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Abstract

Drawing causal inferences from observational
studies (OS) requires unverifiable validity as-
sumptions; however, one can falsify those as-
sumptions by benchmarking the OS with ex-
perimental data from a randomized controlled
trial (RCT). A major limitation of existing
procedures is not accounting for censoring, de-
spite the abundance of RCTs and OSes that
report right-censored time-to-event outcomes.
We consider two cases where censoring time
(1) is independent of time-to-event and (2)
depends on time-to-event the same way in
OS and RCT. For the former, we adopt a
censoring-doubly-robust signal for the condi-
tional average treatment effect (CATE) to
facilitate an equivalence test of CATEs in OS
and RCT, which serves as a proxy for testing if
the validity assumptions hold. For the latter,
we show that the same test can still be used
even though unbiased CATE estimation may
not be possible. We verify the effectiveness of
our censoring-aware tests via semi-synthetic
experiments and analyze RCT and OS data
from the Women’s Health Initiative study.

1 INTRODUCTION

The ability to reliably establish causal relationships is
essential for decision-making and policy development
(Pearl and Mackenzie, 2018; Angrist and Pischke, 2009;
Hernan and Robins, 2021). Although experimental
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data, often collected through randomized controlled tri-
als (RCT), are considered to be the “gold-standard” for
inferring causality, real-world evidence collected from
observational (non-experimental) data is increasingly
guiding regulatory processes (Hansford et al., 2023;
Government of Canada, 2019; Therapeutic Goods Ad-
ministration, 2023; NICE, 2022). Indeed, observational
data, such as claims and electronic health records, can
provide large-scale, diverse, and longitudinal data at
low cost, making it a promising complement to time
and cost-intensive experimental data.

Ideally, one would like to leverage observational studies
(OS) when experimental data is unavailable or provides
limited evidence (Dagan et al., 2021; Gershman et al.,
2018). For instance, people with a history of cardio-
vascular diseases may not be eligible to participate in
an RCT. Therefore, OSes are the only source of data
for those people. Furthermore, the limited sample size
of RCTs makes subgroup analysis infeasible and their
results do not always apply to a target population of
interest (Rothwell, 2005; Stuart et al., 2011; Hartman
et al., 2015; Colnet et al., 2020). Contrary to the RCTs,
however, OSes are susceptible to numerous sources of
bias, bringing their utility in practice under question.
Therefore, it is critical to evaluate the credibility of
an OS before using it for different downstream tasks
(Yang et al., 2023). To that end, we will develop a
hypothesis test to check if the findings from an OS
and an RCT are compatible within the trial-eligible
population, that can be used when the outcomes are
right-censored (Kalbfleisch and Prentice, 2011).

Naive analysis of an OS can lead to biased effect es-
timates due to various reasons. Among those, unob-
served confounding— which makes prognostic factors
systemically differ in treatment and control groups—
typically receives the most attention. However, the
bias may also emerge due to the poor analysis of the
data regarding the handling of censored outcomes and
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non-adherence to treatment assignments (Hernán et al.,
2017), the definition of time-zero and follow-up (Lodi
et al., 2019; Hernán et al., 2008), and different types of
selection bias (Hernán et al., 2004; Yadav and Lewis,
2021). Target trial emulation (TTE), where one uses
observational data to emulate a hypothetical trial, has
emerged as a popular framework to limit the bias in the
OSes (Hernán and Robins, 2016; Wang et al., 2023).

With a well-specified TTE protocol, it is possible to
estimate causal effects from observational data under
well-known internal and external validity assumptions
(given in Section 2) (Imbens and Rubin, 2015; Wager
and Athey, 2018; Semenova and Chernozhukov, 2021).
Internal validity ensures that the causal effects can be
reliably inferred in the OS population. External valid-
ity further allows transporting those effect estimates
to different populations (e.g., the RCT population)
(Dahabreh et al., 2020a). Even though these assump-
tions are not verifiable, one can still falsify them by
benchmarking the OS to an RCT (Dahabreh et al.,
2020b; Forbes and Dahabreh, 2020). The key idea is to
formulate and test a null hypothesis that captures the
implications of those assumptions, which is the equiva-
lence of the treatment effects inferred from the OS and
the RCT. The rejection of the null would then be linked
to the violation of (a subset of) those assumptions.

Recent works have developed tests for falsifying the
internal and external validity assumptions. Hussain
et al. (2022) proposed an algorithm to first compare the
group-level effects derived from an RCT and multiple
OSes in pre-specified groups and integrate the evidence
only from the OSes compatible with the RCT. Hus-
sain et al. (2023) developed a falsification framework
that compares individual-level effect estimates from an
RCT and an OS over the entire covariate space and
automatically detects the regions of disparity, providing
explanations in the form of witness functions. De Bar-
tolomeis et al. (2023) adopt an alternative view and
focus on quantifying the hidden confounding in an OS
from a “sensitivity analysis” perspective instead of test-
ing for the equivalences of the effect estimates across
studies. Karlsson and Krijthe (2024) show how one
can detect hidden confounding when there is no RCT
data but multiple OSes that share a data-generating
graph with certain properties. None of the studies
above consider censored observations.

Our Contributions Censoring due to drop-outs or
loss-to-follow-ups is a common issue that plagues both
OSes and RCTs. Improperly handling the censored
data does not merely lead to a suboptimal falsification
test for the validity assumptions but renders the test
unreliable since censoring can easily introduce bias.
We generalize the test in Hussain et al. (2023) to cases

Internal and External validity of RCT and OS

+

No censoring

=⇒ (Hussain
et al., 2023)

E[ψ|X] = 0

+

Conditionally
independent
censoring

=⇒ Section 3.1
Theorem 2

E[ψCDR|X] = 0

+

Global
censoring

=⇒ Section 3.2
Theorem 4

Test the null hypothesis of the form
E [ψ|X] = 0 PX a.s. via the MMR statis-
tic (Muandet et al., 2020) to falsify the

validity assumptions when they fail to hold.

Figure 1: Prior work develops a maximum moment
restriction (MMR)-based falsification test for validity
assumptions, under no censoring. We extend the test
to the case where time-to-event outcomes are right-
censored, considering two censoring mechanisms.

with right-censored time-to-event outcomes. We first
consider in Section 3.1 the common scenario where the
censoring time is conditionally independent of the time-
to-event. In Section 3.2, we introduce a novel censoring
concept, global censoring, where the censoring time
depends on time-to-event (e.g., drop-out due to disease
progression), but in the same way in the RCT and
the OS. We develop a falsification test under both
censoring mechanisms and verify its effectiveness in
semi-synthetic experiments with the Infant Health and
Development Program cohort. We also analyze real-
world RCT and OS data from the Women’s Health
Initiative. Figure 1 gives an overview of our results.

2 NOTATION AND BACKGROUND

Notation Let A ∈ {0, 1} and Y ∈ R+ denote the
binary treatment assignment and time-to-event out-
come. We use Y (a) to refer to the potential outcome
for treatment A = a and use S as the study indicator
with S = 0 reserved for the RCT and S = 1 for the
OS. We denote by I0 and I1 the set of patients for the
RCT and the OS, respectively, and let I := I0∪I1. We
denote the cardinality of a set by |I| and let |I0| = n0,
|I1| = n1, and |I| = n, where n = n0 + n1.

We denote the set of patient covariates by X and define
X as the space of trial-eligible patients, that is,

P (S = 0 | X = x) > 0, ∀x ∈ X .
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Internal and External Validity We first introduce
conditional average treatment effect (CATE) estimation
without censoring. For a patient with covariates x ∈ X
in study S = s, the CATE is defined as the expected
difference between the potential outcomes with and
without treatment:

CATE(x, s) := E [Y (1)− Y (0)|X = x, S = s] . (1)

The fundamental challenge in causal inference is that
the potential outcomes Y (0) and Y (1) are never ob-
served together. For a patient in the control group
(i.e., A = 0) we observe Y (0) but not Y (1), and vice
versa for the treatment group. Nevertheless, one can
still estimate the CATE in a given study S = s under
certain internal validity assumptions listed below.
Definition 1 (Internal validity). We say that inter-
nal validity holds for a study S = s if the following
conditions hold ∀a ∈ {0, 1} and ∀x ∈ X .

• No unobserved confounding — Y (a) ⊥⊥ A | X,S = s.

• Consistency — A = a =⇒ Y = Y (a).

• Positivity of treatment assignment

P (A = a | X = x, S = s) > 0.

Assumption 1. Internal validity (Definition 1) holds
for both the RCT S = 0 and the OS S = 1.

Assumption 1 allows to identify the CATE in (1) as a
quantity that can be estimated from data (i.e., an esti-
mand) in the RCT population and the OS population
separately. However, even when the internal validity
holds, the CATE in two populations can differ due to
different distribution of treatment effect modifiers that
are not included in X. To generalize the CATE from
one study to the other, one needs external validity that
assumes away unobserved treatment effect modifiers
(Dahabreh et al., 2019, 2020a).
Assumption 2 (External validity). We have, ∀a ∈
{0, 1} and ∀x ∈ X ,

• Ignorability of selection — Y (a) ⊥⊥ S | X.

• Positivity of selection — P (S = 1 | X = x) > 0.

Falsification Without Censoring Assumption 1
implies that CATE(x, 1) and CATE(x, 0) can be esti-
mated, and Assumption 2 implies that CATE(x, 1) =
CATE(x, 0). Intuitively, disagreement between the
estimated CATE functions from each study implies
that one or more of these assumptions are violated.
Testing this equivalence forms the basis of the max-
imum moment restriction (MMR)-based falsification
framework proposed in Hussain et al. (2023) in the

absence of censoring. The core technical idea is to re-
late the equivalence of the underlying CATE functions
to a set of conditional moment restrictions, finding
an “instance-wise signal” ψ such that Assumptions 1-2
imply E [ψ | X] = 0 almost surely. This reduction al-
lows for applying the recent advances in the testing of
MMRs via kernel methods (Muandet et al., 2020).

3 CENSORED FALSIFICATION

This work considers the common scenario where the
time-to-event outcome Y ∈ R+ is subject to right-
censoring. Let C ∈ R+ be the censoring time. For a
patient, we observe (X,A, S, Ỹ ,∆) where

Ỹ = min (Y,C) , ∆ = 1 {Y ≤ C} . (2)

We either observe the time-to-event or the censoring
time, indicated by ∆. ∆ = 1 means that the time-to-
event Y is observed, but not the censoring time C, and
vice versa for ∆ = 0. Censoring introduces an addi-
tional identification problem as neither of the potential
outcomes is observed for censored patients. Without
any assumptions on the censoring mechanism, unbi-
ased CATE estimation is not possible in either study,
rendering prior falsification approaches ineffective.

