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Abstract

We consider model selection for sequential
decision making in stochastic environments
with bandit feedback, where a meta-learner
has at its disposal a pool of base learners,
and decides on the fly which action to take
based on the policies recommended by each
base learner. Model selection is performed by
regret balancing but, unlike the recent liter-
ature on this subject, we do not assume any
prior knowledge about the base learners like
candidate regret guarantees; instead, we un-
cover these quantities in a data-driven man-
ner. The meta-learner is therefore able to
leverage the realized regret incurred by each
base learner for the learning environment at
hand (as opposed to the expected regret),
and single out the best such regret. We de-
sign two model selection algorithms operat-
ing with this more ambitious notion of regret
and, besides proving model selection guaran-
tees via regret balancing, we experimentally
demonstrate the compelling practical bene-
fits of dealing with actual regrets instead of
candidate regret bounds.

1 INTRODUCTION

In online model selection for sequential decision mak-
ing, the learner has access to a set of base learners
and the goal is to adapt during learning to the best
base learner that is the most suitable for the current
environment. The set of base learners typically comes
from instantiating different modelling assumptions or
hyper-parameter choices, e.g., complexity of the re-
ward model or the ε-parameter in ε-greedy. Which
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choice, and therefore which base learner, works best
is highly dependent on the problem instance at hand,
so that good online model selection solutions are im-
portant for robust sequential decision making. This
has motivated an extensive study of model selection
questions (e.g., Agarwal et al., 2017; Abbasi-Yadkori
et al., 2020; Ghosh et al., 2020; Chatterji et al., 2020;
Bibaut et al., 2020; Foster et al., 2020; Lee et al., 2020;
Wei et al., 2022, and others cited below) in bandit
and reinforcement learning problems. While some of
these works have developed custom solutions for spe-
cific model selection settings, for instance, selecting
among a nested set of linear policy classes in contex-
tual bandits (e.g. Foster et al., 2019), the relevant
literature also provides several general purpose ap-
proaches that work in a wide range of settings. Among
the most prominent ones are FTRL-based (follow-the-
regularized-leader) algorithms, including EXP4 (Odal-
ric and Munos, 2011), Corral (Agarwal et al., 2017;
Pacchiano et al., 2020b) and Tsallis-INF (Arora et al.,
2020), as well as algorithms based on regret balancing
(Abbasi-Yadkori et al., 2020; Pacchiano et al., 2020a;
Cutkosky et al., 2021; Pacchiano et al., 2022).

These methods usually come with theoretical guaran-
tees of the following form: the expected regret (or high-
probability regret) of the model selection algorithm is
not much worse than the expected regret (or high
probability regret) of the best base learner. Such re-
sults are reasonable and known to be unimprovable
in the worst-case (Marinov and Zimmert, 2021). Yet,
it is possible for model selection to achieve expected
regret that is systematically smaller than that of any
base learner. This may seem surprising at first, but it
can be explained through an example when consider-
ing the large variability across individual runs of each
base learner on the same environment.

The situation is illustrated in Figure 1. On the left,
we plot the cumulative expected regret of two base
learners, along with the corresponding behavior of one
of our model selection algorithms (ED2RB – see Sec-
tion 3.2 below) run on top of them. On the right, we
unpack the cumulative expected regret curve of one of
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the two base learners from the left plot, and display
ten independent runs of this base learner on the same
environment, together with the resulting expected re-
gret curve (�rst 1000 rounds only). Since the model
selection algorithm has access to two base learners si-
multaneously, it can leverage a good run of either of
two, and thereby achieve a good run more likely than
any base learner individually, leading to overall smaller
expected regret.

Such high variability in performance across individual
runs of a base learner is indeed fairly common in model
selection, for instance when base learners correspond
to di�erent hyper-parameters that control the explore-
exploit trade-o�. For a hyper-parameter setting that
explores too little for the given environment, the base
learner becomes unreliable and either is lucky and con-
verges quickly to the optimal solution or unlucky and
gets stuck in a suboptimal one. This phenomenon is a
key motivation for our work. Instead of model selec-
tion methods that merely compete with the expected
regret of any base learner, we design model selection
solutions that compete with the regret realizations of
any base learner, and have (data-dependent) theoreti-
cal guarantees that validate this ability.

While the analysis of FTRL-based model selection al-
gorithms naturally lends itself to work with expected
regret (e.g. Agarwal et al., 2017), the existing guaran-
tees for regret balancing work with realized regret of
base learners (e.g. Pacchiano et al., 2020a; Cutkosky
et al., 2021). Concretely, regret balancing requires
each learner to be associated with acandidate regret
bound, and the model selection algorithm competes
with the regret bound of the best among the well-
speci�ed learner, those learners whose regret realiza-
tion is below their candidate bound. Setting a-priori
tight candidate regret bounds for base learners is a
main limitation for existing regret balancing methods,
as the resolution of these bounds is often the one pro-
vided by a (typically coarse) theoretical analysis. As
suggested in earlier work, we can create several copies
of each base learner with di�erent candidate bounds,
but we �nd this not to perform well in practice due
to the high number of resulting base learners. An-
other point of criticism for existing regret balancing
methods is that, up to deactivation of base learners,
these methods do not adapt to observations, since their
choice among active base learners is determined solely
by the candidate regret bounds, which are set a-priori.

In this work, we address both limitations, and propose
two new regret balancing algorithms for model selec-
tion with bandit feedback that do not require knowing
candidate regret bounds. Instead, the algorithms de-
termine the right regret bounds sequentially in a data-
driven manner, allowing them to adapt to the regret

realization of the best base learner. We prove this by
deriving regret guarantees that share the same form
with existing theoretial results, but replace expected
regret rates or well-speci�ed regret bounds with real-
ized regret rates, which can be much sharper (as in the
example in Figure 1). From an empirical standpoint,
we illustrate the validity of our approach by carrying
out an experimental comparison with competing ap-
proaches to model selection via base learner pooling,
and �nd that our new algorithms systematically out-
perform the tested baselines.

2 SETUP AND NOTATION

We consider a general sequential decision making
framework that covers many important problem
classes such as multi-armed bandits, contextual ban-
dits and tabular reinforcement learning as special
cases. This framework or variations of it has been com-
monly used in model selection (e.g. Cutkosky et al.,
2021; Wei et al., 2022; Pacchiano et al., 2022).

The learner operates with a policy class � and a set
of contexts X over which is de�ned a probability dis-
tribution D, unknown to the learner. In bandit set-
tings, each policy � is a mapping from contexts X
to � A , where A is an action space and �A denotes
the set of probability distributions over A . However,
the concrete form of �, X or A is not relevant for
our purposes. We only need that each policy� 2 �
is associated with a �xed expected reward mapping
� � : X ! [0; 1] of the form � � (x) = E[r jx; � ], which is
unknown to the learner. In each round t 2 N of the
sequential decision process, the learner �rst decides on
a policy � t 2 �. The environment then draws a con-
text x t � D as well as a reward observationr t 2 [0; 1]
such that E[r t jx t ; � t ] = � � t (x t ). The learner receives
(x t ; r t ) before the next round starts.

We call v� = Ex �D [� � (x)] the value of a policy � 2 �
and de�ne the instantaneous regret of� as

reg(� ) = v? � v� = Ex �D [� � ? (x) � � � (x)] (1)

where � ? 2 argmax� 2 � v� is an optimal policy and v?

its value. The total regret after T rounds of an al-
gorithm that chooses policies� 1; � 2; : : : is Reg(T) =
P T

t =1 reg(� t ). Note that Reg(T) is a random quan-
tity since the policies � t selected by the algorithm de-
pend on past observations, which are themselves ran-
dom variables. Yet, we use in (1) a pseudo-regret no-
tion that takes expectation over reward realizations
and context draws. This is most convenient for our
purposes but we can achieve guarantees without those
expectations by paying an additive O(

p
T) term, as

is standard. We also useuT =
P T

t =1 v� t for the total
value accumulated by the algorithm over theT rounds.
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Figure 1: Left: Expected regret of two base learners (UCB on MAB with con�dence scalingc controlling explore-
exploit trade-o�) and a model selection algorithm on top of them. The model selection algorithm has smaller
expected regret than any base learner.Right: Expected regret and individual regret realizations (independent
sample runs) of base learners. The base learners have highly variable performance which model selection can
capitalize on. Detailed setup in Appendix 7.

