple and
practical approximation algorithms for it. These algorithms
are: an FPTAS for constant r, a 3(r+1)-approximation al-
gorithm and an (O(1), O(1)) bicriteria algorithm for gen-
eral r. Our main results focus on LP rounding techniques.
There remains several interesting open problems to under-
stand the complexity of the r-move k-partitioning problem,
some of them are listed below.

*One can see that if r̂ is the number of nodes needed to be
moved in order to get the optimal k-cut solution (in the absence
of any budgetary constraints), then E[r̂] is near 60.

(1) Is there an approximation algorithm for the r-move
k-partitioning problem whose running time and approxi-
mation factor are independent of r? Recall that there ex-
ists an O(log(n))-approximation algorithm for the Min r-
size s-t cut problem using tree decomposition techniques.
Could one generalize this algorithm to the r-move k-
partitioning problem?

(2) Can one find any approximation lower bound for this
problem? Note that similar partitioning problems, such as
the MinSBCC problem (Hayrapetyan et al., 2005), do not
have any approximation lower bounds yet.
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1. For all models and algorithms presented, check if you
include:

(a) A clear description of the mathematical setting,
assumptions, algorithm, and/or model. [Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]

(c) (Optional) Anonymized source code, with spec-
ification of all dependencies, including external
libraries. [No, we will do this upon the accep-
tance of our paper]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of all
theoretical results. [Yes]

(b) Complete proofs of all theoretical results. [Yes,
some are in the supplementary materials]

(c) Clear explanations of any assumptions. [Yes]
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3. For all figures and tables that present empirical results,
check if you include:

(a) The code, data, and instructions needed to repro-
duce the main experimental results (either in the
supplemental material or as a URL). [Yes]

(b) All the training details (e.g., data splits, hyperpa-
rameters, how they were chosen). [Not Applica-
ble]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to the
random seed after running experiments multiple
times). [Not Applicable]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Not Applicable]

4. If you are using existing assets (e.g., code, data, mod-
els) or curating/releasing new assets, check if you in-
clude:

(a) Citations of the creator If your work uses existing
assets. [Not Applicable]

(b) The license information of the assets, if applica-
ble. [Not Applicable]

(c) New assets either in the supplemental material or
as a URL, if applicable. [Not Applicable]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable, e.g.,
personally identifiable information or offensive
content. [Not Applicable]

5. If you used crowdsourcing or conducted research with
human subjects, check if you include:

(a) The full text of instructions given to participants
and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks, with
links to Institutional Review Board (IRB) ap-
provals if applicable. [Not Applicable]

(c) The estimated hourly wage paid to participants
and the total amount spent on participant com-
pensation. [Not Applicable]
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SUPPLEMENTARY MATERIALS

7 HARDNESS RESULTS

In this section, we state our hardness results, including lower bounds on the integrality gap of LP 1 and our W[1]-hardness
findings.

7.1 Integrality Gap of the r-Move k-Partitioning Linear Program

The following lemma discusses the integrality gap of the r-move k-partitioning linear program (i.e., LP 1).

Lemma 7.1 LP 1 has an integrality gap of at least r + 1.

Proof. Let P1 : (v1, . . . , vr+2) be a path in graph G = (V,E) such that node v1 is in partition 1 and the rest of the nodes
on P1 belong in partition 2, see Figure 2. Let the weight of the edge (v1, v2) be ϵ and the weight of all of the other edges
on P1 be one. Let P2 : (vr+3, . . . , vn) be a path with edges all of weight one. All nodes of P2 belong in partition 2. Let
v1 and vn be the terminals for partition 1 and 2, respectively. The defined partitions introduce a cut that has a weight of ϵ.
Moving any node from P2 to partition 1 only increases the cut value, so any optimal integer solution keeps all the nodes in
P2 in their initial partition. Moving any proper subset of nodes of P1 to partition 1 increases the cut value to at least one.
Furthermore, one cannot move all of the nodes in P1 to partition 1 without violating the move constraint. So an optimal
integer solution to LP 1 does not move any node in this graph and has a cut value of ϵ.

On the other hand, any (fractional) optimal solution of LP 1 on this graph has a cut value of at most ϵ
r+1 : For any node vi,

i ∈ {2, . . . , r + 2}, this is achieved by setting X1
vi = r

r+1 and X2
vi = 1

r+1 . Let the nodes in P2 stay in partition 2, i.e.,
X1

vi = 0, X2
vi = 1 for i ∈ {r + 3, . . . , n}. The value of the cut in this solution is ϵ

r+1 . So the integrality gap is at least
r + 1. Note that this proof can be generalized to any k > 2 by adding dummy partitions with singletons in them. □

s1 = v1 v2 v3 vr+2 vr+3

vr+4

vn = s2

P2P1

. . . . . .

ǫ

Figure 2: The example graph for the proof of Lemma 7.1.

