
Hidden yet quantifiable: A lower bound for confounding strength
using randomized trials

Piersilvio De Bartolomeis∗ Javier Abad∗ Konstantin Donhauser Fanny Yang
ETH Zurich ETH Zurich ETH Zurich ETH Zurich

Abstract

In the era of fast-paced precision medicine,
observational studies play a major role in
properly evaluating new treatments in clin-
ical practice. Yet, unobserved confounding
can significantly compromise causal conclu-
sions drawn from non-randomized data. We
propose a novel strategy that leverages ran-
domized trials to quantify unobserved con-
founding. First, we design a statistical test to
detect unobserved confounding above a cer-
tain strength. Then, we use the test to es-
timate an asymptotically valid lower bound
on the unobserved confounding strength. We
evaluate the power and validity of our sta-
tistical test on several synthetic and semi-
synthetic datasets. Further, we show how
our lower bound can correctly identify the ab-
sence and presence of unobserved confound-
ing in a real-world example.

1 INTRODUCTION

Monitoring the performance of a newly approved treat-
ment is crucial, a process commonly referred to as
post-marketing surveillance (Vlahović-Palčevski and
Mentzer, 2011). Nowadays, the U.S. Food and Drug
Administration promotes the integration of observa-
tional data in this process to address the shortcomings
of randomized evidence (Platt et al., 2018; Klonoff,
2020). This strategy is essential for validating per-
sonalized treatments, like immunotherapy for certain
types of cancer, where randomized evidence is scarce,
and treatment costs are substantial (Hayden, 2016;
Goetz and Schork, 2018).
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Yet, unobserved confounding can significantly com-
promise causal conclusions drawn from observational
data. To tackle this issue, sensitivity analysis has been
the prevalent paradigm since its conception by Corn-
field (Cornfield et al., 1959). This field studies how
a specific strength of unobserved confounding affects
causal conclusions and introduces the concept of a crit-
ical value (VanderWeele and Ding, 2017; Jin et al.,
2023), i.e. the minimum strength unobserved con-
founders would need to have to explain away the es-
timated treatment effect. However, critical values are
solely based on observational data and can differ sub-
stantially from the true confounding strength. As a re-
sult, epidemiologists often rely on heuristic judgments
to decide whether an observational study is flawed.

Estimating the true confounding strength is infeasible
without further assumptions. Yet, once a treatment
gains approval, we may have access to a randomized
trial that allows for more effective strategies to ad-
dress unobserved confounding. A recent line of works
proposes to combine the estimators from randomized
and observational data, e.g. see Colnet et al. (2020);
Brantner et al. (2023) for a survey. However, these
methods crucially rely on some prior knowledge of the
confounding bias structure, that is not always available
in practice.

We propose an alternative strategy to leverage ran-
domized trials, that is, to test and quantify the true
confounding strength. In particular, if strong con-
founding is detected, epidemiologists can take proac-
tive measures to correct it. Most directly, they can
identify and incorporate relevant covariates into the
study design if they were initially overlooked (Dreyer,
2018). On the other hand, if small confounding is
detected, epidemiologists can continue their analysis
(see Figure 1 for an illustration of the pipeline). More
concretely, our contributions are as follows.

• In Section 3, we introduce the first statistical test
to detect unobserved confounding above a cer-
tain strength. Further, we show how the test can
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Figure 1: An illustrative example of the drug regulatory process: our lower bound allows taking proactive
measures to address the unobserved confounding problem.

be used to estimate an asymptotically valid lower
bound on the true confounding strength.

• In Section 4, we evaluate the finite-sample validity
and power of our test on several synthetic and
semi-synthetic datasets.

• In Section 5, we showcase through a real-world ex-
ample how our approach leads to conclusions that
align with established epidemiological knowledge.

1.1 Related work

Our approach is closely related to a line of work
that proposes statistical tests for the presence of un-
observed confounding. In particular, several works
leverage randomized trials to detect unobserved con-
founding. These tests check for significant differences
between average treatment effect estimates obtained
from randomized and observational data (Viele et al.,
2014; Yang et al., 2023; Morucci et al., 2023; Hussain
et al., 2022). More sophisticated approaches also test
for differences in conditional average treatment effect
estimates (Hussain et al., 2023) and account for right-
censored outcomes (Demirel et al., 2024).

Similarly, other works have designed statistical tests
using instrumental variables and negative control out-
comes instead of randomized trials (Lipsitch et al.,
2010; De Luna and Johansson, 2014; Donald et al.,
2014; Sofer et al., 2016). Additionally, multiple ob-
servational studies can be leveraged to test condi-
tional independences and detect unobserved confound-
ing (Karlsson and Krijthe, 2023).

In contrast to our test, these works have a significant
limitation: they cannot quantify the true confounding
strength. Even in infinite samples, they reject obser-
vational studies with negligible confounding. In real-
world settings, where some degree of confounding will
likely be present, testing for the absence of unobserved

confounding can be too restrictive.

Finally, another line of works proposes calibrating the
value of confounding strength using only observational
data (Hsu and Small, 2013; Veitch and Zaveri, 2020).
However, the true confounding strength can be arbi-
trarily different from the calibrated strength, and there
is no theoretical result for how these two quantities are
related, even with infinite samples.

2 SETTING AND NOTATION

We have access to data from a randomized
trial (rct) and an observational study (os), which
come from an underlying distribution P⋄

full over
(X,U, Y (0), Y (1), Y, T ), for ⋄ ∈ {rct, os}. Here,
(X,U) ∈ Rd × Rk is a vector of confounders,
(Y (0), Y (1)) are real-valued bounded potential out-
comes, Y ∈ R is the observed outcome, and T ∈ {0, 1}
is a binary treatment indicator. However, the con-
founder U and the potential outcomes are never ob-
served, that is, we can only sample from the distri-
butions Prct := M(Prct

full) and Pos := M(Pos
full), where

M(Pfull) denotes the marginal distribution of (X,Y, T )
under Pfull.

We assume that we can factorize the full distribution
as follows for rct and os

P⋄
full = PY |Y (1),Y (0),T  

:=Pdet

PY (1),Y (0)|X,U  
:=Pinv

P⋄
X,T,U  
:=P⋄

cnf

, (1)

where Pdet is deterministically given by Y = Y (T )1,
Pinv is invariant across studies, and P⋄

cnf differs for
⋄ ∈ {rct, os}. This factorization captures the essence
of the potential outcome framework, where Y (1) and
Y (0) do not depend on T while being more general. In

1Given that samples are drawn i.i.d., this asumption is
equivalent to the classic SUTVA (Rubin, 1980).
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particular, it allows for shifts in the marginal distribu-
tion of the observed and unobserved confounders.

We illustrate the corresponding graphical model in
Figure 2. Note that numerous attempts have been
made to unify potential outcomes and graphical mod-
els, with the most prominent being the Single World
Intervention Graphs (Richardson and Robins, 2013).
However, we propose a simpler graphical model in this
context since we do not use the graph to infer coun-
terfactual independencies.

We now introduce three additional assumptions re-
quired for the validity of our statistical test and the re-
sulting lower bound. First, we require transportability
of the conditional average treatment effect (CATE).

Assumption 2.1 (Transportability). The conditional
average treatment effect remains invariant across stud-
ies, that is

EPos
full

[Y (1)− Y (0) | X] = EPrct
full

[Y (1)− Y (0) | X] .

This property is standard for generalizing the
findings of randomized trials to another popula-
tion (O’Muircheartaigh and Hedges, 2014; Colnet
et al., 2020; Degtiar and Rose, 2023), and is a weaker
assumption than ignorability of study selection (Sug-
den and Smith, 1984; Hotz et al., 2005) or sample ig-
norability of treatment effects (Kern et al., 2016).

Second, we assume that the randomized trial is inter-
nally valid.

Assumption 2.2 (Internal validity). The treatment
is assigned independent of the covariates and the po-
tential outcomes, that is,

Prct
cnf = Prct

T Prct
X,U , with Prct

T (T = 1) = π ∈ (0, 1).