Base learners. The learner (henceforth calledmeta-
learner) is in turn given access to M base learners
that the meta-learner can consult when determining
the current policy to deploy. Speci�cally, in each
round t, the meta-learner chooses one base learner
i t 2 [M ] = f 1; : : : ; M g to follow and plays the policy
suggested by this base learner. The policy that base
learner i recommends in roundt is denoted by � i

t and
thus � t = � i t

t . We shall assume that each base learner
has an internal state (and internal clock) that gets up-
dated only on the rounds where that base learner is
chosen. After being selected in roundt, base learner
i t will receive from the meta-learner the observation
(x t ; r t ). We use ni

t =
P t

` =1 1f i t = ig to denote the
number of times base learneri happens to be chosen
up to round t, and by ui

t =
P t

` =1 1f i t = igv� i
t the

total value accumulated by base learneri up to this
point. It is sometimes more convenient to use a base
learner's internal clock instead of the total round index
t. To do so, we will use subscripts (k) with parenthe-
ses to denote the internal time index of a speci�c base
learner, while subscripts t refer to global round in-
dices. For example, given the sequence of realizatons
(x1; r 1); (x2; r 2); : : :, � i

(k ) is the policy base learneri
wants to play when being chosen thek-th time, i.e.,
� i

t = � i
(n i

t ) . The total regret incurred by a meta-learner
that picks base learnersi 1; : : : ; i T can then be decom-
posed into the sum of regrets incurred by each base
learner:

Reg(T) =
TX

t =1

reg(� t ) =
MX

i =1

n i
TX

k=1

reg(� i
(k ) ):

2.1 Data-Driven Model Selection

Our goal is to perform model selection in this set-
ting: We devise sequential decision making algorithms
that have access to base learners as subroutines and

are guaranteed to have regret that is comparable to
the smallest realized regret, among all base learn-
ers in the pool, despite not knowing a-priori which
base learner will happen to be best for the environ-
ment at hand (D and � � ), and the actual realizations
(x1; r 1); (x2; r 2); : : : ; (xT ; rT ).

In order to better quantify this notion of realized re-
gret, the following de�nition will come handy.

De�nition 2.1 (regret scale and coe�cients). The re-
gret scaleof base learneri after being playedk rounds

is
P k

` =1 reg( � i
( ` ) )

p
k

. For a positive constant dmin , the re-
gret coe�cient of base learneri after being playedk
rounds is de�ned as

di
(k ) = max

( P k
` =1 reg(� i

( ` ) )p
k

; dmin

)

:

That is, di
(k ) � dmin is the smallest number such that

the incurred regret is bounded as
P k

` =1 reg(� i
( ` ) ) �

di
(k )

p
k. Further we de�ne the monotonic regret co-

e�cient of base learneri after being playedk rounds
as �di

(k ) = max ` 2 [k ] di
( ` ) .

We use a
p

k rate in this de�nition since that is
the most commonly targeted regret rate in stochas-
tic settings. Our results can be adapted, similarly to
prior work (Pacchiano et al., 2020a) to other rates but
the

p
T barrier for model selection (Pacchiano et al.,

2020b) remains of course.

It is worth emphasizing that both di
(k ) and �di

(k ) in
the De�nition 2.1 are random variables depending on
(x1; r 1); (x2; r 2); : : : ; (x ` ; r ` ), where ` = min f t : ni

t =
kg. We illustrate them in Figure 2.
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Figure 2: Illustration of De�nition 2.1 for one of the baseline realizations from Figure 1. Left: Evolution of
regret scale, coe�cient and monotonic coe�cient. Right: The same curves multiplied by

p
k. The induced

regret bounds from regret coe�cients follow the realized regret closely, the non-monotonic version more closely
than the monotonic.

2.2 Running Examples

The above formalization encompasses a number of
well-known online learning frameworks, including �-
nite horizon Markov decision processes and contex-
tual bandits, and model selection questions therein.
We now introduce two examples but refer to earlier
works on model selection for a more exhaustive list
(e.g. Cutkosky et al., 2021; Wei et al., 2022; Pacchiano
et al., 2022).

Tuning UCB exploration coe�cient in multi-
armed-bandits. As a simple illustrative example,
we consider multi-armed bandits where the learner
chooses in each round an actionat from a �nite ac-
tion set A and receives a rewardr t drawn from a dis-
tribution with mean � a t and unknown but bounded
variance � 2. In this setting, we directly identify each
policy with an action, i.e., � = A and de�ne the con-
text X = f ? g as empty. The value of an action /
policy a is simply va = � a .

The variance � strongly a�ects the amount of explo-
ration necessary, thereby controlling the di�culty or
\complexity" of the learning task. Since the explore-
exploit of a learner is typically controlled through
a hyper-parameter, it is bene�cial to perform model
selection among base learners with di�erent trade-
o�s to adapt to the right complexity of the envi-
ronment at hand. We use a simple UCB strategy
as a base learner that chooses the next action as
argmaxa2A �̂ (a) + c

q
ln( n (a)=� )

n (a) where n(a) and �̂ (a)
are the number of pulls of arm a so far and the aver-
age reward observed. Herec is the con�dence scaling
and we instantiate di�erent base learnersi 2 [M ] with
di�erent choices c1; : : : ; cM for c. The goal is to adapt
to the best con�dence scalingci ? , without knowing the
true variance � 2.1

1We choose this example for its simplicity. An alterna-

Nested linear bandits. In the stochastic linear ban-
dit model, the learner chooses an actionat 2 A from a
large but �nite action set A � Rd, for some dimension
d > 0 and receives as rewardr t = a>

t ! + white noise,
where ! 2 Rd is a �xed but unknown reward vec-
tor. This �ts in our framework by considering policies
of the form � � (x) = argmax a2A ha; � i for a parameter
� 2 Rd, de�ning contexts X = f ? g as empty and the
mean reward as� � (x) = � (x)> ! , which is also the
value v� .

We here consider the following model selection prob-
lem, that was also a motivating application in
Cutkosky et al. (2021). The action set A � RdM

has some maximal dimensiondM > 0, and we have
an increasing sequence ofM dimensions d1 < : : : <
dM . Associated with each di is a base learner
that only considers policies � i of the form � � i (x) =
argmaxa2A hPdi [a]; � i i for � i 2 Rdi

and Pdi [�] being the
projection onto the �rst di dimensions. That is, the
i -th base learner operates only on the �rst di compo-
nents of the unknown reward vector ! 2 RdM

. If we
stipulate that only the �rst di ? dimensions of! 2 RdM

are non-zero (di ? being unknown to the learner) we are
in fact competing in a regret sense against the base
learner that operates with the policy class � i ? , the one
at the \right" level of complexity for the underlying ! .

Nested stochastic linear contextual bandits. We
also consider a contextual version of the previous set-
ting (Lattimore and Szepesv�ari, 2020, Ch. 19) where
where context x t 2 X are drawn i.i.d. and which a
policy maps to some actionat 2 A . The expected
reward is then � � (x) =  (x; � (x))> ! for a known fea-

tive without model selection would be UCB with empirical
Bernstein con�dence bounds (Audibert et al., 2007). How-
ever, adaptation with model selection works just as well in
more complex settings e.g. linear bandits and MDP, where
empirical variance con�dence bounds are not available or
much more complicated.
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ture embedding  : X � A ! R d, and an unknown
vector ! 2 R d. Just as above, we consider the nested
version of this setting where  and ! live in a large
ambient dimension dM but only the �rst di ? entries of
! are non-zero.

3 DATA-DRIVEN REGRET
BALANCING

We introduce and analyze two data-driven regret bal-
ancing algorithms, which are both shown in Algo-
rithm 1. Both algorithms maintain over time three
main estimators for each base learner: (1) regret co-
e�cients bdi

t , meant to estimate the monotonic regret
coe�cients �di

t from De�nition 2.1, (2) the average re-
ward estimators bui

t =ni
t , and (3) the balancing poten-

tials � i
t , which are instrumental in the implementation

of the exploration strategy based on regret balancing.
At each round t the meta-algorithm picks the base
learner i t with the smallest balancing potential so far
(ties broken arbitrarily). The algorithm plays the pol-
icy � t suggested by that base learner on the current
context x t , receives the associated rewardr t , and for-
wards (x t ; r t ) back to that base learner only.

Where our two meta-learners di�er is how they update
the regret coe�cient bdi t

t of the chosen learner and its
potential � i t

t . We now introduce each version and the
regret guarantee we prove for it.

3.1 Balancing Through Doubling

Our �rst meta-algorithm (Doubling Data Driven Re-
gret Balancing or D3RB) is shown on the left in Al-
gorithm 1. Similar to existing regret balancing ap-
proaches (Pacchiano et al., 2020b, 2022), D3RB per-
forms a misspeci�cation test which checks whether the
current estimate of the regret of base learneri t is com-
patible with the data collected so far. The test com-

pared the average reward bu i t
t

n i t
t

of the chosen learner

against the highest average reward among all learn-

ers maxj 2 [M ]
bu j

t

n j
t
. If the di�erence is larger than the

current regret coe�cient
bdi t

t � 1

p
n i t

t

n i t
t

permits (account-

ing for estimation errors by considering appropriate
concentration terms), then the we know that bdi t is too
small to accurately represent the regret of learneri t

and we double it. This deviates from prior regret bal-
ancing approaches (Pacchiano et al., 2020b; Cutkosky
et al., 2021) that simply eliminate a base learner if the
misspeci�cation test fails for a given candidate regret

bound. Finally, D 3RB sets the potential � i t
t as bdi t

t

q
ni t

t

so that the potential represents an upper-bound on the
regret incurred by i t .

