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Abstract

We consider the problem of reward maximiza-
tion in the dueling bandit setup along with
constraints on resource consumption. As in
the classic dueling bandits, at each round the
learner has to choose a pair of items from a
set of K items and observe a relative feedback
for the current pair. Additionally, for both
items, the learner also observes a vector of
resource consumptions. The objective of the
learner is to maximize the cumulative reward,
while ensuring that the total consumption of
any resource is within the allocated budget.
We show that due to the relative nature of
the feedback, the problem is more difficult
than its bandit counterpart and that without
further assumptions the problem is not learn-
able from a regret minimization perspective.
Thereafter, by exploiting assumptions on the
available budget, we provide an EXP3 based
dueling algorithm that also considers the asso-
ciated consumptions and show that it achieves
an Õ

((OPT(b)

B + 1
)
K1/3T 2/3

)
regret, where

OPT(b) is the optimal value and B is the avail-
able budget. Finally, we provide numerical
simulations to demonstrate the efficacy of our
proposed method.

1 Introduction

The standard Multi-Armed Bandit (MAB) setting in-
volves an agent learning from stochastic feedback, pro-
vided in the form of numerical rewards [Lai and Rob-
bins, 1985, Auer et al., 2002a, Lattimore and Szepesvári,
2020]. At every round t ∈ [T ] the learner pulls an arm
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from K arms and the environment provides a reward
rt drawn i.i.d. from a distribution unknown to the
learner. The objective of the learner is to maximize the
cumulative reward over the time horizon T . In many
real world scenarios, e.g., movie recommendations, ad
placements, retail management, tournament ranking,
search engine optimization, one does not receive a nu-
merical reward but rather receives feedback in terms of
pairwise comparisons or rankings. In the simplest Du-
eling Bandits setup, at each round t ∈ [T ] the learner
picks two items i, j from K arms, and receives the
output of a duel between the two, i.e., whether item i
is preferred over j or vice versa. The objective of the
learner is to minimize regret as compared against a
best arm in hindsight. This setting has garnered a fair
amount of attention over several years [Yue et al., 2012,
Yue and Joachims, 2011, Zoghi et al., 2014a, Gajane
et al., 2015, Ailon et al., 2014b, Zoghi et al., 2014b].
The simplicity and ease of data collection techniques of
preference based learning gained huge interest in the on-
line learning community. As a result, Dueling Bandits
has been generalized and studied in multiple practi-
cal scenarios, e.g., extending pairwise preferences to
subsetwise preferences Saha and Gopalan [2018a], Ren
et al. [2018], Saha and Gopalan [2020], finite to large or
potentially infinite decision spaces Kumagai [2017], Yue
and Joachims [2009], Saha et al. [2021a], stochastic to
adversarial preferences Gajane et al. [2015], Saha et al.
[2021b] and contextual scenarios Dudík et al. [2015],
Saha [2021], Bengs et al. [2022], item unavailability
Gaillard et al. [2023], non-stationary preferences Gupta
and Saha [2022] or even in interdisciplinary fields of re-
search like robotics Bhatia et al. [2020] and assortment
optimization Agrawal et al. [2019], Désir et al. [2016].

However, in many of these real-world scenarios, the
agent has to minimize regret while operating under cer-
tain constraints, e.g., a limited supply of resources or a
cost associated with each item. For e.g., ad placement
is often constrained by the available advertiser budget
and user reach, recommendation of movies might have
a cost associated with each recommendation, and retail
management might need to worry about logistical or
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supply constraints. In recent times, preference based
feedback is also used to train more complex systems
like assistive robots and autonomous cars which are
computationally demanding and often resource con-
straints may limit the available resources. Therefore
from the perspective of actually deploying Dueling ban-
dit algorithms in real-world, it is essential to study the
problem in a more general constrained setup - Con-
strained Dueling Bandits.

Informal Problem Setup: At every round, the
learner picks arms xt, yt ∈ [K] to duel, where K is
the number of arms, and observes a Bernoulli output
with parameter P (xt, yt). Here P (xt, yt) measures the
probability of xt being preferred over yt and therefore
the matrix P = [P (i, j)]i,j∈[K] is called the preference
matrix. Further it also observes some consumption
of resources associated with arms xt and yt. The ob-
jective of the learner is to minimize the regret over
a time horizon while ensuring that the total sum of
consumptions is less than a pre-defined budget (see
Section 3 for a formal description).

1.1 Our Contributions

We provide an outline of our main contributions here.
Note in the dueling setup, the quality of an item is
relative, so to estimate the quality of one arm we need
to compare it with the rest. The primary challenge lies
in ensuring we can actually query all the pairs, while
staying within the budget constraint. A straightforward
extension of standard algorithms from Bandit with
Knapsack fails in DB setting because they draw arms
in an UCB manner which leads to selecting the same
arm twice, thus revealing no statistical information.
Further existing elimination based algorithms for DB
[Yue et al., 2012, Yue and Joachims, 2011, Zoghi et al.,
2014a] cannot be extended to the constrained setting
since once an arm is eliminated, an unbiased estimate
of the corresponding scores cannot be obtained (also
see Remark 5.1). Precisely our contributions are as
follows.

1. Formulation: We setup the Constrained Duel-
ing Bandits(Constrained-DB) problem by defining
two kinds of benchmarks, corresponding to two
types of best arms/winners - Condorcet winner
and the Borda winner, such that the benchmarks
also satisfy the given constraints (see Section 3).

2. Lower Bounds: We show that the ‘relative’ na-
ture of feedback makes Constrained-DB a difficult
problem to solve (in comparison to its MAB coun-
terpart). Specifically, we provide lower bound
results for both Condorcet Constrained-DB and
Borda Constrained-DB and show that the most
general setup has a regret of Ω(T ) and therefore

one needs to impose additional assumptions either
on the structure of the preference matrix or the
available budget to give meaningful regret bounds
(see Section 4).

3. Algorithms and Upper Bounds: Under as-
sumptions on the available budget, we provide an
EXP3 based algorithm Vigilant D-EXP3that also
take into account the associated resource consump-
tions before choosing two arms to duel. There-
after we show it achieves sub-linear regret (see
Section 5).

4. Empirical Evaluations: We also evaluate our
proposed algorithms empirically on synthetic and
real data and show that they outperform the ex-
isting DB algorithms when there are budget con-
straints associated with arm selections (see Sec-
tion 6).

2 Related Works

We briefly discuss some related literature here; for a
more detailed discussion see Appendix A.

Dueling Bandits: The Dueling Bandits setting has
seen a lot of development in the past decade. The
problem in its current form was introduced in Yue et al.
[2012] and upper and lower bounds on the regret were
provided by assuming that the preference matrix had
some specific structures such as total ordering, strong
stochastic transitivity and strong triangle inequality
(also see Section 3 for definitions). Subsequently [Yue
and Joachims, 2011] proposed ‘Beat the Mean’ algo-
rithm with improved regret bound while also relaxed
the strong stochastic transitivity assumption to relaxed
stochastic transitivity. Zoghi et al. [2014a] further re-
laxed the total ordering assumption to the existence
of a Condorcet winner (an arm that beats every other
arm) and provided a upper confidence bound (UCB)
based algorithm. [Ailon et al., 2014a] studied the duel-
ing bandit problem in an adversarial setup (where the
preference matrix P changes over time), introducing
the sparring EXP3 idea, albeit without regret guaran-
tees. Subsequent works Gajane et al. [2015], Saha et al.
[2021b] utilized this concept to prove regret guarantees
in adversarial environments.

Constrained Bandits: There is a body of literature
that under the name Bandits with Knapsacks that looks
at cumulative reward maximization under budget con-
straints. It was first introduced in [Badanidiyuru et al.,
2013] for the MAB setting and the proposed algorithms-
BalancedExploration and PrimalDualBwK were shown
to enjoy optimal regret bounds up to polylogarithmic
factors. BalancedExploration however is not an effi-
cient algorithm (see Remark 4.2 in [Badanidiyuru et al.,
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2013]) and we do not pursue this. We further show that
in fact PrimalDualBwK attains an Ω(T ) regret in the
MAB setting, and as such we do not try to adapt this
algorithm to the Constrained-DB setting. [Agrawal
and Devanur, 2016] study the natural extension of the
problem - the linear contextual bandits with knapsacks
and provide an algorithm utilizing ideas from UCB
and primal-dual methods with sub-linear regret bound.
Further extensions have been studied such as regret
minimization with concave reward and convex objective
[Agrawal et al., 2016, Agrawal and Devanur, 2014], ad-
versarial setting [Immorlica et al., 2022] and smoothed
adversarial setting [Sivakumar et al., 2022] that all use
a version of the central primal-dual idea from [Agrawal
and Devanur, 2016]. In Section 5 we discuss why a
direct extension of the algorithm from [Agrawal and
Devanur, 2016] does not work in the Constrained-DB
setting (see Remark 5.1).