In this section, we generalize the falsification framework
in Hussain et al. (2023) under two different censoring
conditions. In Section 3.1, we assume the censoring
time C is independent of the time-to-event Y after
conditioning on covariates X. We derive unbiased
instance-wise signals for CATE in the RCT and the
OS, suitable for comparison via an MMR test. Note
that the falsification could be due to violating the cen-
soring assumption, even though the validity assump-
tions hold. Remarkably, even when the censoring is not
conditionally independent of time-to-event, and there-
fore unbiased CATE estimation is infeasible, testing
the validity assumptions using the same signals may
still be possible. The key ingredient is an alternative
assumption that the censoring mechanism is identical
across studies (Section 3.2).

3.1 Falsification with Conditionally
Independent Censoring

We start by recalling the conditionally independent
censoring condition, which is common in survival anal-
ysis (Kalbfleisch and Prentice, 2011).
Assumption 3 (Conditionally independent censoring).

Y ⊥⊥ C | X,A, S.

We show that under conditionally independent cen-
soring, one can adapt the doubly-robust censoring-
unbiased estimator in Rubin and van der Laan (2007)
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to form conditional moment restrictions (CMR) that
enables us to use an MMR-based test (Muandet et al.,
2020) for falsifying the validity assumptions (1-2). Pre-
cisely speaking, we derive instance-wise signals ψs such
that E [ψs | X] = CATE(X, s), allowing us to define a
difference signal ψ = ψ1 − ψ0 such that E [ψ | X] = 0
almost surely in PX . We can then use the preceding
equality as our null hypothesis, whose rejection would
imply the violation of the validity assumptions, and
use an MMR-based test similar to that of Hussain et al.
(2023) (see Theorem 3).

By G and F , we denote the cumulative distribution
functions of the censoring time C and time-to-event out-
come Y , respectively. We use Ḡ and F̄ to denote their
survival functions (Ḡ(t) = 1−G(t)). For conciseness,
we use the following notation

Ḡs,a(t | X) := P (C > t | X,S = s,A = a) . (3)
F̄s,a(t | X) := P (Y > t | X,S = s,A = a) . (4)

We further assume that for any realizable time-to-event,
there is a nonzero probability of being observed, to
prevent censoring-related identifiability issues.
Assumption 4 (Support under censoring). ∀t ∈ R+,
∀a, s ∈ {0, 1}, the following holds almost surely in PX1

F̄s,a(t | X) > 0 =⇒ Ḡs,a(t | X) > 0.

Combined with internal validity in Assumption 1, As-
sumptions 3 and 4 make it possible to have unbiased
estimates of the CATE (see (1)) in the RCT and the
OS populations in the presence of right-censoring.

We start by writing the censoring-unbiased signal from
Rubin and van der Laan (2007) for a study s and
treatment group a pair.

ψ∗
s,a =

1 {∆ = 1}Y
Ḡs,a(Y | X)

+
1 {∆ = 0}Qs,a(X,C)

Ḡs,a(C | X)

−
∫ Ỹ

−∞

Qs,a(X, c)

Ḡ2
s,a(c | X)

dGs,a(c | X), (5)

where Qs,a(X,C) = E [Y |X,Y > C, S = s,A = a].
ψ∗
s,a is “doubly-robust” in the sense that it is unbiased

for the time-to-event outcome Y if either Ḡs,a(t|X)
or F̄s,a(t|X) is correctly estimated. Computing ψ∗

s,a

requires estimating the survival function of the censor-
ing time, Ḡs,a(t|X), and of the time-to-event outcome,
F̄s,a(t|X). Using the estimate for F̄s,a(t|X), one can
also calculate Qs,a(X,C) by integration under condi-
tionally independent censoring. The practitioner may
use covariate-adjusted Kaplan-Meier estimators or the
Cox proportional hazards (CoxPH) framework to model

1All (in)equalities involving random variables hold al-
most surely throughout the manuscript.

the effect of covariates on the time-to-event along with
recent advances in survival modeling (Van Keilegom
et al., 2001; Cole and Hernán, 2004; Cox, 1972; Chap-
fuwa et al., 2021; Curth et al., 2021). We adopt a
CoxPH model and provide the details in Section 4.
Lemma 1. Suppose that Assumptions 1,3, and 4 hold.
From Theorem 1 in Rubin and van der Laan (2007)
and Assumption 1, we have, ∀s, a ∈ {0, 1},

E
[
ψ∗
s,a | X,S = s,A = a

]
= E [Y (a) | X,S = s] ,

if Ḡs,a(t|X) (3) or F̄s,a(t|X) (4) is correctly estimated.

Lemma 1 is quite powerful as it identifies conditional
average potential outcomes under right-censoring in
doubly-robust way. However, ψ∗

s,a is not readily avail-
able as an instance-wise signal to facilitate an MMR-
based test, as it is only defined for S = s and A = a.
One can handle this by re-weighting with inverse selec-
tion P (S|X) and propensity scores P (A|X,S).
Corollary 1. Suppose that Assumptions 1,3,4 hold
and P (S = 1|X) is correctly estimated. Let

ψIPW,∗
s,a :=

1 {S = s,A = a}ψ∗
s,a

P (S = s | X)P (A = a | X,S = s)
. (6)

Then ∀s, a ∈ {0, 1}, E
[
ψIPW,∗
s,a |X

]
= E [Y (a)|X,S = s]

if P (A = a|X,S = s), and either Ḡs,a(t|X) (3) or
F̄s,a(t|X) (4) are correctly estimated.

Following Corollary 1, one can define the instance-
wise signal ψIPW,∗

s := ψIPW,∗
s,a=1 − ψIPW,∗

s,a=0 which is unbi-
ased for the CATE in study s, that is, E[ψIPW,∗

s |X] =
CATE(X, s) (see (1)). We can then test the equiva-
lence CATE(X, 1) = CATE(X, 0) via an MMR test
with the null hypothesis of E[ψIPW,∗

s=1 − ψIPW,∗
s=0 |X] = 0.

Enhancing Double-robustness While we are now
well-equipped for an MMR-based falsification test,
Corollary 1 requires the correct estimation of the
propensity score of treatment P (A = a|X,S = s). We
alleviate this requirement by building upon the doubly-
robust estimation of treatment effects literature, where
the correct estimation of either the propensity score
or the mean outcome function is sufficient. In particu-
lar, since F̄s,a(t|X) entirely describes the time-to-event
outcome distributions, P (Y (a)|X,S = s), estimating
it correctly would suffice for estimating the CATE (see
(1)), even when the propensity score estimation is incor-
rect. We propose the following censoring-doubly-robust
(CDR) signal, which enjoys this enhanced doubly-
robust property:

ψCDR
s,a :=

1 {S = s}
P (S = s | X)

×
(
1 {A = a} (ψ∗

s,a − µs,a(X))

P (A = a | X,S = s)
+ µs,a(X)

)
, (7)
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where µs,a(X) := E [Y |X,S = s,A = a] can be com-
puted by integrating F̄s,a(t|X) over t ∈ R+.
Theorem 1. Suppose that Assumptions 1–4 hold and
P (S = 1|X) is correctly estimated. Then, ∀s, a ∈ {0, 1}

E
[
ψCDR
s,a | X

]
= E [Y (a) | X,S = s] ,

if either F̄s,a(t|X) (4), or both Ḡs,a(t|X) (3) and
P (A = a|X,S = s) are correctly estimated.

Although correctly estimating F̄ under censoring re-
mains challenging, the doubly-robust property is still
desirable. For instance, consider a scenario where the
censoring time tends to be high, and most of the ob-
servations are non-censored. In that case, due to the
small number of censored observations, our estimates
for Ḡs,a(t|X) may suffer from high variance, whereas
the estimates for F̄s,a(t|X) may be more reliable. It
is also sufficient to correctly estimate Ḡs,a(t|X) and
P (A = a|X,S = s). This is advantageous in scenarios
where further assumptions on censoring simplify the
estimation of Ḡ (e.g., under type-1 censoring discussed
at the end of this section). We investigate the doubly-
robustness of our signal empirically in Appendix C.1.

Starting from (7), we define the censoring-doubly-
robust instance-wise signals for CATE in study s and
“CATE difference” across studies as follows.

ψCDR
s := ψCDR

s,a=1 − ψCDR
s,a=0.

ψCDR := ψCDR
s=1 − ψCDR

s=0 .
(8)

Theorem 2. Suppose that Assumptions 1–4 hold and
P (S = 1|X) is correctly estimated. Then

E
[
ψCDR
s=1 | X

]
= E

[
ψCDR
s=0 | X

]
= CATE(X, 0),

where CATE(X, s) is defined in (1), and therefore

E[ψCDR | X] = 0, (9)

if ∀s, a ∈ {0, 1}, either F̄s,a(t|X) (4), or both Ḡs,a(t|X)
(3) and P (A = a|X,S = s) are correctly estimated.

If (9) fails to hold, it means that a subset of the As-
sumptions 1–4 is violated. It remains to convert this
condition into a hypothesis that can be tested using
the maximum moment restriction via the machinery of
reproducing kernel Hilbert spaces (RKHS) (Muandet
et al., 2020). Before writing the full characterization of
the test, we note that weaker assumptions on external
validity also suffice to construct the hypothesis in (9).
Proposition 1. Consider the same setup in Theorem 2,
with the only difference being that we assume that

CATE(X, 0) = CATE(X, 1),

instead of the stronger “ignorability of selection” in
Assumption 2, where CATE(X, s) is defined in (1).
Then, results in Theorem 2 continue to hold.

Proposition 1 highlights that we are effectively testing
a weaker assumption. This is desirable when one is
not necessarily interested in whether the conditional
potential outcomes have identical distributions in both
studies, but only if the CATE functions are the same.
The SPRINT trial (SPRINT Research Group, 2015) is
an example where only the latter holds.
Theorem 3 (MMR-based test for validity assump-
tions with conditionally independent censoring). Let
ψ = ψCDR and suppose that P (S = 1|X) is correctly
estimated. Suppose that either F̄s,a(t|X) (4), or both
Ḡs,a(t|X) (3) and P (A = a|X,S = s) are correctly
estimated ∀s, a ∈ {0, 1}. Let k(·, ·) be an ISPD2, con-
tinuous, and bounded kernel, and F be the RKHS en-
dowed with k(·, ·). Suppose that |E [ψ|X]| < ∞ and
E
[
[ψk(X,X ′)ψ′]2

]
<∞ a.s. in PX , where (ψ,X) and

(ψ′, X ′) are i.i.d. Let M = supf∈F,||f ||≤1 (E [ψf(X)])
2

be the maximum moment restriction (MMR). Then,
under Assumptions 1–4, the conditional moment re-
striction E [ψ|X] = 0 holds PX a.s., which implies that
the following null hypothesis H0 holds.