Internal validity holds by design in a completely ran-
domized experiment, allowing for an unbiased estima-
tion of the treatment effect. Observational studies, on
the other hand, can have arbitrary confounding struc-
tures reflected in Pcnf , i.e. Pos

cnf = Pos
T |X,U Pos

X,U .

Finally, we assume that the population in the obser-
vational study includes the population in the trial.

Assumption 2.3 (Support inclusion). The support of
the randomized trial is included in the support of the
observational study, i.e.

supp(Prct
X ) ⊆ supp(Pos

X).

This assumption is strictly weaker than the positivity
of trial participation; see, for example, Stuart et al.
(2011); Hartman et al. (2015); Andrews and Oster
(2017); Nie et al. (2021); Colnet et al. (2022). It is also
expected to hold in our setting, as it aligns with the
design of observational studies by regulatory agencies
for drug monitoring (He et al., 2020), and particularly
for post-marketing surveillance (Franklin et al., 2019;
Schurman, 2019).

2.1 Sensitivity analysis

Sensitivity analysis is commonly used to account for
unobserved confounding in observational data. In par-
ticular, this approach estimates an interval for the
treatment effect that depends on an assumed con-
founding strength Γ of Pos

cnf . Throughout the paper,
we define the confounding strength using the widely
accepted marginal sensitivity model (Tan, 2006).

More formally, we assume that Pos
cnf belongs to the set

E(Γ) of distributions that have bounded odds ratio,

E(Γ) :=

Pcnf :

1

Γ
≤ Pcnf(T = 1 | X,U)

Pcnf(T = 0 | X,U)
/
Pcnf(T = 1 | X)

Pcnf(T = 0 | X)
≤ Γ, a.s.


.

Under this notion of confounding strength, we can de-
fine a set of full distributions P̃full that are compati-
ble with the marginal distribution of the observational
study Pos and have a bounded odds ratio.
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Definition 2.1 (Marginal sensitivity set). Given a
distribution Pos over (X,Y, T ) and a confounding
strength Γ ≥ 1, we define the set E(Pos,Γ) of distri-
butions P̃full, as

E(Pos,Γ) := {P̃full = PdetP̃invP̃cnf : P̃cnf ∈ E(Γ) (2)

and M(PdetP̃invP̃cnf) = Pos}.

In other words, this set contains all the full distri-
butions that could have induced the marginal distri-
bution of the observational study Pos. Further, since
the marginal sensitivity set contains Pos

full if Γ is well-
specified, we can partially identify the (conditional)
treatment effect as follows.

Definition 2.2 (Sensitivity bounds). We define the
conditional average treatment effect (CATE) as

µ(X,Pfull) := EPfull
[Y (1)− Y (0) | X] ,

and the upper and lower bounds on CATE within the
marginal sensitivity set as

µ+
Γ (X) := sup

P̃full∈E(Pos,Γ)

µ(X, P̃full),

µ−
Γ (X) := inf

P̃full∈E(Pos,Γ)
µ(X, P̃full).

Further, we define the average treatment effect (ATE)
over a marginal distribution PX that can differ from
the marginal in Pfull as

µ(PX ,Pfull) := EPX
[µ(X,Pfull)] ,

and the upper and lower bounds on ATE as

µ+
Γ (PX) := EPX


µ+
Γ (X)


, µ−

Γ (PX) := EPX


µ−
Γ (X)


.

Above, we do a slight abuse of notation by defining µ as
both a function and a real number, depending on its
argument. Several estimators have recently emerged
in the literature for the CATE bounds (Kallus et al.,
2019; Jesson et al., 2021; Oprescu et al., 2023) and
for the ATE bounds (Zhao et al., 2019; Dorn et al.,
2021; Dorn and Guo, 2022). We will leverage these
estimators to construct a statistical test that detects
unobserved confounding above a certain strength.

3 METHODOLOGY

We would like to test whether the unobserved full
distribution Pos

full, which marginalizes to Pos, has con-
founding strength at most Γ. This is captured by the
following null hypothesis

H0(Γ) : Pos
full ∈ E(Pos,Γ).

Note that in the special case where Γ = 1, the problem
reduces to testing whether there are no unobserved
confounders, i.e. (Y (1), Y (0)) ⊥⊥ T | X under Pos. We
refer to this case, which has been recently studied in
the literature (see Section 1.1), as binary testing for
unobserved confounding.

In real-world scenarios, binary tests can be overly
stringent, as they invalidate an observational study
even if the unobserved confounding strength is negligi-
ble. To overcome this limitation, we propose the first
test, to the best of our knowledge, for the general case
where Γ is greater than one. In particular, underlying
our testing procedure is a simple observation that fol-
lows from the sensitivity analysis bounds: When the
null hypothesis is true for some confounding strength
Γ, the average treatment effect under some target pop-
ulation should fall between the valid upper and lower
bounds constructed from the observational study.

Lemma 3.1. For any Pfull which satisfies transporta-
bility, i.e. µ(X,Pfull) = µ(X,Pos

full), and any PX which
satisfies support inclusion, i.e. supp(PX) ⊆ supp(Pos

X),
it holds that

Pos
full ∈ E(Pos,Γ) =⇒ µ(PX ,Pfull) ∈ [µ−

Γ (PX), µ+
Γ (PX)].

Proof. First, note how µ(X,Pfull) ∈ [µ−
Γ (X), µ+

Γ (X)]
for all X ∈ supp(Pos

X) when the null hypothesis H0(Γ)
is true, due to the transportability assumption and
the definition of CATE sensitivity bounds. The result
then follows by taking expectations with respect to the
corresponding marginals PX on both sides.

3.1 Statistical tests for H0(Γ)

In what follows, we have access to a randomized trial
Drct = {(Xi, Yi, Ti)}nrct

i=1 sampled i.i.d from the dis-
tribution Prct, and an observational study Dos =
{(Xi, Yi, Ti)}nos

i=1, sampled i.i.d. from the distribution
Pos. We first propose estimates for the average treat-
ment effect under two target populations. Then, we
leverage these estimates together with the sensitivity
bounds to design an asymptotically valid statistical
test at significance level α. Finally, we show how such
a test can be used to establish an asymptotically valid
lower bound on the unobserved confounding strength.

Estimating the ATE We discuss here how the av-
erage treatment effect can be estimated using data
from the randomized trial. First, we define a tar-
get population P⋄

X to estimate the ATE. Then, the
following lemma shows how the choice of Prct

X and
Pos
X := Pos

X | X ∈ supp(Prct) allows us to identify
ATE using data sampled from the randomized trial
marginal distribution Prct.
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Lemma 3.2. For ⋄ ∈ {rct, os}, under Assump-
tions 2.1, 2.2 and 2.3, we have

µ(P⋄
X ,P⋄

full) = EPrct


Y


T

π
− (1− T )

1− π


w(X)


,

where w(X) := P⋄(X)
Prct(X) .

Lemma 3.2 is a well-known result in the transporta-
bility literature (Cole and Stuart, 2010; Colnet et al.,
2023). Essentially, it establishes that when the distri-
bution shift between Prct

X and P⋄
X can be corrected, we

can identify and estimate the ATE under P⋄
X .

Estimating the sensitivity interval Next, we dis-
cuss how µ−

Γ (P⋄
X) and µ+

Γ (P⋄
X) can be estimated using

data from both the observational study and the target
population P⋄

X . Here, the approach varies based on
the target population.

• For P⋄
X = Prct

X , we estimate the CATE sensitivity
bounds from observational data and average them
over the target population. Specifically, we use the
B-Learner (Oprescu et al., 2023) to estimate the sen-
sitivity analysis bounds.

• For P⋄
X = Pos

X , we have two options: either estimate
the CATE sensitivity analysis bounds and average
them, or directly estimate the ATE sensitivity anal-
ysis bounds over the target population. In our ex-
periments, we directly estimate the ATE sensitivity
analysis bounds using either the DVDS (Dorn et al.,
2021) or the QB estimator (Dorn and Guo, 2022).