3 Preliminaries

3.1 Existing Concepts from Dueling Bandits

A learner at round t ∈ [T ] is presented with K arms
to choose from. It then selects two arms xt, yt ∈
[K] := {1, 2, . . . ,K} to duel, and receives a feedback
ot ∼ Ber(P (xt, yt)). Here, Ber(p) denotes the Bernoulli
distribution with parameter p and P (xt, yt) measures
the probability of xt being preferred over yt, that sat-
isfies P (x, y) = 1− P (y, x) for all x, y ∈ [K]. Further
we define the matrix P = [P (i, j)]i,j∈[K] and call it the
preference matrix.

Next we consider two notions of winners in the dueling
setup, namely the Borda winner and the Condorcet
winner. We define them as follows.
Definition 3.1 (Condorcet Winner Zoghi et al.
[2014a]). We define the Condorcet winner x(c) as the
arm that is preferred over all the other arms, i.e.,
x(c) = i iff P (i, j) > 1/2, ∀j ∈ [K] \ {i}. Further
the Condorcet score of arm x is defined as

c(x) = P (x, x(c)).

Definition 3.2 (Borda WinnerSaha et al. [2021b]).
We define the Borda score of an arm x ∈ [K] as

b(x) =
1

K − 1

∑
x ̸=y

P (x, y)

The Borda winner x(b) is defined as the arm that max-
imizes the Borda score, i.e., x(b) = argmaxx b(x).
Definition 3.3 (Total Ordering [Yue et al., 2012, Yue
and Joachims, 2011]). We say the preference matrix
P satisfies Total Ordering(TO) if there exists a binary
total order relation ≻ with ∀ i, j ∈ [K], i ≻ j implies
P (i, j) > 1

2 .

Definition 3.4 (Strong Stochastic Transitivity
[Yue et al., 2012, Yue and Joachims, 2011]). We say
the preference matrix P satisfying TO condition fur-
ther satisfies Strong Stochastic Transitivity (SST) if
for every i, j, k ∈ [K], i ≻ j ≻ k implies P (i, k) ≥
max{P (i, j), P (j, k)} where ≻ is the underlying TO
relation.

3.2 Our Problem Setup

While the problem of DB is well studied over the past
two decades (see section 2), the literature lacks the
practical setup of considering the aspects resource con-
straints in Dueling Bandits, which is often realizable
in practical scenarios as we motivated in section 1. In
this section, we define the constrained dueling bandit
setup.

Constrained Dueling Bandits. At round t ∈ [T ]
when the learner selects two arms xt, yt ∈ [K] to duel,
it also observes two consumption vectors u(xt), v(yt) ∈
[0, 1]d associated with the pulled arms xt and yt, drawn
independent of the past history from an unknown distri-
bution. The d elements of the vector are the consump-
tions associated with d different types of resources. We
define u∗(·) and v∗(·) as the expected consumptions of
the two arms respectively, i.e., u∗(x) = E[u(x)], and
v∗(x) = E[v(x)]. The learner also has the option of
not choosing any arm at a round and see no feedback
and incur no consumption. The total budget available
to the learner is B ≤ T and the interaction with the
environment ends at t = τ when either τ = T (end of
time horizon) or (

∑τ
t=1 ut(xt) + vt(xt))i > B for some

i ∈ [d] (the budget of some resource is exhausted).

Benchmarks. Next we describe the benchmarks in
the two settings that our algorithms compete against.
Suppose πx(·) and πy(·) represent the distribution of
arms played in the first selection and second selection of
the dual respectively. Then the two optimal solutions
are defined as.

1. Condorcet Optimal Solution Consider the fol-
lowing Linear program (LP) with Condorcet score.

max
πx,πy∈∆K

∑
x,y∈[K]

πx(x) c(x) + πy(y)c(y) ,

such that
∑

x,y∈[K]

πx(x)u
∗(x) + πy(y)v

∗(y) ≤ B

T
1 .

(LP− Condorcet)

where ∆K is the probability simplex over K. Sup-
pose π

∗(c)
x , π

∗(c)
y solve (LP− Condorcet) then we

define the optimal value as

OPT(c) = T
∑

x,y∈[K]

π∗(c)
x (x) c(x) + π∗(c)

y (y) c(y).
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2. Borda Optimal Solution Consider the following
Linear program (LP) with Borda score.

max
πx,πy∈∆K

∑
x,y∈[K]

πx(x) b(x) + πy(y)b(y) ,

such that
∑

x,y∈[K]

πx(x)u
∗(x) + πy(y)v

∗(y) ≤ B

T
1 .

(LP− Borda)

where ∆K is the probability simplex over K. Sup-
pose π

∗(b)
x , π

∗(b)
y solve (LP− Borda) then we define

the optimal value as

OPT(b) = T
∑

x,y∈[K]

π∗(b)
x (x) b(x) + π∗(b)

y (y) b(y).

Remark 3.1. Note that the benchmarks
(LP− Condorcet) and (LP− Borda) compute a
non-adaptive policy and follows the development in
[Agrawal and Devanur, 2016]. It can be shown that
OPT(c) and OPT(b) upper bounds the value of the
corresponding optimal adaptive policy (e.g., Lemma 1
in Agrawal and Devanur [2016]).

Regret Next we define the total cumulative regret
of an algorithm that chooses the sequence of arms
{(xt, yt)

τ
t=1}, where τ ≤ T is the stopping time of the

algorithm. We define the following types of regret.

1. Condorcet Regret. We define the cumulative
Condorcet reward until the stopping time τ as

REW(c) = E
τ∑

t=1

c(xt) + c(yt), (1)

and the corresponding Condorcet regret as

REG(c)(T ) = OPT(c) − REW(c) (2)

2. Borda Regret. We define the cumulative Borda
reward until the stopping time τ as

REW(b) = E
τ∑

t=1

b(xt) + b(yt), (3)

and the corresponding Borda regret as

REG(b)(T ) = OPT(b) − REW(b) (4)

Objective Informally the objective is to maximize
the total sum of rewards while satisfying the bud-
get constraint. Formally, the algorithm competes
with the benchmarks defined in (LP− Condorcet) and
(LP− Borda) and the performance is measured via the
regret defined in (2) and (2).

Notation. For ease of exposition, we shall hide de-
pendencies on constants and work with order notation.
Towards that, we shall use the notation n0 = O(t) to
imply that there exists constant c (independent of t)
such that ≤ n0 ≤ ct. The notation Õ(t) has a simi-
lar meaning but hides the dependence on logarithmic
terms. Further, n0 = Ω(t) implies there exists c such
that n0 ≥ ct and n0 = o(t) implies lim n0

t → 0 .

4 Lower Bounds

We first analyze the lower bound for the Constrained-
DB problem to analyze the problem complexity and
achievable regret performance. Detailed proofs given
in Appendix B.

4.1 Lower Bounds for Condorcet
Constrained-DB

We state two lower bound results.

(1) Lemma 4.1 states that in the most general setting, if

the allocated budget B = o

 K

ϵ
(c)
min

2

 then the regret of

any algorithm for Condorcet-constrained-DB is Ω(T ),
where ϵ

(c)
min is the minimum gap in the Condorcet scores.

Further the bound does not improve even if we assume
that the preference matrix satisfies total ordering but
does improve if we further assume that the preference
matrix satisfies strong stochastic transitivity.

(2) Lemma 4.2 states that if the budget B = o

(
K

ϵ
(c)
min

)
then any algorithm for Condorcet-constrained-DB has
regret Ω(T ).

Remark 4.1. The Ω(T ) regret in (2) cannot be im-
proved with any structural assumptions on the prefer-
ence matrix (such as TO or SST) and a similar result
can be shown to hold in the Constrained MAB setting.
The Ω(T ) regret in (1) is far more interesting because
as we will show in the sequel, this arises precisely be-
cause of the interplay between relative feedback and
budget constraints and could potentially be improved
either by assuming some structure in the preference
matrix (specifically SST in this case) or that the agent
has enough budget B ≥ K

ϵ2min
.

Lemma 4.1. Consider the Constrained-DB setting
with preference matrix P and define the minimum gap
in Condorcet scores ϵ

(c)
min := min

i,j∈[K]
(|c(i)− c(j)|). Sup-

pose the available budget B = o

(
K

ϵ
(c)
min

2

)
then there ex-

ists a preference matrix P such that REG(c)(T ) = Ω(T ).
Further we show that our Ω(T ) regret bound exists even
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when P satisfies total ordering (cf. Definition 3.3) but
not when P satisfies strong stochastic transitivity (cf.
Definition 3.4)

Proof sketch. We outline the idea behind the creation
of the lower bound example here. For ease of exposition
we consider a simplified setup with K = 3. We start
with the general setting without any assumption on
the preference matrix and subsequently consider total
ordering and strong stochastic transitivity.