Our doubling approach for bdi t
t is algorithmically sim-

ple but creates main technical hurdles compared to
existing elimination approaches since we have to show
that the regret coe�cients are adapted fast enough to
be accurate and do not introduce undesirable scalings
in our upper bounds. By overcoming these hurdles in
our analysis, we show the following result quanti�es
the regret properties of D3RB in terms of the mono-
tonic regret coe�cients of the base learners at hand.
Theorem 3.1. With probability at least 1 � � , the re-
gret of D3RB (Algorithm 1, left) with parameters � and
dmin � 1 is bounded in all roundsT 2 N as2

Reg(T) = ~O
�

�d?
T M

p
T + ( �d?

T )2
p

MT
�

where �d?
T = min i 2 [M ]

�di
T = min i 2 [M ] maxt 2 [T ] di

t is the
smallest monotonic regret coe�cient among all learn-
ers (see De�nition 2.1).

We defer a discussion of this regret bound and com-
parison to existing results to Section 3.3.

3.2 Balancing Through Estimation

While D 3RB retains the misspeci�cation test of exist-
ing regret balancing approaches, our second algorithm,
Estimating Data-Driven Regret Balancing or ED 2RB,
takes a more direct approach. It estimates the regret
coe�cient (see right in Algorithm 1) directly as the

highest di�erence in average reward maxj 2 [M ]
bu j

t

n j
t

� bu i t
t

n i t
t

between i t and any other learner scaled by
q

ni t
t , the

number of times i t has been played. Again, we in-
clude appropriate concentration terms to account for
estimation errors as well as a lower bound ofdmin to
ensure stability.

Since this direct estimation approach is more adap-
tive compared to the doubling approach, it requires a
�ner analysis to show that the changes in the estimator
does not interfere with the balancing property of the
algorithm. To ensure the necessary stability, we use a
clipped version in ED2RB of the potential of D 3RB.
The function clip( x; a; b) therein clips the real argu-
ment x to the interval [ a; b], and makes the potential
non-decreasing and not increasing too quickly.

This more careful de�nition of the balancing potentials
allows us to replace in the regret bound the monotonic
regret coe�cient �d?

T with the sharper regret coe�cient
d?

T in the regret guarantee for ED2RB:
Theorem 3.2. With probability at least 1 � � , the re-
gret of ED2RB (Algorithm 1, right) with parameters �
and dmin � 1 is bounded in all roundsT 2 N as

Reg(T) = ~O
�

d?
T M

p
T + ( d?

T )2
p

MT
�

2Here and throughout, ~O hides log-factors.
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Algorithm 1: Data Driven Regret Balancing Algorithms (D 3RB and ED2RB)
Input: M base learners, minimum regret coe�cient dmin , failure probability �
Initialize balancing potentials � i

1 = dmin and regret coe�cient bdi
0 = dmin , for all i 2 [M ]

Initialize counts ni
0 = 0, and total value bui

0 = 0, for all i 2 [M ]
for rounds t = 1 ; 2; 3; : : : do

Receive contextx t

Pick base learneri t with smallest balancing potential: i t 2 argmini 2 [M ] � i
t

Passx t to base learneri t

Play policy � t = � i t
t suggested by base learneri t on x t and receive rewardr t

Set ni
t = ni

t � 1, bui
t = bui

t � 1, bdi
t = bdi

t � 1, and � i
t +1 = � i

t , for i 2 [M ] n f i t g
Update statistics ni t

t = ni t
t � 1 + 1 and bui t

t = bui t
t � 1 + r t

D3RB or ED2RB

Perform misspeci�cation test

bui t
t

ni t
t

+
bdi t
t � 1

q
ni t

t

ni t
t

+ c

vu
u
t ln M ln n i t

t
�

ni t
t

< max
j 2 [M ]

buj
t

nj
t

� c

vu
u
t ln M ln n j

t
�

nj
t

If test triggered double regret coe�cient bdi t
t =

2bdi t
t � 1 and otherwise set bdi t

t = bdi t
t � 1

Update balancing potential � i t
t +1 = bdi t

t

q
ni t

t

Estimate active regret coe�cient

bdi t
t

= max

(

dmin ;
q

ni t
t

 

max
j 2 [M ]

buj
t

nj
t

� c

vu
u
t ln M ln n j

t
�

nj
t

�
bui t

t

ni t
t

� c

vu
u
t ln M ln n i t

t
�

ni t
t

!)

Update balancing potential

� i t
t +1 = clip

�
bdi t
t

q
ni t

t ; � i t
t ; 2� i t

t

�

where d?
T = min i 2 [M ] maxj 2 [M ] di

T j
is the smallest re-

gret coe�cient among all learners, and Tj is the last
time t when base learnerj was played and� j

t +1 < 2� j
t .

3.3 Discussion, Comparison to the Literature

One way to interpret Theorem 3.1 is the following. If
the meta-learner were given ahead of time the index of
the base learner achieving the smallest monotonic re-
gret coe�cient �d?

T , then the meta-learner would follow
that base learner from beginning to end. The result-
ing regret bound for the meta-learner would be of the
form ( �d?

T )
p

T. Then the price D3RB pays for aggregat-
ing the M base learners is essentially a multiplicative
factor of the form M + �d?

T

p
M .

Up to the di�erence between d?
T and �d?

T , the guaran-
tees in Theorem 3.1 and Theorem 3.2 are identical.
Further, since d?

T � �d?
T , the guarantee for ED2RB

is never worse than that for D3RB. It can however
be sharper, e.g., in environments with favorable gaps
where we expect that a good base learner may achieve
a O(log(T)) regret instead of a

p
T rate and thus di

t
of that learner would decrease with time. The regret

coe�cient d?
T can bene�t from this while �d?

T cannot
decrease withT, and thus provide a worse guarantee.

Both D 3RB and ED2RB rely on a user-speci�ed pa-
rameter dmin . In terms of regret coe�cients, the regret
bounds of the two algorithms have the general form
((d?

T )2=dmin + dmin )
p

T. To see this, one has to ob-
serve that, the way it is de�ned, the regret coe�cient

di
(k ) satis�es di

(k ) = �
� P k

` =1 reg( � i
( ` ) )

p
k

+ dmin

�
, and then

take a closer look at the proof of Theorem 3.2, just
before the line \Plugging in dmin � 1 gives" therein.
A similar observation applies to the monotone version
�di
(k ) and the proof of Theorem 3.1. So, if we knew be-

forehand something aboutd?
T , we could setdmin = d?

T ,
and get a linear dependence ond?

T , otherwise we can
always set as defaultdmin = 1 (as we did in Theo-
rem 3.1 and Theorem 3.2).

Both our data-dependent guarantees recover existing
data-independent results up to the preciseM depen-
dency. Speci�cally, ignoring M factors, our bounds
scale at most as (d?

T )2
p

T, while the previous literature
on the subject (e.g., Cutkosky et al. (2021), Corollary
2) scales as (di ? )2

p
T. We recall that in the data-
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independent case, regretlower bounds are contained
(in a somewhat implicit form) in Marinov and Zim-
mert (2021), where it is shown that one cannot hope
in general to achieve better results in terms ofdi ? and
T, like in particular a di ?

p
T regret bound. Only a

(di ? )2
p

T-like regret guarantee is generally possible.

These prior model selection results based on regret
balancing require candidate regret bounds to be spec-
i�ed ahead of time. Hence, the corresponding algo-
rithms cannot leverage the favorable cases that our
data-dependent bounds automatically adapt to. In
particular, in Cutkosky et al. (2021), the optimal pa-
rameter di ? is the smallest candidate regret rate that is
larger than the true rate of the optimal (well-speci�ed)
base learner. Instead, we do not assume the availabil-
ity of such candidate regret rates, and ourd?

T is the
true regret rate of the optimal base learner. In short,
Cutkosky et al. (2021)'s results are competitive with
ours only when the above candidate regret rate hap-
pens to be very accurate for the best base learner, but
this is a fairly strong assumption. Although theoreti-
cal regret bounds for base learners can often guide the
guess for the regret rate, the values one obtains from
those analyses are typically much larger than the true
regret rate, as theoretical regret bounds are usually
loose by large constants.

So, the goal here is to improve over more traditional
data-independent bounds when data is benign or typi-
cal. Observe that in practice d?

T can also bedecreasing
with T (as we will show multiple times in our exper-
iments in Section 4). One such relevant case is when
the individual base learner runs have large variances
(recall Figure 1).

From a technical standpoint, we do indeed build on
the existing technique for analyzing regret balancing
by Pacchiano et al. (2020b); Cutkosky et al. (2021).
Yet, their analysis heavily relies on �xed candidate re-
gret bounds, and removing those introduces several
technical challenges, like disentangling the balancing
potentials � i

t from the estimated regret coe�cients bdi
t ,

and combine with clipping or the doubling estimator.
This allows us to show the necessary invariance prop-
erties that unlocks our improved data-dependent guar-
antees. See Appendix 9 and 10.