These methods yield estimates that are valid, sharp,
and efficient under more general conditions than other
existing methods. Nevertheless, our testing procedure
is agnostic to the choice of the sensitivity analysis
bound estimator, allowing for various options to be
adopted.

Two statistical tests We outline our testing pro-
cedure in Algorithm 1, which can be instantiated for
the target populations rct and os. This results in two
statistical tests, φ̂rct and φ̂os, for the null hypothe-
sis H0(Γ). The following proposition confirms their
asymptotic validity.

Proposition 3.1 (Validity of the test). Let φ̂⋄(Γ,α)
be the test defined in Algorithm 1, for a fixed Γ ∈
[1,∞) and significance level α. Then, under Assump-
tions 2.1–2.3 and the setting described in Section 2, we
have, for H0(Γ),

(i) If the estimators of the CATE sensitivity analysis

bounds satisfy

µ±
Γ − µ̂±

Γ L2(Prct) = oP(n
−1/2
rct ),

φ̂rct(Γ,α) is a valid asymptotic test at level α.

(ii) If µ̂+
Γ and µ̂−

Γ are consistent estimators of the ATE
sensitivity analysis bounds that satisfy

√
nos µ̂

+
Γ

D−→ N (µ+
Γ , (σ

+
Γ )

2),
√
nos µ̂

−
Γ

D−→ N (µ−
Γ , (σ

−
Γ )

2),

φ̂os(Γ,α) is a valid asymptotic test at level α.

We provide a complete proof in Appendix A.1.2. No-
tably, Assumption (ii) is relatively mild and expected
to hold for various estimators; for instance, it can be
satisfied by the doubly-robust estimator in Dorn et al.
(2021). On the other hand, Assumption (i) is stronger
and generally only expected to hold when nos ≫ nrct.

In essence, we propose two tests that work under dif-
ferent assumptions: φ̂rct relies on a consistent estimate
of the CATE sensitivity analysis bounds, while φ̂os re-
quires an estimate of the importance weights w(X)2.

Advantages of each test The test φ̂os can be ad-
vantageous when CATE estimation is challenging (e.g.
when the outcomes are binary and the classes are im-
balanced or when the observational study has a limited
sample size), but the weights w(X) can be identified,

and vice versa for the test φ̂rct. In addition, φ̂os can
benefit from large observational studies as the vari-
ances (σ̂−

Γ )
2 and (σ̂+

Γ )
2 vanish for large nos.

3.2 A lower bound on unobserved
confounding strength

The statistical test described in the previous section
raises a question about what level of confounding
strength is reasonable to test. Ideally, epidemiologists
would like to estimate the confounding strength in-
stead of conducting a test. However, this is infeasible
unless the support of Prct

X and Pos
X are the same.

A practical alternative is to estimate a lower bound on
the true unobserved confounding strength defined as

Γ := inf{Γ : Pos
full ∈ E(Pos,Γ)}.

Given an observational study and a randomized trial,
we aim to find a quantity that, with high probability,

2The importance weights can be identified when the
observational study and the randomized trial adhere to
a nested trial design (Olschewski and Scheurlen, 1985;
Olschewski et al., 1992; Choudhry, 2017). See Ap-
pendix A.2 for a discussion on how the importance weights
are estimated in this setting.
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Algorithm 1 Statistical test for detecting unobserved confounding

1: Input: ⋄ ∈ {rct, os}, Drct, Dos, significance level α, confounding strength Γ.
2: Estimate µ(P⋄,P⋄

full) using the randomized trial dataset:

µ̂ =
1

nrct



(Xi,Ti,Yi)∈Drct

Yi


Ti

π
− 1− Ti

1− π


w(Xi), σ̂2 = VarPrct [µ̂].

3: Estimate the sensitivity analysis bounds µ̂−
Γ (X) and µ̂+

Γ (X) using the observational study dataset, and
average over the target population P⋄:

µ̂+
Γ = ÊP⋄

X
[µ̂+

Γ (X)], (σ̂+
Γ )

2 = VarP⋄
X
[µ̂+

Γ (X)], µ̂−
Γ = ÊP⋄

X
[µ̂−

Γ (X)], (σ̂−
Γ )

2 = VarP⋄
X
[µ̂−

Γ (X)],

where Ê[·] and Var[·] denote the empirical mean and variance, respectively.
4: Compute the test statistics:

T̂+
Γ =

µ̂+
Γ − µ̂

σ̂+
⋄

, where σ̂+
rct =


(σ̂+

Γ )
2 + σ̂2 + 2σ̂+

Γ σ̂ and σ̂+
os =


(σ̂+

Γ )
2 + σ̂2,

T̂−
Γ =

µ̂− µ̂−
Γ

σ̂−
⋄

, where σ̂−
rct =


(σ̂−

Γ )
2 + σ̂2 + 2σ̂−

Γ σ̂ and σ̂−
os =


(σ̂−

Γ )
2 + σ̂2.

5: Output: φ̂⋄(Γ,α) = I{min

T̂+
Γ , T̂−

Γ


< zα/2}, where zα is the α-quantile of the standard normal.

is a lower bound for the true confounding strength Γ.
Without loss of generality, we fix the test φ̂rct and
recall that φ̂rct(Γ,α) is a deterministic function given
the data3. Hence, we obtain a lower bound for a fixed
significance level α by computing

Γ̂LB = inf
Γ
{Γ : φ̂rct(Γ,α) = 0}, (3)

that is, in words, the smallest Γ such that the test
accepts the null hypothesis. In practice, we compute
Γ̂LB with a grid search over values of Γ starting from
1 until the first test acceptance.

We show in the following proposition that Γ̂LB is a
valid lower bound for Γ.

Proposition 3.2. Let Γ̂LB be as in Equation (3) for
a fixed significance level α. Then, under Assump-
tions 2.1–2.3 and the setting described in Section 2,
Γ̂LB is an asymptotically valid lower bound, i.e.

P(Γ̂LB ≤ Γ) ≥ 1− α− o(1).

Proof. Note that by definition of Γ̂LB, we have that

P(Γ̂LB > Γ) = P(∩Γ≤Γ{φ̂rct(Γ,α) = 1})
≤ P(φ̂rct(Γ

,α) = 1) ≤ α+ o(1),

where the last inequality follows from the asymptotic
validity of the test in Proposition 3.1.

3When bootstrap is used to estimate the variance we fix
the bootstrap bags for all Γ.

4 SYNTHETIC EXPERIMENTS

In this section, we evaluate our two tests and the re-
sulting lower bounds in finite-sample synthetic and
semi-synthetic experiments. In particular, we fix the
true unobserved confounding strength Γ and conduct
experiments varying the sample size and the invariant
distribution Pinv.

First, we postulate that, for a fixed Γ, the tightness
of the lower bound Γ̂LB improves when the confounder
U is more informative about the potential outcomes
(Y (1), Y (0)). In our experiments, we choose the cor-
relation between the unobserved confounder and one
of the potential outcomes as a proxy measure of infor-
mation,

ρu,y =
CovPos

full
[Y (1), U ]

σY (1)σU
. (4)

Intuitively, the sensitivity analysis bounds are tight
for a specific Γ when Pos

cnf leads to a marginal distri-
bution Pos that maximally biases the estimable ATE.
This situation occurs, for instance, when patients ex-
periencing smaller outcomes are assigned to the con-
trol group while those with larger outcomes are in the
treatment group. In this case, the sensitivity anal-
ysis bounds must be sufficiently large to include the
true ATE and remain valid. Such a scenario is only
possible if U is very informative of Y (1), captured
by a high correlation coefficient. Conversely, when
Y (1) is independent of U , the true ATE is unaffected
by the unobserved confounding, and the sensitivity
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Figure 3: For all the plots: the significance level is α = 0.05, φ denotes the oracle test which rejects for Γ < Γ, Γ̂rct
LB

and Γ̂ os
LB denote which test is used to compute Γ̂LB. First row with synthetic experiment choosing Γ = 5: Probability of

rejection for different Γ and average Γ̂LB for the test for (a) small sample size: nrct = 2K,nos = 2K and (b) large sample

size: nrct = 20K,nos = 20K. Γ̂LB for (c) increasing sample size of the observational study with nrct = 20K and (d)
increasing correlation coefficient; nrct = 20K,nos = 20K. Second row with the semi-synthetic Hillstrom dataset choosing
Γ = 5 and using “history” as unobserved confounder (except in (h)): Probability of rejection for different Γ and average

Γ̂LB for (e) small sample size: nrct = 2300, nos = 6150 and (f) large sample size: nrct = 7680, nos = 20500. Γ̂LB for (g)
increasing nos with nrct = 7680 and (h) increasing correlation coefficient.

bounds are unnecessarily conservative, leading to low
power of the test and hence looser Γ̂LB. More for-
mally, in Appendix A.3 we show that when the con-
founder U is equal to (Y (1), Y (0)), the correlation co-
efficient ρu,y = 1 and Γ̂LB converges to Γ in the infi-
nite sample limit. In contrast, when U is independent
of (Y (1), Y (0)), ρu,y = 0 and Γ̂LB = 1.