General setting: Suppose the preference matrix P is
given by

P =


1

2

1

2
+ ϵ

1

2
+ 2ϵ

1

2
− ϵ

1

2

1

2
1

2
− 2ϵ

1

2

1

2


and the true consumption of the three arms are given
by u∗(1) = v∗(1) = 1, u∗(2) = v∗(2) = 0 and u∗(3) =
v∗(3) = 0.

The optimal policy plays arms xt = 1, yt = 1 for B
rounds and thereafter plays arms xt = 2, yt = 2 for the
remaining T−B rounds. The total accumulated reward
by the optimal policy is OPT(c) = B+(T −B)

(
1
2 − ϵ

)
.

Note that arm 1 is the Condorcet winner and any
algorithm needs to play the pairs (1,2) and (1,3) at
least 1

ϵ2 number of times to determine if c(2) > c(3).
However since the budget B = o

(
1
ϵ2

)
, no algorithm

can determine if c(2) > c(3) or c(2) < c(3) and hence
would always end up playing the sub-optimal arm at
least (T−B)

2 number of times after the initial B rounds.
Therefore

REW(c) ≤ B +
(T −B)

2

(1
2
− ϵ
)
+

(T −B)

2

(1
2
− 2ϵ

)
which implies OPT(c) ≥ (T−B)

2 ϵ = Ω(T )

The key observation here is that although arm 2 and
arm 3 have zero consumption playing the pair (2, 3)
does not provide any information about whether s(2) >
s(3) or s(3) > s(2). This is in contrast to the standard
MAB setting where playing arms 2 and 3 does give
information about whether s(2) > s(3) or s(2) < s(3).

Total Ordering: Next consider the preference matrix
P below that satisfies total ordering.

P =


1

2

1

2
+ ϵ

1

2
+ 2ϵ

1

2
− ϵ

1

2

1

2
+ ϵ

1

2
− 2ϵ

1

2
− ϵ

1

2



with the same consumptions as before. Does playing the
pair (2, 3) give us any information about s(2) > s(3)?
The answer is no. This is because we have another
instance with

P ′ =


1

2

1

2
+ ϵ

1

2
+ 2ϵ

1

2
− ϵ

1

2

1

2
− ϵ

1

2
− 2ϵ

1

2
+ ϵ

1

2


such that although s(2) > s(3), in the total ordering
sense 3 ≻ 2. Therefore the algorithm cannot distinguish
between the instances with preference matrices P ′ and
P ′

Strong Stochastic Transitivity: Finally suppose
we assume that the Preference matrix follows strong
stochastic transitivity. With this assumption, notice
that the instance P ′ is not allowed and therefore the
algorithm may learn about s(2) > s(3) from the total
order relation 2 ≻ 3 by playing the pair (2, 3) without
consuming any resources.

The next Lemma shows that if the available budget is
less than K

ϵmin
then the regret of any algorithm is Ω(T ).

Lemma 4.2. Consider the Constrained-DB setting
with preference matrix P and define the minimum gap
in Condorcet scores ϵ

(c)
min := min

i,j∈[K]
(|c(i)− c(j)|). Sup-

pose the available budget B = o

(
K

ϵ
(c)
min

)
then there

exists a preference matrix P such that REG(c)(T ) =
Ω(T ).

4.2 Lower Bounds for Borda Constrained-DB

We state similar lower bounds for the Borda Con-
strained Dueling Bandits setting.
Lemma 4.3. Consider the Constrained-DB setting
with preference matrix P and define the minimum gap
in Borda scores ϵ

(b)
min := min

i,j∈[K]
(|b(i) − b(j)|). Suppose

the available budget B = o

(
K

ϵ
(b)
min

2

)
then there exists a

preference matrix P such that REG(b) = Ω(T ).

The above lower bound could potentially be removed
by assuming total ordering.
Lemma 4.4. Consider the Constrained-DB setting
with preference matrix P and define the minimum gap
in Borda scores ϵ

(c)
min := min

i,j∈[K]
(|b(i) − b(j)|). Suppose

the available budget B = o

(
K

ϵ
(b)
min

)
then there exists a
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preference matrix P such that REG(b) = Ω(T ).

The above lower bound cannot be removed even by as-
suming total ordering or strong stochastic transitivity.

5 Algorithm and Regret Bound

We consider the Borda Constrained Dueling Bandits
under the assumption that the given budget B =

O
(
max{ K

ϵ2min
, T 3/4}

)
. Our algorithm Vigilant D-EXP3

(Dueling EXP3) is outlined in Algorithm 1. Before pro-
ceeding to a detailed description of our algorithm, we
modify the Borda benchmark in two ways that do not
change the benchmark value OPT(b) by more than a
constant factor.

1. Shifted Borda Score [Saha et al., 2021b] We
replace the Borda score b(x) in (LP− Borda) by
the shifted Borda score b̃(x) defined below.

Definition 5.1 (Shifted Borda Score). The
shifted Borda score of item i ∈ [K] is given by

b̃(x) :=
1

K

∑
j∈[K]

P (i, j).

Benchmark with shifted Borda score. We
define the benchmark LP with shifted Borda score
as

max
πx,πy∈∆K

∑
x∈[K]

πx(x)b̃(x) +
∑
y∈[K]

πy(y)b̃(y)

such that
∑

x,y∈[K]

πx(x)u
∗(x) + πy(y)v

∗(y) ≤ B

T
1

(LP− Shifted-Borda)

Let the solution to the above LP be π̃∗(b) and let

ÕPT(b) = T
∑

x,y∈[K]

π̃∗(b)
x b̃(x) + π̃∗(b)

y b̃(y) (5)

R̃EW(b) = E
τ∑

t=1

b̃(xt) + b̃(yt). (6)

Then in the following lemma we show that the
original optimal value and the total reward is con-
stant times the optimal value and total reward
respectively, with shifted Borda score.

Lemma 5.1. For ÕPT(b) and R̃EW(b) as defined
in (5) and (6) we have

REG(b) = OPT(b) − REW(b)

≤ K

K − 1
(ÕPT(b) − R̃EW(b)).

Therefore bounding ÕPT(b)− R̃EW(b) bounds the
final regret REG(b) upto a constant factor of K

K−1 .

2. Define Separate LPs. Next we relax the bench-
mark (LP− Shifted-Borda) by separating the LPs
associated with the two arms as defined below.

max
πx∈∆K

∑
x∈[K]

πx(x)b̃(x)

such that
∑

x∈[K]

πx(x)u
∗(x) ≤ B

2T
1

(LP− Shifted-Borda-x)

max
πy∈∆K

∑
y∈[K]

πy(y)b̃(y)

such that
∑
y∈[K]

πy(y)v
∗(y) ≤ B

2T
1

(LP− Shifted-Borda-y)

Following lemma proves that the sum of optimal
values of the two LPs upper bounds the value of

the optimal policy ÕPT(b).

Lemma 5.2. Let the optimal
value of (LP− Shifted-Borda-x) and

(LP− Shifted-Borda-y) be ÕPT(b)
x and ÕPT(b)

y .
Then

ÕPT(b)
x + ÕPT(b)

y ≥ ÕPT(b).

Therefore bounding ÕPT(b)
x − E

τ∑
t=1

b̃(xt) and

ÕPT(b)
y − E

τ∑
t=1

b̃(yt) separately bounds the final

regret ÕPT(b) − R̃EW(b).

Vigilant D-EXP3(Vigilant Dueling EXP3) In Algo-
rithm 1 we maintain two distributions qxt and qyt to
sample the arms xt and yt at time t. Initially both
distributions are initialized to the uniform distribution
(Step 2). At time t ∈ [T ] the arms xt and yt are sample
from the distributions qxt and qyt respectively and ob-
serve the preference output ot(xt, yt) ∼ Ber(Pt(xt, yt))
and the consumption vectors ut(xt) and vt(xt) (Step
4 and 5). Next we compute unbiased estimates of the
shifted Borda score and the two consumption vectors
(Step 6) and the empirical lagrangians for the two arms
(Step 7). Next we update the arm distributions qxt and
qyt using exponential weights on the estimated cumula-
tive lagrangians along with an γ-uniform exploration
(Step 8). Finally we update the lagrange multipliers
on the dual objectives (Step 9).