Since the construction of Lemma 7.1 is in fact a Min r-size s-t cutconstruction, we have the following corollary.

Corollary 7.1 The linear program of the Min r-size s-t cut problem stated in Zhang (2016) has an integrality gap of at
least r + 1.

7.2 The r-Move k-Partitioning Problem is W [1]-hard

We begin by introducing two new notations here that will be useful for the proofs of this section and then discuss the
computational complexity of the r-move k-partitioning problem. For a graph G and any subsets of its nodes C1, C2 ⊆
V (G), let E(C1, C2) refer to the set of edges between subsets C1 and C2. For any node v ∈ C1, we define degC1

(v) as
the number of neighbors of node v that are in C1; that is, the number of nodes in C1 that share an edge with node v.

Theorem 7.1 Given an n-node graph G as an instance of the densest r-subgraph problem, there is an O(n2)-node graph
G′ with initial partitions {A,B} such that the densest r-subgraph of G has m∗ edges if and only if the optimal solution of
the r-move 2-partitioning problem on G′ reduces the initial cut value by 2m∗.
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Proof. We reduce the densest r-subgraph problem to the r-move 2-partitioning problem. Let G be an instance of the
densest r-subgraph problem that has n nodes, m edges and unit edge weights. Using G, we construct a graph G′ as an
instance of the r-move 2-partitioning problem. Graph G′ consists of two subgraphs A and B, where A is an exact copy of
graph G (with n nodes and m edges) and B is a clique of size 2n2 + n. Furthermore, m nodes in B are reserved for the
m edges of A; in other words, for each edge e ∈ E(A) there exists a node e ∈ V (B). Then, the endpoints of each edge
e = (u, v) ∈ E(A) gets connected to node e ∈ V (B). Next, we add a terminal node t to subgraph A and connect it to all
nodes in A. Similarly, a terminal node s is added to subgraph B and it gets connected to all nodes in V (G′). Note that after
the addition of node s, subgraph B becomes a 2n2 + n + 1 clique. This finishes the construction of graph G′, see Figure
3. Let the initial cut induced on G′ split the graph into two partitions A and B. This cut has a value 2m+ n < n2 + 1.

u v

e

t

s

A

B Clique

copy of G

|E(G)| nodes

G′

e

Figure 3: Reduction graph G′ created from a densest r-subgraph instance G. The solid-line edges do not depend on G.
For each edge e = (u, v) in G, nodes u and v in A are connected to a node e in B.

First, we show that if we move a subset of nodes X ⊆ V (A) \ {t} (along with all edges incident to the nodes in X) to
subgraph B, then the cut value reduces by 2

∣∣E(X)
∣∣. Note that, if we move a set of nodes X ⊆ V (A) \ {t} to subgraph B,

then the cut value changes by
∣∣E(

X,V (A) \X
)∣∣− ∣∣E(

X,V (B)
)∣∣. Since subgraph induced by V (A) \ {t} is exactly the

same as graph G, we have ∣∣E(
X,V (A) \X

)∣∣ = ∣∣E(
X, {t}

)∣∣+ ∣∣E(
X,V (A) \ (X ∪ {t})

)∣∣
=

∣∣X∣∣+ ∑
v∈X

[
degG(v)− degX(v)

]
.

Next, we have ∣∣E(
X,V (B)

)∣∣ = ∣∣E(
X, {s}

)∣∣+ ∣∣E(
X,V (B) \ {s}

)∣∣
=

∣∣X∣∣+ ∑
v∈X

degG(v);

thus,
∣∣E(

X,V (A) \X
)∣∣− ∣∣E(

X,V (B)
)∣∣ = −∑

v∈X degX(v) = −2
∣∣E(X)

∣∣.
Now, let X∗ be the densest r-subgraph of G. If we move the copy of X∗ in A from A to B, then the cut value reduces by
2m∗ = 2

∣∣E(X∗)
∣∣, as shown above. To prove the other direction, we show that if there exists a set of nodes X ⊆ V (G′)

such that |X| ≤ r and moving each node in X to a partition different from the initial one it was assigned to reduces the cut
by at least 2m∗, then there exists an r-subgraph in G with m∗ edges. To see this, first note that X cannot have any nodes
from subgraph B. This is because the resulting cut would have a value at least 2n2+1 which is bigger than the value of the
initial cut; consequently, X ⊆ V (A). As shown earlier in this proof, by moving X from A to B the cut value is reduced by
2
∣∣E(X)

∣∣, so
∣∣E(X)

∣∣ ≥ m∗. Therefore, the equivalent set of X in G has at least m∗ edges, hence m∗ =
∣∣E(X)

∣∣. Finally,
the time it takes to build graph G′ is O

(∣∣V (G′)
∣∣+ ∣∣E(G′)