Second, we study the behavior of the lower bound as
the observational study sample size grows. In real-
world situations, increasing the number of samples in
a randomized trial is often constrained by the logistical
challenges of conducting additional experiments. How-
ever, observational studies have the potential for con-
tinuous growth through electronic health records and
insurance claims databases. In the context of post-
marketing, ongoing monitoring enables the inclusion
of data from newly exposed individuals. Therefore,
we compare our two tests when the sample size of the
observational study grows: our experiments show that
φ̂os has better statistical power when nos is large.

4.1 Datasets

Synthetic distribution We first benchmark tests
and respective lower bounds with a synthetic distribu-

tion similar to the one used in Yadlowsky et al. (2022);
Jin et al. (2023). Here, the propensity score, the true
unobserved confounding strength Γ, and the correla-
tion strength can be designed.

We choose the invariant Pinv to be the following linear
outcome model

Y (T ) = (2T −1)X+(2T −1)+U + ,  ∼ N (0,σ2
Y ).

For the marginal distribution overX,U in P⋄
cnf we gen-

erate an unobserved confounder U ∼ Unif(0, 1) for
both study designs and draw the observed covariate
according to

Prct
X = Unif(−1, 1), Pos

X = Unif(−2, 2).

Further, for the observational distribution, we choose
the conditional distribution of the treatment T given
X,U to be a Bernoulli, which satisfies the marginal
sensitivity model with an odds ratio equal to Γ.
Specifically, we fix the marginal propensity score as

Pos
cnf(T = 1 | X) = logistic (0.75X + 0.5) ,

and design the full propensity score Pos
cnf(T = 1 | X,U)

such that it marginalizes to Pos
cnf(T = 1 | X). For

the randomized control trial, we choose π = Prct
cnf(T =

1|X,U) = 1/2. We refer the reader to Appendix B.1
for complete experimental details.
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Semi-synthetic datasets We expand our bench-
mark using three real-world randomized trials: Hill-
strom’s MineThatData Email data (Hillstrom, 2008),
the Tennessee STAR study (Word et al., 1990) and the
VOTE dataset (Gerber et al., 2008). In contrast to the
synthetic experiments, these datasets involve real out-
come functions, though the treatment assignment is
still controlled.

We focus on Hillstrom’s dataset for clarity of pre-
sentation, and we refer the reader to Appendix C.2
for experiments on the other datasets showing simi-
lar trends. Hillstrom (2008) focused on measuring the
impact of an email campaign on the dollars spent by
the recipients in the following two weeks. We first
sample a small subset of the original trial, D, as our
randomized trial, Drct. We can then subsample multi-
ple observational studies from D \Drct sharing a fixed
true confounding strength Γ, i.e. Pcnf , but with a
varying correlation between the hidden confounder U
and outcome Y (1), i.e. Pinv.

Let us denote Xall as the vector of all ob-
served covariates. While we cannot intervene on
Pinv(Y (1), Y (0)|Xall) as it is intrinsic to the dataset,
we can generate multiple observational studies by
partitioning Xall into unobserved U and observed
X in different ways. For a given partitioning
Xall = (U,X), the resulting Dos will have a specific
Pinv(Y (1), Y (0)|U) and hence correlation coefficient
ρu,y. With each choice of U , we enforce a propen-
sity score Pos

cnf(T = 1 | U) that satisfies E(Pos,Γ) by
subsampling D \ Drct. Finally, we remove U to con-
structDos. Our subsampling approach is a variation of
the methods presented in Keith et al. (2023); Gentzel
et al. (2021) (see further details in Appendix B.2). Fi-
nally, we enforce Assumption 2.3 by excluding urban
zip codes from the support of the randomized trial.

4.2 Experimental results

We now discuss our experimental results depicted in
Figure 3. The top row presents results for the syn-
thetic experiments, and the bottom row for the semi-
synthetic experiments.

Effect of observational study sample size First,
we observe in Figures 3a-3b and Figures 3e-3f that our
tests are valid in all settings, i.e. they do not reject
for strengths larger than Γ. However, the statisti-
cal power substantially improves in the large sample
size regime. In general, the performance of both tests
aligns. In Figures 3c and 3g, the lower bounds Γ̂rct

LB

and Γ̂os
LB vary with the sample size of the observational

study. We confirm that the φ̂os derives greater bene-

fits from a larger observational study sample size than
φ̂rct, as discussed in Section 3.1.

Effect of outcome-confounder correlation Note
that the tests in Figure 3a-3b and Figure 3e-3f are
somewhat conservative: The probability of rejection
for Γ close to Γ is small, which leads to a rather loose
lower bound estimate Γ̂LB. This is due to a fundamen-
tal limitation of the marginal sensitivity model that
cannot be overcome without additional assumptions
on how U affects Y, as discussed in Appendix A.3.
We study here the effect of increasing the outcome-
confounder correlation (Equation 4). Specifically, we
generate observational datasets with a constant Γ but
varying ρu,y, and report Γ̂LB for both tests. For the

synthetic experiments in Figure 3d, we plot Γ̂rct
LB and

Γ̂os
LB for n = 50 distinct values of σ2

Y (1) ∼ Unif[0, 1].
For the semi-synthetic experiments in Figure 3h, we
depict Γ̂rct

LB and Γ̂os
LB for different hidden confounders

U . Both plots confirm our hypothesis that higher ρu,y
correlates with a tighter lower bound Γ̂LB.

5 REAL-WORLD EXPERIMENTS

Linking back to the pipeline in Figure 1, we demon-
strate how epidemiologists can use the lower bound
Γ̂LB to successfully differentiate between studies with
significant confounding and those with negligible con-
founding. Specifically, we propose comparing Γ̂LB with
a critical value of Γ, estimated from the available ob-
servational data

Γ̂CT := inf{Γ : 0 ∈ [µ̂−
Γ , µ̂

+
Γ ]}.

In essence, Γ̂CT represents the minimum strength for
which sensitivity analysis includes both positive and
negative values of treatment effect, thereby invalidat-
ing the study results. Similar critical values have been
proposed in the literature to assess the robustness of
conclusions drawn from observational data, see e.g.
VanderWeele and Ding (2017); Jin et al. (2023). The
most appropriate choice for the specific context should
be determined by epidemiologists.

We flag an observational study as confounded if Γ̂LB

exceeds the critical value, i.e.

ψsens := I{Γ̂LB > Γ̂CT}. (5)

We compare our decision-making procedure with one
based on a binary test

ψbin = I{Γ̂LB > 1}.

In contrast to our procedure, the output of the bi-
nary one flags an observational study if any level of
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Table 1: The significance level is α = 0.05. For t = 0
(small confounding), the study only included patients
who were not previous users of HRT. For t ≤ 20
(strong confounding), the study includes patients who
have been using HRT for up to 20 years.