H0 : M2 = 0, H1 : M2 ̸= 0.

We can then use the following empirical estimate of M2

as the test statistic,

M̂2
n =

1

n(n− 1)

∑
i,j∈I,i̸=j

ψik(xi, xj)ψj . (10)

which has the following asymptotic distributions under
the null H0 and the alternative H1 hypotheses.

Under H0 : M̂2
n

d−→
∞∑
j=1

λj(Z
2
j − 1).

Under H1 :
√
n(M̂2

n −M2)
d−→ N (0, 4σ2).

where Zj are i.i.d. standard normal variables and
λj are the eigenvalues of ψk(x, x′)ψ′, and σ2 =
Var(ψ,X)

(
E(ψ′,X′)[ψk(X,X

′)ψ′]
)
.

Theorem 3 formalizes the implications of Assumptions
1-4 as a null hypothesis we can test by calculating a
statistic (see (10)) from the data and compare against
a threshold tα where α ∈ (0, 1) controls the acceptable
“risk” of falsifying the assumptions when they are indeed
true. We provide the explicit steps in Algorithm 1.

Note that the censoring assumptions cannot be verified
separately. As such, linking the rejection of the test
to the violation of the validity assumptions is difficult.
Nevertheless, there are cases where the censoring as-
sumptions are true by design. Consider a study where

2k(·, ·) : X × X → R is said to be integrally strictly
positive definite (ISPD) if for all f : X → R satisfying
0 < ∥f∥22 < ∞, we have

∫
X×X f(x)k(x, x′)f(x′) dx dx′ > 0.
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Algorithm 1 Testing for internal and external validity
under conditionally independent right-censoring

Input: Combined sample from RCT S = 0 and OS
S = 1: {Xi, Ai, Si, Ỹi,∆i}ni=1, desired test level α
1. Estimate P (S|X), P (A|X,S), Ḡ, F̄
2. Compute ψCDR

i in (8) for i ∈ {1, . . . , n}
3. Compute test statistic M2 in (10) for ψi= ψCDR

i

4. Compute test threshold tα (see Appendix C.3)
5. if tα < α then reject H0 else accept H0

patients are recruited at different times and followed
until a fixed endpoint. In that case, the censoring time
is known as soon as a patient enters the study (type-1
censoring (Leung et al., 1997)), and is independent
from their time-to-event outcome.

3.2 Falsification with Global Censoring

While conditionally independent censoring may be plau-
sible, it is easy to imagine settings where it is not. This
makes it challenging to attribute the rejection of the
test the violation of the validity assumptions rather
than censoring assumptions. For instance, consider a
study where patients are more likely to drop out after
experiencing adverse side effects, and a short censoring
time is associated with a short survival time. This
induces dependent censoring and renders Assumption 3
implausible. Therefore, it is critical to understand
how a benchmarking procedure fares under dependent
censoring models (Gharari et al., 2023).

In this section, we introduce an alternative (and per-
haps more plausible) censoring mechanism, which we
refer to as global censoring, and show that the ψCDR

signal in (8) can still be used to test the validity assump-
tions. Global censoring allows for dependent censoring,
contingent on the conditional distribution of the cen-
soring time C being identical in the RCT and the OS,
reflecting the intuition that the censoring mechanism
is the same in RCT and OS populations.
Assumption 5 (Global censoring).

C ⊥⊥ S | Y,X,A.

CDR Signal with Global Censoring Global cen-
soring does not entail conditionally independent cen-
soring. Therefore, the CATE is not necessarily iden-
tifiable in the RCT or the OS. This challenges the
core idea in Section 3.1 where internal validity and
conditionally independent censoring imply that the
instance-wise signals ψCDR

s=0 and ψCDR
s=1 in (8) are unbi-

ased for the CATE(X, 0) and CATE(X, 1) in (1). Since
CATE(X, 0)= CATE(X, 1) by external validity, we pro-
posed testing the equivalence of two signals as a proxy
for testing the validity assumptions (see Theorem 3).

Nevertheless, we can show that the global censoring
assumptions also imply the equivalence of ψCDR

s=0 and
ψCDR
s=1 , even if these signals are no longer unbiased for

the CATE anymore. Crucially, this means that the
same falsification test in Theorem 3 can also be used
under global censoring, as we show next.
Theorem 4. If Assumptions 1,2,5 hold, we have

E[ψCDR | X] = E[ψCDR
s=1 − ψCDR

s=0 | X] = 0, (11)

where ψCDR
s is defined in (7,8).

Proof Sketch. Even though ψCDR
s are biased for the

CATE(X, s) in general (as opposed to Theorem 2), the
bias in the RCT S = 0 and the OS S = 1 will be the
same due to Assumption 5; therefore the conditional
moment restrictions in (11) will still hold.

Theorem 4 allows to use ψCDR to under global censor-
ing through the same machinery in Theorem 3. This
property is very desirable as it makes testing the valid-
ity assumptions, which is our original motivation, more
tangible by providing a falsification test that works
under two different censoring mechanisms, significantly
increasing the generality of the procedure.

Alternative Signals for Global Censoring The
global censoring assumption also allows the construc-
tion of more straightforward signals to test the validity
assumptions. For instance, we propose the following
IPW signals that use Ỹ in (2):

ψIPW,Ỹ
s :=

1 {S = s,A = 1} Ỹ
P (S = s,A = 1|X)

− 1 {S = s,A = 0} Ỹ
P (S = s,A = 0|X)

.

ψIPW,Ỹ := ψIPW,Ỹ
s=1 − ψIPW,Ỹ

s=0 . (12)

Theorem 5. If Assumptions 1,2,5 hold, we have

E[ψIPW,Ỹ | X] = E[ψIPW,Ỹ
s=1 − ψIPW,Ỹ

s=0 | X] = 0. (13)

ψIPW,Ỹ
s imputes censored outcomes directly with the

censoring time. One could use another IPW signal after
dropping the censored data, and also doubly-robust
signals with additional mean outcome estimators (e.g.,
for Ỹ ). We provide the details for alternative signals,
which will also serve as “baselines” in the experiments,
in Appendix D. Note that even though we call them
baselines for their naive approach, these signals have
not been considered for this problem before.

The weaker version of the external validity assumption
cannot be tested under global censoring, whereas this
was possible with conditionally independent censoring
(see Proposition 1). Our next result formalizes this,
where we consider an even stronger alternative than
the exchangeability of CATEs in Proposition 1.
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Proposition 2. Consider the same setup in Theorems
4 and 5, with the only difference being we assume

E [Y (a) | X,S = 0] = E [Y (a) | X,S = 1] ,

∀a ∈ {0, 1}, instead of the stronger “ignorability of
selection” in Assumption 2. Then, (11) and (13) are
not true in general.

4 IHDP EXPERIMENTS

The Infant Health and Development Program (IHDP)
is an RCT that studied the effect of professional home
visits on cognitive abilities in premature infants, with a
sample size of 985 (Brooks-Gunn et al., 1992). We use
covariate information from the IHDP trial to form semi-
synthetic OS and RCT cohorts. We then simulate the
binary treatment assignments, time-to-event outcomes,
and censoring times based on the covariate information,
as detailed in Section 4.1. The simulations cover set-
tings with different validity assumption violations and
censoring mechanisms: conditionally independent and
global. Using the simulated data, we compute various
signals, including the ψCDR signal in (8) and some rudi-
mentary alternatives to serve as baselines, which are
described in Section 4.2. We then conduct falsification
tests for the validity assumptions using different signals
as ψ signal in the 3rd step of Algorithm 1 and compare
the type-1 errors and powers. Our code is available at
https://github.com/demireal/censored-mmr.

4.1 Data-Generating Process

For a patient with covariates Xi in study Si, we sample
a binary treatment Ai ∼ Bernoulli (P (A = 1|Xi, Si)).
The propensity score P (A|X,S) is set to a sigmoid
function for both studies. Then we sample time-to-
event Yi and censoring time Ci outcomes according
to the survival functions F̄Si,Ai

(t|Xi) and ḠSi,Ai
(t|Xi).

We adopt a CoxPH framework to model the effect of
covariates X and specify F̄S,A(t|X) and ḠS,A(t|X) as

W 0(t;λ, p)
exp(X⊺βCox), (14)

where W 0(t;λ, p) is the Weibull baseline survival func-
tion, and the parameters λ, p, and β can be set differ-
ently for each study S and treatment group A. Exact
expressions and specific parametrizations used in the
experiments can be found in Appendix B.1.

4.2 Ablation Studies

We perform ablation studies to measure the efficiency
of our CDR signal in (8) for testing the validity assump-
tions. For comparison, we propose “baselines” with no
component to model censoring: IPW − Y , DR − Y ,

IPW− Ỹ , DR− Ỹ (detailed in Appendix D). IPW−Y
and DR − Y drop the censored data. IPW − Ỹ and
DR − Ỹ impute the missing time-to-event with cen-
soring time. For instance, the IPW − Ỹ baseline uses
ψ = ψIPW,Ỹ signal (12) in the 3rd step of Algorithm 1.
DR baselines employ additional estimators for imputed
or uncensored outcomes. We also adopt an inverse
propensity of censoring-weighted (IPCW) signal that
accounts for censoring by inverse-weighting with Ḡ.

The significance level of the tests is set to α = 0.05 as
the desired type-1 error threshold. The synthetic RCT
cohort size is the original IHDP cohort size n0 = 985.
We experiment with two OS cohort sizes n1 = 985 and
n1 = 2955, where we copy the covariate data from the
IHDP three times for the former. Even though the
covariates are repeated, treatment and time-to-event
generation processes still involve stochasticity.

4.3 Conditionally Independent Censoring

We follow the data-generating process in Section 4.1,
ensuring that censoring Assumptions 3 and 4 hold and
consider various violations of validity assumptions. The
results are presented in Table 1 and Figure 2.

We start with setup #1, where validity assumptions
hold. The baselines have very high type-1 errors, falsi-
fying the OS despite being compatible with the RCT.
Increasing the sample size does not alleviate the prob-
lem, as baselines’ CATE estimates are asymptotically
biased. The IPCW and CDR signals boast significantly
lower type-1 errors, maintaining the test level of 0.05.