Departing from regret balancing techniques, model
selection can also revolve around Follow-The-
Regularized Leader-like schemes (e.g., (Agarwal et al.,
2017; Pacchiano et al., 2020b; Arora et al., 2020)).
However, even in those papers,di ? is the expected re-
gret scale, thus never sharper than ourd?

T , and also not
able to capture favorable realizations. As we shall see
in Section 4, there is often a stark di�erence between
the expected performance and the data-dependent per-

formance, which con�rms that the improvement in our
bounds is important in practice.

4 EXPERIMENTS

We evaluate our algorithms on several synthetic bench-
marks (environments, base-learners and model selec-
tion tasks), and compare their performance against
existing meta-learners. For all details of the experi-
mental setup and additional results, see Appendix 11.

These experiments are mostly intended to validate the
theory and as a companion to our theoretical results.
In these experiments, we vary the parameters that we
expect to be most important for model selection Vary-
ing the di�culty of the learning environment itself is
something that should mostly be absorbed by base-
learners, for example, by choosing base learners op-
erating on more powerful function classes than we do
here. Yet, it is important to observe that the meta-
algorithms are fairly oblivious to the di�culty of the
environment. All that matters here is the regret pro�le
of the base learners. In our experiments, we therefore
decided to explore the landscape of model selection by
varying the nature of the model selection task itself
(dimension, self model selection, and con�dence scal-
ing) while keeping the underlying environments fairly
simple.

Environments and base-learners: As the �rst en-
vironment, we use a simple 5-armed multi-armed ban-
dit problem ( MAB ) with standard Gaussian noise.
We then use two linear bandit settings, as also de-
scribed in Section 2.2: linear bandits with stochastic
rewards, either with a stochastic context (CLB ) or
without ( LB ). As base learners, we useUCB for the
MAB environment (see also Section 2.2) and Linear
Thompson (LinTS ) sampling (Abeille and Lazaric,
2017) for the LB and CLB setting.

Model selection task: We consider 3 di�erent model
selection tasks. All the results are reported in Figure 3.
In the �rst, conf (\con�dence"), we vary the explore-
exploit trade-o� in the base learners. For UCB, di�er-
ent base learners correspond to di�erent settings ofc,
the con�dence scaling that multiplies the exploration
bonus. Analogously, forLinTS , we vary the scalec of
the parameter perturbation. For the second taskdim
(\dimension"), we vary the number of dimensions di

the base learner considers when choosing the action
(see second and third example in Section 2.2, as well
as Figure 3 for results). Finally, we also consider a
\ self " task, where all base learners are copies of the
same algorithm.

Meta-learners: We evaluate both our algorithms,
D 3RB and ED 2RB , from Algorithm 1. We com-
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Figure 3: Average performance comparing all meta-learners (see Table 1 for reference).Experiment 1:. Self
model selection. See also Figure 5 in Appendix 11.3, containing regret curves forD 3RB and ED 2RB on a single
realization. Experiment 2: base learners (UCB ) with di�erent con�dence multipliers c. Experiments 3 and
4: Dimensionality d = 10. Experiments 5 and 6: True dimensionality di ? = 5 and maximal dimensionality
dM = 15. In Experiments 3 and 5 the action set is the unit sphere. InExperiments 4 and 6 the contextsx t

are 10 actions sampled uniformly from the unit sphere.

Table 1: Comparison of meta learners: cumulative regret (averaged over 100 repetitions� 2� standard error) at
the end of the sequence of rounds. In bold is the best performer for each environment.

Env. Learners Task D3RB ED2RB Corral RB Grid UCB Greedy EXP3
1. MAB UCB self 431 � 182 560� 240 5498� 340 6452� 230 574� 34 6404� 1102 5892� 356
2. MAB UCB conf 1608� 198 1413� 208 2807� 138 3452� 110 918 � 98 2505� 362 3007� 136
3. LB LinTS conf 1150� 134 1135 � 148 2605� 38 3169� 66 3052� 36 2553� 302 2491� 36
4. CLB LinTS conf 411� 100 406 � 94 1632� 30 1073� 184 1644� 160 991� 298 1086� 70
5. LB LinTS dim 1733� 230 1556 � 198 3166� 26 4223� 40 3932� 16 3385� 306 3315� 20
6. CLB LinTS dim 2347 � 102 2365� 96 5294� 44 6258� 38 5718� 50 4778� 506 5742� 46

pare them against the Corral algorithm (Agarwal
et al., 2017) with the stochastic wrapper from Pacchi-
ano et al. (2020b), as a representative for FTRL-based
meta-learners. We also evaluate Regret Balanncing
from Pacchiano et al. (2020b); Cutkosky et al. (2021)
with several copies of each base learner, each with a
di�erent candidate regret bound, selected on an expo-
nential grid ( RB Grid ). We also include in our list
of competitors three popular algorithms, the Greedy
algorithm (always selecting the best base learner so
far with no exploration), UCB (Auer et al., 2002a)
and EXP3 (Auer et al., 2002b). These are legiti-
mate choices as meta-algorithms, but either they do
not come with theoretical guarantees in the model se-
lection setting (UCB, Greedy) or enjoy worse guaran-
tees (Pacchiano et al., 2020b).

Discussion. An overview of our results can be found
in Table 1, where we report the cumulative regret of

each algorithm at the end of each experiment. Fig-
ure 3 contains the entire learning curves (as regret
scale = cumulative regret normalized by

p
T). We

observe that D3RB and ED2RB both outperform all
other meta-learners on all but the second benchmark.
UCB as a meta-learner performs surprisingly well in
benchmarks on MABs but performs poorly on the oth-
ers.

This can be explained by observing that the regret
of the optimal algorithms in the MAB environments
quickly converges to a 
at line. Thus, from the per-
spective of a UCB meta-learner, they look like station-
ary/stateless reward arms. This is likely the reason
why UCB works so well in Environment 2. This situa-
tion should be contrasted to the regret curves in linear
environments (Environments 3{6 in Table 1), which
exhibit more diverse non-stationary behaviors.

Overall, our methods feature the smallest or close to
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the smallest cumulative regret among meta-learners on
all benchmarks.

Comparing D3RB and ED2RB, we observe overall very
similar performance, suggesting that ED2RB may be
preferable due to its sharper theoretical guarantee.
While the model selection tasks conf and dim are stan-
dard in the literature, we also included one experiment
with the self task where we simply select among di�er-
ent instances of the same base learner. This task was
motivated by our initial observation (see also Figure 1)
that base learners have often a very high variability
between runs and that model selection can capitalize
on. Indeed, Figure 3 shows that our algorithms as well
as UCB achieve much smaller overall regret than the
base learner. This suggests that model selection can
be an e�ective way to turn a notoriously unreliable al-
gorithm like the base greedy base learner (UCB with
c = 0 is Greedy) into a robust learner.

5 CONCLUSIONS

We proposed two new algorithms for model selection
based on the regret balancing principle but without the
need to specify candidate regret bounds a-priori. This
calls for more sophisticated regret balancing mechanics
that makes our methods data-driven and as an impor-
tant bene�t allows them to capitalize on variability
in a base learner's performance. We demonstrate this
empirically, showing that our methods perform well
across several synthetic benchmarks, as well as theo-
retically. We prove that both our algorithms achieve
regret that is not much worse than the realized regret
of any base learner. This data-dependent guarantee
recovers existing data-independent results but can be
signi�cantly tighter.

In this work, we focused on the fully stochastic setting,
with contexts and rewards drawn i.i.d. We believe an
extension of our results to arbitrary contexts is fairly
easy by replacing the deterministic balancing with a
randomized version, while retaining the same de�ni-
tion of regret coe�cients di

t as in the paper. Yet, this
comes at a price of a harder interpretation of those co-
e�cients. Whereas in the fully stochastic setting the
regret coe�cient di

t of base learneri is only a function
of that base learner, in the more general adaptive set-
ting, di

t would depend on the observed contexts, and
thus potentially on the actions chosen by other base
learners. To retain a clear interpretation, we therefore
chose to only cover the i.i.d. stochastic context case.

On the other hand, covering the fully adversarial set-
ting is likely possible by building on top of (Pacchiano
et al., 2022) but requires substantial innovation.
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1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
Yes, see Sect. 2 and Sect. 3

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
Yes, see Sect. 3

(c) (Optional) Anonymized source code, with
speci�cation of all dependencies, including
external libraries. No

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. Yes, see Sect. 2 and
Sect. 3

(b) Complete proofs of all theoretical results.
Yes, see Sect. 8-10 in the appendix

(c) Clear explanations of any assumptions.Yes,
see Sect. 2 and Sect. 3

3. For all �gures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). Yes, Sect. 11 in the appendix
contains detailed explanations of all our
experimental results and hence ways to
reproduce them

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen).Yes,
see Appendix 11

(c) A clear de�nition of the speci�c measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). Yes, Appendix 11

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster,
or cloud provider). [Yes/No/Not Applicable]
Yes, see Appendix 11
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(b) The license information of the assets, if ap-
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(IRB) approvals if applicable. Not Appli-
cable
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ipant compensation. Not Applicable
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APPENDIX

The appendix contains the extra material that was omitted from the main body of the paper.