Metric
Stroke Coronary heart disease

t = 0 t ≤ 20 t = 0 t ≤ 20

Γ̂CT 1.017 1.172 1.017 1.164

Γ̂LB 1.052 1.207 1.009 1.224

ψbin 1 1 1 1
ψsens 1 1 0 1

confounding is detected. Note that choosing a more
powerful binary test in the literature would only exac-
erbate this issue.

Controversy around HRT For years, epidemiol-
ogists could not reach a consensus on the impact
of hormone replacement therapy (HRT) on coronary
heart disease and stroke based on the findings of the
Women’s Health Initiative (WHI) study (Anderson
et al., 2003). The WHI study included a randomized
trial and an observational study that examined the im-
pact of HRT on various cardiovascular events. While
the observational study suggested that HRT had a pro-
tective effect against these outcomes, the randomized
trial indicated the opposite. This discrepancy was re-
cently resolved by identifying a strong unobserved con-
founder - the time t since the start of HRT - and rean-
alyzing the data accordingly (Vandenbroucke, 2009).
We now present evidence that our procedure can yield
the same epidemiological conclusions and avoid issuing
false alarms when the confounding is negligible.

Experimental details We consider two binary-
valued outcomes: the presence of stroke and coronary
heart disease within the follow-up period. We apply
our procedure from Equation (5) to both the original
dataset, which includes all patients (i.e. t ≤ 20), and
a subsampled dataset that only includes patients who
were not previous users of HRT (i.e. t = 0). Since
the WHI study satisfies the criteria for a nested trial
design, we calculate Γ̂LB using our testing procedure
φ̂os. See Appendix B.3 for experimental details.

Results In Table 1, we show the result of both pro-
cedures on the WHI dataset, with small (t = 0) and
large (t ≤ 20) unobserved confounding .

For coronary heart disease, both algorithms flag the
study as confounded when strong unobserved con-

founding is present (t ≤ 20). However, when mini-
mal unobserved confounding is present (t = 0), our
test does not flag the study, while ψbin does. This
difference underscores our test’s capability to distin-
guish between small and large unobserved confound-
ing, thereby addressing a limitation in the flagging pro-
cedures based on existing testing methods.

In the case of stroke, both ψsens and ψbin correctly flag
the observational study, even when we adjust for the
time since the start of treatment (t = 0). This finding
aligns with experts suggesting that additional unob-
served confounding factors for stroke are still present
after controlling for the time since the start of hormone
replacement therapy (Prentice et al., 2005).

Observe that an alternative way to reach the same con-
clusions is by testing the difference in ATE estimates
between the two studies. However, our approach of-
fers a notable advantage: it allows us to test if the
observational study is too confounded on arbitrarily
fine-grained subgroups up to the individual level. In-
deed, we can estimate the CATE sensitivity analysis
bounds and compare critical values for specific sub-
groups against our lower bound. In contrast, testing
differences in group-level ATE estimates would require
several tests, one for each subgroup, leading to issues
with multiple testing and insufficient sample sizes.

6 DISCUSSION

Our approach shares limitations with other methods
that test for unobserved confounding. Since we rely
on the transportability assumption, our test could
misidentify violations of this assumption as unob-
served confounding. In addition, the lower bound we
provide is optimistic; outside the common support of
the two studies, the unobserved confounding could be
arbitrarily high. Furthermore, our test is designed to
detect confounding structures that bias the average
treatment effect and, hence, would not detect con-
founding bias that cancels out on average.

Our discussion suggests several important directions
for future research. First, developing a more refined
sensitivity model that accounts for the correlation be-
tween outcomes and unobserved confounders could re-
sult in a more powerful test. Second, our test could be
adapted to the scenario where multiple observational
datasets may be available but no randomized control
trials. Lastly, it would be highly valuable to propose a
procedure that not only identifies hidden confounding
but also suggests specific interventions to mitigate it.
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Dieng, Ruohong Li, Gaël Varoquaux, Jean-Philippe
Vert, Julie Josse, and Shu Yang. Causal infer-
ence methods for combining randomized trials and
observational studies: a review. arXiv preprint
arXiv:2011.08047, 2020.

Bénédicte Colnet, Julie Josse, Gaël Varoquaux, and
Erwan Scornet. Reweighting the RCT for general-
ization: finite sample analysis and variable selection.
arXiv preprint arXiv:2208.07614, 2022.

Bénédicte Colnet, Julie Josse, Gaël Varoquaux, and
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used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes/No/Not Applicable]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Yes/No/Not Applicable]

(b) The license information of the assets, if ap-
plicable. [Yes/No/Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Yes/No/Not
Applicable]

(d) Information about consent from data
providers/curators. [Yes/No/Not Applica-
ble]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Yes/No/Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partic-
ipants and screenshots. [Yes/No/Not Ap-
plicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Yes/No/Not
Applicable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Yes/No/Not Applica-
ble]
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A METHODOLOGY

A.1 Remaining proofs

We present here the proofs for Lemma 3.2 and Proposition 3.1.

A.1.1 Proof of Lemma 3.2

For ⋄ = rct, we have

µ(Prct
X ,Prct

full) = EPrct
full

[Y (1)− Y (0)]

= EPrct
X


EPrct [Y | T = 1, X]

Prct(T = 1)

Prct(T = 1)
− EPrct [Y | T = 0, X]

Prct(T = 0)

Prct(T = 0)



= EPrct


Y


T

π
− (1− T )

1− π


,

where the last equality follows from the internal validity of the randomized trial.

For ⋄ = os, we first note that by transportability of CATE and definition of Pos, we have

µ(Pos
X ,Pos

full) = µ(Pos
X ,Pos

full) = EPos
X


EPos

full
[Y (1)− Y (0) | X]


= EPos

X


EPrct

full
[Y (1)− Y (0) | X]


.

Furthermore, it holds via Assumption 2.3 (support inclusion) and the definition of Pos that

EPrct
X


EPrct

full
[Y (1)− Y (0) | X]

Pos(X)

Prct(X)


= EPrct

X


(EPrct [Y | T = 1, X]− EPrct [Y | T = 0, X])

Pos(X)

Prct(X)



= EPrct


Y


T

π
− (1− T )

1− π


Pos(X)

Prct(X)


,

where the last equality again follows from the internal validity of the randomized trial.

A.1.2 Proof of Proposition 3.1

First, observe that by definition,

{φ̂⋄(Γ,α) = 1} =⇒ {T̂+
Γ ≤ zα/2} ∪ {T̂−

Γ ≤ zα/2}. (6)

Hence, if PH0(Γ)(T̂
−
Γ ≤ zα/2) ≤ α

2 + o(1) and PH0(Γ)(T̂
+
Γ ≤ zα/2) ≤ α

2 + o(1), the theorem follows from the union

bound. For brevity, we only prove T̂+
Γ ≤ zα/2 as the proof for T̂−

Γ is analogous.

Proof of case ⋄ = rct Let (Xi, Yi, Ti) be i.i.d. sampled from Prct and define

Z =


Y T

π
− Y (1− T )

1− π
, µ+

Γ (X)

T

, with

µ := EPrct [Z] =

µ

Prct
X ,Prct

full


, µ+

Γ


Prct
X

T
and Σ := CovPrct(Z) =


σ2 ξΓ
ξΓ (σ+

Γ )
2


< ∞.

Further, let n = nrct + nos, where nrct ≪ nos, and define

Z̄n =



 1

nrct



(Ti,Yi)∈Drct

YiTi

π
− Yi(1− Ti)

1− π
,

1

nrct



Xi∈Drct

µ+
Γ (Xi)



 .
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By the multivariate central limit theorem, we have

√
nrct


Z̄n − µ

 D−→ N (0,Σ),

and it follows from the Cramr-Wold theorem that

√
nrct


1

nrct



Xi∈Drct

µ+
Γ (Xi)− µ̂


D−→ N


µ+
Γ


Prct
X


− µ


Prct
X ,Prct

full


,σ2 + (σ+

Γ )
2 − 2ξΓ


.