Next, we consider the violation of the external validity
assumption A2; where one of the βCox parameters in
(14) is different between the RCT and OS (setups #2
and #3 in Table 1, and top left in Figure 2). By ∆βCox,
we denote the magnitude of the difference, where a
larger value causes a more severe violation. In addi-
tion to having high type-1 errors, IPW-based baselines
also suffer from low power. This behavior can be ex-
pected, e.g., if the bias introduced by naively handling
the censored data cancels part of the bias from vio-
lating external validity or due to the high variance of
IPW-based estimators. IPCW reacts to more severe
violations of external validity; however, it cannot detect
milder violations. The CDR signal enjoys higher power
as a meaningful complement to its low type-1 error.

We then consider the violation of internal validity A1
in the OS by introducing “unobserved confounding”
(UC) (setups #4 and #5 in Table 1 and top middle in
Figure 2). We conceal the confounding covariate “sex”
and adjust the violation severity through its effect on
the propensity score of treatment, captured by βprop.
We observe that the CDR signal can detect unobserved

https://github.com/demireal/censored-mmr
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Table 1: Semi-synthetic IHDP experiments with conditionally independent censoring. Entries are the rejection
rates of the null hypothesis (see Theorem 3) over 40 independent runs. |βprop| quantifies the severity of unmeasured
confounding, i.e., internal validity violation (A1), and ∆βCox the severity of external validity violation (A2).

Setup # 1 2 3 4 5

Assumption validity A1 ✓ A2 ✓ A1 ✓ A2 ✗ A1 ✓ A2 ✗ A1 ✗ A2 ✓ A1 ✗ A2 ✓
Violation severity — ∆βCox = 0.2 ∆βCox = 1 |βprop|= 1 |βprop|= 2.5
Metric Type-1 error Power Power Power Power

OS sample size, n1 985 2955 985 2955 985 2955 985 2955 985 2955

DR − Ỹ 1 1 0.35 0.375 1 1 1 1 1 1
DR − Y 1 1 0.55 0.6 0.85 0.95 1 1 1 1
IPW − Ỹ 1 1 0 0 0.125 0.35 1 1 1 1
IPW − Y 0.9 1 0 0 0 0.025 1 1 1 1
IPCW 0 0 0 0 0.425 0.925 0.025 0.05 0.825 0.95
CDR 0 0.025 0.2 0.3 0.9 0.975 0.275 0.425 0.8 0.85

confounding, an ability pronounced by increased sample
size and violation severity. As before, IPCW does not
react when the violation is subtle.

Overall, falsification with CDR signal has the most reli-
able performance with low type-1 error and ability to de-
tect milder violations. We also verify its doubly-robust
property in Appendix C.1. Further, in Appendix C.2,
we show that a “witness function” may provide expla-
nations by revealing the regions of X where CATE
estimates from RCT and OS differ the most.

4.4 Global Censoring

To simulate the global censoring mechanism, we censor
patients whose time-to-event outcome exceeds a thresh-
old by setting the censoring time to a smaller value than
the threshold through the same mechanism in RCT
and OS. We present the type-1 errors and powers at
varying levels of validity violations in Figure 2. In con-
trast to the conditionally independent censoring case,
all signals maintain low type-1 errors, corroborating
the theory of Section 3.2. IPW and IPCW signals have
lower type-1 errors than their doubly-robust counter-
parts; however, they are not as well-powered to detect
violations of the validity assumptions.

5 WHI EXPERIMENTS

The Women’s Health Initiative (WHI) was launched
in the early 1990s to study various health outcomes
in postmenopausal women. Previous studies noted
discrepancies between the RCT and OS components
of the WHI (Prentice et al., 2005). We focus on the
effect of combination hormone therapy on a composite
outcome: the minimum time-to-event among multiple
endpoints such as heart failure, cancer, and death.
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Figure 2: Top row: Conditionally independent cen-
soring results. Bottom row: Global censoring results.
EVV = External validity violation (A2). UC = Unob-
served confounding (A1). OS size is n1 = 2955.

Similar to Hussain et al. (2023), we limit the follow-up
to seven years since the treatment assignment. While
previous studies discarded censoring by binarizing the
time-to-event outcome and imputing the outcome for
censored patients with Y = 0, our framework allows
us to use the true outcomes and explicitly model the
censoring component. We used 954 features available in
the RCT and OS and performed principal component
(PC) analysis to alleviate collinearity-related instabili-
ties in Cox regression models (350 PCs, capturing 90%
of the variance, details in Appendix B.2). We split
the data into ten folds, estimate the nuisance functions
using nine folds (step 1 in Algorithm 1), and perform
the MMR test with the remaining fold. We repeat ten
times and report the average rejection rates.
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Table 2: WHI experiments. Average rejection rate over
10-folds for different fractions of selection biases f .

IPW − Ỹ DR − Ỹ IPCW CDR

f = 0 0 0.5 0 0.6
f = 0.1 0.1 0.2 0.1 0.9
f = 0.25 0 0.4 0.3 0.9

We also simulate selection bias by dropping f ∈ (0, 1)
fraction of patients from the RCT’s control group that
experienced an event. The results are presented in
Table 2. IPW-based methods have lower rejection
rates, while the CDR signal has the highest rejection
rate, which increases with the selection bias f .

6 RELATED WORK IN
EPIDEMIOLOGY

Evaluating the internal and external validity of RCTs
and OSes has been of significant interest in the epi-
demiology literature. Here, we surface some references
for the interested reader.

One elegant concept is negative outcomes (Lipsitch
et al., 2010; Sofer et al., 2016). A negative outcome is
known or expected to be unaffected by the treatment.
Therefore, a significant difference in a negative outcome
between the treatment and control groups may point
to flaws in the study design. For instance, Dagan et al.
(2021) leverage the fact that the COVID-19 vaccine
should not have a significant effect within the first few
days of administration to guide their adjustment for
confounders in the observational data.

Viele et al. (2014) investigate methods to incorporate
historical controls into the design of new RCTs to make
them more efficient. Their “test-then-pool” procedure
first compares the historical controls to trial controls
before pooling them. Hartman et al. (2015) study esti-
mating the population average treatment effect on the
treated from an RCT, where the population of interest
is defined by an OS cohort. Their approach involves a
placebo test in the first step to gauge the generalizabil-
ity of the trial to the target population. de Luna and
Johansson (2014) show how an alternative set of causal
assumptions on instrumental variables can be used to
construct a test for the no unmeasured confounding
assumption in an OS.

We close by noting Forbes and Dahabreh (2020) and
Wang et al. (2023). They provide thorough empirical
evidence regarding the compatibility of RCTs and their
OS counterparts by analyzing complementary findings
from an extensive set of studies in the literature.

7 CONCLUSION

We developed a framework to test the validity of an
OS by benchmarking it against an RCT, when the
outcomes are right-censored. We considered the com-
mon conditionally independent censoring condition and
introduced a novel one: global censoring. We demon-
strated that naively handling the censoring leads to
unreliable tests. In contrast, our censoring-doubly-
robust signal facilitated tests with low type-1 error and
high sensitivity to violations of the validity assumptions
under both censoring scenarios, making it a promis-
ing candidate for generally applicable benchmarking
procedures under different censoring scenarios.
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theoretical results. [Yes. All the assumptions
and theoretical results are listed in the main
paper in Sections 2 and 3.]

(b) Complete proofs of all theoretical results. [Yes.
All the proofs are included in Appendix A.]

(c) Clear explanations of any assumptions. [Yes.
The motivations/insights behind the assump-
tions are listed either before or after stating
the critical assumptions.]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
[Yes. See the repository link in Section 4]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes.
See Sections 4, 5 and Appendix B]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. [Not Applicable]

(b) The license information of the assets, if appli-
cable. [Not Applicable]

(c) New assets either in the supplemental material
or as a URL, if applicable. [See the repository
link in Section 4]

(d) Information about consent from data
providers/curators. [Yes. See Appendix B.2]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Yes. See Appendix B.2]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. [Not Applicable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Not Applicable]
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A PROOFS

Lemma A.1. Suppose that Assumption 1 holds. We have, ∀s, a ∈ {0, 1}

P (Y (a)|X,S = s) = P (Y |X,S = s,A = a)

Proof.

P (Y (a)|X,S = s) = P (Y (a)|X,A = a, S = s)

= P (Y |X,A = a, S = s)

by no unobserved confounding and consistency.

A.1 Lemma 1

Lemma 1. Suppose that Assumptions 1,3, and 4 hold. From Theorem 1 in Rubin and van der Laan (2007) and
Assumption 1, we have, ∀s, a ∈ {0, 1},

E
[
ψ∗
s,a | X,S = s,A = a

]
= E [Y (a) | X,S = s] ,

if Ḡs,a(t|X) (3) or F̄s,a(t|X) (4) is correctly estimated.
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Proof.

E
[
ψ∗
s,a|X,S = s,A = a

]
= E [Y |X,S = s,A = a] (Theorem 1 in Rubin and van der Laan (2007))

= E [Y (a)|X,S = s] (Lemma A.1)

A.2 Corollary 1

Corollary 1. Suppose that Assumptions 1,3,4 hold and P (S = 1|X) is correctly estimated. Let

ψIPW,∗
s,a :=

1 {S = s,A = a}ψ∗
s,a

P (S = s | X)P (A = a | X,S = s)
. (6)

Then ∀s, a ∈ {0, 1}, E
[
ψIPW,∗
s,a |X

]
= E [Y (a)|X,S = s] if P (A = a|X,S = s), and either Ḡs,a(t|X) (3) or

F̄s,a(t|X) (4) are correctly estimated.

Proof. Let us denote by P̂ (A = a|X,S = s) the estimated propensity score.

E

[
1 {S = s,A = a}ψ∗

s,a

P (S = s|X)P̂ (A = a|X,S = s)

∣∣∣X]

= E

[
ψ∗
s,a

P (S = s|X)P̂ (A = a|X,S = s)

∣∣∣X,S = s,A = a

]
P (S = s,A = a|X)

= E
[
ψ∗
s,a|X,S = s,A = a

]
= E [Y (a)|X,S = s] (Lemma 1)

where the probability terms cancel out since P̂ (A = a|X,S = s) = P (A = a|X,S = s) is correctly estimated.