Rohan Deb, Aadirupa Saha, Arindam Banerjee

Algorithm 1 Vigilant D-EXP3

1: Input: Item set indexed by [K], learning rate
η > 0, exploration parameter γ ∈ (0, 1), and
O(

OPT(b)
w

B ) ≤ Zw ≤ O(
OPT(b)

w

B + 1) , w ∈ {x, y}

2: Initialize: Initial probability distribution qx1 (i) =
qy1 (i) = 1/K, ∀i ∈ [K]

3: for t = 1, . . . , T do
4: Sample xt ∼ qxt , yt ∼ qyt i.i.d.
5: Receive preference ot(xt, yt) ∼ Ber(Pt(xt, yt))

and the consumption vectors ut(xt) and vt(xt).
6: Estimate the shifted Borda scores and the con-

sumption vectors, for all i ∈ [K]:

b̂t(i) =
1(xt = i)

Kqxt (i)

∑
j∈[K]

1(yt = j)ot(xt, yt)

qyt (j)
,

ûx
t (i) = 1− 1(xt = i)

qt(i)
(1− ut(xt)),

ûy
t (i) = 1− 1(yt = i)

qt(i)
(1− vt(yt)).

7: Estimate the Lagrangians ∀ i ∈ [K]

ℓ̂xt (i) = b̂t(i) + Zxλ
x⊤
t

[
B

2T
1− ûx

t (i)

]
,

ℓ̂yt (i) = b̂t(i) + Zyλ
y⊤
t

[
B

2T
1− v̂t(i)

]

8: Update for all i ∈ [K]:

q̃xt+1(i) =
exp(ηx

∑t
s=1 ℓ̂

x
s (i))∑K

j=1 exp(ηx
∑t

s=1 ℓ̂
x
s (j))

qxt+1(i) = (1− γx)q̃
x
t+1(i) +

γx
K

q̃yt+1(i) =
exp(ηy

∑t
s=1 ℓ̂

y
s(i))∑K

j=1 exp(ηy
∑t

s=1 ℓ̂
y
s(j))

qyt+1(i) = (1− γy)q̃
y
t+1(i) +

γy
K

9: Update λx
t and λy

t using any online convex opti-
mization on the following objective functions

gxt (λ) =
〈 B

2T
1−ûx

t (xt)
〉
, gyt (λ) =

〈 B

2T
1−v̂xt (yt)

〉
.

Remark 5.1 (Overcoming Challenges). Although
we follow the primal dual-approach from [Agrawal et al.,
2016, Agrawal and Devanur, 2014, Sivakumar et al.,
2022], we do not construct a UCB estimate of the

lagrangian (by constructing UCB estimates of the re-
wards and LCB estimates of the consumptions) and
draw the the arm optimistically. This is because in
the Dueling setting, such an approach would lead to
choosing the same arm twice which does not reveal any
statistical information since P (i, i) = 1/2, ∀i ∈ [K]
is already known. Further the approach fom RUCB
Zoghi et al. [2014a], Beat the mean Yue and Joachims
[2011] or Interleaved filter Yue et al. [2012] cannot be
extended to the constrained setting since these algo-
rithms are elimination algorithms, and once an arm is
eliminated, an unbiased estimate of the Borda score
cannot be constructed which is essential to do a trade-
off between the Borda score and the consumptions of
associated arms.
Remark 5.2 (Unknown Z). Note that although
our algorithm assumes that the values OPT

(b)
x and

OPT
(b)
y are known, in the case they are unknown, the

standard trick of estimating Zx and Zy for the first
O(

√
T ) rounds can be used (see e.g., Section 3.3 in

[Agrawal and Devanur, 2016]). This requires the budget
to be B = Ω(T 3/4)

Theorem 5.1. For ηx =
(
logK

T
√
K

)2/3 1
2Zx+1 , ηy =(

logK

T
√
K

)2/3 1
2Zy+1 and γx =

√
ηxKZx, γy =

√
ηyKZy,

the regret of Vigilant D-EXP3 is bounded by

REG(b)(T ) ≤ Õ
((OPT(b)

B
+ 1
)
(K logK)1/3T 2/3

)
Proof sketch Here we briefly outline the steps of the
proof. For details see Appendix C.

Step 1: We use an EXP-3 kind guarantee for the first
arm to get the following bound for all a ∈ [K],

τ∑
t=1

ℓ̂xt (a)−
τ∑

t=1

∑
a

q̃xt (a)ℓ̂
x
t (a)

≤ logK

ηx
+ ηx

τ∑
t=1

K∑
i=1

q̃xt (i)(ℓ̂
x
t (i))

2.

Since q̃xt (i) =
qxt (i)−

γx

K

1− γx
,

∀a, (1− γx)

τ∑
t=1

ℓ̂xt (a)−
τ∑

t=1

∑
a

qxt (i)ℓ̂
x
t (a)

≤ logK

ηx
+ ηx

τ∑
t=1

K∑
i=1

qxt (i)(ℓ̂
x
t (i))

2 (7)

Step 2: Since the LHS in (7) holds for every a ∈ [K]

we relate it to the regret ÕPT(b)
x −

∑τ
t=1 b̃(xt) using

the following lemma.
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Lemma 5.3. For any a ∈ [K]

(1− γx)

τ∑
t=1

K∑
a=1

ℓ̂xt (a)π̃
∗(b)
x (a)−

τ∑
t=1

∑
a

qxt (i)ℓ̂
x
t (a)

≥ ÕPT(b)
x − E

τ∑
t=1

b̃(xt)−O(Z + 1)
√
T log T

− γx(Zx + 1)T

Further, γx(Zx + 1)T ≤ O
(
(K logK)1/3ZxT

2/3
)

Next we upper bound the RHS in (7) using the following
lemma.
Lemma 5.4. For ηx =

(
logK

T
√
K

)2/3 1
2Zx+1 and γx =

√
ηxKZx

logK

ηx
+ ηx

τ∑
t=1

K∑
i=1

qxt (i)(ℓ̂
x
t (i))

2

≤ O

((OPT(b)
x

B
+ 1
)
(K logK)1/3T 2/3

)

Step 3: We repeat the same argument for the second
arm choice and then combining with Lemma 5.1 and
Lemma 5.2 completes the proof.

6 Experiments

We test our proposed algorithm Vigilant D-EXP3on
both synthetic and real world data in the constrained
setting against existing Borda dueling bandit algo-
rithms that do not factor in the associated consump-
tions. We briefly describe our datasets, benchmarks
and results here (also see Appendix D).

Datasets. We run our experiments on two datasets.

1. Synthetic Data: We create a Constrained
Dueling Bandits instance with K = 6 arms
(see Appendix D for the exact description of
the preference matrix). The vector of Borda
scores b̄ =

(
b(1) b(2)6 . . . b(6)

)⊤ is given by(
0.672 0.646 0.602 0.582 0.554 0.544

)⊤
.

We experiment with three choices of consumptions.
In all three cases the number of resources d = 1
and the true consumptions across both arms
choices are given by the same function, i.e.,
u∗ = v∗, and we add zero mean gaussian noise
to each entry. The vector of consumptions for
arms ū∗ =

(
u∗(1) u∗(2)6 . . . u∗(6)

)⊤ are
given by

(
0.9 0.9 0.1 0.8 0.8 0.8

)⊤,(
0.1 0.2 0.3 0.4 0.5 0.6

)⊤
, and(

0 0 0 0 0 0
)⊤. In the first case al-

though arm 1 and 2 have high Borda scores, the

associated consumptions are also high. In the
second case the order of consumptions is the same
as the order of Borda scores. In the last case all
the consumptions are zero and our objective is to
evaluate if our algorithm under performs in the
absence of constraints. The experiments are run
for T = 2000 rounds with B = 1000 and are run
independently over 50 samples.

2. Car preference dataset: We consider the Car
preference dataset from E. et al. [2013] where the
preference matrix is generated by considering the
user preferences for various models of cars. As in
case 1, we consider three choices of consumptions
that follow a similar structure(see Appendix D
for more details). The experiments are run for
T = 5000 rounds with B = 4000 and are run
independently over 50 samples.

Benchmarks. We compare our algorithm against
the following two choices of DB algorithms for Borda
scores.

1. D-EXP3: Dueling EXP3 algorithm (Algorithm 1,
Saha et al. [2021b]) runs an exponential weights al-
gorithm with uniform exploration on the estimated
Borda scores.

2. D-TS: Dueling Thompson Sampling (Algorithm 2,
Lekang and Lamperski [2019]) runs a Thompson
sampling algorithm by learning true parameter
values, which can represent the preference ma-
trix directly or by some other latent values for
each action, by sampling the posterior distribution
conditioned on the history. As in Lekang and Lam-
perski [2019], we use K2 −K independent Beta(1,
1) as our prior.