We now add and subtract the estimator of the CATE bounds

√
nrct


1

nrct



Xi∈Drct

µ+
Γ (Xi)− µ̂


=

√
nrct


1

nrct



Xi∈Drct

µ̂+
Γ (Xi)− µ̂


+
√
nrct





1

nrct



Xi∈Drct

µ+
Γ (Xi)− µ̂+

Γ (Xi)

  
OP ( 1√

nos
)





=
√
nrct


1

nrct



Xi∈Drct

µ̂+
Γ (Xi)− µ̂


+ oP (1),

where in the last equality we have used µ+
Γ − µ̂+

Γ L2(Prct) = oP (n
−1/2
rct ) and nrct ≪ nos. Hence, we also have

√
nrct


µ̂+
Γ − µ̂

 D−→ N

µ+
Γ


Prct
X


− µ


Prct
X ,Prct

full


,σ2 + (σ+

Γ )
2 − 2ξΓ


. (7)

Therefore, by the consistency of σ̂2, (σ̂+
Γ )

2 and Slutsky’s theorem, we have

lim
nrct→∞

PH0


T̂+
Γ ≤ zα/2


= lim

nrct→∞
PH0



 µ̂+
Γ − µ̂

(σ̂+
Γ )

2 + σ̂2 + 2σ̂+
Γ σ̂

≤ zα/2





= lim
nrct→∞

PH0




√
nrct(µ̂

+
Γ − µ̂)

(σ+
Γ )

2 + σ2 + 2σ+
Γ σ

≤ zα/2





≤ lim
nrct→∞

PH0




√
nrct(µ̂

+
Γ − µ̂)

(σ+
Γ )

2 + σ2 − 2ξΓ

≤ zα/2





where in the last line, we use Cauchy-Schwartz covariance inequality, i.e. −ξ ≤ |ξΓ| ≤ σ+
Γ σ. Finally, by

asymptotic normality established in Equation (7), we conclude that

lim
nrct→∞

PH0


T̂+
Γ ≤ zα/2


≤ lim

nrct→∞
PH0




√
nrct(µ̂

+
Γ − µ̂)− µ+

Γ (Prct
X ) + µ (Prct

X ,Prct
full)

(σ+
Γ )

2 + σ2 − 2ξΓ

≤ zα/2





= Φ(zα/2) = α/2.

Proof of case ⋄ = os Let n = nrct + nos with fixed proportions, where nrct = ρn and nos = (1 − ρ)n for
ρ ∈ (0, 1). Similarly to (1), by the central limit theorem and Lemma 3.2, it holds that

√
n



(Xi,Ti,Yi)∈Drct


YiTi

π
− Yi(1− Ti)

1− π


w(Xi)

D−→ N

µ

Pos
X ,Pos

full


,σ2/ρ


as n → ∞.

Then, from the asymptotic normality of µ̂+
Γ and the independence µ̂+

Γ ⊥⊥ µ̂, we have

√
n


µ̂+
Γ

µ̂


D→ N


µ+
Γ

µ


,


(σ+

Γ )
2/(1− ρ) 0
0 σ2/ρ


.
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Hence, by the δ-technique with h(X) = X1 −X2, we get

√
n

µ̂+
Γ − µ̂

 D−→ N

µ+
Γ


Pos
X


− µ


Pos
X ,Prct

full


,
(σ+

Γ )
2

1− ρ
+

σ2

ρ


as n → ∞.

Finally, from the consistency of σ̂2, (σ̂+
Γ )

2 and Slutsky’s theorem, it holds that

µ+
Γ − µ̂

(σ̂+
Γ )

2 + σ̂2

D−→ N

µ+
Γ


Pos
X


− µ


Pos
X ,Pos

full


, 1


as n → ∞.

As before, asymptotic normality implies that

lim
n→∞

PH0


T̂+
Γ ≤ zα/2


= lim

n→∞
PH0



 µ̂+
Γ − µ̂

(σ̂+
Γ )

2 + σ̂2
≤ zα/2





≤ lim
n→∞

PH0



 µ̂+
Γ − µ̂− µ+

Γ


Pos
X


+ µ


Pos
X ,Pos

full



(σ̂+

Γ )
2 + σ̂2

≤ zα/2





= Φ(zα/2) = α/2.

A.2 Nested design

In a nested trial design, the randomized trial is embedded in a cohort of eligible people who are proposed to
participate in the trial, but if they refuse, they are still included in the observational study. Two concrete
examples of nested designs are the Women Health Initiative (Anderson et al., 2003) and the recent study on
Medicaid (Degtiar et al., 2023).

In contrast to Section 2, the nested design has an extra variable S ∈ {0, 1}, which is a binary indicator for
randomized trial participation. More formally, we observe i.i.d. samples from an underlying distribution Qfull

over (X,U, Y (0), Y (1), Y, S, T ). Further, let Q := M(Qfull) be the marginal distribution over (X,Y, S, T ). We
can then write the marginal distributions over X of the (restricted) observational study and randomized trial as

Prct
X (X) = Q (X | S = 1) and Pos

X(X) = Q

X | S = 0, X ∈ supp(Prct)


.

This study design has a significant impact on the estimators previously introduced. In particular, the importance
weights w(X) can be estimated by pooling the observational study and the randomized trial as follows

w(X) =
Pos(X)

Prct(X)

=
Q(X | S = 0, X ∈ supp(Prct))

Q(X | S = 1)

=
Q(S = 0 | X)

Q(S = 1 | X)

Q(S = 1 | X ∈ supp(Prct))

Q(S = 0 | X ∈ supp(Prct))
,

where the sampling probability Q(S | X) can be identified under a nested study design (Dahabreh et al., 2021).

A.3 Limitations of MSM

We discuss here the intuition behind the tightness of Γ̂LB in the infinite-sample limit, though it carries over to
finite samples.

Without loss of generality, we focus on the lower bound derived from φ̂os and assume that the unobserved
confounding biases the average treatment effect upwards, i.e.

µ−
Γ=1(P

os
X) = µ+

Γ=1(P
os
X) ≥ µ(Pos

X ,Pos
full),
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where µ−
Γ=1(Pos

X) and µ+
Γ=1(Pos

X) are the IPW estimates of ATE on the (restricted) marginal distribution of the
observational study. Further, we define the infinite-sample lower bound as

ΓLB := inf

Γ : lim

n→∞
φ̂os(Γ,α) = 0


,

which is, in words, the value of Γ such that the sensitivity bounds include the true ATE. Formally, it holds that

ΓLB = inf

Γ : µ(Pos

X ,Pos
full) ∈ [µ+

Γ (P
os
X), µ−

Γ (P
os
X)]



= inf

Γ : µ+

Γ (P
os
X) = µ(Pos

X ,Pos
full) or µ−

Γ (P
os
X) = µ(Pos

X ,Pos
full)



= inf

Γ : µ−

Γ (P
os
X) = µ(Pos

X ,Pos
full)


,

where the second equality follows from the monotonicity of the sensitivity bounds and the last equality from the
assumption of the bias direction. Since the sensitivity bounds are continuous and strictly increasing, the set is
non-empty and contains one element.

The looseness of the lower bound can be characterized by ∆ := Γ − ΓLB: if ∆ > 0 even in the infinite-sample
limit, the lower bound will not be tight. We discuss two interesting cases:

• If Pos
full = argmax

P̃full∈E(Pos,Γ)

µ(X, P̃full), it holds that µ+
Γ(Pos

X) = µ(Pos
X ,Pos

full) and ∆ = 0. This case is achieved

when U = (Y (1), Y (0)) (see Dorn and Guo (2022) for a closed-form solution of the sensitivity bounds).
Intuitively, the MSM does not place any assumptions on the form of the confounder, and the worst-case
Pos
full is achieved when the confounder is equal to the potential outcomes.

• If U ⊥⊥ (Y (1), Y (0)), it holds that µ−
Γ=1(Pos

X) = µ+
Γ=1(Pos

X) = µ(Pos
X ,Pos

full). Hence, ∆ = Γ − 1 and the lower
bound can be arbitrarily loose.