A.3 Theorem 1

Theorem 1. Suppose that Assumptions 1–4 hold and P (S = 1|X) is correctly estimated. Then, ∀s, a ∈ {0, 1}

E
[
ψCDR
s,a | X

]
= E [Y (a) | X,S = s] ,

if either F̄s,a(t|X) (4), or both Ḡs,a(t|X) (3) and P (A = a|X,S = s) are correctly estimated.

Proof. Let us denote the estimates for the nuisance functions with

P̂ (A = a|X,S = s), Ĝs,a(t|X), F̂s,a(t|X), µ̂s,a(X)

and we have

ψ̂CDR
s,a =

1 {S = s}
P (S = s | X)

×

(
1 {A = a} (ψ̂∗

s,a − µ̂s,a(X))

P̂ (A = a | X,S = s)
+ µ̂s,a(X)

)
First, assume that the survival function of the time-to-event outcome is correctly estimated but the survival
function of the censoring time and the propensity score are not. That is,

F̂s,a(t|X) = F̄s,a(t|X) (15)
µ̂s,a(X) = µs,a(X) (16)

Ĝs,a(t|X) ̸= Ḡs,a(t|X)

P̂ (A = a|X,S = s) ̸= P (A = a|X,S = s)

Note that

µs,a(X) = E [Y |X,S = s,A = a]
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= E [Y (a)|X,S = s]

= E
[
ψ̂∗
s,a|X,S = s,A = a

]
(17)

where the second equality is by Lemma A.1 and the third by Lemma 1 thanks to (15). We have

E
[
ψ̂CDR
s,a |X

]
= E

1 {S = s,A = a}
(
ψ̂∗
s,a − µ̂s,a(X)

)
P (S = s|X)P̂ (A = a|X,S = s)

∣∣∣X
+ E

[
1 {S = s} µ̂s,a(X)

P (S = s|X)

∣∣∣X]

= E
[
ψ̂∗
s,a − µ̂s,a(X)|X,S = s,A = a

] P (A = a|X,S = s)

P̂ (A = a|X,S = s)
+ µ̂s,a(X)

=
(
E
[
ψ̂∗
s,a|X,S = s,A = a

]
− µs,a(X)

)
︸ ︷︷ ︸

0 by (17)

P (A = a|X,S = s)

P̂ (A = a|X,S = s)
+ µs,a(X) (18)

= E [Y (a)|X,S = s] (Lemma A.1)

where (18) follows from (16). Next, assume that the propensity score and the survival function of the censoring
time is correctly estimated, but the survival function of the outcome is not,

P̂ (A = a|X,S = s) = P (A = a|X,S = s) (19)

Ĝ(t|X,S = s,A = a) = Ḡ(t|X,S = s,A = a) (20)

F̂ (t|X,S = s,A = a) ̸= F̄ (t|X,S = s,A = a)

We have

E
[
ψ̂CDR
s,a |X

]
= E

[
1 {S = s,A = a} ψ̂∗

s,a

P (S = s|X)P̂ (A = a|X,S = s)
− 1 {S = s,A = a} µ̂s,a(X)

P (S = s|X)P̂ (A = a|X,S = s)
+

1 {S = s} µ̂s,a(X)

P (S = s|X)

∣∣∣X]
= E

[
1 {S = s,A = a} ψ̂∗

s,a

P (S = s,A = a|X)

∣∣∣X]− E
[
1 {S = s} µ̂s,a(X)

P (S = s|X)

(
1 {A = a} − P (A = a|X,S = s)

P (A = a|X,S = s)

) ∣∣∣X] (21)

= E
[
ψ̂∗
s,a|X,S = s,A = a

]
− µ̂s,a(X)× E

[(
1 {A = a} − P (A = a|X,S = s)

P (A = a|X,S = s)

) ∣∣∣X,S = s

]
︸ ︷︷ ︸

0

= E [Y (a)|X,S = s] (22)

where we have (21) by (19), and (22) follows from Lemma 1 since we have (20).

A.4 Theorem 2

Theorem 2. Suppose that Assumptions 1–4 hold and P (S = 1|X) is correctly estimated. Then

E
[
ψCDR
s=1 | X

]
= E

[
ψCDR
s=0 | X

]
= CATE(X, 0),

where CATE(X, s) is defined in (1), and therefore

E[ψCDR | X] = 0, (9)

if ∀s, a ∈ {0, 1}, either F̄s,a(t|X) (4), or both Ḡs,a(t|X) (3) and P (A = a|X,S = s) are correctly estimated.

Proof. Note that CATE(X, 0) = E [Y (1)− Y (0)|X,S = 0].

E
[
ψCDR
s=1 |X

]
= E

[
ψCDR
s=1,a=1|X

]
− E

[
ψCDR
s=1,a=0|X

]
= E [Y (1)|X,S = 1]− E [Y (0)|X,S = 1] (Theorem 1)
= E [Y (1)|X,S = 0]− E [Y (0)|X,S = 0] (Ignorability of selection, Assumption 2)

= E
[
ψCDR
s=0 |X

]
(by symmetry)
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A.5 Proposition 1

Proposition 1. Consider the same setup in Theorem 2, with the only difference being that we assume that

CATE(X, 0) = CATE(X, 1),

instead of the stronger “ignorability of selection” in Assumption 2, where CATE(X, s) is defined in (1). Then,
results in Theorem 2 continue to hold.

Proof. The proof is identical to the proof of Theorem 2, only difference being we invoke the alternative external
validity assumption CATE(X, 0) = CATE(X, 1) in the third step, instead of the stronger ignorability of selection.

A.6 Theorem 3

Theorem 3 (MMR-based test for validity assumptions with conditionally independent censoring). Let ψ = ψCDR

and suppose that P (S = 1|X) is correctly estimated. Suppose that either F̄s,a(t|X) (4), or both Ḡs,a(t|X) (3) and
P (A = a|X,S = s) are correctly estimated ∀s, a ∈ {0, 1}. Let k(·, ·) be an ISPD3, continuous, and bounded kernel,
and F be the RKHS endowed with k(·, ·). Suppose that |E [ψ|X]| < ∞ and E

[
[ψk(X,X ′)ψ′]2

]
< ∞ a.s. in PX ,

where (ψ,X) and (ψ′, X ′) are i.i.d. Let M = supf∈F,||f ||≤1 (E [ψf(X)])
2 be the maximum moment restriction

(MMR). Then, under Assumptions 1–4, the conditional moment restriction E [ψ|X] = 0 holds PX a.s., which
implies that the following null hypothesis H0 holds.

H0 : M2 = 0, H1 : M2 ̸= 0.

We can then use the following empirical estimate of M2 as the test statistic,

M̂2
n =

1

n(n− 1)

∑
i,j∈I,i̸=j

ψik(xi, xj)ψj . (10)

which has the following asymptotic distributions under the null H0 and the alternative H1 hypotheses.

Under H0 : M̂2
n

d−→
∞∑
j=1

λj(Z
2
j − 1).

Under H1 :
√
n(M̂2

n −M2)
d−→ N (0, 4σ2).

where Zj are i.i.d. standard normal variables and λj are the eigenvalues of ψk(x, x′)ψ′, and σ2 =
Var(ψ,X)

(
E(ψ′,X′)[ψk(X,X

′)ψ′]
)
.

Proof. By Theorem 2 and (8), we have

E [ψ|X] = E
[
ψCDR|X

]
= 0

The hypothesis test results then follow from Theorem 3.1 in Hussain et al. (2023).

Lemma A.2. Suppose that Assumptions 1, 2, 5 hold. We have, for all a ∈ {0, 1} and t ∈ R+

Ḡs=0,a(t|X) = Ḡs=1,a(t|X)

Qs=0,a(X, t) = Qs=1,a(X, t)

Proof. Let us start with the first statement.

Ḡs=0,a(t|X) = P (C > t|X,S = 0, A = a)

3k(·, ·) : X ×X → R is said to be integrally strictly positive definite (ISPD) if for all f : X → R satisfying 0 < ∥f∥22 < ∞,
we have

∫
X×X f(x)k(x, x′)f(x′) dxdx′ > 0.
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=
∑
y

P (C > t|Y = y,X, S = 0, A = a)P (Y = y|X,S = 0, A = a)

=
∑
y

P (C > t|Y = y,X, S = 0, A = a)P (Y (a) = y|X,S = 0) (Lemma A.1)

=
∑
y

P (C > t|Y = y,X, S = 1, A = a)P (Y (a) = y|X,S = 1) (Assumptions 2, 5)

= Ḡs=1,a(t|X) (by symmetry)

For the second statement, we write

Qs=0,a(X, t) = E [Y |X,Y > t, S = 0, A = a]

=
∑
y

yP (Y = y|X,Y > t, S = 0, A = a)

=
∑
y

y
P (Y (a) = y, Y (a) > t|X,S = 0)

P (Y (a) > t|X,S = 0)
(Lemma A.1)

=
∑
y

y
P (Y (a) = y, Y (a) > t|X,S = 1)

P (Y (a) > t|X,S = 1)
(Assumption 2)

= Qs=1,a(X, t) (by symmetry)

Lemma A.3. Suppose that Assumptions 1, 2, 5 hold. We have

P (Y ≤ C|X,S = 0, A) = P (Y ≤ C|X,S = 1, A)

Proof.