Results. Figure 1 and Figure 2 plot the cumulative
rewards across different rounds. For both datasets
in the first two cases when it is not prudent to stick
to the arms that have high Borda scores since they
also have high associated consumptions, the bench-
mark algorithms earn more reward in the initial few
rounds but stop early since they run out of budget.
In contrast, our algorithm Vigilant D-EXP3, does take
into account the associated consumptions and runs
for far more number of rounds before exhausting its
resources and therefore ends up acquiring far more
reward. However in the unconstrained case although
the performance of Vigilant D-EXP3 is almost same
as D-EXP3, D-TS outperforms them both and as such
an immediate direction of study would be to develop
a constrained version of Dueling Thompson Sampling
and compare its performance against Vigilant D-EXP3.
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Figure 1: Cumulative Reward across Rounds on synthetic data for three choices of consumptions. The first
corresponds to the case when the consumption of an arm with intermediate Borda score is lowest, second to when
the order of consumptions is the same as the order of Borda score and third corresponds to zero consumption.
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Figure 2: Cumulative Reward across Rounds on car preference dataset for three choices of consumptions. The first
corresponds to the case when the consumption of an arm with intermediate Borda score is lowest, second to when
the order of consumptions is the same as the order of Borda score and third corresponds to zero consumption.

7 Conclusion

In this work we have developed the framework for learn-
ing from preference feedback under resource constraints
and developed several lower bounds both with Borda
scores and Condorcet scores that show that the setting
is strictly more difficult than its multi-armed counter-
part. Under the assumption that the resource budget is
high, we developed an EXP3 based algorithm that via
the lagrangian also takes into account the associated
consumptions of a duel rather than just the associated
scores. We show that the algorithm enjoys sub-linear
regret bound and performs far better on both synthetic
and real world data.

The Condorcet constrained DB problem is a strictly
harder problem, since to be able to compute an esti-
mate of the Condorcet score one needs to know the
identity of the Condorcet winner. Further none of the
elimination based algorithms for Condorcet winner can
be used here since if the winner is eliminated based
say on the lagrangian value, then further estimates of
the scores cannot be computed and as such makes the
problem quite challenging and developing algorithms
for this setting is an interesting future work. Moreover

as observed in Section 6 Dueling Thompson sampling
appears to perform better in the unconstrained setting
and as such it might be instructive to develop a con-
strained version of the algorithm. Finally, it would
certainly be useful to consider more general and prac-
tical settings of dueling bandits.
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A Extended Related Works

In Section 2 we provided an overview of some existing works in Dueling Bandits and Canstrained Bandits. Here
we provide a more comprehensive study of these two areas.

• Dueling Bandits:

Over the past decade, the Dueling Bandits setting has undergone significant advancements. The problem, in
its current form, was introduced by Yue and Joachims (2012) Yue et al. [2012], who established upper and
lower bounds on regret. These bounds were established under the assumption that the preference matrix has
specific structures, such as total ordering, strong stochastic transitivity, and strong triangle inequality (refer
to Section 3 for definitions).

Subsequently [Yue and Joachims, 2011] proposed ‘Beat the Mean’ algorithm with improved regret bound
while also relaxed the strong stochastic transitivity assumption to relaxed stochastic transitivity. Zoghi et al.
[2014a] further relaxed the total ordering assumption to the existence of a Condorcet winner (an arm that
beats every other arm) and provided a upper confidence bound (UCB) based algorithm.

Zoghi et al. [2015b] examine the same problem, but emphasizes learning situations where a vast number of
arms are available. To minimize the number of comparisons, the authors introduce the MergeRUCB algorithm
that employs a divide-and-conquer strategy akin to the merge sort algorithm. It begins by organizing the
arms into predefined batches, processing each batch independently before combining the results. Zoghi et al.
[2015a], Komiyama et al. [2016] study the dueling bandits problem focusing on Copeland winners and li et al.
[2020] suggest a thompson sampling based algorithm to solve it.

Ailon et al. [2014a] studied the dueling bandit problem in an adversarial setup (where the preference matrix
P changes over time), introducing the sparring EXP3 idea, albeit without regret guarantees. Subsequent
works Gajane et al. [2015], Saha et al. [2021b], Saha and Gupta [2022] utilized this concept to prove regret
guarantees in adversarial environments. Saha et al. [2021b] consider the Borda winner instead of Condorcet
winner, which is known to always exist. Lekang and Lamperski [2019] provided both Thompson sampling
and sparring EXP3 type algorithm for both maxmin and Borda winners along with regret guarantees and
show impressive improvement on performance against existing benchmark algorithms.

Over the last two decades the field of Dueling Bandits received significant attention due to the simplicity
and effectiveness of the problem framework. Consequently Dueling Bandits has been generalized and studied
for various real world problems, including but not limited to, extending pairwise preferences to subsetwise
preferences Saha and Gopalan [2019, 2018b], Sui et al. [2017], Saha and Ghoshal [2022], large decision spaces
Saha [2021], Saha et al. [2022], adversarial preferences Gupta and Saha [2022] and contextual scenarios
Saha and Krishnamurthy [2022], Balsubramani et al. [2016], item unavailability Saha and Gaillard [2021],
non-stationary preferences Buening and Saha [2023]. Consequently, the framework of Dueling Bandit has also
been adapted to other interdisciplinary fields of research, e.g., reinforcement learning Saha et al. [2023], Blum
et al. [2023], robotics Lee et al. [2021], Li et al. [2023], language models Christiano et al. [2017], Ouyang et al.
[2022] and assortment optimization Agrawal et al. [2019], Désir et al. [2016]. A detailed survey of Preference
Bandit literature could be found in [Bengs et al., 2021, Sui et al., 2018].

• Constrained Bandits:

There is a body of literature that under the name Bandits with Knapsacks that looks at cumulative reward
maximization under budget constraints. It was first introduced in [Badanidiyuru et al., 2013] for the MAB
setting and the proposed algorithms- BalancedExploration and PrimalDualBwK were shown to enjoy optimal
regret bounds up to polylogarithmic factors. BalancedExploration however is not an efficient algorithm
(see Remark 4.2 in [Badanidiyuru et al., 2013]) and we do not pursue this. We further show that in fact
PrimalDualBwK attains an Ω(T ) regret in the MAB setting, and as such we do not try to adapt this
algorithm to the Constrained-DB setting.

Subsequently, more general versions of the problem have been studied, eg., in the linear contextual setting,
[Agrawal and Devanur, 2016] provide an algorithm utilizing ideas from UCB and primal-dual methods with
sub-linear regret bound. The idea is to maintain a UCB estimate of the associated lagrangian by maintaining
a UCB estimate of the rewards and an LCB estimate of the consumptions and the arm being played is
the one that maximized the lagrangian optimistically, while the lagrange multiplier is updated via a dual
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optimization step. In the fully adversarial setting,[Immorlica et al., 2022] show that regret minimization
is not feasible and therefore provide gurantees on the competitive ratio of the proposed algorithm. In the
smooth adversarial setting, where in the contexts and rewards are chosen by an adaptive adversary but
nature perturbs it using a small gaussian noise, [Sivakumar et al., 2022] provide sub-linear regret again using
a primal-dual idea from [Agrawal and Devanur, 2016].

More general versions, where only realizability of the reward and consumptions by a function class is assumed
have been studied in Slivkins et al. [2023], Han et al. [2023] where the Inverse gap weighting idea from
Abe and Long [1999] has been employed to provide sub-linear regret bounds by computationally efficient
algorithms. Finally recent works have also started study regret guarantees of algorithms in the reinforcement
learning setting, where instead of a single state, the agent interacts with the environment through a sequence
of states and actions Ding et al. [2021], Vaswani et al. [2022], Kalagarla et al. [2021], Wei et al. [2022].

B Proof of Lower Bounds

B.1 Lower Bounds for Condorcet Constrained-DB

Lemma 4.1. Consider the Constrained-DB setting with preference matrix P and define the minimum gap in

Condorcet scores ϵ
(c)
min := min

i,j∈[K]
(|c(i) − c(j)|). Suppose the available budget B = o

(
K

ϵ
(c)
min

2

)
then there exists a

preference matrix P such that REG(c)(T ) = Ω(T ). Further we show that our Ω(T ) regret bound exists even
when P satisfies total ordering (cf. Definition 3.3) but not when P satisfies strong stochastic transitivity (cf.
Definition 3.4)

Proof. General setting: We start with the general setting without any assumption on the preference matrix
and subsequently consider total ordering and strong stochastic transitivity. The proof relies on creating K − 1
problem instances that we denote by I1, . . . , IK−1.

I1 is defined by the following preference matrix:

P =



1

2

1

2
+ ϵ

1

2
+ 2ϵ · · · 1

2
+ 2ϵ

1

2
− ϵ

1

2

1

2
· · · 1

2
1

2
− 2ϵ

1

2

1

2
· · · 1

2
...