B EXPERIMENTAL DETAILS

B.1 Synthetic experiments

We design the propensity scores such that the data distribution satisfies the MSM with true confounding strength
Γ∗ = 5. To do so, we define the adversarial propensity score as

e+(X,U) =


ℓ(X) if U > t(X)

u(X) if U ≤ t(X)
, where ℓ(X) =

e(X)

e(X) + (1− e(X))Γ
, u(X) =

e(X)

e(X) + (1− e(X))/Γ

are respectively the lower and upper bounds on the full propensity score under the MSM. By choosing t(X) =
e(X)−ℓ(X)
u(X)−ℓ(X) in our data-generating process in Section 4.1 where U ∼ U(0, 1), we ensure that EPos [e+(X,U) |
X] = e(X). We note that this is different from Kallus et al. (2019); Jesson et al. (2021); Oprescu et al. (2023)
where they choose a fixed threshold t(X) = 1/2, resulting in a data distribution that does not satisfy the
MSM. For all synthetic experiments, we estimate the propensity score using logistic regression. Further, we set
nbootstrap = 100,σ2

Y = 0.1,α = 0.05, and report the mean and standard error over 20 runs.

For the test φ̂os, we use the sensitivity bound estimator QB (Dorn and Guo, 2022), and fit the quantile function

using quantile forest regression (Meinshausen, 2006). For the test φ̂rct, we use the sensitivity bound estimator
B-Learner (Oprescu et al., 2023). We fit the quantile function using quantile forest regression (Meinshausen,
2006), and the outcome model using a random forest regressor.

B.2 Semi-synthetic experiments

We provide the details of the semi-synthetic experiments in Section 4.1. Specifically, we describe the subsampling
procedure used to generate a randomized trial and an observational study that satisfy our setting, along with
additional information about the datasets employed.
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B.2.1 Subsampling procedure

Algorithm 2 Randomized Trial Rejection Sampling (Keith et al., 2023)

1: Inputs: D \ Drct = {(Xi, Ui, Yi, Ti)}ni=1; Pos
cnf(T = 1 | U), a function specified by the user; M a constant

computed empirically.
2: Output: Dos.
3: Dos ← D \Drct

4: while true do
5: for each unit i in Dos do
6: Sample Ki uniform on (0, 1)

7: if Ki >
Pos
cnf (T=ti|Ui)
ˆPrct(T=ti)M

then

8: Dos ← Dos \ {(Xi, Ui, Yi, Ti)}
9: end if

10: end for
11: break if no units were discarded in the last iteration
12: end while
13: Remove U from Dos

We now detail the procedure for constructing a randomized trial and multiple observational datasets for our semi-
synthetic experiments. Given a large-scale real-world randomized trial D with covariates Xall, our objective is

to create multiple observational datasets Dos that differ in the correlation ρu,y =
CovPos

full
[Y (1),U ]

σY (1)σU
, i.e. Pinv, but

have the same confounding strength Γ, i.e. Pos
cnf . This setup allows us to separately understand the effect of

ρu,y on the power of the test. While we cannot directly intervene on Pinv(Y (1), Y (0)|Xall) as it is intrinsic to
the dataset, we can hide different U ∈ Xall for each Dos, resulting in different Pinv(Y (1), Y (0)|U) and hence
correlation coefficient ρu,y.

For each candidate hidden confounder U within Xall, we implement the following steps: First, we select a subset
from D to construct our randomized trial dataset, Drct, and remove U from Xall. Next, we subsample D\Drct to
generate a dataset Dos that belongs to E(Pos,Γ). We enforce this constraint by constructing a specific propensity
score Pos

cnf(T = 1 | U) (detailed in the sequel) and employing the subsampling procedure in Algorithm 2 using
this Pos

cnf(T = 1 | U). Note that for simplicity, we choose a propensity score that does not depend on X; this is
consistent with the graphical model in Figure 2.

We use different Pos
cnf(T = 1 | U) for continuous and binary confounders. We first define

ℓ =
π̂

π̂ + [1− π̂]Γ
, u =

π̂

π̂ + [1− π̂]/Γ
, (8)

where we estimate π̂ = ˆPrct(T = 1) from D \ Drct. For a continuous confounder U positively correlated with
Y (1), we use the following full propensity score in Algorithm 2:

Pos
cnf(T = 1 | U) =


ℓ if U > Qq̂∗(U),

u if U < Qq̂∗(U),
(9)

where Qq(U) = inf {z ∈ R : Pos
cnf(U ≤ z) ≥ q} is the q-th quantile of the marginal distribution of U . Since the

propensity score does not depend on X, using q̂ = u−π̂
u−ℓ makes sure that

e(X) = Pos
cnf(T = 1|X) = Pos

cnf(T = 1) = EU [Pos
cnf(T = 1|U)Pos

cnf(U)] = ˆPrct(T = 1)

and hence the subsampled dataset, Dos, satisfies E(Pos,Γ). Note that this is equivalent to enforcing the same
marginal propensity score before and after the subsampling. For a negatively correlated continuous confounder,
we choose q̂ = π̂−ℓ

u−ℓ and change the direction of the inequalities in Equation (9).

Further, for a positively correlated binary confounder, we use the following full propensity score in Algorithm 2:

Pos
cnf(T = 1 | U) =


ℓ if U = 1,

u if U = 0.
(10)
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By first subsampling D \Drct such that

ˆPrct(U = 1) =
u− π̂

u− ℓ
,

and then applying Algorithm 2 with the full propensity score from Equation (10), we again obtain e(X) =

Pos
cnf(T = 1) = ˆPrct(T = 1). For a negatively correlated binary confounder, we first enforce ˆPrct(U = 1) = π̂−ℓ

u−ℓ
and swap ℓ for u in Equation (10), and vice versa.

The subsampling procedure in Algorithm 2 allows for the construction of observational datasets where the causal
effect is identifiable non-parametrically, in contrast to previous approaches, such as (Gentzel et al., 2021), that

do not guarantee identifiability after subsampling. In Algorithm 2, we note that M =
maxi∈{1,...,n} Pos

cnf (T=ti|Ui)

mini∈{1,...,n} ˆPrct(T=ti)

in the limit satisfies M ≥ supT,U
Pos
cnf (T |U)
ˆPrct(T )

, which is required to ensure that the causal effect is identifiable in

the subsampled dataset (see Theorem 3.2 in Keith et al. (2023)). We empirically observe that the subsampling
procedure approximately discards half of the instances from D \Drct.

B.2.2 Datasets details

We give additional details about the three datasets we use for the semi-synthetic experiments.

• Hillstrom’s MineThatData Email data (Hillstrom, 2008). The Hillstrom dataset contains records of
64,000 customers who purchased within the last twelve months. They were part of an e-mail campaign
to assess the effectiveness of distinct campaign strategies. Two treatment groups, “Mens” and “Womens”
email campaigns, and a control group were established. Treatments were randomly assigned. Our analysis
primarily focuses on a combined treatment group, which constitutes roughly 66% of the dataset. While the
original dataset has different outcomes, we looked at the dollars spent in the two weeks post-campaign. The
dataset provides data on recent purchase patterns (Recency), annual spending categories (History Segment)
and values (History), merchandise type, either Mens (Mens) or Womens (Womens), geographical location
via zip code (Zip Code), newcomer status (Newbie), and purchasing avenues (Channel). After subsampling,
we end up with a randomized trial of size nrct = 7680 and an observational dataset of size nos = 20500.
Assumption 2.3 is enforced by excluding urban zip codes in the trial.

• VOTE dataset (Gerber et al., 2008). The VOTE dataset studies the effect of social pressure on voting
behaviors among Michigan’s registered voters, focusing on those who voted in the prior election and met
certain criteria. The primary outcome is a binary variable indicating whether the letter recipients voted. In
this randomized trial, participants were allocated to a control group or one of four treatment groups. The
treatment groups received distinct letters, each varying in social pressure intensity, aimed at encouraging
voting. The most persuasive letter provided insight into the recipient’s neighbors’ voting patterns from the
previous two elections and implied updates on neighbors’ subsequent voting actions in future letters. Using
the split in (Stutz, 2023), we incorporated roughly 190,000 samples in the control group, and we kept the
treatment group with the strongest letter, leaving about 38,000 samples. We retained preprocessed features
like age, household size, gender, and two scores reflecting past voting habits and the voting patterns of
neighbors. After subsampling, we end up with a randomized trial of size nrct = 10650 and an observational
dataset of size nos = 36800. We discard households with more than 4 participants to enforce Assumption 2.3.