7 DETAILS ON FIGURE 1

We consider a 5-armed bandit problem with rewards drawn from a Gaussian distribution with standard deviation
6 and mean 10

10 ; 6
10 ; 5

10 ; 2
10 ; 1

10 for each arm respectively. We use a simple UCB strategy as a base learner that

chooses the next action as argmaxa2A �̂ (a) + c
q

ln( n (a)=� )
n (a) where n(a) and �̂ (a) are the number of pulls of arm

a so far and the average reward observed. The base learners use� = 1
10 and c = 3 or c = 4 respectively.

8 ANALYSIS COMMON TO BOTH ALGORITHMS

De�nition 8.1. We de�ne the eventE in which we analyze both algorithms as the event in which for all rounds
t 2 N and base learnersi 2 [M ] the following inequalities hold

� c

r

ni
t ln

M ln ni
t

�
� bui

t � ui
t � c

r

ni
t ln

M ln ni
t

�

for the algorithm parameter � 2 (0; 1) and a universal constantc > 0.

Lemma 8.2. Event E from De�nition 8.1 has probability at least 1 � � .

Proof. Consider a �xed i 2 [M ] and t and write

bui
t � ui

t =
tX

` =1

1f i ` = ig(r t � v� t )

=
tX

` =1

1f i ` = ig(r ` � E[r ` j� ` ])

Let F t be the sigma-�eld induced by all variables up to round t before the reward is revealed, i.e.,F t =
�

�
f x ` ; � ` ; i ` g` 2 [t � 1] [ f x t ; � t ; t t g

�
. Then, X ` = 1f i ` = ig(r t � E[r t j� t ]) 2 [� 1; +1] is a martingale-di�erence

sequence w.r.t.F ` . We will now apply a Hoe�ding-style uniform concentration bound from Howard et al. (2018).
Using the terminology and de�nition in this article, by case Hoe�ding I in Table 4, the process St =

P t
` =1 X ` is

sub- N with variance processVt =
P t

` =1 1f i ` = ig=4. Thus by using the boundary choice in Equation (11) of
Howard et al. (2018), we get

St � 1:7
p

Vt (ln ln(2 Vt ) + 0 :72 ln(5:2=� )) = 0 :85
q

ni
t

�
ln ln( ni

t =2) + 0 :72 ln(5:2=� )
�

for all k where Vk � 1 with probability at least 1 � � . Applying the same argument to � Sk gives that

�
�bui

t � ui
t

�
� � 3 _ 0:85

q
ni

t

�
ln ln( ni

t =2) + 0 :72 ln(10:4=� )
�

holds with probability at least 1 � � for all t.

We now take a union bound overi 2 [M ] and rebind � ! �=M . Then picking the absolute constantc su�ciently
large gives the desired statement.

Lemma 8.3 (Balancing potential lemma). For each i 2 [M ], let Fi : N [ f 0g ! R+ be a nondecreasing potential
function that does not increase too quickly, i.e.,

Fi (`) � Fi (` + 1) � � � Fi (`) 8` 2 N [ f 0g

and that 0 < F i (0) � � �Fj (0) for all i; j 2 [M ]2. Consider a sequence(i t )t 2 N such that i t = argmin i 2 [M ] Fi (ni
t � 1)

and ni
t =

P t
` =1 1f i ` = ig, i.e., i t 2 [M ] is always chosen as the smallest current potential. Then, for allt 2 N

max
i 2 [M ]

Fi (ni
t ) � � � min

j 2 [M ]
Fj (nj

t ):
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Proof. Our proof works by induction over t. At t = 1, we have ni
0 = 0 for all i 2 [M ] and thus, by assumption,

the statement holds. Assume now the statement holds fort. Notice that since ni
t and Fi are non-decreasing, we

have for all i 2 [M ]
min

i
Fi (ni

t ) � min
i

Fi (ni
t � 1)) :

Further, for all i 6= i t that were not chosen in round t, we even haveFi (ni
t � 1) = Fi (ni

t ) for all i 6= i t . We now
distinguish two cases:

Case i t =2 argmaxi Fi (ni
t � 1). Since the potential of all i 6= i t that attain the max is unchanged, we have

max
i

Fi (ni
t ) = max

i
Fi (ni

t � 1)

and therefore max i F i (n i
t )

min j F j (n j
t )

�
max i F i (n i

t � 1 )

min j F j (n j
t � 1 )

� � .

Case i t 2 argmaxi Fi (ni
t � 1). Since i t attains both the maximum and the minimum, and hence all potentials

are identical, we have

max
i

Fi (ni
t ) = Fi t (n

i t
t ) � Fi t (n

i t
t � 1 + 1) � �F i t (n

i t
t � 1) = � min

j
Fj (nj

t � 1) :

This concludes the proof.

9 PROOFS FOR THE DOUBLING ALGORITHM (ALGORITHM 1, LEFT)

Lemma 9.1. In event E, for each base learneri all rounds t 2 N, the regret multiplier bdi
t satis�es

bdi
t � 2 �di

t :

Proof. Note that instead of showing this for all rounds t, we can also show this equivalently for all numberk of
plays of base learneri . If the statement is violated for base learneri , then there is a minimum number k of plays
at which this statement is violated. Note that by de�nition �di

(0) = dmin and by initialization bdi
(0) = dmin , hence

this k cannot be 0.

Consider now the round t where the learner i was played the k-th time, i.e., the �rst round at which the
statement was violated. This means bdi

t > 2�di
t but bdi

t � 1 � �2di
t � 1 still holds. Since bdi

t can be at most 2bdi
t � 1,

we have bdi
t � 1 > �di

t . We will now show that in this case, the misspeci�cation test could not have triggered and
therefore bdi

t = bdi
t � 1 � 2 �di

t � 1 � 2 �di
t which is a contradiction. To show that the test cannot trigger, consider the

LHS of the test condition and bound it from below as

bui t
t

ni t
t

+
bdi t
t � 1

q
ni t

t

ni t
t

+ c

vu
u
t ln M ln n i t

t
�

ni t
t

�
ui t

t

ni t
t

+
bdi t
t � 1

q
ni t

t

ni t
t

(Event E)

�
ui t

t

ni t
t

+
�di t
t

q
ni t

t

ni t
t

( bdi t
t � 1 > �di t

t )

�
ui t

t +
P n i t

t
` =1 reg(� i t

( ` ) )

ni t
t

(de�nition of di
t )

� v? (de�nition of regret)

�
uj

t

nj
t

(de�nition of v?)

�
uj

t

nj
t

� c

vu
u
t ln M ln n j

t
�

nj
t

: (Event E)

This holds for any j 2 [M ] and thus, the test does not trigger.
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Corollary 9.1. In event E, for each base learneri all rounds t 2 N, the number of times the regret multiplier
bdi
t has doubled so far is bounded as follows:

bdi
t � 1 + log2

�di
t

dmin
:

Lemma 9.2. The potentials in Algorithm 1 (left) are balanced at all times up to a factor 3, that is, � i
t � 3� j

t
for all rounds t 2 N and base learnersi; j 2 [M ].

Proof. We will show that Lemma 8.3 with � = 3 holds when we apply the lemma toFi (ni
t � 1) = � i

t .

First Fi (0) = � i
1 = dmin for all i 2 [M ] and, thus, the initial condition holds. To show the remaining condition,

it su�ces to show that � i
t is non-decreasing int and cannot increase more than a factor of 3 per round. Ifi was

not played in round t, then � i
t = � i

t � 1 and both conditions holds. If i was played, i.e.,i = i t , then

� i
t = bdi

t

q
ni

t � 2bdi
t � 1

q
ni

t �

(
2bdi

t � 1

p
ni

t � 1
q

n i
t

n i
t � 1 = 2 � i

t � 1

q
n i

t
n i

t � 1 � 3� i
t � 1 if ni

t > 1

2bdmin
p

1 = � i
t � 1 if ni

t = 1 ;

as claimed.

Lemma 9.3. In event E, the regret of all base learnersi is bounded in all roundsT as

n i
TX

k=1

reg(� i
(k ) ) �

6( �dj
T )2

dmin

q
ni

T + 6 �dj
T

q
nj

T +

 

6c
�dj
T

dmin
+ 2c

! r

ni
T ln

M ln T
�

+ 1 + log 2

�di
T

dmin
;

where j 2 [M ] is an arbitrary base learner with nj
T > 0.