∣∣) ⊆ O(n4). □

Theorem 1.1 The r-move k-partitioning problem with parameter r is W[1]-hard.
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Proof. For the r-move 2-partitioning problem, this comes from Theorem 7.1 and the W[1]-hardness of the densest r-
subgraph problem (Cai, 2008). For the r-move k-partitioning problem with k > 2, by making the following modifications
to graph G′ we can make the same reduction as that of the proof of Theorem 7.1 work: adding k − 2 dummy partitions
to graph G′, each containing one terminal that is not connected to any other node. Then, if Y is the set of nodes that are
moved to one of these dummy partitions P , then by moving Y to one of the two main partitions the cut value will not
increase. This is because Y has no edges to the terminal node in P . Therefore, all solutions consist of moving nodes to
one of the two main partitions. □

Hardness of the Min r-size s-t cut problem: We now slightly change the above construction to fit to the Min r-size s-t
cut problem.

Theorem 7.2 Given an n-node graph G as an instance of the densest r-subgraph problem, there is an O(n2)-node graph
G′ and a value c(G′) such that the densest r-subgraph of G has m∗ edges if and only if the optimal solution of the Min
r-size s-t cut problem on G′ has a value of c(G′)− 2m∗.

Proof. Let A be a copy of the graph G. Add a terminal node t to A and connect it to all nodes in A with unit-weight

u v

tA

copy of Ge

s G′

Figure 4: Reduction graph G′ created from a densest r-subgraph instance G.

edges. Partition B consists of only one node, terminal s. For each v ̸= t in A, connect node v to terminal s with an edge of
weight 1 + degG(v), see Figure 4. Let c(G′) be the cut value of partitions {A,B} which is equal to 2

∣∣E(G)
∣∣+ ∣∣V (G)

∣∣.
Here, we show that moving any subset of nodes X ∈ V (A)\{t} from partition A to B reduces the value of the cut induced
by partitions {A,B)} by 2

∣∣E(X)
∣∣. To see this, note that after moving nodes X from A to B, the cut value is reduced by∣∣E(

X,V (A) \X
)∣∣ − ∣∣E(

X,V (B)
)∣∣ = (

|X| +
∑

v∈X degG(v) − degX(v)
)
−

(∑
v∈X(degG(v) + 1)

)
= −2

∣∣E(X)
∣∣.

Suppose X∗ is the densest r-subgraph in graph G and m∗ =
∣∣E(X∗)

∣∣. Moving X∗ to partition B reduces the cut by 2m∗.
If the optimal solution to the Min r-size s-t cut problem on G′ is to move a set X from A to B, then this solution has a cut
value of c(G′) − 2

∣∣E(X)
∣∣, and so we must have that

∣∣E(X)
∣∣ ≥ m∗. Since |X| ≤ r and X∗ is the densest r-subgraph in

G, we must have
∣∣E(X)

∣∣ = m∗. Note that if |X| < r, then we can add arbitrary nodes to X to make it have size r nodes
without reducing its number of edges. □

From the above theorem and the W[1]-hardness of the densest r-subgraph problem we have that the weighted Min r-size
s-t cut problem is W[1]-hard, thus, we have proved the following Corollary.

Corollary 7.2 The Min r-size s-t cutproblem is W[1]-hard.

Hardness of the r-move k-partitioning problem without terminals: In this paper, we mostly consider the r-move k-
partitioning problem as a variant of the Multiway cut problem, i.e., we assume that the input graph has terminals that cannot
be moved. However, one might wonder what the computational complexity of the r-move k-partitioning problem without
terminals is. All our algorithmic results carry over to the r-move k-partitioning problem without terminals, since one
can reduce the r-move k-partitioning problem without terminals to the r-move k-partitioning problem by adding dummy
terminals for each partition as singletons. However, the main question in considering the r-move k-partitioning problem
without terminals is whether it can be solved faster than the r-move k-partitioning problem, since in many partitioning
problems the “with terminal” version of the problem is harder than the “without terminal” version. We show that our
reduction works for the r-move k-partitioning problem without terminals as well, so this problem is also W[1]-hard. Thus,
one cannot expect the complexity to change drastically by removing the terminals.
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Theorem 7.3 The r-move k-partitioning problem without terminals is W[1]-hard.

Proof. Given a densest r-subgraph instance G, our reduction graph G′ is the same as that of Theorem 7.1 except that
we do not add terminal nodes s and t to the graph. The key observation here is that in the proof of Theorem 7.1 having
terminal nodes s and t do not provide us with any specific benefit. We give a high level overview of the proof and the
details can be easily derived from the proof of Theorem 7.1. We argue that moving a set of nodes X from partition A to B
reduces the cut value by 2|E(X)|. Then we can show that if the cut value is reduced by 2m∗ after moving at most r nodes,
then these nodes must all be in A. This is because the nodes in B create a clique and moving any of them to A increases
the cut value. Moreover, the set of nodes that are moved must induce a densest r-subgraph in G in order for them to be an
optimal solution to the r-move k-partitioning problem in G′. □
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