...
...

. . .
...

1
2 − 2ϵ

1

2

1

2
· · · 1

2


with u∗(1) = v∗(1) = 1, u∗(i) = v∗(i) = 0, ∀i ∈ {2, . . . ,K}.

I2 is defined by the following preference matrix:

P =



1

2

1

2
+ 2ϵ

1

2
+ ϵ

1

2
+ 2ϵ · · · 1

2
+ 2ϵ

1

2
− 2ϵ

1
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1

2

1

2
· · · 1

2
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− ϵ
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2

1

2

1

2
· · · 1

2
1

2
− 2ϵ

1

2

1

2

1

2
· · · 1

2
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...
. . .

...

1
2 − 2ϵ

1

2

1

2

1

2
· · · 1

2
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with u∗(1) = v∗(1) = 1, u∗(i) = v∗(i) = 0, ∀i ∈ {2, . . . ,K} and so on with IK−1 is defined by the following
preference matrix:

P =



1

2

1

2
+ 2ϵ · · · 1

2
+ ϵ

1

2
+ 2ϵ

1

2
− 2ϵ

1

2
· · · 1

2

1

2
...

...
...

...
...

1

2
− ϵ

1

2

1

2
· · · 1

2
1

2
− 2ϵ

1

2

1

2
· · · 1

2


with u∗(1) = v∗(1) = 1, u∗(i) = v∗(i) = 0, ∀i ∈ {2, . . . ,K}.

The optimal policy in Ik plays arms xt = 1, yt = 1 for B rounds and thereafter plays arms xt = k+1, yt = k+1 for
the remaining T −B rounds. The total accumulated reward by the optimal policy is OPT(c) = B+(T −B)

(
1
2 −ϵ

)
.

Note that to be able to switch to arm k + 1 in instance Ik the algorithm needs to identify the the arm with the
highest Condorcet score c()̇ among the arms {2, 3, . . . ,K}. This reduces to the best arm identification problem in
multi armed bandits with K − 1 arms with rewards c(i) i ∈ [K]. It is known that the sample complexity of best
arm identification is Ω(Kϵ2 ) (see eg. [Slivkins, 2022]) and therefore any algorithm needs to play (1, k), k ∈ [K]

Ω(Kϵ2 ) number of times. However every time (1, k) is played, 1 unit of resource is consumed and since the budget
B = o

(
K
ϵ2

)
, no algorithm can differentiate between these instances and hence would always end up playing the

sub-optimal arm at least (T−B)
2 number of times after the initial B rounds. Therefore

REW(c) ≤ B +
(T −B)

2

(1
2
− ϵ
)
+

(T −B)

2

(1
2
− 2ϵ

)
which implies OPT(c) ≥ (T−B)

2 ϵ = Ω(T )

Total Ordering: Next consider the following instances:

I1 is defined by the following preference matrix:

P =
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2


with u∗(1) = v∗(1) = 1, u∗(i) = v∗(i) = 0, ∀i ∈ {2, . . . ,K}.

I2 is defined by the following preference matrix:

P =
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with u∗(1) = v∗(1) = 1, u∗(i) = v∗(i) = 0, ∀i ∈ {2, . . . ,K} and so on. Corresponding to each of these instances
we define the parallel set of instances given by:

I ′
1 is defined by the following preference matrix:

P =
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+ ϵ
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2
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2
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1

2
− 2ϵ · · · 1

2


with u∗(1) = v∗(1) = 1, u∗(i) = v∗(i) = 0, ∀i ∈ {2, . . . ,K}.

I ′
2 is defined by the following preference matrix:

P ′ =
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1

2
− 2ϵ · · · 1

2


with u∗(1) = v∗(1) = 1, u∗(i) = v∗(i) = 0, ∀i ∈ {2, . . . ,K} and so on.

Notice that although both set of instances I1, . . . , IK and I ′
1, . . . , I ′

K have total ordering, the total ordering in
I ′
1, . . . , I ′

K does not match the ordering of the Condorcet scores in I ′
1, . . . , I ′

K . Therefore dueling the sub-optimal
arms {2, . . . ,K} does not give any information about the order of Condorcet scores, and it essentially reduces to
the previous case.

Strong Stochastic Transitivity: Finally suppose we assume that the Preference matrix follows strong stochastic
transitivity, i.e., if i ≻ j in the total ordering sense then P (i, k) ≥ max{P (i, j), P (j, k)}. With this assumption,
notice that the instances I ′

1, . . . , I ′
K are not allowed and therefore the algorithm may learn about the Condorcet

order from the total order relations.

Lemma 4.2. Consider the Constrained-DB setting with preference matrix P and define the minimum gap in

Condorcet scores ϵ
(c)
min := min

i,j∈[K]
(|c(i) − c(j)|). Suppose the available budget B = o

(
K

ϵ
(c)
min

)
then there exists a

preference matrix P such that REG(c)(T ) = Ω(T ).

Proof. We provide the proof for K = 3; the general case can be proven by constructing K − 1 such instances as
in the proof of Lemma 4.2. Consider the following preference matrix:

P ′ =


1

2

1

2
+ ϵ

1

2
+ 2ϵ

1

2
− ϵ

1

2

1

2
+ ϵ

1

2
− 2ϵ

1

2
− ϵ

1

2


with the following consumptions: u∗(1) = v∗(1) = 1, u∗(2) = v∗(2) = ϵ and u∗(3) = v∗(3) = 0. The proof then
follows as in the proof of Lemma 4.4.
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B.2 Lower Bounds for Borda Constrained-DB

Lemma 4.3. Consider the Constrained-DB setting with preference matrix P and define the minimum gap

in Borda scores ϵ
(b)
min := min

i,j∈[K]
(|b(i) − b(j)|). Suppose the available budget B = o

(
K

ϵ
(b)
min

2

)
then there exists a

preference matrix P such that REG(b) = Ω(T ).

Proof. We provide the proof for K = 3; the general case can be proven by constructing K − 1 such instances as
in the proof of Lemma 4.2. Consider the following preference matrix:

P =


1

2

1
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1

2
+ 2ϵ

1

2

1

2

1

2
+ ϵ

1

2
− 2ϵ

1

2
− ϵ

1

2


with the following consumptions: u∗(1) = v∗(1) = 0, u∗(2) = v∗(2) = 0 and u∗(3) = v∗(3) = 1. Note that the
Borda scores are given by b(1) = 1/2 + ϵ, b(2) = 1/2 + ϵ/2 and b(3) = 1/2− 3ϵ/2. The Borda winner is arm 1
and the gap between second best arm and the Borda winner is Θ(ϵ). Also note that the optimal policy always
plays arm 1. To be able to differentiate between them we need to play (1, 2) and (1, 3) at least O(Kϵ2 ). Since
B = o(Kϵ2 ), no algorithm can differentiate between arm 1 and arm 2 and therefore the regret of any algorithm will
be Ω(T ).

Lemma 4.4. Consider the Constrained-DB setting with preference matrix P and define the minimum gap

in Borda scores ϵ
(c)
min := min

i,j∈[K]
(|b(i) − b(j)|). Suppose the available budget B = o

(
K

ϵ
(b)
min

)
then there exists a

preference matrix P such that REG(b) = Ω(T ).

Proof. We provide the proof for K = 3; the general case can be proven by constructing K − 1 such instances as
in the proof of Lemma 4.2. Consider the following preference matrix:

P =


1

2

1

2

1

2
+ 2ϵ

1

2

1

2

1

2
+ ϵ

1

2
− 2ϵ

1

2
− ϵ

1

2


with the following consumptions: u∗(1) = v∗(1) = 0, u∗(2) = v∗(2) = ϵ and u∗(3) = v∗(3) = 1. The optimal policy
chooses arm 1 always. However, the gap between arm 1 and arm 2 is Θ(ϵ) and therefore arms (1, 2) and (1, 3)
have to be played Θ(Kϵ2 ) number of times. However, playing arm 2 consumes ϵ amount and therefore Θ(Kϵ2 )ϵ

budget is needed to differentiate between arms 1 and 2. Since B = o(Kϵ ), any algorithm would incur a regret of
Ω(T ).