P (Y ≤ C|X,S = 0, A) =
∑
y

P (y ≤ C|Y = y,X, S = 0, A)P (Y = y|X,S = 0, A)

=
∑
y

P (y ≤ C|Y = y,X, S = 0, A)P (Y (A) = y|X,S = 0) (Lemma A.1)

=
∑
y

P (y ≤ C|Y = y,X, S = 1, A)P (Y (A) = y|X,S = 1) (Assumptions 2, 5)

= P (Y ≤ C|X,S = 1, A) (by symmetry)

Lemma A.4. Suppose that Assumptions 1, 2, 5 hold. We have

E [Y |X,S = 0, A, Y ≤ C] = E [Y |X,S = 1, A, Y ≤ C]

E [C|X,S = 0, A, Y > C] = E [C|X,S = 1, A, Y > C]

Proof. For the first statement we write

E [Y |X,S = 0, A, Y ≤ C] =
∑
y

yP (Y = y|X,S = 0, A, Y ≤ C)

=
∑
y

y
P (Y ≤ C|Y = y,X, S = 0, A)P (Y = y|X,S = 0, A = a)

P (Y ≤ C|X,S = 0, A)

=
∑
y

y
P (y ≤ C|Y = y,X, S = 0, A)P (Y (A) = y|X,S = 0)

P (Y ≤ C|X,S = 0, A)
(Lemma A.1)

=
∑
y

y
P (y ≤ C|Y = y,X, S = 1, A)P (Y (A) = y|X,S = 1)

P (Y ≤ C|X,S = 1, A)
(Lemma A.3, Assumptions 2,5)
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= E [Y |X,S = 1, A, Y ≤ C] (by symmetry)

For the second statement we write

E [C|X,S = 0, A, Y > C]

=
∑
y

E [C|X,S = 0, A, Y > C, Y = y]P (Y = y|X,S = 0, A, Y > C)

=
∑
y

E [C|X,S = 0, A, Y > C, Y = y]
P (y > C|Y = y,X, S = 0, A)P (Y = y|X,S = 0, A)

P (Y > C|X,S = 0, A)

=
∑
y

E [C|X,S = 0, A, Y > C, Y = y]
P (y > C|Y = y,X, S = 0, A)P (Y (A) = y|X,S = 0)

P (Y > C|X,S = 0, A)
(Lemma A.1)

=
∑
y

E [C|X,S = 0, A, Y > C, Y = y]
P (y > C|Y = y,X, S = 1, A)P (Y (A) = y|X,S = 1)

P (Y > C|X,S = 1, A)︸ ︷︷ ︸
=:g(X,A,Y=y,S=1)

(Lemma A.3, Assumptions 2, 5)

=
∑
y

g(X,A, Y = y, S = 1)
∑
c:y>c

cP (C = c|X,S = 0, A, Y > C, Y = y)

=
∑
y

g(X,A, Y = y, S = 1)
∑
c:y>c

c
P (y > C,C = c|X,S = 0, A, Y = y)

P (y > C|X,S = 0, A, Y = y)

=
∑
y

g(X,A, Y = y, S = 1)
∑
c:y>c

c

=1︷ ︸︸ ︷
P (y > c|X,S = 0, A,C = c, Y = y)P (C = c|X,S = 0, A, Y = y)

P (y > C|X,S = 0, A, Y = y)

=
∑

y,c:y>c

g(X,A, Y = y, S = 1)
cP (C = c|X,S = 1, A, Y = y)

P (y > C|X,S = 1, A, Y = y)
(Assumption 5)

=E [C|X,S = 1, A, Y > C] (by symmetry)

A.7 Theorem 4

Theorem 4. If Assumptions 1,2,5 hold, we have

E[ψCDR | X] = E[ψCDR
s=1 − ψCDR

s=0 | X] = 0, (11)

where ψCDR
s is defined in (7,8).

Proof. If we can show that E
[
ψCDR
s=0,a|X

]
= E

[
ψCDR
s=1,a|X

]
for all a ∈ {0, 1}, we are done since E

[
ψCDR
s |X

]
=

E
[
ψCDR
s,a=1 − ψCDR

s,a=0|X
]

for all s ∈ {0, 1}.

Recall that ψCDR
s,a is defined in Eq. (7) as

ψCDR
s,a :=

1 {S = s}
P (S = s | X)

×
(
1 {A = a} (ψ∗

s,a − µs,a(X))

P (A = a | X,S = s)
+ µs,a(X)

)
Allowing us to write

E
[
ψCDR
s=0,a|X

]
=E

[
1 {S = 0, A = a}ψ∗

s=0,a

P (S = 0, A = a|X)

∣∣∣X]−
����������������
E
[
1 {S = 0, A = a}µs=0,a(X)

P (S = 0, A = a|X)

∣∣∣X]︸ ︷︷ ︸
µs=0,a(X)

+

�������������E
[
1 {S = 0}µs=0,a(X)

P (S = 0|X)

∣∣∣X]︸ ︷︷ ︸
µs=0,a(X)

=E
[
ψ∗
s=0,a

∣∣∣X,S = 0, A = a
]
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=E

 1 {∆ = 1}Y
Ḡs=0,a(Y |X)︸ ︷︷ ︸

Term 1

+
1 {∆ = 0}Qs=0,a(X,C)

Ḡs=0,a(C|X)︸ ︷︷ ︸
Term 2

−
∫ Ỹ

−∞

Qs=0,a(X, c)

Ḡ2
s=0,a(c|X)

dGs=0,a(c|X)︸ ︷︷ ︸
Term 3

∣∣∣X,S = 0, A = a

 (23)

where in the last line, we have substituted the definition of ψ∗
s=0,a from Eq. (5). We will proceed separately for

each term. Note that 1 {∆ = 1} = 1 {Y ≤ C}.

E
[
1 {∆ = 1}Y
Ḡs=0,a(Y |X)

∣∣∣X,S = 0, A = a

]
=E

[
Y

Ḡs=0,a(Y |X)

∣∣∣X,S = 0, A = a, Y ≤ C

]
P (Y ≤ C|X,S = 0, A = a)

=
∑
y

y

Ḡs=0,a(y|X)
P (Y = y|X,S = 0, A = a, Y ≤ C)P (Y ≤ C|X,S = 0, A = a)

=
∑
y

y

Ḡs=0,a(y|X)
P (Y ≤ C|Y = y,X, S = 0, A = a)P (Y = y|X,S = 0, A = a)

=
∑
y

y

Ḡs=0,a(y|X)
P (y ≤ C|Y = y,X, S = 0, A = a)P (Y (a) = y|X,S = 0) (Lemma A.1)

=
∑
y

y

Ḡs=1,a(y|X)
P (y ≤ C|Y = y,X, S = 1, A = a)P (Y (a) = y|X,S = 1) (Lemma A.2, Assumptions 2, 5)

=E
[
1 {∆ = 1}Y
Ḡs=1,a(Y |X)

∣∣∣X,S = 1, A = a

]
(by symmetry)

We continue with Term 2

E
[
1 {∆ = 0}Qs=0,a(X,C)

Ḡs=0,a(C|X)

∣∣∣X,S = 0, A = a

]
=E

[
Qs=0,a(X,C)

Ḡs=0,a(C|X)

∣∣∣X,S = 0, A = a, Y > C

]
P (Y > C|X,S = 0, A = a)

=
∑
c

Qs=0,a(X, c)

Ḡs=0,a(c|X)
P (C = c|X,S = 0, A = a, Y > C)P (Y > C|X,S = 0, A = a)

=
∑
c

Qs=1,a(X, c)

Ḡs=1,a(c|X)
P (C = c, Y > C|X,S = 0, A = a) (Lemma A.2)

=
∑
c

Qs=1,a(X, c)

Ḡs=1,a(c|X)

∑
y

P (C = c, Y > C|Y = y,X, S = 0, A = a)P (Y = y|X,S = 0, A = a)

=
∑
c

Qs=1,a(X, c)

Ḡs=1,a(c|X)

∑
y

P (C = c, y > C|Y = y,X, S = 0, A = a)P (Y (a) = y|X,S = 0) (Lemma A.1)

=
∑
c

Qs=1,a(X, c)

Ḡs=1,a(c|X)

∑
y

P (C = c, y > C|Y = y,X, S = 1, A = a)P (Y (a) = y|X,S = 1) (Assumptions 2, 5)

=E
[
1 {∆ = 0}Qs=1,a(X,C)

Ḡs=1,a(C|X)

∣∣∣X,S = 1, A = a

]
(by symmetry)

We continue with Term 3

E

[∫ Ỹ

−∞

Qs=0,a(X, c)

Ḡ2
s=0,a(c|X)

dGs=0,a(c|X)
∣∣∣X,S = 0, A = a

]

=
∑
y,c

E
[ ∫ ỹ

−∞

Qs=0,a(X, c)

Ḡ2
s=0,a(c|X)

dGs=0,a(c|X)
∣∣∣Y = y, C = c,X, S = 0, A = a

]
P (Y = y, C = c|X,S = 0, A = a)

=
∑
y,c

(∫ ỹ

−∞

Qs=0,a(X, c)

Ḡ2
s=0,a(c|X)

dGs=0,a(c|X)

)
P (C = c|Y = y,X, S = 0, A = a)P (Y (a) = y|X,S = 0)
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=
∑
y,c

(∫ ỹ

−∞

Qs=1,a(X, c)

Ḡ2
s=1,a(c|X)

dGs=1,a(c|X)

)
P (C = c|Y = y,X, S = 1, A = a)P (Y (a) = y|X,S = 1)

= E

[∫ Ỹ

−∞

Qs=1,a(X, c)

Ḡ2
s=1,a(c|X)

dGs=1,a(c|X)
∣∣∣X,S = 1, A = a

]
(by symmetry)

where the second equality is by Lemma A.1 and the third by Lemma A.2 and Assumptions 2 and 5.

A.8 Theorem 5

Theorem 5. If Assumptions 1,2,5 hold, we have

E[ψIPW,Ỹ | X] = E[ψIPW,Ỹ
s=1 − ψIPW,Ỹ

s=0 | X] = 0. (13)

Proof. We write the following ∀a ∈ {0, 1}

E

[
1 {S = 0, A = a} Ỹ
P (S = 0, A = a|X)

∣∣∣X]
= E

[
Ỹ |X,S = 0, A = a

]
= E [min(Y,C)|X,S = 0, A = a]

= E [Y |X,S = 0, A = a, Y ≤ C]P (Y ≤ C|X,S = 0, A = a)

+ E [C|X,S = 0, A = a, Y > C]P (Y > C|X,S = 0, A = a)

= E [Y |X,S = 1, A = a, Y ≤ C]P (Y ≤ C|X,S = 1, A = a) (24)
+ E [C|X,S = 1, A = a, Y > C]P (Y > C|X,S = 1, A = a) (Lemmas A.3 and A.4)

= E

[
1 {S = 1, A = a} Ỹ
P (S = 1, A = a|X)

∣∣∣X] (by symmetry)

which immediately gives us

E
[
ψIPW,Ỹ
s=0 |X

]
= E

[
ψIPW,Ỹ
s=1 |X

]
by definition of ψIPW,Ỹ

s and we are done.

A.9 Proposition 2

Proposition 2. Consider the same setup in Theorems 4 and 5, with the only difference being we assume

E [Y (a) | X,S = 0] = E [Y (a) | X,S = 1] ,

∀a ∈ {0, 1}, instead of the stronger “ignorability of selection” in Assumption 2. Then, (11) and (13) are not true
in general.