Proof. Consider a �xed base learneri and time horizon T, and let t � T be the last round wherei was played
but the misspeci�cation test did not trigger. If no such round exists, then set t = 0. By Corollary 9.1, i can be
played at most 1 + log2

�di
T

dmin
times betweent and T and thus

n i
TX

k=1

reg(� i
(k ) ) �

n i
tX

k=1

reg(� i
(k ) ) + 1 + log 2

�di
T

dmin
:

If t = 0, then the desired statement holds. Thus, it remains to bound the �rst term in the RHS above when
t > 0. Sincei = i t and the test did not trigger we have, for any base learnerj with nj

t > 0,

n i
tX

k=1

reg(� i
(k ) ) = ni

t v
? � ui

t (de�nition of regret)

= ni
t v

? �
ni

t

nj
t

uj
t +

ni
t

nj
t

uj
t � ui

t

=
ni

t

nj
t

�
nj

t v? � uj
t

�
+

ni
t

nj
t

uj
t � ui

t

=
ni

t

nj
t

0

@
n j

tX

k=1

reg(� j
(k ) )

1

A +
ni

t

nj
t

uj
t � ui

t (de�nition of regret)

�
ni

t

nj
t

�
dj

t

q
nj

t

�
+

ni
t

nj
t

uj
t � ui

t (de�nition of regret rate)

�

s
ni

t

nj
t

dj
t

q
ni

t +
ni

t

nj
t

uj
t � ui

t :
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We now use the balancing condition in Lemma 9.2 to bound the �rst factor
q

ni
t =nj

t . This condition gives that

� i
t +1 � 3� j

t +1 . Since both nj
t > 0 and ni

t > 0, we have� i
t +1 = bdi

t

p
ni

t and � j
t +1 = bdj

t

q
nj

t . Thus, we get

s
ni

t

nj
t

=

s
ni

t

nj
t

�
bdi
t

bdj
t

�
bdj
t

bdi
t

=
� i

t +1

� j
t +1

�
bdj
t

bdi
t

� 3
bdj
t

bdi
t

� 6
�dj
t

dmin
: (2)

Plugging this back into the expression above, we have

n i
tX

k=1

reg(� i
(k ) ) �

6( �dj
t )2

dmin

q
ni

t +
ni

t

nj
t

uj
t � ui

t :

To bound the last two terms, we use the fact that the misspeci�cation test did not trigger in round t. Therefore

ui
t � bui

t � c

r

ni
t ln

M ln ni
t

�
(event E)

= ni
t

0

@bui
t

ni
t

+ c

s
ln M ln n i

t
�

ni
t

+
bdi
tp
ni

t

1

A � 2c

r

ni
t ln

M ln ni
t

�
� bdi

t

q
ni

t

�
ni

t

nj
t

buj
t �

s
ni

t

nj
t

c

s

ni
t ln

M ln nj
t

�
� 2c

r

ni
t ln

M ln ni
t

�
� bdi

t

q
ni

t (test not triggered)

Rearranging terms and plugging this expression in the bound above gives

n i
tX

k=1

reg(� i
(k ) ) �

6( �dj
t )2

dmin

q
ni

t +

s
ni

t

nj
t

c

s

ni
t ln

M ln nj
t

�
+ 2c

r

ni
t ln

M ln ni
t

�
+ bdi

t

q
ni

t

�
6( �dj

t )2

dmin

q
ni

t + 6
�dj
t

dmin
c

s

ni
t ln

M ln nj
t

�
+ 2c

r

ni
t ln

M ln ni
t

�
+ bdi

t

q
ni

t (Equation 2)

�
6( �dj

t )2

dmin

q
ni

t + 6
�dj
t

dmin
c

s

ni
t ln

M ln nj
t

�
+ 2c

r

ni
t ln

M ln ni
t

�
+ 3 bdj

t

q
nj

t (Equation 2)

�
6( �dj

t )2

dmin

q
ni

t + 3 bdj
t

q
nj

t +

 

6c
�dj
t

dmin
+ 2c

! r

ni
t ln

M ln t
�

(ni
t � t)

�
6( �dj

t )2

dmin

q
ni

t + 6 �dj
t

q
nj

t +

 

6c
�dj
t

dmin
+ 2c

! r

ni
t ln

M ln t
�

(Lemma 9.1)

Finally, since t � T and therefore �dj
t � �dj

T and nj
t � nj

T (and similarly for i ), the statement follows.

Theorem 3.1. With probability at least 1 � � , the regret of D3RB (Algorithm 1, left) with parameters � and
dmin � 1 is bounded in all roundsT 2 N as3

Reg(T) = ~O
�

�d?
T M

p
T + ( �d?

T )2
p

MT
�

where �d?
T = min i 2 [M ]

�di
T = min i 2 [M ] maxt 2 [T ] di

t is the smallest monotonic regret coe�cient among all learners
(see De�nition 2.1).

Proof. By Lemma 8.2, event E from De�nition 8.1 has probability at least 1 � � . In event E, we can apply
Lemma 9.3 for each base learner. Summing up the bound from that lemma gives

Reg(T) �
MX

i =1

"
6( �dj

T )2

dmin

q
ni

T + 6 �dj
T

q
nj

T +

 

6c
�dj
T

dmin
+ 2c

! r

ni
T ln

M ln T
�

+ 1 + log 2

�di
T

dmin

#

3Here and throughout, ~O hides log-factors.
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� 6M �dj
T

p
T + M + M log2

p
T

dmin
+

"
6( �dj

T )2

dmin
+

4�dj
T

dmin
2c

r

ln
M ln T

�

#
MX

i =1

q
ni

T

�

 

6
p

M �dj
T +

6( �dj
T )2

dmin
+

8c�dj
T

dmin

r

ln
M ln T

�

!
p

MT + M + M log2
T

dmin
:

Plugging in dmin � 1 yields

Reg(T) �

 

6
p

M �dj
T + 6( �dj

T )2 + 8c�dj
T

r

ln
M ln T

�

!
p

MT + M + M log2 T

= O

  

M �dj
T +

p
M ( �dj

T )2 + �dj
T

r

ln
M ln T

�

!
p

T + M ln(T)

!

= ~O
�

�dj
T M

p
T + ( �dj

T )2
p

MT
�

;

as desired.

10 PROOFS FOR THE ESTIMATING ALGORITHM (ALGORITHM 1,
RIGHT)

Lemma 10.1. In event E, the regret rate estimate in Algorithm 1 (right) does not overestimate the current regret
rate, that is, for all base learnersi 2 [M ] and rounds t 2 N, we have

bdi
t � di

t :

Proof. Note that the algorithm only updates bdi
t when learner i is chosen and only thendi

t changes. Further, the
condition holds initially since bdi

1 = dmin � di
t . Hence, it is su�cient to show that this condition holds whenever

bdi
t is updated. The algorithm estimates bdi

t as

bdi
t = max

8
><

>:
dmin ;

q
ni

t

0

B
@max

j 2 [M ]

ûj
t

nj
t

� c

vu
u
t ln M ln n j

t
�

nj
t

�
ûi t

t

ni
t

� c

s
ln M ln n i

t
�

ni
t

1

C
A

9
>=

>;
:

If bdi
t � dmin , then the result holds since by de�nition di

t � dmin . In the other case, we have

bdi
t =

q
ni

t

0

B
@max

j 2 [M ]

ûj
t

nj
t

� c

vu
u
t ln M ln n j

t
�

nj
t

�
ûi

t

ni
t

� c

s
ln M ln n i

t
�

ni
t

1

C
A

�
q

ni
t

 

max
j 2 [M ]

uj
t

nj
t

�
ui

t

ni
t

!

(event E)

�
q

ni
t

 

v? �
ui t

t

ni
t

!

(de�nition of optimal value v?)

=
ni

t v
? � ui

tp
ni

t

=

P n i
t

k=1 reg(� i
(k ) )p

ni
t

(regret de�nition)

� di
t ; (de�nition of di

t )

as claimed.

Lemma 10.2. In event E, the balancing potentials� i
t in Algorithm 1 (right) satisfy for all t 2 N and i 2 [M ]

where ni
t � 1

� i
t +1 � di

t

q
ni

t :
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Proof. If i 6= i t , then � i
t +1 = � i

t , di
t = di

t � 1 and ni
t = ni

t � 1. It is therefore su�cient to only check this condition
for i = i t . By de�nition of the balancing potential, we have when i = i t

� i
t +1 � max

�
� i

t ; bdi
t

q
ni

t

�
� max

�
� i

t ; di
t

q
ni

t

�
;

where the last inequality holds because of Lemma 10.1. Ifni
t = 1, then � i

t = dmin and di
t

p
ni

t � dmin
p

1 by

de�nition, and the statement holds. Otherwise, we can assume that� i
t � di

t � 1

q
ni

t � 1 by induction. This gives

� i
t +1 � max

�
di

t � 1

q
ni

t � 1; di
t

q
ni

t

�
:

We notice that di
t

p
ni

t = max f dmin

p
ni

t ;
P n i

t
k=1 reg(� i

(k ) )g. Since each term inside the max is non-decreasing int,

di
t

p
ni

t is also non-decreasing int, and therefore � i
t +1 � di

t

p
ni

t , as anticipated.