C Proof of Regret Bound

Lemma 5.1. For ÕPT(b) and R̃EW(b) as defined in (5) and (6) we have

REG(b) = OPT(b) − REW(b)

≤ K

K − 1
(ÕPT(b) − R̃EW(b)).
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Proof. Observe that

π̃∗(b) = argmax
πx,πy∈∆K

∑
x∈[K]

πx(x)b̃(x) +
∑
y∈[K]

πy(y)b̃(y)

such that
∑

x,y∈[K]

πx(x)u
∗(x) + πy(y)v

∗(y) ≤ B

T
1

= argmax
πx,πy∈∆K

∑
x∈[K]

πx(x)

(
K − 1

K
b(x) +

1

2K

)
+
∑
y∈[K]

πy(y)

(
K − 1

K
b(y) +

1

2K

)

such that
∑

x,y∈[K]

πx(x)u
∗(x) + πy(y)v

∗(y) ≤ B

T
1

= argmax
πx,πy∈∆K

∑
x∈[K]

πx(x)b(x) +
∑
y∈[K]

πy(y)b(y)

such that
∑

x,y∈[K]

πx(x)u
∗(x) + πy(y)v

∗(y) ≤ B

T
1

= π∗(b),

i.e., the policy that solves both the LPs are same. Therefore

ÕPT(b) = T
∑

x,y∈[K]

π̃∗(b)
x b̃(x) + π̃∗(b)

y b̃(y)

= T
∑

x,y∈[K]

π̃∗(b)
x

(
K − 1

K
b(x) +

1

2K

)
+ π̃∗(b)

y

(
K − 1

K
b(y) +

1

2K

)

=
K − 1

K

T
∑

x,y∈[K]

π∗(b)
x (x) b(x) + π∗(b)

y (y) b(y)

+
T

K

=
K − 1

K
OPT(b) +

T

K

Further

R̃EW(b) =

τ∑
t=1

b̃(xt) + b̃(yt)

=
τ∑

t=1

(
K − 1

K
b(xt) +

1

2K

)
+

(
K − 1

K
b(yt) +

1

2K

)

=

τ∑
t=1

b(xt) + b(yt) +
τ

K

= REW(b) +
τ

K

Therefore

ÕPT(b) − R̃EW(b) =
K − 1

K
OPT(b) − REW(b) +

T − τ

K

≥ OPT(b) − REW(b)

where the last line follows because τ ≤ T .

Lemma 5.2. Let the optimal value of (LP− Shifted-Borda-x) and (LP− Shifted-Borda-y) be ÕPT(b)
x and

ÕPT(b)
y . Then

ÕPT(b)
x + ÕPT(b)

y ≥ ÕPT(b).
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Proof. We define the solution to (LP− Shifted-Borda-x) as

π̃(b)
x = argmax

πx∈∆K

∑
x∈[K]

πx(x)b̃(x)

such that
∑

x∈[K]

πx(x)u
∗(x) ≤ B

2T
1

and the solution to (LP− Shifted-Borda-x) as

π̃(b)
y = argmax

πx∈∆K

∑
x∈[K]

πx(x)b̃(x)

such that
∑

x∈[K]

πx(x)u
∗(x) ≤ B

2T
1

Now consider the the following distribution π̂(x) = 1
2 π̃

(b)
x + 1

2 π̃
(b)
y . Note that

∑
x,y∈[K] π̂(x)u

∗(x) + π̂(y)v∗(y) ≤
B
2T 1+ B

2T 1 = B
T 1 and therefore π̂ is a feasible solution to (LP− Shifted-Borda) and therefore

ÕPT(b)
x + ÕPT(b)

y ≥ ÕPT(b).

Theorem 5.1. For ηx =
(
logK

T
√
K

)2/3 1
2Zx+1 , ηy =

(
logK

T
√
K

)2/3 1
2Zy+1 and γx =

√
ηxKZx, γy =

√
ηyKZy, the regret

of Vigilant D-EXP3 is bounded by

REG(b)(T ) ≤ Õ
((OPT(b)

B
+ 1
)
(K logK)1/3T 2/3

)
Proof. The proof of the theorem follows along the following three steps:

Step-1: Note that

| ℓ̂xt (a) | =
∣∣∣∣ b̂t(i) + Zxλ

⊤
t

( B

2T
1− ût(i)

) ∣∣∣∣
≤ |b̂t(i)|+ Zx∥λt∥1

(
B

2T
∥1∥∞ + ∥ût∥∞

)
≤ 1 + Zx(1 + 1)

= 1 + 2Zx

Therefore 1
2Zx+1 ℓ̂

x
t (a) ≤ 1 and using the regret guarantee of Exponential Weights algorithm Auer et al.

[2002b], [Lattimore and Szepesvári, 2020, Chapter 11] we get for all a ∈ [K]

τ∑
t=1

ℓ̂xt (a)−
τ∑

t=1

∑
i

q̃xt (i)ℓ̂
x
t (i) ≤

logK

ηx
+ ηx

τ∑
t=1

K∑
i=1

q̃xt (i)(ℓ̂
x
t (i))

2

Since q̃xt (i) =
qxt (i)−

γx

K

1− γx
, we have

∀a ∈ [K], (1− γx)

τ∑
t=1

ℓ̂xt (a)−
τ∑

t=1

K∑
i=1

qxt (i)ℓ̂
x
t (i) ≤

logK

ηx
+ ηx

τ∑
t=1

K∑
i=1

qxt (i)(ℓ̂
x
t (i))

2

and therefore,

(1− γx)

τ∑
t=1

K∑
a=1

ℓ̂xt (a)π̃
∗(b)
x (a)︸ ︷︷ ︸

I

−
τ∑

t=1

K∑
i=1

qxt (i)ℓ̂
x
t (i)︸ ︷︷ ︸

II

≤ logK

ηx
+ ηx

τ∑
t=1

K∑
i=1

qxt (i)(ℓ̂
x
t (i))

2 (8)
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Step-2: Next we relate the LHS of (8) to the regret using the following lemma.

Lemma 5.3. For any a ∈ [K]

(1− γx)

τ∑
t=1

K∑
a=1

ℓ̂xt (a)π̃
∗(b)
x (a)−

τ∑
t=1

∑
a

qxt (i)ℓ̂
x
t (a)

≥ ÕPT(b)
x − E

τ∑
t=1

b̃(xt)−O(Z + 1)
√

T log T

− γx(Zx + 1)T

Further, γx(Zx + 1)T ≤ O
(
(K logK)1/3ZxT

2/3
)

Proof. Let π̃∗(b)
x be the solution of (LP− Shifted-Borda-x). Next define Ht−1 = σ

(
{xi, yi, oi(xi, yi)}t−1

i=1

)
be

the sigma algebra generated by {xi, yi, oi(xi, yi)}t−1
i=1 and EHt−1

be the conditional expectation with respect
to Ht−1. Consider term I and observe that

(1− γx)

τ∑
t=1

∑
a

EHt−1
[ℓ̂xt (a)π̃

∗(b)
x (a)] = (1− γx)

τ∑
t=1

∑
a

π̃∗(b)
x (a)EHt−1

[
b̂t(a) + Zxλ

x⊤
t

( B

2T
1− ûx

t (a)
)]

.

Note that E[b̂t(a)] = b̃(a) (see Lemma 4 in Saha et al. [2021b]) and E[ûx
t (a)] = u∗(a). Using Azuma-Hoeffding

inequality with probability at least 1−O( 1
T 2 )

(1− γx)

τ∑
t=1

∑
a

ℓ̂xt (a)π̃
∗(b)
x (a) ≥ (1− γx)

τ∑
t=1

∑
a

π̃∗(b)
x (a)EHt−1

[
b̃(a) + Zxλ

x⊤
t

( B

2T
1− u∗(a)

)]
− (Zx + 1)

√
T log T

Next observe that with Dt = b̃(a) + Zxλ
x⊤
t

(
B
2T 1− u∗(a)

)
− ÕPT(b)

x

T is adapted to Ht, |Dt| ≤ 2(Zx + 1) and
EHt−1

[Dt] ≥ 0 and therefore using Azuma-Hoeffding with probability at least 1−O(1/T 2)

τ∑
t=1

∑
a

ℓ̂xt (a)π̃
∗(b)
x (a) ≥ τ

T
ÕPT(b)

x − 2(Zx + 1)
√
T log T

Therefore

(1− γx)

τ∑
t=1

∑
a

ℓ̂xt (a) ≥
τ

T
ÕPT(b)

x −O(Z + 1)
√
T log T − γx(Zx + 1)T (9)

Next consider term II from (8):

τ∑
t=1

∑
a

qxt (a)ℓ̂
x
t (a) =

τ∑
t=1

∑
a

qxt (a)

[
b̂t(a) + Zxλ

x⊤
t

(
B

2T
1− ûx

t (a)

)]

Since xt ∼ qxt , therefore EHt−1
[
∑

a q
x
t (a)b̂(a)] = b̃(xt) and EHt−1

[
∑

a q
x
t (a)û

x
t (a)] = u∗(xt), therefore using

Azuma-Hoeffding with probability at least 1−O
(

1
T 2

)
τ∑

t=1

∑
a

qxt (a)ℓ̂
x
t (a) ≤

τ∑
t=1

b(xt) + Zxλ
x⊤
t

(
B

2T
1− u∗(xt)