Proof. In the first part of this proof, where we show that (13) is not true in general, we will consider the following
distributions for the potential outcomes which satisfy the “mean exchangeability of the potential outcomes” (the
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condition given in the statement of the proposition) but not the ignorability of selection condition in Assumption 2

P (Y (0) = n|S = 0) =

{
1/5 n ∈ {1, 2, 3, 4, 5}
0 otherwise

P (Y (1) = n|S = 0) =

{
1/5 n ∈ {2, 3, 4, 5, 6}
0 otherwise

P (Y (0) = n|S = 1) =

{
1/3 n ∈ {2, 3, 4}
0 otherwise

P (Y (1) = n|S = 1) =


1/6 n = 2

1/2 n = 4

1/3 n = 5

0 otherwise

(25)

and the following conditional distributions for the censoring time

P (C = n|Y < 3.5) =

{
1 n = 10

0 otherwise

P (C = n|Y > 3.5) =

{
1 n = 1/2

0 otherwise

(26)

For simplicity, we further assume that
Y (0), Y (1) ⊥⊥ X,A|S

C ⊥⊥ X,S,A|Y
(27)

Note that (26) and (27) are stricter versions of no unobserved confounding (Assumption 1) and global censoring
(Assumption 5). We then note, by (25), the following

E [Y (0)|X,S = 0] = 3

E [Y (1)|X,S = 0] = 4

E [Y (0)|X,S = 1] = 3

E [Y (1)|X,S = 1] = 4

(28)

That is, mean exchangeability of the potential outcomes E [Y (a)|X,S = 0] = E [Y (a)|X,S = 1], ∀a ∈ {0, 1} holds.
Note that, however, ignorability of selection (in Assumption 2) is violated (see (25)). Thanks to (27), we can
simply calculate

P (Y ≤ C|X,S = 0, A = 0) =
3

5

P (Y ≤ C|X,S = 0, A = 1) =
2

5

P (Y ≤ C|X,S = 1, A = 0) =
2

3

P (Y ≤ C|X,S = 1, A = 1) =
1

6

(29)

since, e.g., when S = 0 and A = 0, we have Y ≤ C if and only if Y (0) ∈ {1, 2, 3}, which happens with probability
3× 1/5 = 3/5. Next, we have

E [Y |X,S = 0, A = 0, Y ≤ C] =
1 + 2 + 3

3
= 2

E [Y |X,S = 0, A = 1, Y ≤ C] =
2 + 3

2
= 5/2

E [Y |X,S = 1, A = 0, Y ≤ C] =
2 + 3

2
= 5/2

E [Y |X,S = 1, A = 1, Y ≤ C] = 2

(30)
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and
E [C|X,S,A, Y > C] =

1

2
(31)

since C = 1/2 almost surely whenever Y > C. We are now ready to calculate

E
[
ψIPW,Ỹ |X

]
= E

[(
ψIPW,Ỹ
s=1,a=1 − ψIPW,Ỹ

s=1,a=0

)
−
(
ψIPW,Ỹ
s=0,a=1 − ψIPW,Ỹ

s=0,a=0

) ∣∣∣∣X]
where

ψIPW,Ỹ
s,a =

1 {S = s,A = a} Ỹ
P (S = s,A = a|X)

From (24), we have

E
[
ψIPW
S,A |X

]
= E [Y |X,S,A, Y ≤ C]P (Y ≤ C|X,S,A) + E [C|X,S,A, Y > C]P (Y > C|X,S,A)

Plugging in the values calculated in (25), (26), (30), (31)

E
[
ψIPW,Ỹ
s=0,a=0|X

]
=

3

5
· 2 + 2

5
· 1
2
=

7

5

E
[
ψIPW,Ỹ
s=0,a=1|X

]
=

2

5
· 5
2
+

3

5
· 1
2
=

13

10

E
[
ψIPW,Ỹ
s=1,a=0|X

]
=

2

3
· 5
2
+

1

3
· 1
2
=

11

6

E
[
ψIPW,Ỹ
s=1,a=1|X

]
=

1

6
· 2 + 5

6
· 1
2
=

3

4

(32)

We are done since

E
[
ψIPW,Ỹ |X

]
=

(
3

4
− 11

6

)
−
(
13

10
− 7

5

)
= −59

60
̸= 0

Next, we show that (11) is not true in general. We keep the same setup above, only changing the marginal
distributions of the potential outcomes to the following for simplicity

P (Y (0) = n|S = 0) =

{
1 n = 0

0 otherwise

P (Y (1) = n|S = 0) =

{
1 n = 2

0 otherwise

P (Y (0) = n|S = 1) =

{
1 n = 0

0 otherwise

P (Y (1) = n|S = 1) =


1

2
n ∈ {0, 4}

0 otherwise

(33)

Note that the mean exchangeability of potential outcomes again hold, but not the ignorability of selection in
Assumption 2.

When (s = 0, a = 0), (s = 0, a = 1), or (s = 1, a = 0), we have C = 10 almost surely, since Y < 3.5 almost surely
and we never have censored outcomes (see (26)). We have Ỹ = Y and ∆ = 1 almost surely. Then for those values
of S = s and A = a, we can write, by (23)

E
[
ψCDR
s,a |X

]
=E

[
1 {∆ = 1}Y
Ḡs,a(Y |X)

+
1 {∆ = 0}Qs,a(X,C)

Ḡs,a(C|X)
−
∫ Ỹ

−∞

Qs,a(X, c)

Ḡ2
s,a(c|X)

dGs,a(c|X)
∣∣∣X,S = s,A = a

]

=E

[
Y

Ḡs,a(Y |X)
−
∫ Y

−∞

Qs,a(X, c)

Ḡ2
s,a(c|X)

δ(c− 10)
∣∣∣X,S = s,A = a

]
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=E
[

Y

Ḡs,a(Y |X)

∣∣∣X,S = s,A = a

]

where δ is the Dirac delta function. The integral term disappears since Y < 10 almost surely. Since Ḡs,a(t|X) = 1
for all t < 10, we can calculate the following

E
[
ψCDR
s=0,a=0|X

]
= 0

E
[
ψCDR
s=0,a=1|X

]
= 2

E
[
ψCDR
s=1,a=0|X

]
= 0

Next, we calculate E
[
ψCDR
s=1,a=1|X

]
. Note that in this case, the observations are censored with probability 1/2

(when Y = 4) and not censored with probability 1/2 (when Y = 0). We then note the marginal (w.r.t. Y ) survival
function of the censoring time as

Ḡs=1,a=1(n|X) =


1 n <

1

2
1

2

1

2
≤ n < 10

0 otherwise

And the density function as the sum of two Dirac delta functions

dGs=1,a=1(n|X) =
1

2

(
δ(n− 1

2
) + δ(n− 10)

)
(34)

We can then write, also utilizing Lemma A.1 and (33)

E
[
ψCDR
s=1,a=1|X

]
=E

[
1 {∆ = 1}Y
Ḡs=1,a=1(Y |X)

+
1 {∆ = 0}Qs=1,a=1(X,C)

Ḡs=1,a=1(C|X)
−
∫ Ỹ

−∞

Qs=1,a=1(X, c)

Ḡ2
s=1,a=1(c|X)

dGs=1,a=1(c|X)
∣∣∣X,S = 1, A = 1

]

=E

[
1 {∆ = 1}Y
Ḡs=1,a=1(Y |X)

+
1 {∆ = 0}Qs=1,a=1(X,C)

Ḡs=1,a=1(C|X)
−
∫ Ỹ

−∞

Qs=1,a=1(X, c)

Ḡ2
s=1,a=1(c|X)

dGs=1,a=1(c|X)
∣∣∣X,Y = 0, S = 1, A = 1

]
× P (Y (1) = 0|X,S = 1)

+E

[
1 {∆ = 1}Y
Ḡs=1,a=1(Y |X)

+
1 {∆ = 0}Qs=1,a=1(X,C)

Ḡs=1,a=1(C|X)
−
∫ Ỹ

−∞

Qs=1,a=1(X, c)

Ḡ2
s=1,a=1(c|X)

dGs=1,a=1(c|X)
∣∣∣X,Y = 4, S = 1, A = 1

]
× P (Y (1) = 4|X,S = 1)

=E
[

Y

Ḡs=1,a=1(Y |X)

∣∣∣X,Y = 0, S = 1, A = 1

]
︸ ︷︷ ︸

=0

×1

2
(when Y = 0, we have C = 10, ∆ = 1, Ỹ = 0)

+E

[
Qs=1,a=1(X,C)

Ḡs=1,a=1(C|X)
−
∫ Ỹ

−∞

Qs=1,a=1(X, c)

Ḡ2
s=1,a=1(c|X)

dGs=1,a=1(c|X)
∣∣∣X,Y = 4, S = 1, A = 1

]
× 1

2

(when Y = 4, we have C = 1
2 , ∆ = 0, Ỹ = 1

2 )

=

(
Qs=1,a=1(X,

1
2 )

Ḡs=1,a=1(
1
2 |X)

−
∫ 1

2

−∞

Qs=1,a=1(X, c)

Ḡ2
s=1,a=1(c|X)

dGs=1,a=1(c|X)

)
× 1

2

=

(
Qs=1,a=1(X,

1
2 )

Ḡs=1,a=1(
1
2 |X)

− 1

2

(
Qs=1,a=1(X,

1
2 )

Ḡ2
s=1,a=1(

1
2 |X)

))
× 1

2
(by (34))

=

(
4
1
2

− 1

2

4(
1
2

)2
)

× 1

2
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=0

Note that Qs=1,a=1(X,
1
2 ) = E

[
Y |X,Y > 1

2 , S = 1, A = 1
]
= 4 since given Y > 1

2 , Y = 4 almost surely. We are
done since

E
[
ψCDR|X

]
= E

[(
ψCDR
s=1,a=1 − ψCDR

s=1,a=0

)
−
(
ψCDR
s=0,a=1 − ψCDR

s=0,a=0

) ∣∣∣∣X]
= (0− 0)− (2− 0) = −2 ̸= 0

B DETAILS ON THE DATASETS USED IN THE EXPERIMENTS

B.1 IHDP Experiments

We use 10 covariates from the IHDP data for X, containing both continuous and categorical variables: twin,
b.head, preterm, momage, bw, b.marr, nnhealth, birth.o, momhisp, sex.

B.1.1 Propensity Score of the Treatment

In the RCT cohort S = 0 we set P (A = 1|X,S = 0) = 0.5. That is, the treatment assignment is completely
randomized. In the OS cohort, we have

P (A = 1|X,S = 1) = sigmoid(X⊺βprop + C)

where C ∈ {0.5, 0.75, 1, 1.25} and βprop(sex) = 2 × C depending on the “strength” of confounding we want to
induce. We set βprop(x) = 0 for all x ̸= sex. That is, among the 10 covariates listed above, only the sex covariate
has any influence on the treatment assignment. See the prop_args parameter in exp_configs/ihdp/*.json for
the specific value of βprop in each experimental setup.