Lemma 10.3. In event E, for all T 2 N and i 2 [M ], the number of times the balancing potential� i
t doubled

until time T in Algorithm 1 (right) is bounded by

log2 (t maxf 1; 1=dmin g) :

Proof. The balancing potential � i
t is non-decreasing int and � i

1 = dmin . Further, by Lemma 10.2, we have

� i
t +1 � di

t

q
ni

t � max
�

dmin

q
ni

t ; ni
t

�
:

Thus, the number of times � i
t can double is at most

log2

�
max

� q
ni

t ;
ni

t

dmin

��
� log2 (t maxf 1; 1=dmin g) :

This concludes the proof.

Lemma 10.4. The balancing potentials in Algorithm 1 (right) are balanced at all times up to a factor2, that
is, � i

t � 2� j
t for all rounds t 2 N and base learnersi; j 2 [M ].

Proof. We will show that Lemma 8.3 with � = 2 holds when we apply the lemma toFi (ni
t � 1) = � i

t .

First Fi (0) = � i
1 = dmin for all i 2 [M ] and, thus, the initial condition holds. To show the remaining condition,

it su�ces to show that � i
t is non-decreasing int and cannot increase more than a factor of 2 per round. This

holds by the clipping in the de�nition of � i
t +1 in the algorithm.

Lemma 10.5. In event E, the regret of all base learnersi is bounded in all roundsT as

n i
TX

k=1

reg(� i
(k ) ) �

2(dj
t )2

dmin

q
ni

t + 2dj
t

q
nj

t + 2c

 

1 +
2dj

t

dmin

! r

ni
t ln

M ln t
�

+ log 2 max
�

T;
T

dmin

�
;

where j 2 [M ] is an arbitrary base learner with nj
T > 0 and t � T is the last round wherei = i t and � i

t +1 < 2� i
t .

Proof. Consider �xed base learneri and time horizon T, and let t � T be the last round wherei was played and
� i

t did not double, i.e., � i
t +1 < 2� i

t . If no such round exists, then sett = 0. By Lemma 10.3, i can be played at
most log2 (T maxf 1; 1=dmin g) times betweent and T and thus

n i
TX

k=1

reg(� i
(k ) ) �

n i
tX

k=1

reg(� i
(k ) ) + log 2 (T maxf 1; 1=dmin g) :
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If t = 0, then the desired statement holds. Thus, it remains to bound the �rst term above when t > 0. We can
write the regret of base learneri up to t in terms of the regret of any learner j with nj

t > 0 as follows:

n i
tX

k=1

reg(� i
(k ) ) = ni

t v
? � ui

t (de�nition of regret)

= ni
t v

? �
ni

t

nj
t

uj
t +

ni
t

nj
t

uj
t � ui

t

=
ni

t

nj
t

�
nj

t v? � uj
t

�
+

ni
t

nj
t

uj
t � ui

t

=
ni

t

nj
t

0

@
n j

tX

k=1

reg(� j
(k ) )

1

A +
ni

t

nj
t

uj
t � ui

t (de�nition of regret)

�
ni

t

nj
t

�
dj

t

q
nj

t

�
+

ni
t

nj
t

uj
t � ui

t (de�nition of regret rate)

�

s
ni

t

nj
t

dj
t

q
ni

t +
ni

t

nj
t

uj
t � ui

t :

We now use the balancing condition in Lemma 10.4 to bound the �rst factor
q

ni
t =nj

t . This condition gives

that � i
t +1 � 2� j

t +1 . Since � i
t +1 < 2� i

t and, thus, the balancing potential was not clipped from above, we have

� i
t +1 � bdi

t

p
ni

t . Further, since nj
t > 0 we can apply Lemma 10.2 to get� j

t +1 � dj
t

q
nj

t . Thus, we get
s

ni
t

nj
t

=

s
ni

t

nj
t

�
bdi
t

dj
t

�
dj

t

bdi
t

�
� i

t +1

� j
t +1

�
dj

t

bdi
t

� 2
dj

t

bdi
t

� 2
dj

t

dmin
: (3)

Plugging this back into the expression above, we have

n i
tX

k=1

reg(� i
(k ) ) �

2(dj
t )2

dmin

q
ni

t +
ni

t

nj
t

uj
t � ui

t :

To bound the last two terms, we use the regret coe�cient estimate:

ni
t

nj
t

uj
t � ui

t = ni
t
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t
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t

�
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t
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t

!
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t

 
ûj
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t

�
ûi
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M ln ni
t

�
+ cni
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vu
u
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t
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(event E)
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ûj
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� c
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u
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ûi
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t
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M ln ni
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�
+ 2cni
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t
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� bdi
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q
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t ln

M ln ni
t

�
+ 2cni
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u
t ln M ln n j

t
�
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(de�nition of bdi
t )

� bdi
t

q
ni

t + 2c

 

1 +

s
ni

t

nj
t

! r

ni
t ln

M ln t
�

(ni
t � t and nj

t � t)

� bdi
t

q
ni

t + 2c

 

1 + 2
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t
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! r

ni
t ln

M ln t
�

(Equation 3)

� � i
t +1 + 2c

 

1 + 2
dj

t

dmin

! r

ni
t ln

M ln t
�

(� i
t +1 � bdi

t

p
ni

t )
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� 2� j
t +1 + 2c

 

1 + 2
dj

t

dmin

! r

ni
t ln

M ln t
�

(Lemma 10.4)

� 2dj
t

q
nj

t + 2c

 

1 + 2
dj

t

dmin

! r

ni
t ln

M ln t
�

: (Lemma 10.2)

Plugging this back into the expression above, we get

n i
TX

k=1

reg(� i
(k ) ) �

2(dj
t )2

dmin

q
ni

t + 2dj
t

q
nj

t + 2c

 

1 +
2dj

t

dmin

! r

ni
t ln

M ln t
�

+ log 2 max
�

T;
T

dmin

�
;

which is the desired statement.

Theorem 3.2. With probability at least 1 � � , the regret of ED2RB (Algorithm 1, right) with parameters � and
dmin � 1 is bounded in all roundsT 2 N as

Reg(T) = ~O
�

d?
T M

p
T + ( d?

T )2
p

MT
�

where d?
T = min i 2 [M ] maxj 2 [M ] di

T j
is the smallest regret coe�cient among all learners, andTj is the last time t

when base learnerj was played and� j
t +1 < 2� j

t .

Proof. By Lemma 8.2, event E from De�nition 8.1 has probability at least 1 � � . In event E, we can
apply Lemma 10.5 for each base learner. Summing up the bound for all base learnersi 2 [M ] with
j 2 argmini 02 [M ] maxi di 0

T i
from that lemma gives

Reg(T) �
MX

i =1

"
2(dj

T i
)2

dmin

q
ni

T i
+ 2dj

T i

q
nj

T i
+ 2c

 

1 +
2dj

T i
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! r

ni
T i
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M ln T

�
+ log 2 max

�
T;

T
dmin

� #

� 2Md?
T

p
T + M log2 max

�
T;

T
dmin

�
+

"
2(d?

T )2

dmin
+

6d?
T

dmin
c

r

ln
M ln T

�

#
MX

i =1

q
ni

T

�

 

2
p

Md?
T +

2(d?
T )2

dmin
+

6cd?
T

dmin

r

ln
M ln T

�

!
p

MT + M log2 max
�

T;
T

dmin

�
:

Here we have used thatdj
T i

� d?
T for all i 2 [M ] by the de�nition of d?

T . Plugging in dmin � 1 gives

Reg(T) �

 

2
p

Md?
T + 2( d?

T )2 + 6cd?
T

r

ln
M ln T

�

!
p

MT + M log2 T

= O

  

Md?
T +

p
M (d?

T )2 + d?
T

r

M ln
M ln T

�

!
p

T + M ln(T)

!

= ~O
�

d?
T M

p
T + ( d?

T )2
p

MT
�

;

as claimed.

11 EXPERIMENTAL DETAILS

We used a 50 core machine to run our experiments. We made use of this computing infrastructure by parallelizing
our experiment runs. The experiments take 12 hours to complete.
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11.1 Meta-Learners

We now list the meta-learners used in our experiments.

Algorithm 2: CORRAL Meta-Algorithm
Input: M base learners, learning rate� .
Initialize: 
 = 1=T; � = e

1
ln T ; � 1;j = �; � j

1 = 2M; p j
1

= 1
� j

1
; pj

1 = 1=M for all j 2 [M ].

for t = 1 ; � � � ; T do
Sample i t � pt .
Receive feedbackr t from base learneri t .
Update pt , � t , p

t
and � t to pt +1 , � t +1 , p

t +1
and � t +1 using CORRAL� UpdateAlgorithm 4.