• Tennessee STAR Project (Word et al., 1990). The Tennessee STAR experiment, initiated in 1985, was
a randomized study examining the impact of class size on students’ standardized test scores, tracking them
from kindergarten through third grade. Initially, students and teachers were randomly placed into class sizes,
intending to maintain these conditions throughout the study. We follow the dataset preprocessing outlined
in (Kallus et al., 2018). Their analysis concentrates on two conditions: small classes (13-17 students) and
regular-sized classes (22-25 students). They used the class size at first grade as the treatment variable,
observing 4,509 students. Their outcome aggregates scores from listening, reading, and math tests at the
end of the first grade. After excluding students with missing values, the final sample consisted of 4,218
students: 1,805 in small classes (treatment) and 2,413 in regular-sized classes (control). The observed
features for each student are gender, race, birth month, birthday, birth year, free lunch given or not and
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teacher ID. After subsampling, we end up with a randomized trial of size nrct = 600 and an observational
dataset of size nos = 1800. For the STAR project, we keep inner-city and suburban students but remove
urban and rural ones to enforce Assumption 2.3.

We one-hot-encode all categorical features and standardize in [0, 1] all continuous features.

Implementation We use QB (Dorn and Guo, 2022) for the test φ̂os. For continuous outcomes (Hillstrom and
STAR), we fit a random forest regressor for the quantile functions, while we leverage the closed-form solution for

the quantiles in the binary case (VOTE). For the test φ̂rct we use the B-Learner (Oprescu et al., 2023), fitting
respective random forest regressors for the quantiles, the outcome and the bounds models. For the binary case,
we use the closed-form solution for the quantiles and fit the outcome and bounds models with XGBoost (Chen
et al., 2015). We always train a logistic regressor for the propensity score. We report mean and standard error
over 15 runs and set nbootstrap = 200,α = 0.05 for all experiments.

B.3 Women’s Health Initiative

The Women’s Health Initiative (WHI) is a long-term national health study that has focused on strategies for
preventing the major causes of death, disability, and frailty in older women, specifically heart disease, cancer,
and osteoporotic fractures. This multi-million dollar, 20+ year project, sponsored by the National Institutes
of Health (NIH), the National Heart, Lung, and Blood Institute (NHLBI), originally enrolled 161,808 women
aged 50-79 between 1993 and 1998. The WHI was one of the most definitive, far-reaching clinical trials of
post-menopausal women’s health ever undertaken in the US.

The WHI had two major parts: a Clinical Trial and an Observational Study. The randomized controlled Clinical
Trial (CT) enrolled 68,132 women on trials testing three prevention strategies. Eligible women could choose to
enrol in one, two, or three of the trial components.

• Hormone Therapy Trials (HT): This component examined the effects of combined hormones or estrogen
alone on the prevention of heart disease and osteoporotic fractures, and associated risk for breast cancer.
Women participating in this component took hormone pills or a placebo (inactive pill) until the Estrogen
plus Progestin and Estrogen Alone trials were stopped early in July 2002 and March 2004, respectively. All
HT participants continued to be followed without intervention until close-out.

• Dietary Modification Trial (DM): The Dietary Modification component evaluated the effect of a low-fat and
high-fruit, vegetable and grain diet on the prevention of breast and colorectal cancers and heart disease.
Study participants followed either their usual eating pattern or a low-fat dietary pattern.

• Calcium/Vitamin D Trial (CaD): This component evaluated the effect of calcium and vitamin D supple-
mentation on the prevention of osteoporotic fractures and colorectal cancer. Women in this component took
calcium and vitamin D pills or placebos.

The Observational Study (OS) examines the relationship between lifestyle, health and risk factors and disease
outcomes. This component involves tracking the medical events and health habits of 93,676 women. Recruitment
for the observational study was completed in 1998 and participants have been followed since.

To assess our method in a real-world scenario, we use observational study and randomized trial data from the
Womens Health Initiative (WHI). We use the Postmenopausal Hormone Therapy (PHT) trial as the RCT in our
analysis (nrct = 16, 608), which was run on postmenopausal women aged 50-79 years with an intact uterus. The
trial investigated the effect of hormone therapy on several types of cancers, cardiovascular events, and fractures,
measuring the time-to-event for each outcome. In the WHI setup, the observational study component was run
in parallel and tracked similar outcomes to the RCT.

Data preprocessing We binarize a composite outcome, called the global index, in our analysis, where Y =
1 if coronary heart disease or stroke was observed in the first seven years of follow-up, and Y = 0 otherwise.



Piersilvio De Bartolomeis∗, Javier Abad∗, Konstantin Donhauser, Fanny Yang

Note that Y = 0 could also occur from censoring. To establish treatment and control groups in the observational
study, we use questionnaire data in which participants confirm or deny usage of combination hormones (i.e.
both estrogen and progesterone) in the first three years. Using this procedure, we end up with a total of
nos = 33, 511 patients. Finally, we restrict the set of covariates used to those that are measured in both
the RCT and the observational study. In particular, we use as covariates only those measured in both the
RCT and observational study, and we further restrict them to those identified as significant in epidemiological
literature, such as in (Prentice et al., 2005). Specifically, the covariates in our analysis are: AGE, ETHNIC White,
BMI, SMOKING Past Smoker, SMOKING Current Smoker, EDUC x College graduate or Baccalaureate Degree,
EDUC x Some post-graduate or professional, MENO, PHYSFUN. The data used is available on BIOLINCC.

Experimental details We train logistic regression for both outcome models and propensity score. We use
as sensitivity bounds DVDS (Dorn et al., 2021) for the test φ̂os, and B-Learner for the test φ̂rct. We test for
confounding in one direction, i.e. we only compute the test statistic T̂+

Γ . We set nbootstrap = 100 and α = 0.05
for all experiments.

(https://biolincc.nhlbi.nih.gov/studies/whi_ctos)
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C ADDITIONAL EXPERIMENTS

C.1 VOTE dataset

We present the experimental results with the VOTE dataset in Figure 4. Experiments were conducted with
both weak and strong confounders, and under small and large sample regimes. We use the outcome Y as a
strong confounder given the lack of a feature highly correlated with the outcome in the dataset. These results
corroborate previous findings that higher correlated confounders and larger sample sizes lead to greater power
of our test. In all scenarios, the performance of both tests closely aligns.
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(b) Large sample “age”
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(c) Small sample Y
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(d) Large sample Y

Figure 4: Probability of rejection for different choices of Γ for the test for the VOTE dataset. For all the
plots, the significance level is α = 0.05 and Γ = 9. (a)-(b) Weak confounder: “age”. (a) small sample size:
nrct = 3.2K,nos = 11K and (b) large sample size: nrct = 10.6K,nos = 36.8K. (c)-(d) Strong confounder:
outcome Y . (c) small sample size: nrct = 3.2K,nos = 11K and (d) large sample size: nrct = 10.6K,nos = 36.8K.

C.2 Tennessee STAR Project

We present the experimental results with the STAR Project in Figure 5. Experiments were conducted with both
weak and strong confounders with the full dataset. We do not run experiments with a small sample size since
the STAR dataset already represents a small sample regime. These results corroborate previous findings that
higher correlated confounders lead to greater power.
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(a) Weak confounder: “free lunch”
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(b) Strong confounder: Y

Figure 5: Probability of rejection for different choices of Γ for the test for the STAR Project. For all the plots,
the significance level is α = 0.05 and Γ = 5. We use the original sample sizes nrct = 600, nos = 1.8K. (a) weak
confounder: “free lunch” (b) strong confounder: outcome Y .