The propensity score of the treatment is used to sample a binary treatment Ai for a patient with covariates xi in
the study si as

Ai ∼ Bernoulli(P (A = 1|X = xi, S = si))

B.1.2 Survival Functions of Time-to-Event and Censoring Time

Time-to-events Y and censoring times C are simulated using a CoxPH model (Cox, 1972) for their survival
functions F̄s,a(t|X) (4) and Ḡs,a(t|X) (3), which admits the general form

W 0(t;λ, p)
exp(X⊺βCox)

where

W 0(t;λ, p) = exp (−(λt)p) λ, p ∈ R+

Recall that the parameters λ, p, and βCox ∈ R10 are specified separately for each study S ∈ {0, 1} and treatment
group A ∈ {0, 1} pair. The specific values for each parameter can be found in exp_configs/ihdp/*.json under
the corresponding study key (RCT or OS).

To measure type-1 error (see setup #1 in Table 1), we use identical values for the parameters across the RCT
and the OS. Identical parameters are also used in the experiments where we consider the violation of internal
validity (see setups #4 and #5 in Table 1, and middle column in Figure 2). Only difference is that we conceal
the sex covariate to induce unmeasured confounding. Finally, to simulate the violation of the external validity
(see setups #2 and #3 in Table 1, and left column in Figure 2), we use different values for βCox(nnhealth) in
the treatment A = 1 groups of the RCT S = 0 and the OS S = 1. We experiment with different magnitudes of
difference for the parameter, denoted by ∆βCox in the main text (e.g., see Table 1).
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B.1.3 Estimation of the Nuisance Functions

Since we know the exact data-generating process, we are able to correctly specify the models for estimation.

For the selection P (S = 1|X) and propensity P (A = 1|X,S) scores, we fit logistic regression models. To limit the
variance of the signals, we drop patients with extreme selection or propensity scores (i.e., < 0.05 or > 0.95). For
the survival functions F̄s,a(t|X) (4) and Ḡs,a(t|X) (3), we fit a CoxPH model where the baseline survival function
W 0(t;λ, p) is estimated via the Breslow estimator and βCox is estimated by fitting Cox’s partial likelihood (Cox,
1972; Davidson-Pilon, 2019). Finally, we fit an XGboost model for the mean outcome regressors as part of the
DR-Ỹ and DR-Y signals (see Appendix D).

B.2 WHI Experiments

WHI data is available to all researchers upon request in https://biolincc.nhlbi.nih.gov/studies/whi_ctos/.
We start with 1121 features available at the baseline for both the RCT and the OS cohorts. After removing
duplicate and highly correlated (Pearson coefficient > 0.95), we had 954 features. Finally, we transform to 350
principal components (PC), which capture 90% of the variance, and use those PCs as the set of X variables.
THE PC transformation helps with the convergence and instability-related issues in the generalized linear models,
specifically the Cox regression model. The estimation of the nuisance functions is done the same way as in the
IHDP experiments (see Appendix B.1).

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 Testing the Doubly-Robustness of the CDR Signal

We test the CDR signal’s doubly-robust property for setups #1,2,3 in Table 1 where internal validity holds.

We misspecify F̄S,A(t|X) by setting the baseline survival function W 0(t;λ, p) to follow the law of a uniform
random variable between the minimum and maximum time-to-event variables, and set βCox = 0. We use the
correct (oracle) values for ḠS,A(t|X) and P (A|X,S), and name the resulting signal CDR-MissF.

We then misspecify ḠS,A(t|X) and P (A|X,S) and use the correct values for F̄S,A(t|X), and name the resulting
signal CDR-MissGP. The misspecification of ḠS,A(t|X) is done similarly to that of F̄S,A(t|X), by using the minimum
and maximum censoring times. We also misspecify P (A|X,S) by setting it to 0.5 in the OS S = 1.

We see in Table 3 that misspecified models maintain low type-1 error and higher power, corroborating the
doubly-robustness of the CDR signal.

Table 3: Rejection rates over 40 runs for misspecified CDR signals. OS size is n1 = 2955. Same setups in Table 1
are considered.

Setup # 1 2 3

Metric Type-1 error Power Power

CDR-MissF 0 0.3 0.975
CDR-MissGP 0 0.35 0.975

C.2 Witness Function

As exposed in Hussain et al. (2023), an appealing feature of using MMR-based approach is that we can express
the maximizer of M (Theorem 3) as

f∗ = arg sup
f∈F,||f ||≤1

(E [ψf(X)])
2

in closed form. This maximizer is referred to as the witness function and can be estimated as follows:

f̂∗ = C
1

n

∑
i

ψik(xi, x)

https://biolincc.nhlbi.nih.gov/studies/whi_ctos/
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where C is a constant such that
∫
X f

∗(x)dx = 1.

The witness function reveals the regions of X where the “difference signal” ψ takes on larger values. As such, it
can indicate the sub-populations where the CATE (see (1)) estimates from the RCT and OS are most discrepant.

We investigated the witness function using a fully synthetic dataset, where we control the “source covariates” of
discrepancy and ensure limited correlation between them to facilitate the validation of the readings.

For both RCT S = 0 and OS S = 1, we generate covariates using one intercept and 10 independent normal
variables with variances σ2 = 1 and the following means

µs=0 =
[
0, 0, 0, 0, 0, 0, 0, 0, 1, 0

]
µs=1 =

[
0,−0.1, 0.4, 0,−0.3, 0.15, 0, 0.4, 1,−0.4

]
For the OS, we generated the probability of treatment with a logistic regression with parameters βprop:

P (A = 1 | X,S = 1) = sigmoid(X⊺βprop)

where βprop,s=1 =
[
−0.7, 0.4,−0.2, 0.3,−0.1,−0.4, 0.2, 0.1, 0.4,−0.8,−0.75

]
and for the RCT we have P (A = 1|X,S = 0) = 0.5. We induce different CATE functions in the RCT and OS by
using different parameter values for covariates X8, X9, and X10 in the CoxPH model for generating Y (1).

βCox,S=0,Y (1) =
[
0, 0.7,−0.4, 0.5, 0.4,−0.5, 0.6,−0.4, 0.5,−1.2,−0.7

]
.

βCox,S=1,Y (1) =
[
0, 0.7,−0.4, 0.5, 0.4,−0.5, 0.6,−0.4,−0.5, 1.2, 0.7

]
The CoxPH model parameters for the potential outcome Y (0) is set to be the same across studies. According
to this data generating model, an effective witness function should enable the detection as X8, X9, and X10 as
culprits for the discrepancy between RCT and OS.

In Figure 3, we scatter-plot (blue) the individual values of the difference signal ψ. The witness function at any
point is then a weighted average of those values depending on the specific kernel function k(·, ·). We visualize
the linear fit (red) to the difference signal function ψ over X for some quick insight. We observe the strongest
correlations for variables X8, X9, and X10, as expected.

In Figure 4, we plot the witness function over each dimension individually (using the same values for the other
dimensions, effectively excluding their effect on the result). We repeat the experiment with some additive noise
on the corresponding covariate values to obtain uncertainty ranges. We observe that large X8, X9, and X10 result
in high witness function values, pronouncing the difference in the corresponding βCox values across studies. The
direction of growth indicates the sign of the discrepancy. These experiments confirm that the witness function
can be used for identifying a sub-population that exhibits a stronger violation of the validity assumptions.

However, in practice, the covariates will be correlated, which can hamper the ability of the witness function to
pinpoint the variables responsible for the discrepancy. Furthermore, if the discrepancy results from unmeasured
confounders, our only hope would be to see some effect through features correlated with the unmeasured
confounders. However, useful proxies for the unmeasured confounders should also alleviate the very issue of
confounding; therefore, the witness functions’ utility is fundamentally limited under unmeasured confounding.

C.3 Hypothesis Testing

After calculating the test statistic M̂2
n, we follow Hussain et al. (2023) (see their Appendix E.2) to generate B = 100

samples from the null distribution H0. Let (wk1, . . . , wkn) ∼ Multinom(n, ( 1n , . . . ,
1
n )). The k-th bootstrap sample

of the null is given as

M̂2
n(k) =

1

n2

∑
i,j∈I,i̸=j

(wki − 1)ψ̂ik(xi, xj)ψ̂j(wkj − 1)

The p-value for the statistic is then calculated as

ta =

[∑B
k=1 1(M̂2

n ≤ M̂2
n(k))

]
+ 1

B + 1
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Figure 3: The difference signal ψ (blue) with a line fit to it (red) separately for each covariate.



Benchmarking Observational Studies with Experimental Data under Right-Censoring

Figure 4: Witness function evaluated over each dimension individually.

If ta < 0.05, we reject the null H0 and accept it otherwise.

D BASELINE SIGNALS

We consider four signals without any component to model censoring that are used to construct the baseline tests
in the ablation studies: IPW-Y, DR-Y, IPW-Ỹ , and DR-Ỹ . These signals are the standard inverse propensity
weighting and regression-based signals in the literature. Let us start with the latter two. Note that ψIPW,Ỹ is
already defined in (32). We define

ψDR,Ỹ
s,a :=

1

P (S = s|X)

1 {A = a}
(
Ỹ − µ̃s,a(X)

)
P (A = a|X,S = s)

+ µ̃s,a(X)


ψDR,Ỹ
s := ψDR,Ỹ

s,a=1 − ψDR,Ỹ
s,a=0

ψDR,Ỹ := ψDR,Ỹ
s=1 − ψDR,Ỹ

s=0

where
µ̃s,a(X) = E

[
Ỹ |X,S = s,A = a

]
is the mean outcome function for the imputed outcome Ỹ . ψIPW,Y and ψDR,Y are the conjugates of ψIPW,Ỹ and
ψDR,Ỹ , invoked only on the uncensored data (∆ = 1). Precisely,

ψDR,Y
s,a :=

1

P (S = s|X,∆ = 1)

1 {A = a}
(
Ỹ − µ̃s,a(X|∆ = 1)

)
P (A = a|X,S = s,∆ = 1)

+ µ̃s,a(X|∆ = 1)


ψDR,Y
s := ψDR,Y

s,a=1 − ψDR,Y
s,a=0

ψDR,Y := ψDR,Y
s=1 − ψDR,Y

s=0

where ψIPW,Y is defined similarly and the signals are estimated using only the uncensored data.
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