Algorithm 3: Log-Barrier-OMD( pt ; ` t ; � t )
Input: learning rate vector � t , previous distribution pt and current loss ` t

Output: updated distribution pt +1

Find � 2 [min j ` t;j ; maxj ` t;j ] such that
P M

j =1
1

1
p i

t
+ � t;j ( ` t;j � � ) = 1

Return pt +1 such that 1
pj

t +1
= 1

pj
t

+ � t;j (` t;j � � )

Algorithm 4: CORRAL� Update
Input: learning rate vector � t , distribution pt , lower bound p

t
and current loss r t

Output: updated distribution pt +1 , learning rate � t +1 and loss range� t +1

Update pt +1 = Log-Barrier-OMD( pt ; r t
pt;j t

ej t ; � t ).

Set pt +1 = (1 � 
 )pt +1 + 
 1
M .

for j = 1 ; � � � ; M do
if pj

t
> p j

t +1 then

Set pj
t +1

=
pj

t +1

2 ; � t +1 ;j = �� t;i ,

else
Set pj

t +1
= pj

t
; � t +1 ;j = � t;i .

Set � j
t +1 = 1

pj
t +1

.

Return pt +1 , � t +1 , p
t +1

and � j
t +1 .

Corral. We used the Corral Algorithm as described in Agarwal et al. (2017) and Pacchiano et al. (2020b).
Since we work with stochastic base algorithms we use the Stochastic Corral version of Pacchiano et al. (2020b)
where the base algorithms are updated with the observed rewardr t instead of the importance sampling version
required by the original Corral algorithm of Agarwal et al. (2017). The pseudo-code is in Algorithm 2. In
accordance with theoretical results we set� = �( 1p

T
). We test the performance of theCorral meta-algorithm

with di�erent settings of the initial learning rate � 2 f :1=
p

T ; 1=
p

T ; 10=
p

Tg. In the table and plots below
we call them CorralLow , Corral and CorralHigh respectively. In Table 4 we compare their performance on
di�erent experiment benchmarks. We seeCorral and CorralHigh achieve a better formance thanCorralLow .
The performance ofCorral and CorralHigh is similar.

EXP3. At the beginning of each time step the EXP3 meta-algorithm samples a base learner indexi t � pt

from its base learner distribution pt . The meta-algorithm maintains importance weighted estimator of the
cumulative rewards for each base learnerRi

t for all i 2 [M ]. After receiving feedback r t from base learner
i t the importance weighted estimators are updated asRi

t +1 = Ri
t + 1(i = i t ) r t

pi t
t

. The distribution pi
t +1 =

(1 � 
 ) exp(�R i
t +1 )=

P
i 0 exp(�R i 0

t +1 ) + 
=M where � is a and 
 are a learning rate and exploration parameters.
In accordance with theoretical results (see for example (Lattimore and Szepesv�ari, 2020, Th. 11.1)) in our

experiments we set the learning rate to� =
q

log( M )
MT and set the forced exploration parameter
 = 0:1p

T
. We
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Figure 4: Experiment Map.

test the performance of theEXP3 meta-algorithm with di�erent settings of the forced exploration parameter

 2 f 0; :1p

T
; 1p

T
g. In Table 4 we call them EXP3Low , EXP3 and EXP3High . All these di�erent variants

have a similar performance.

Greedy. This is a pure exploitation meta-learner. After playing each base learner at least once, theGreedy
meta-algorithm maintains the same cumulative reward statistics f bui

t gi 2 [M ] as D3RB and ED2RB. The base

learner i t chosen at timet is i t = argmax i 2 [M ]
u i

t
n i

t
.

UCB. We use the sameUCB algorithm as described in Section 2.2. We set the scaling parameterc = 1.

D 3RB and ED 2RB. These are the algorithms in Algorithm 1. We set thereinc = 1 and dmin = 1.

11.2 Base Learners

All base learners have essentially been described, except for the Linear Thompson Sampling Algorithm (LinTS)
algorithm, which was used in all our linear experiments.

In our implementation we use the algorithm described as in Abeille and Lazaric (2017). On roundt the Linear
Thompson Sampling algorithm has playedx1; � � � x t � 1 � Rd with observed responsesr 1; � � � ; r t � 1. The rewards
are assumed to be of the formr ` = x>

` � ? + � t for an unknown vector � ? and a conditionally zero mean random
variable � t . An empirical model of the unknown vector � ? is produced by �tting a ridge regression least squares
estimator b� t = argmin � � k� k2 +

P t � 1
` =1 (x>

` � � r ` )2 for a user speci�ed parameter� > 0. This can be written in

closed form asb� t =
�
X > X + � I

� � 1
X > y where X 2 Rt � 1� d matrix where row ` equalsx ` . At time t a sample

model is computed e� t = b� t + c
p

d
�
X > X + � I

� � 1=2
� t where � t � N (0; I ) and c > 0 is a con�dence scaling

parameter. This is one of the parameters that we vary in our experiments. If the action set at timet equals
A t (in the contextual setting A t changes every time-step while in the �xed action set linear bandits case it
) the action x t = argmax x 2A t

x>
t

e� t . In our experiments � = 1 and � ? is set to a scaled version of the vector
(0; � � � ; d� 1). In the detailed experiment description below we specify the precise value of� ? in each experiment.

11.3 Detailed Experiments Description

Figure 4 illustrates the overall structure of our experiments. Experiments 1 through 6 are those also reported in
the main body of the paper. The below table contains a detailed description of each experiment, together with
the associated evidence in the form of learning curves (regret scale vs. rounds). Finally, Table 2 contains the
�nal (average) cumulative regret for each meta-learner on each experiment.
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Description Figure

Experiment 1. Self model
selection for a 5 armed Gaus-
sian bandit problem with means
[.5, 1, .2, .1, .6] and standard de-
viations equal to 1. The base
learners are UCB algorithms
with a confidence scaling c = 0.
This reduces them to instances of
Greedy. It is well known that
greedy algorithms do not sat-
isfy a sublinear expected regret
bound. These results show that
combining multiple instances of
Greedy via self model selection
can turn them into algorithms
with a sublinear regret guaran-
tee. We initialize 10 Greedy
base learners.

Experiment 2. Model selec-
tion for a 5 armed Gaus-
sian bandit problem with means
[.5, 1, .2, .1, .6] and standard de-
viations equal to 1 where we se-
lect among 4 UCB base learn-
ers with confidence scalings in
f0, 4, 6, 20g.

Experiment 3. Linear ban-
dits model selection where
we select among LinTS base
learners with different confi-
dence scalings. The action
set is the 10 dimensional unit
sphere. The θ? vector equals
(0, . . . , 9)/k(0, . . . , 9)k � 5. The
base learners are LinTS in-
stances with confidence scalings
in f0, .16, 2.5, 5, 25g.
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Description Figure

Experiment 4. Contextual
linear bandits model selection
where we select among LinTS
base learners with different con-
fidence scalings. The contexts
are generated by producing
10 i.i.d. uniformly distributed
vectors from the unit sphere.
The ambient space dimension
is d = 10. The θ? vector is
(0, . . . , 9). The base learners are
LinTS instances with confidence
scalings in f0, .16, 2.5, 5, 25g.

Experiment 5. Nested linear
bandits model selection where
we select among different LinTS
base learners with different am-
bient dimensions. The action set
is the unit sphere and the true
ambient dimension equals 5. The
θ? vector is (0, 1, 2, 3, 4) and the
base learners are LinTS instances
with dimensions d = 2, 5, 10, 15,
and confidence scaling 2.

Experiment 6. Nested contex-
tual linear bandits model selec-
tion where we select among differ-
ent LinTS base learners with dif-
ferent ambient dimensions. The
context set is generated by sam-
pling 10 i.i.d. vectors from the
unit sphere. The true ambient di-
mension equals 5. The θ? vector
equals (0, 1, 2, 3, 4)/k(0, 1, 2, 3, 4)k
and the base learners are LinTS
instances with dimensions d =
2, 5, 10, 15 and confidence scaling
2.
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Description Figure

Experiment A. Selecting
among different confidence
scalings in a 4 armed Bernoulli
bandit problem with mean
rewards [.1, .2, .5, .8]. We select
among 9 UCB base learn-
ers with confidence scalings in
f0, .08, .16, .64, 1.24, 2.5, 5, 10, 25g.

Experiment B. Selecting
among different confidence scal-
ings in a 2 armed bandit problem
with reward distributions r � p1

and r � p2 where samples from
pi are of the form 30bi where
bi are two Bernoulli variables
with means in f.1, .2g. We
test self-model selection among
10 UCB base learners with
confidence scalings 1.

Experiment C. Linear ban-
dit model selection where we se-
lect among LinTS base learn-
ers with different confidence scal-
ings. The action set equals
the d = 5 dimensional hyper-
cube (i.e., the arm set equals
f�1, 1gd ). The θ? vector
equals (0, . . . , 4)/k(0, . . . , 4)k � 5.
The base learners are LinTS in-
stances with confidence scalings
in f0, .16, 2.5, 5, 25g.
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