)
+O(Zx + 1)

√
T log T
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Combining with (9) we get

(1− γx)

τ∑
t=1

ℓ̂xt (a)−
τ∑

t=1

K∑
i=1

qxt (i)ℓ̂
x
t (i) ≥

τ

T
ÕPT(b)

x −
τ∑

t=1

b(xt)− Zxλ
x⊤
t

(
B

2T
1− u∗(xt)

)
−O(Zx + 1)

√
T log T − γx(Zx + 1)T (10)

From the regret guarantee of OCO on gxt (λ) we have that for any λ ∈ [0, 1]d,

(1− γx)

τ∑
t=1

ℓ̂xt (a)−
τ∑

t=1

K∑
i=1

qxt (i)ℓ̂
x
t (i) ≥

τ

T
ÕPT(b)

x −
τ∑

t=1

b(xt)− Zxλ
⊤
(

B

2T
1− u∗(xt)

)
−O(Zx + 1)

√
T log T − γx(Zx + 1) +O(

√
T ) (11)

Next if τ = T , choosing λ = 0 gives

(1− γx)

τ∑
t=1

ℓ̂xt (a)−
τ∑

t=1

K∑
i=1

qxt (i)ℓ̂
x
t (a) ≥ OPT(b)

x −
τ∑

t=1

b(xt)−O(Zx + 1)
√

T log T − γx(Zx + 1)T.

If τ < T then ∃j such that
T∑

t=1

u∗(xt)j > B/2 (i.e., one of the resources is exhausted). Choose λ = Zxej and

observe that

T∑
t=1

Zxλ
⊤
(

B

2T
1− u∗(xt)

)
≤ Zx

( τ

2T
B −B/2

)
Combining with (11) we get with probability (1−O( 1

T 2 ))

(1− γx)

τ∑
t=1

ℓ̂xt (a)−
τ∑

t=1

K∑
i=1

qxt (i)ℓ̂
x
t (i) ≥

τ

T
ÕPT(b)

x −
τ∑

t=1

b(xt)−
˜

2OPT(b)
x

B

( τ

2T
B −B/2

)
−O(Zx + 1)

√
T log T − γx(Zx + 1) +O(

√
T )

≥ ÕPT(b)
x −

τ∑
t=1

b(xt)−O(Zx + 1)
√

T log T − γx(Zx + 1)T

which implies

(1− γx)

τ∑
t=1

ℓ̂xt (a)−
τ∑

t=1

K∑
i=1

qxt (i)ℓ̂
x
t (i) ≥ ÕPT(b)

x − E
τ∑

t=1

b(xt)−O(Zx + 1)
√

T log T − γx(Zx + 1)T

Further,

γx(Zx + 1)T ≤
√
ηxK

√
Zx(Zx + 1)T = O

(
(K logK)1/3ZxT

2/3
)

Next we upper bound the RHS of (8) using the following lemma.

Lemma 5.4. For ηx =
(
logK

T
√
K

)2/3 1
2Zx+1 and γx =

√
ηxKZx

logK

ηx
+ ηx

τ∑
t=1

K∑
i=1

qxt (i)(ℓ̂
x
t (i))

2

≤ O

((OPT(b)
x

B
+ 1
)
(K logK)1/3T 2/3

)
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Proof. Consider the following term:

τ∑
t=1

K∑
a=1

qxt (a)ℓ̂
x
t (a)

2 =

τ∑
t=1

K∑
a=1

qxt (a)

(
ŝt(a) + Zxλ

x⊤
t

(
B

2T
1− ût(xt)

))2

≤
τ∑

t=1

K∑
a=1

qxt (a)

(
ŝt(a)

2 +

[
Zxλ

x⊤
t

(
B

2T
1− ût(xt)

)]2)

≤
τ∑

t=1

K∑
a=1

qxt (a)

(
ŝt(a)

2 +

[
Zxλ

x⊤
t

(
B

2T
1− ût(xt)

)]2)

≤
τ∑

t=1

K∑
a=1

qxt (a)ŝt(a)
2 +

τ∑
t=1

K∑
a=1

4Z2
x

B2

4T 2
+ Z2

x

τ∑
t=1

K∑
a=1

4qxt (a)[λ
x⊤
t ûx

t (a)]
2

We have
∑

a E[qxt (a)ŝt(a)2] ≤
K
γx

and
∑

a E qxt (a)[λ
x⊤
t ût(xt)]

2 ≤ K
γx

(see [Saha et al., 2021b, Lemma 6],
[Lattimore and Szepesvári, 2020, Chapter 11]).

τ∑
t=1

K∑
a=1

qxt (a)ℓ̂
x
t (a)

2 ≤ K

γx
T +

Z2
xB

2

T 2

K

γx
T +

K

γx
Z2
xT

≤ K

γx
T (Z2

x + 2)

Therefore

logK

ηx
+ ηx

τ∑
t=1

K∑
i=1

qxt (i)(ℓ̂
x
t (i))

2 ≤ logK

ηx
+ ηx

K

γx
T (Z2

x + 2)

Choosing γx =
√
ηxK

√
Zx we get

logK

ηx
+ ηx

τ∑
t=1

K∑
i=1

qxt (i)(ℓ̂
x
t (i))

2 ≤ logK

ηx
+ T

√
ηxK(Z2

x + 2)/
√

Zx

Finally choosing ηx =
(
logK

T
√
K

)2/3 1
2Zx+1 we have

logK

ηx
+ ηx

τ∑
t=1

K∑
i=1

qxt (i)(ℓ̂
x
t (i))

2 ≤ O
(
(K logK)1/3T 2/3Zx)

)
= O

((OPT(b)
x

B
+ 1
)
(K logK)1/3T 2/3

)

Step-3: We repeat the same argument for the second arm choice yt and then combining with Lemma 5.1
and Lemma 5.2 we get

ÕPT(b)
x + ÕPT(b)

y −

(
τ∑

t=1

b(xt) + b(yt)

)
≤ O

((OPT(b)
x

B
+ 1
)
(K logK)1/3T 2/3

)

which completes the proof.

D Details of Experiments

We provide more detailed descriptions of our experiments in this section.

Datasets. We run our experiments on two datasets.
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1. Synthetic Data: We create a Constrained Dueling Bandits instance with K = 6 arms where the preference
matrix is given by

P =


0.5 0.55 0.55 0.54 0.61 0.61
0.45 0.5 0.55 0.55 0.58 0.6
0.45 0.45 0.5 0.54 0.51 0.56
0.46 0.45 0.46 0.5 0.54 0.5
0.39 0.42 0.49 0.46 0.5 0.51
0.39 0.4 0.44 0.5 0.49 0.5

 .

The vector of Borda scores b̄ =
(
b(1) b(2)6 . . . b(6)

)⊤ is given by(
0.672 0.646 0.602 0.582 0.554 0.544

)⊤
.

We experiment with three choices of consumptions. In all three cases the number of resources d = 1 and the
true consumptions across both arms choices are given by the same function, i.e., u∗ = v∗, and we add zero
mean gaussian noise to each entry. The vector of consumptions for arms ū∗ =

(
u∗(1) u∗(2)6 . . . u∗(6)

)⊤
are given by:

(a)
(
0.9 0.9 0.1 0.8 0.8 0.8

)⊤
(b)

(
0.6 0.5 0.4 0.3 0.2 0.1

)⊤
(c)

(
0 0 0 0 0 0

)⊤
In the first case although arm 1 and 2 have high Borda scores, the associated consumptions are also high. In
the second case the order of consumptions is the same as the order of Borda scores. In the last case all the
consumptions are zero and our objective is to evaluate if our algorithm under performs in the absence of
constraints. The experiments are run for T = 2000 rounds with B = 1000 and are run independently over 50
samples.

2. Car preference dataset: We consider the Car preference dataset from E. et al. [2013] where the preference
matrix is generated by considering the user preferences for various models of cars. The dataset utilized 10
items to generate all 45 possible preferences. The study was conducted in two phases, with data collected
from 40 and 20 users separately. Participants in the initial experiment were presented with cars featuring
specific attributes given by (1) Body type, (2) Transmission, (3) Engine capacity and (4) Fuel consumed. We
use the dataset to compute the preference matrix. As in case 1, we consider three choices of consumptions
that follow a similar structure as given below:

(a)
(
0.9 0.9 0.01 0.02 0.7 0.3 0.6 0.7 0.7 0.8

)
(b)

(
0.7 0.9 0.9 0.8 0.6 0.1 0.4 0.3 0.5 0.2

)
(c)

(
0 0 0 0 0 0 0 0 0 0

)
The experiments are run for T = 5000 rounds with B = 4000 and are run independently over 50 samples.
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